
國 立 交 通 大 學

資訊工程系

碩 士 論 文

在可重組系統中使用動態重組排程方式

增加 3D 顯像程式的效能

Using a Run-time Reconfiguration Scheduling to improve

performance for 3D Rendering on Reconfigurable System

研 究 生：李孟道

指導教授：鍾崇斌 教授

中 華 民 國 九 十三 年 六 月

 在可重組系統中使用動態重組排程方式增加3D顯像

程式的效能

Using a Run-time Reconfiguration Scheduling to improve

performance for 3D Rendering on Reconfigurable System

研 究 生：李孟道 Student：Meng-Tao Lee

指導教授：鍾崇斌 Advisor：Chung-Ping Chung

國 立 交 通 大 學

資 訊 工 程 系

碩 士 論 文

A Thesis

Submitted to Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

In

Computer Science and Information Engineering
June 2004

Hsinchu, Taiwan, Republic of China

中華民國九十三年六月

在可重組系統中使用動態重組排程方式

增加 3D 顯像程式的效能

學生: 李孟道 指導教授: 鍾崇斌 博士

國立交通大學資訊工程學系﹙研究所﹚碩士班

摘 要

3D 顯像程式需要大量的數學運算且資料之間的平行性極高，但是每筆資料處理的

時間卻不相同，使用微處理器來執行會使得效能不夠快，設計一個特定的硬體雖然可以

得到最大的效能，但是會用上非常多的硬體資源。在某些有硬體資源限制的情形下，有

可能會造成效能不彰亦或是根本無法在上面執行。而可重組式運算可以在有限的硬體資

源下進行大規模的運算，更能使硬體結構直接切合運算的需求，達到高效能的目的。因

此在本篇論文中，探討 3D 顯像程式如何在可重組式系統上執行，透過

1. 程式分割：不破壞最大平行性的情形下，將程式分割成幾個片段

2. 工作排程：利用資料平行性盡量重用硬體和並且減少重組的次數進而降低總執

行時間

透過以上兩點，我希望可以找到一個讓 3D 顯像程式在可重組式系統上執行最適合的方

式。

 i

Using a run-time Reconfiguration
Scheduling to improve performance for

3D Rendering on Reconfigurable System

Student : Meng-Tao Lee Advisors：Dr. Chung-Ping Chung

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

ABSTRACT

3D rendering applications have lots of arithmetic operations and high parallelism but

execution times of each data are not the equal. General purpose computing is not fast enough

for 3D rendering, Application specific computing (ASC) supports customization of

applications in the form of hardware. Due to customization of hardware, this approach offers

maximum performance for executing applications, but it will also cost a lot of hardware

resource. In some situation with hardware constraint, it may not get high performance or even

can not execute by using ASC. Reconfigurable computing can execute lots of computation

with limited hardware resource and customize hardware circuit to fit the application needs for

high performance.

In this thesis, I discuss how 3D rendering application can be mapped into reconfigurable

system, by:

1. Analysis of rendering process: analyze operations, parallelism and computation flow

2. DFG scheduling: reuse hardware and decrease reconfigurable frequency using data

parallelism to minimize total execution time

Through this, I propose a method to execute 3D rendering application on reconfigurable

system.

 ii

誌謝

 首先感謝我的指導老師 鍾崇斌教授，在他的諄諄教誨、辛勤指導與勉勵下，得以

順利完成此篇論文。同時感謝我的口試委員陳添福教授以及單智君教授，在他們的建議

之下，使此篇論文更加完整。

 感謝 Reconfigurable Computing 研究群的博士班學長—蔣坤成學長，以及其他研究團

體的博士班學長們—鄭哲聖學長、喬偉豪學長和林漢君學長。也感謝實驗室其他同學們

熱心的與我討論，給我意見和鼓勵。

 此外，感謝諸位同學和學弟妹們，你們的陪伴讓我的生活充滿歡樂；也讓這兩年來

的研究生活更加的多采多姿與充實。最後感謝我的家人，謝謝你們在背後全心全意的支

持我、關懷我與鼓勵我。讓我在這研究的路上走的更順利，進而能更全無後顧之憂的用

功學習，讓我能堅持追其自己的理想。

 所有支持我、勉勵我的師長與親友，奉上我最誠摯的感謝與祝福，謝謝你們。

李孟道

2004.6.28

 iii

Contents

摘 要 ...i

ABSTRACT ...ii

誌謝 ...iii

Contents ...iv

List of Tables ...vi

List of Figures...vii

Chapter 1 Introduction ..1

1.1 Computer Graphics...1

1.2 Run-time Reconfiguration ..2

1.3 Motivation and Objective ...4

1.4 Organization of This Thesis..4

Chapter 2 Background...5

2.1 Reconfigurable Models...5

2.1.1 Single Context ..5

2.1.2 Multicontext ...6

2.1.3 Partially Reconfigurable...7

2.2 Rendering Process ..8

2.2.1 Transformation ...9

2.2.2 Lighting ..13

2.2.3 Projection..23

2.2.4 Rasterization ...25

2.2.5 Shading ...31

Chapter 3 Design...35

3.1 Analysis ..35

3.2 Design...39

3.3 Observation...40

3.4 Opportunity of improvement ..40

3.5 Dynamic Task Scheduling ..41

Chapter 4 Simulation...42

 iv

4.1 Simulation Environment...42

4.2 Simulation Result ...42

Chapter 5 Conclusion and Future work ..47

5.1 Conclusion..47

5.2 Future work ..47

Reference ..49

 v

List of Tables

Table 3-1 Basic operation for each stage..38

Table 3-2 Resource and execution time of each stage..39

Table 4-1 Benchmarks ..43

Table 4-2 Execution time comparison 1 ...43

Table 4-3 execution time comparison 2..44

Table 4-4 The comparison of fixed configuration design and RTR46

 vi

List of Figures

Figure 1-1 The concept of Run-time Reconfiguration ..2

Figure 2-1 Reconfigurable Models ..6

Figure 2-2 The architecture of programming bit ...6

Figure 2-3 The minimum entities required in a practical viewing system 11

Figure 2-4 The calculation of up vector V ...13

Figure 2-5 The difference between local reflection models and shading algorithms

..14

Figure 2-6 The concept of local reflection model ...15

Figure 2-7 The reflection phenomena ...16

Figure 2-8 The computer graphics surface ..16

Figure 2-9 The Phong diffuse component ...19

Figure 2-10 The Phong specular component ...20

Figure 2-11 The light intensity ..20

Figure 2-12 the vector H ..21

Figure 2-13 The orientation of the light source ...22

Figure 2-14 The projection in computer graphics ...23

Figure 2-15 The perspective projection ...24

Figure 2-16 Deriving a perspective transformation ...24

Figure 2-17 The concept of Bresenham’s algorithm ...26

Figure 2-18 The linked list ..29

Figure 2-19 The problem with polygon boundaries ..30

Figure 2-20 The result of Rasterization rules ..31

Figure 2-21 The Gouraud Shading ..32

Figure 2-22 The difference between Gouraud and Phong shading34

Figure 3-1 The example of Rendering process...35

Figure 3-2 The DFG of one vertex ...35

Figure 3-3 The execution example of fixed configuration design............................40

Figure 3-4 The execution example of modified fixed configuration design40

Figure 3-5 The execution example of Run-time Reconfiguration design41

 vii

Figure 4-1 The simulation result of different PE..45

Figure 4-2 The simulation result of cost function ..45

 viii

Chapter 1 Introduction

Computer graphics are traditionally computation intensive, it stared at high-end system such

as work stations for scientific purpose and then it showed up at the desktop computer. For now,

portable devices are going to have ability to perform 3D applications. As we can see, the

hardware resources for the computer graphics are getting less and less. If we can use lesser

hardware to accelerated larger portions of application, it will be beneficial for the small

system. In this thesis, we propose a method to analyze the application and propose a run-time

scheduling for that reconfigurable system.

1.1 Computer Graphics

Since the mid-1970s the developmental motivation of computer graphics from the

viewpoint of its practitioners has been photorealism or the pursuit of techniques that

make a graphics image of an object or scene in distinguishable from a TV image or

photograph. A more recent strand of the application of these techniques is to display

information in, for example, medicine, science and engineering.

The calculation of light-object interaction is the foundation of photo-realism and this

split neatly into two fields – the development of local reflection models and the

development of global models. Local or direct reflection models only consider the

interaction of an object with a light source as if the object and light were floating in dark

space. That is, only the first reflection of light from the object is considered. Global

reflection models consider how light reflects from one object and travels onto another.

In other words the light impinging on a point on the surface can come either from a light

source (direct light) or indirect light that has first hit another object. Although two

partial solutions for global interaction, ray tracing and radiosity, are implementer, global

interaction is still for the most part an unsolved problem.

 Much modern scientific research comes from computer graphics research and early

 1

major advances are created and consolidated into a practical technology. Later

significant advances seem to be more difficult to achieve. We can say that most images

are produced using the Phong local reflection model (first reported in 1975), fewer using

ray tracing (first popularized in 1980) and fewer still using radiosity (first reported in

1984). Although there is still much research being carried out in light-scene interaction

methodologies much of the current research in computer graphics is concerned more

with applications, for example, with such general applications as animation,

visualization and virtual reality. In the most important computer graphics publication

(the annual SIGGRAPH conference proceedings) there was in 1985 a total of 22 papers

concerned with the production techniques of images (rendering, modeling and hardware)

compared with 13 on what could loosely be called applications. A decade later in 1995

there were 37 papers on applications and 19 on image production techniques. [1]

1.2 Run-time Reconfiguration

Frequently, the areas of a program that can be accelerated by using the reconfigurable

hardware are too numerous or complex to be loaded simultaneously onto the available

hardware. For these cases, if we can swap different configurations in and out of the

reconfigurable hardware as they are needed during program execution, it will be

beneficial (Figure 1.1). This concept is called run-time reconfiguration (RTR).

Figure 1-1 The concept of Run-time Reconfiguration [2]

 Run-time reconfiguration is based upon the concept of virtual hardware, which is

similar to virtual memory. Here, the physical hardware is much smaller than the sum of

the resources required by each of the configurations. Therefore, instead of reducing the

 2

number of configurations that are mapped, we instead swap them in and out of the actual

hardware as they are needed. Because run-time reconfiguration allows more sections of

an application to be mapped into hardware than can be fit in a non-run-time

reconfigurable system, a greater portion of the program can be accelerated. This

provides potential for an overall improvement in performance.

Configurations are swapped in and out of the reconfigurable hardware during a single

program’s execution. Some of these configurations will likely require access to the

results of other configurations. Configurations that are active at different periods in time

therefore must be provided with a method to communicate with one another. Primarily,

this can be done through the use of registers [7] [8] [9] [10], the contents of which can

remain intact between reconfigurations. This allows one configuration to store a value,

and a later configuration to read back that value for use in further computations. An

alternative for reconfigurable systems that do not include state-holding devices is to

write the result back to registers or memory external to the reconfigurable array, which

is then read back by successive configurations [11].

There are a few different configuration memory styles that can be used with

reconfigurable systems. A single context device is a serially programmed chip that

requires a complete reconfiguration in order to change any of the programming bits. A

multicontext device has multiple layers of programming bits, each of which can be

active at a different point in time. Devices that can be selectively programmed without a

complete reconfiguration are called partially reconfigurable. These different types of

configuration memory are described in more detail later. An advantage of the

multicontext FPGA over a single context architecture is that it allows for an extremely

fast context switch (on the order of nanoseconds), whereas the single context may take

milliseconds or more to reprogram. The partially reconfigurable architecture is also

more suited to run-time reconfiguration than the single context, because small areas of

the array can be modified without requiring that the entire logic array be reprogrammed.

For all of these run-time reconfigurable architectures, there are also some compilation

issues which are not encountered in systems that only configure at the beginning of an

application. For example, run-time reconfigurable systems are able to optimize based on

values that are known only at run-time. Furthermore, compilers must consider the

run-time reconfigurability when generating the different circuit mappings, not only to be

aware of the increase in time-multiplexed capacity, but also to schedule reconfigurations

so as to minimize the overhead that they incur. These software issues, as well as an

 3

overview of methods to perform fast configuration, will be explored in the sections that

follow.

1.3 Motivation and Objective

Now graphics accelerators are usually made by dedicated hardware, it can achieve very

high performance but it loses the flexibility. Reconfigurable computing provides another

way to accelerate the computer graphics applications which retain flexibility of a

software solution. Once if we use reconfigurable hardware to accelerate such a

application, scheduling is a critical issue that execution time of each stage in rendering

process is not constant.

 Here our objective is to analyze operations, parallelism and computation flow of

rendering process to design a Run-time reconfiguration scheduling.

1.4 Organization of This Thesis

The organization of this thesis is as follows: In Chapter 2, the background is presented.

In Chapter 3, analysis of the rendering process and the design of Run-time

reconfiguration are described. In Chapter 4, we analyze our simulation result and show

our simulation environment. Finally, conclusion and future work are presented in

Chapter 5.

 4

Chapter 2 Background

In this chapter, we will introduce the backgrounds of reconfigurable models and computer

graphics.

2.1 Reconfigurable Models

Traditional FPGA structures have been single context which only allow one full-chip

configuration to be loaded at a time. However, designers of reconfigurable systems have

found this style of configuration to be too limiting or slow to efficiently implement

run-time reconfiguration. The following discussion (reference from [2]) defines the

single context device, and further considers newer FPGA designs (multicontext and

partially reconfigurable), along with their impact on run-time reconfiguration.

2.1.1 Single Context

Current single context FPGAs are programmed using a serial stream of

configuration information. Because only sequential access is supported, any

change to a configuration on this type of FPGA requires a complete

reprogramming of the entire chip. Although this does simplify the reconfiguration

hardware, it does incur a high overhead when only a small part of the

configuration memory needs to be changed. Many commercial FPGAs are of this

style, including the Xilinx 4000 series [12], the Altera Flex10K series [13], and

Lucent’s Orca series [14]. This type of FPGA is therefore more suited for

applications that can benefit from reconfigurable computing without run-time

reconfiguration. A single context FPGA is depicted in Figure 2.1.

 5

Figure 2-1 Reconfigurable Models [2]

In order to implement run-time recon-figuration onto a single context FPGA, the

configurations must be grouped into contexts, and each full context is swapped in

and out of the FPGA as needed. Because each of these swap operations involve

reconfiguring the entire FPGA, a good partitioning of the configurations between

contexts is essential in order to minimize the total reconfiguration delay. If all the

configurations used within a certain time period are present in the same context, no

reconfiguration will be necessary. However, if a number of successive

configurations are each partitioned into different contexts, several reconfigurations

will be needed, slowing the operation of the runtime reconfigurable system.

Figure 2-2 The architecture of programming bit [2]

A four-bit multicontexted programming bit[16]. P0-P3 are the stored programming
bits, while C0-C3 are the chip wide control lines that select the context to program or
activate.

2.1.2 Multicontext

A multicontext FPGA includes multiple memory bits for each programming bit

location [10] [15] [16] [17]. These memory bits can be thought of as multiple

planes of configuration information, as shown in Figure 2.2. One plane of

configuration information can be active at a given moment, but the device can

 6

quickly switch between different planes, or contexts, of already-programmed

configurations. In this manner, the multicontext device can be considered a

multiplexed set of single context devices, which requires that a context be fully

reprogrammed to perform any modification. This system does allow for the

background loading of a context, where one plane is active and in execution while

an inactive place is in the process of being programmed. Figure 2.2 shows a

multicontext memory bit, as used in [16]. A commercial product that uses this

technique is the CS2000 RCP series from Chameleon, Inc [17]. This device

provides two separate planes of programming information. At any given time, one

of these planes is controlling current execution on the reconfigurable fabric, and

the other plane is available for background loading of the next needed

configuration.

Fast switching between contexts makes the grouping of the configurations into

contexts slightly less critical, because if a configuration is on a different context

than the one that is currently active, it can be activated within an order of

nanoseconds, as opposed to milliseconds or longer. However, it is likely that the

number of contexts within a given program is larger than the number of contexts

available in the hardware. In this case, the partitioning again becomes important to

ensure that configurations occurring in close temporal proximity are in a set of

contexts that are loaded into the multicontext device at the same time. More

aspects involving temporal partitioning for single- and multicontext devices will

be discussed in the section on compilers for run-time reconfigurable systems.

2.1.3 Partially Reconfigurable

In some cases, configurations do not occupy the full reconfigurable hardware, or

only a part of a configuration requires modification. In both of these situations, a

partial reconfiguration of the array is required, rather than the full reconfiguration

required by a single- or multicontext device. In a partially reconfigurable FPGA,

the underlying programming bit layer operates like a RAM device. Using

addresses to specify the target location of the configuration data allows for

selective reconfiguration of the array. Frequently, the undisturbed portions of the

array may continue execution, allowing the overlap of computation with

 7

reconfiguration. This has the benefit of potentially hiding some of the

reconfiguration latency.

When configurations do not require the entire area available within the array, a

number of different configurations may be loaded into unused areas of the

hardware at different times. Since only part of the array is reconfigured at a given

point in time, the entire array does not require reprogramming. Additionally, some

applications require the updating of only a portion of a mapped circuit, while the

rest should remain intact, as shown in Figure 2.1. For example, in a filtering

operation in signal processing, a set of constant values that change slowly over

time may be reinitialized to a new value, yet the overall computation in the circuit

remains static. Using this selective reconfiguration can greatly reduce the amount

of configuration data that must be transferred to the FPGA. Several run-time

reconfigurable systems are based upon a partially reconfigurable design, including

Chimaera [18], PipeRench [8] [19], NAPA [9], and the Xilinx 6200 and Vertex

FPGAs [20] [21].

Unfortunately, since address information must be supplied with configuration

data, the total amount of information transferred to the reconfigurable hardware

may be greater than what is required with a single context design. This makes a

full reconfiguration of the entire array slower than the single context version.

However, a partially reconfigurable design is intended for applications in which

the size of the configurations is small enough that more than one can fit on the

available hardware simultaneously. Plus, as we discuss in subsequent sections, a

number of fast configuration methods have been explored for partially

reconfigurable systems in order to help reduce the configuration data traffic

requirements.

2.2 Rendering Process

 In this thesis, we study the basic component of computer graphics from Alan Watt’s book

[1]. Hence the following background is to refer to Alan Watt’s book [1].

 8

2.2.1 Transformation

 Transformation includes three coordinate spaces:

A. Local or modeling coordinates systems

For ease of modelling it makes sense to store the vertices of a polygon mesh

object with respect to some point located in or near the object. For example,

we would almost certainly want to locate the origin of a cube at one of the

cube vertices, or we would want to make the axis of symmetry of an object

generated as a solid of revolution, coincident with the z axis. As well as

storing the polygon vertices in a coordinate system that is local to the object,

we would also store the polygon normal and the vertex normals. When local

transformations are applied to the vertices of an object, the corresponding

transformations are applied to the associated normals.

B. World coordinate systems

Once an object has been modeled the next stage is to place it in the scene that

we wish to render. All objects that together constitute a scene have their

separate local coordinate systems. The global coordinate system of the scene

is known as the ‘world coordinate system’. All objects have to be

transformed into this common space in order that their relative spatial

relationships may be defined. The act of placing an object in a scene defines

the transformation required to take the object from local space to world space.

If the object is being animated, then the animation system provides a

time-varying transformation that takes the object into world space on a frame

by frame basis.

 The scene is lit in world space. Light sources are specified, and if the

shaders within the renderer function are in world space then this is the final

transformation that the normals of the object have to undergo. The surface

attributes of an object – texture, colour, and so on – are specified and tuned

in this space.

C. Camera or eye view coordinate system

The eye, camera or view coordinate system is a space that is used to establish

 9

viewing parameters (view point, view direction) and a view volume. (A

virtual camera is often used as the analogy in viewing systems, but if such an

allusion is made we must be careful to distinguish between external camera

parameters or those that affect the nature and size of the image on the film

plane. Most rendering systems imitate a camera which in practice would be a

perfect pinhole. However, there are other facilities in computer graphics that

cannot be imitated by a camera and because of this the analogy is of limited

utility.)

 We will now deal with a basic view coordinate system and the

transformation from world space to view coordinate space. The reason that

this space exist, after all we could go directly from world space to screen

space, is that certain operations (and specifications) are most conveniently

carried out in view space.

 We define a viewing system as being the combination of a view coordinate

system together with the specification of certain facilities such as a view

volume. The simplest or minimum system would consist of the following：

 A view point which establishes the viewer’s position in world space;

this can either be the origin of the view coordinate system or the centre

of projection together with a view direction N.

 A view coordinate system defined with respect to the view point.

 A view plane onto which the two-dimensional image of the scene is

projected.

 A view frustum or volume which defines the field or view.

 10

Figure 2-3 The minimum entities required in a practical viewing system [1]

These entities are show in Figure 2.3. The view coordinate system, UVN, has

N coincident with the viewing direction and V and U lying in a plane parallel

to the view plane. We can consider the origin of the system to be the vie

point C. The view plane containing U and V is of infinite extent and we

specify a view volume or frustum which defines a window in the view plane.

It is the contents of this window – the projection of that part of the scene that

is contained within the view volume – that finally appears in the screen.

 Thus, using the virtual camera analogue we have a camera that can be

positioned anywhere in world coordinate space, pointed in any direction and

rotated about the viewing direction N.

 To transform points in world coordinate space we invoke a change of

coordinate system transformation and this split into two components: a

translational one and a rotational one. Thus:

The minimum entities required in a
practical viewing system.
(a) View point C and viewing direction

N.
(b) A view plane normal to the viewing

direction N positioned d units from
C.

(c) A view coordinates system with the
origin C and UV axes embedded in
plane parallel to the view plane.

(d) A view volume defined by the
frustum formed by C and the view
plane window.

 11

(1)

1 1

v w

v w
view

v w

x x
y y

T
z z

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

where:

(2)viewT RT=

and:

1 0 0 0
0 1 0 0

(3)
0 0 1 0
0 0 0 1 0 0 0 1

x x y z

y x y z

z x y z

C U U U
C V V V

T R
C N N N

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

The only problem now is specifying a user interface for the system and

mapping whatever parameters are used by the interface into U, V and N. A

user needs to specify C, N and V. C is easy enough. N, the viewing direction

or view plane normal, can be entered say, using two angles in a spherical

coordinate system – this seems reasonably intuitive:

θ the azimuth angle

φ the colatitude or elevation angle

where:

sin cos
sin sin (4)

cos

x

y

z

N
N

N

φ θ
φ θ

φ

=
=

=

V is more problematic. For example, a user may require ‘up’ to be the same

sense as ‘up’ in the world coordinates system. However, this cannot be

achieved by setting:

(0,0,1)V =

because V must be perpendicular to N. A sensible strategy is to allow a user

to specify an approximate orientation for V, say V’ and have the system

calculate V. Figure 2.4 demonstrate this. V’ is the user-specified up vector.

This is projected onto the view plane:

' (') (5)V V V N N= − i

 12

and normalized. U can be specified or not depending on the user’s

requirements. If U is unspecified, it is obtained from:

(6)U N V= ×

This results in a left-hand coordinate system, which although somewhat

inconsistent, conforms with our intuition of a practical viewing system,

which has increasing distances from the view point as increasing values

along the view direction axis. Having established the viewing transformation

using UVN notation, we will in subsequent section use (, ,)v v vx y z to

specify points in the view coordinate system.

Figure 2-4 The calculation of up vector V [1]

The up vector V can be calculated
from an ‘indication’ given by V’.

2.2.2 Lighting

Shading Pixels

The first quality shading in computer graphics was developed by H. Gouraud in

1971 (Gouraud 1971). In 1975 Phong Bui-Tuong (Phong 1975) improved on

Gouraud’s model and Phong shading, as it is universally known, became the

defacto standard in mainstream 3D graphics. Despite the subsequent development

of ‘global’ techniques, such as ray tracing and radiosity, Phong shading has

remained ubiquitous. This is because it enables reality to be mimicked to an

acceptable level at reasonable cost.

 There are two separate considerations to shading the pixels onto which a

polygon projects. First we consider how to calculate the light reflected at any point

 13

on the surface of an object. Given a theoretical framework that enables us to do

this, we can then calculate the light intensity at the pixels onto which the polygon

projects. The first consideration we call ‘local reflection models’ and the second

‘shading algorithms’. The difference is illustrated conceptually in Figure 2.5. For

example, one of the easiest approaches to shading – Gouraud shading – applies a

local reflection models at each of the vertices to calculate vertex intensity, then

derives a pixel intensity using the interpolation equations.

Figure 2-5 The difference between local reflection models and shading algorithms [1]

 Basically there is a conflict here. We only want to calculate the shade for each

pixel onto which the polygon projects. But the reflected light intensity at every

point on the surface of a polygon is by definition a world space calculation. We are

basing the calculation on the orientation of the surface with respect to a light

source both of which are defined in world space. Thus we use a 2D projection of

the polygon as the basis of an interpolation scheme that controls the world space

calculations of intensity and this is incorrect. Linear interpolation, using equal

Illustrating the difference between local reflection models and shading
algorithms.
(a) Local reflection models calculate light intensity as any point P on the

surface of an object.
(b) Shading algorithms interpolate pixel values from calculated light

intensities at the polygon vertices.

 14

increments, in screen space does not correspond to how the reflected intensity

should vary across the face of the polygon in world space. One of the reasons for

this is that we have already performed a (non-linear) perspective transformation to

get into screen space. Like many algorithms in 3D computer graphics it produces

an acceptable visual result, even using incorrect mathematics. However, this

approach does lead to visible artifacts in certain contexts.

Local reflection models

A local reflection model enables the calculation of the reflected light intensity

from a point on the surface of an object. Here we will confine ourselves to

considering, from a practical view point, the most common model and see how it

fits into a renderer.

 This model, introduced in 1975, evaluates the intensity of the reflected light as a

function of the orientation of the surface at the point of interest with respect to the

position of a point light source and surface properties. We refer to such a model as

a local reflection model because it only considers direct illumination. It is as if the

object under consideration was an isolated object floating in free space. Interaction

with other objects that result in shadows and inter-reflection are not taken into

account by local reflection models. This point is emphasized in Figure 2.6.

Figure 2-6 The concept of local reflection model [1]

(a) A local reflection model calculates intensity at Pb and Pa considering direct
illumination only.

(b) Any indirect reflected light from A to B or from B to A is not taken into
account.

 15

 The physical reflection phenomena that the model simulates are:

 Perfect specular reflection

 Imperfect specular reflection

 Perfect diffuse reflection

Figure 2-7 The reflection phenomena [1]

Figure 2-8 The computer graphics surface [1]

These are illustrated in Figure 2.7 for a point light source that is sending an

infinitely thin beam of light to a point on a surface. Perfect specular reflection

occurs when incident light is reflected, without diverging, in the ‘mirror’ direction.

The three reflection phenomena used in computer graphics.
(a) Perfect specular reflection.
(b) Imperfect specular reflection.
(c) Perfect diffuse reflection.

 16

Imperfect specular reflection is that which occurs when a thin beam of light strikes

an imperfect mirror, that is a surface whose reflecting properties are that of a

perfect mirror but only at a microscopic level – because the surface is physical

rough. Any area element of such a surface can be considered to be made up of

thousands of tiny perfect mirrors all at slightly different orientations.

Perfect specular reflection does not occur in practical but we use it in ray tracing

models simply because calculating interaction due to imperfect specular reflection

is too expensive. A perfect diffuse surface reflects the light equally in all directions

and such a surface is usually called matte.

The Phong reflection model considers the reflection from a surface to consist of

three components linearly combined:

Reflected light = ambient light + diffuse component + specular component

The ambient term is a constant and simulates global or indirect illumination. This

term is necessary because parts of a surface that cannot ‘see’ the light source, but

which can be seen by the viewer, need to be lit. Otherwise they would be rendered

as black. In reality such lighting comes from global or indirect illumination and

simply adding a constant side-step the complexity of indirect or global

illumination calculation.

 It is useful to consider what types of surface such a model simulates. Linear

combination of a diffuse and specular component occurs in polished surfaces such

as varnished wood. Specular reflection results from the transparent layer and

diffuse reflection from the underlying surface (Figure 2.8). Many different

physical types, although not physical the same as a varnished wood, can be

approximately simulated by the same model. The veracity of this can be

demonstrated by considering looking at a sample of real varnished wood, shiny

plastic and gloss paint. If all contextual clues are removed and the reflected light

from each sample exhibited the same spectral distribution, an observer would find

it difficult to distinguish between the samples.

 As well as possessing the limitation of being a local model, the Phong reflection

model is completely empirical or imitative. One of its major defects is that the

value of reflected intensity calculated but the model is a function only of the

viewing direction and the orientation of the surface with respect to the light source.

In practical, reflected light intensity exhibits bi-directional behavior. It depends

also on the direction of the incident light. This defect has led to much research into

 17

physically based reflection models, where an attempt is made to model reflected

light by simulating real surface properties. However, the subtle improvements

possible by using such models – such as the ability to make surface look metallic –

have not resulted in the demise of the Phong reflection model and the main thrust

of current research into rendering methods deals with the limitation of ‘localness’.

Global methods, such as radiosity, result in much more significant improvements

to the apparent reality of a scene.

 Leaving aside, for a moment, the issue of color, the physical nature of a surface

is simulated by controlling the proportion of the diffuse to specular reflection and

we have the reflected light:

(7)a a d d s sI k I k I k I= + +

Where the proportions of the three components, ambient, diffuse and specular are

controlled by three constant, where:

1 (a d sk k k+ + = 8)

Consider dI . This is evaluated as:

cos (9)d iI I θ=

where:

 iI is the intensity of the incident light

 θ is the angle between the surface normal at the point of interest and the

direction of the light source

In vector notation:

 () (10)d iI I L N=
JK JJK
i

The geometry is shown in Figure 2.9

 18

Figure 2-9 The Phong diffuse component [1]

Now physically the specular reflection consists of an image of the light source

‘smeared’ across an area of the surface resulting in what is commonly known as a

highlight. A highlight is only seen by a viewer if the viewing direction is near to

the mirror direction. We therefore simulate specular reflection by:

 cos (11)n
s iI I= Ω

where:

 Ω is the angle between the viewing direction and the mirror direction R
JK

 n is an index that simulate the degree of imperfection of a surface

When = ∞ the surface is a perfect mirror – all reflected light emerges along

the mirror direction. For other values of an imperfect specular reflector is

simulated (Figure 2.7 b). The geometry of this is shown in Figure 2.10. In vector

notation we have:

n

n

 () (12n
s iI I R V=

JK JK
i)

Bringing these terms together gives:

 (() ()) (13)n
a a d sI k I I k L N k R V= + +

JK JJK JK JK
i i

The behavior of this equation is illustrated in Figure 2.11. Figure 2.11 shows the

light intensity at a single point P as a function of the orientation of the viewing

vector V
JK

. The semicircle is the sum of the constant ambient term and the diffuse

 19

term – which is constant for a particular value of N
JJK

. Addition of the specular

term gives the profile shown in the figure. As the value of is increased the

specular bump is narrowed.

n

Figure 2-10 The Phong specular component [1]

Figure 2-11 The light intensity [1]

Local reflection model – practical points

A number of practical matters that deal with color and the simplification of the

geometry now need to be explained.

The expense of the above shading equation, which is applied a number of times at

every pixel, can be considerably reduced by making geometric simplifications that

The light intensity at point P as a function of the orientation of
the viewing vector V.

 20

reduce the calculation time, but which do not affect the quality of the shading.

First if the light source is considered as a point source located at infinity the L
JK

 is

constant over the domain of the scene. Second we can also place the view point at

infinity making V constant. Of course, for the view and perspective transformation,

the view point needs to be firmly located in world space so we end up using a

finite view point for the geometric transformation and an infinite one for the

shading equation.

 Next the vector R
JK

 is expensive to calculate and it is easier to define a vector

H
JJK

 (Halfway) which is the unit normal to a hypothetical surface that is oriented in

a direction halfway between the light direction vector L
JK

 and the viewing vector

 (Figure 2.12). It is easily seen that: V
JK

.

Figure 2-12 the vector H [1]

 H is the normal to a surface orientation that would reflect all the light along V

() / 2 (14)H L V= +
JJK JK JK

This is the orientation that a surface would require if it was to reflect light

maximally along the direction. Our shading equation now becomes: V
JK

(() ()) (15)n
a a i d sI I k I k L N k N H= + +

JK JJK JJK JJK
i i

because the term (N H)
JJK JJK
i varies in the same manner as ()R V

JK JK
i . These

simplifications mean that I is now a function only of . N

For colored objects we generate three components of the intensity rI , gI and

bI controlling the color of the objects by appropriate setting of the diffuse

21

reflection coefficients , and rk bk gk . In effect the specular highlight is just the

reflection of the light source in the surface of the object and we set the proportions

of the sk to match the color of the light. For a white light, sk is equal in all

three equations. Thus we have:

((() ())

((() ()) (16)

((() ())

n
r a ar i dr sr

n
g a ag i dg sg

n
b a ab i db sb

I I k I k L N k N H

I I k I k L N k N H

I I k I k L N k N H

= + +

= + +

= + +

JK JJK JJK JJK
i i
JK JJK JJK JJK
i i
JK JJK JJK JJK
i i

Local reflection model – light source considerations

One of the most limiting approximations in the above model is reducing the light

source to a point at infinity. A simple directional light (non-point) is easily

modeled and the following was suggested by Warn (1983). In this method a

directional light source is modeled in the same way as a specularly reflecting

surface, where the light emitted from the source is given by a cosine function

raised to a power. Here we assume that for a directional source, the light intensity

in a particular direction, given by the angle φ is :

 cos (17)m
sI φ

Now φ is the angle between L−
JK

, the direction of the point on the surface that

we are considering, and sL
JJK

, the orientation of the light source (Figure 2.13). The

value of iI that we use in the shading equation is then given by:

 () (1m
i s sI I L L= −

JK JJK
i 8)

Note that we can no longer consider the vector L
JK

 constant over the scene.

Figure 2-13 The orientation of the light source [1]

Light source represented as a specularly reflecting surface.

 22

2.2.3 Projection

Because the viewing surface in computer graphics is deemed to be flat we consider

the class of projections known as planar geometric projections. Two basic

projections, perspective and parallel, are now described. These projections and the

difference in their nature is illustrated in Figure 2.14.

Figure 2-14 The projection in computer graphics [1]

 A perspective projection is the more popular or common choice in computer

graphics because it incorporates foreshortening. In a perspective projection relative

dimensions are not preserved, and a distant line is displayed smaller than a nearer

line of the same length (Figure 2.15). This effect enables human beings to perceive

depth in a two-dimensional photograph or a stylization of three-dimensional reality.

A perspective projection is characterized by a point known as the centre of

projection and the projection of three-dimensional point onto the view plane is the

intersection of the line from each point to the centre of projection. These lines are

called projectors.

Two points projected onto a plane using parallel and perspective projections.

 23

Figure 2-15 The perspective projection [1]

Figure 2-16 Deriving a perspective transformation [1]

 Figure 2.16 show how a perspective projection is derived. Point P (, ,)v v vx y z

is a three-dimensional point in the view coordinate system. This point is to be

projected onto a view plane normal to the axis and positioned at distant d from

the origin of this system. Point P’ is the projection of this point in the view plane

and has two-dimensional coordinates

vz

(,)s sx y in a view plane coordinate system

with the origin at the intersection of the axis and the view plane. vz

In a perspective projection a distant line is displayed smaller than a nearer line the same
length.

 24

 To express this non-linear transformation as a 4x4 matrix we can consider it in

two-parts – a linear part followed by a non-linear part. Using homogeneous

coordinates we have:

(19)
/

v

v

v

v

X x
Y y
Z z
w z d

=
=
=
=

We can now write:

(20)

1

v

v
pers

v

X x
Y y

T
Z z
w

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

where:

1 0 0 0
0 1 0 0

(21)
0 0 1 0
0 0 1/ 0

persT

d

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

following this with the perspective divide, we have:

/
/ (22)
/

s

s

s

x X w
y Y w
z Z w

=
=
=

In a parallel projection, if the view plane is normal to the direction of projection

then the projection is orthographic and we have:

(23)s v s v s vx x y y z z= = =

Expressed as a matrix:

1 0 0 0
0 1 0 0

(24)
0 0 0 0
0 0 0 1

ortT

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

2.2.4 Rasterization

Having looked at how general points within a polygon can be assigned intensities

 25

that are determined from vertex values, we now look at how we determine the

actual pixels which we require intensity values for. The process is known as

rasterization or scan conversion. We consider this somewhat tricky problem in two

parts. First, how do we determine the pixels which the edge of a polygon straddles?

Second, how do we organize this information to determine the interior points?

Rasterizing edges

There are two difference ways of rasterizing an edge, based on whether line

drawing or solid area filling is being used. Line drawing is not covered here, since

we are interested in solid object. However, the main feature of line drawing

algorithm (for example, Bresenham’s algorithm (Bresenham 1965)) is that they

must generate a linear sequence of pixels with no gaps (Figure 2.17). For solid

area filling, a less rigorous approach suffices. We can fill a polygon using

horizontal line segments; these can be thought of as the intersection of the polygon

with a particular scan line. Thus, for any given scan line, what is required is the

left- and right-hand limits of segment that is the intersections of the scan line with

left- and right-hand polygon edges. This means that for each edge’s intersections

with the scan lines (Figure 2.17 b). This sequence may have gaps, when

interpreted as a line, as shown by the right-hand edge in the diagram.

Figure 2-17 The concept of Bresenham’s algorithm [1]

 The conventional way of calculating these pixels coordinates is by use of what

is grandly referred to as a ‘digital differential analyzer’, or DDA for short. All this

really consists of is finding how much the x coordinate increases per scan line, and

then repeatedly adding this increment.

 Let (,)s sx y , (,)e ex y be the start and end points of the edge (we assume that

Pixel sequences required for (a) line drawing and (b) polygon filling

 26

ey y> s

)

−

). The simplest algorithm for rasterizing sufficient for polygon edges is:

:
: () /()

:
((),

:

for to do

s

e s e s

s e

x x
m x x y y

y y y
output round x y
x x m

=
= − −

=

= +

The main drawback of this approach is that m and x need to be represented as

floating point values, with a floating point addition and real-to-integer version

each time round the loop. A method due to Swanson and Thayer (Swanson and

Thayer 1986) provides an integer-only version of this algorithm. It can be derived

from the above in two logical stages. First we separate out x and m into integer and

fractional parts. Then each time round the loop, we separate add two parts, adding

a carry to the integer part should the fractional part overflow. Also, we initially set

the fractional part of x to -0.5 to make rounding easy, as well as simplifying the

overflow condition. In pseudocode:

:
: 0.5
: () ()
: () /()

:
(,)

:
:

0.0 { : 1; : 1.0}

s

e s e s

e s e s

s e

xi x
xf
mi x x div y y
mf x x y y mi
for y y to y do

output xi y
xi xi mi
xf xf mf
if xf then xi xi xf xf

=
= −
= − −
= − − −

=

= +
= +

> = + =

 Because the fractional part is now independent of the integer part, it is possible

to scale it throughout by ()2 e sy y− , which the effect of converting everything to

integer arithmetic:

 27

:
: ()
: () ()
: 2*[() mod()]

:
(,)

:
:

0 { : 1; : 2(

s

e s

e s e s

e s e s

s e

e s

xi x
xf y y
mi x x div y y
mf x x y y
for y y to y do

output xi y
xi xi mi
xf xf mf
if xf then xi xi xf xf y y

=

= − −

= − −

= − −
=

= +
= +

> = + = −)}−

Although this approach now to involve two divisions rather than one, they are

both integer rather than floating point. Also, given suitable hardware, they can

both be evaluated from the same division, since the second (mod) is simply the

remainder from the first (div). Finally it only remains to point out that the

 within the loop is constant and would in practical be evaluated just

once outside it.

2()e sy y−

Rasterizing polygons

Now that we know how to find pixels along the polygon edges, it is necessary to

turn our attention to filling the polygons themselves. Since we are concerned with

shading, ‘filling a polygon’ means finding the pixel coordinates of interior points

and assigning to these a value calculated using one of the incremental shading

schemes described in 2.2.5. We need to generate pairs of segment end points and

fill in horizontally between them. This is usually achieved by constructing an

‘edge list’ for each polygon.

 In principle this is done using an array of linked lists, with an element for each

scan line. Initially all the elements are set to NIL. Then each edge of the polygon is

rasterized in turn, and the x coordinate of each pixel (x, y) thus generated is

inserted into the linked list corresponding to that value of y. Each of the linked lists

is then sorted in order of increasing x. The result is something like that shown in

Figure 2.18. Filling-in of the polygon is then achieved by, for each scan line,

taking successive pairs of x values and filling in between them (because a polygon

has to be closed, there will always be an even number of elements in the linked

list). Note that this method is powerful enough to cope with concave polygons

with holes.

 28

Figure 2-18 The linked list [1]

 In practice, the sorting of the linked lists is achieved by inserting values in the

appropriate place initially, rather than by a big sort at the end. Also, as well as

calculating the x value and sorting it for each pixel on an edge, the appropriate

shading values would be calculated and stored at the same time (for example,

intensity value for Gouraud shading; x, y and z components of the interpolated

normal vector for Phong shading).

 If the object contains only convex polygons then the linked x lists will only ever

contain two x coordinates; the data structure of the edge list is simplified and there

is no sort required. It is not a great restriction in practical computer graphics to

constrain an object to convex polygons.

 One thing that has been slightly glossed over so far is the consideration of

exactly where the borders of a polygon lie. This can manifest itself in adjacent

polygons either by gaps appearing between them, or by them overlapping. For

example, in Figure 2.19, the width of the polygon is 3 units, so it should have an

area of 9 units, whereas it has been rendered with an area of 16 units. The

traditional solution to this problem, and the one usually advocated in textbook, is

to consider the sample point of the pixel to lie in its centre, that is, at

. (A pixel can be considered to be a rectangle of finite area with

dimensions 1.0*1.0, and its sample point is the point within the pixel area where

the scene is sampled in order to determine the value of the pixel.) So, for example,

the intersection of an edge with a scan line is calculated for y+0.5, rather than for y,

as we assumed above. This is messy, and excludes the possibility of using

integer-only arithmetic. A simpler solution is to assume that the sample point lies

(0.5, 0.5x y+ +)

An example of a linked list maintained in polygon rasterization.

 29

at one of the four corners of the pixel; we have chosen the top right-hand corner of

the pixel. This has the consequence that the entire image is displaced half a pixel

to the left and down, which in practice is insignificant. The upshot of this is that it

provides the following simple Rasterization rules:

(1) Horizontal edges are simply discarded.

(2) An edge which goes from scan line to should generated x values

for scan lines through to

bottomy topy

bottomy 1topy − (that is missing the top scan line), or

if then it generates no values. bottom topy = y

(3) Similarly, horizontal segments should be filled from leftx to 1rightx − (with

no pixels generated if left rightx x=).

Figure 2-19 The problem with polygon boundaries [1]

Incidentally, in rule (2) and (3), whether the first or last element is ignored is

arbitrary, and the choice is based around programming convenience. The four

possible permutations of these two rules define the sample point as one of the

four corners of the pixel. The effect of these rules can be demonstrated in

Figure 2.20. Here we have three adjacent polygons A, B and C, with edges a, b,

c, and d. the rounded x values produced by these edges for the scan shown are

2, 4, 4, and 7 respectively. Rule 3 then gives pixels 2 and 3 for polygon A,

none for polygon B, and 4 to 6 for polygon C. Thus, overall, there are no gaps,

and no overlapping. The reason why horizontal edges are discarded is because

the edges adjacent to them will have already contributed the x values to make

up the segment (for example, the base of the polygon in Figure 2.18; note also

that, for the sake of simplicity, the scan conversion of this polygon was not

done strictly in accordance with the Rasterization rules mentioned above).

Problems with polygon boundaries – a 9-pixel polygon fills 16 pixels.

 30

Figure 2-20 The result of Rasterization rules [1]

Three polygons intersecting a scan line.

2.2.5 Shading

Interpolative shading techniques

Having dealt with the problem of calculating light intensity at a point, we now

consider how to apply such a model to a polygon and calculate the light intensity

over its surface. Two classic techniques have emerged – Gouraud and Phong

shading. Phong interpolation gives the more accurate highlights – as we shall see –

and is generally the preferred model. Gouraud shading on the other hand is

considerably cheaper. Both techniques have been developed both to interpolate

information efficiently across the face of a polygon and to diminish the visibility

of the polygon edges in the final shading image. Information is interpolated from

values at the vertices of a polygon and the situation is exactly analogous to depth

interpolation.

Interpolative shading techniques – Gouraud shading

In Gouraud shading we calculate light intensity – using the local reflection

model – at the vertices of the polygon and then interpolation between these

intensities to find values at projected pixels. To do this we use the bilinear

interpolation equations, the property p being the vertex intensity I . The particular

surface normals used at a vertex are special normals called vertex normals. If we

consider a polygon in isolation then, of course, the vertex normals are parallel.

However, in Gouraud shading we use special normals called vertex normals and it

is this device that reduces the visibility of polygon edges. Consider Figure 2.21.

Here the vertex normal AN
JJJK

 is calculated by averaging 1N
JJK

, , and 2N
JJK

3N
JJK

4N
JJK

.

 31

 1 2 3 4 (25)AN N N N N= + + +
JJJK JJK JJK JJK JJK

AN
JJJK

 is then used to calculated an intensity at vertex A that is common to all the

polygons that share vertex A.

 For computational efficiency the interpolation equations are implemented as

incremental calculations. This is particularly important in the case of the third

equation, which is evaluated for every pixel. If we define to be the

incremental distance along a scan line then

x∆

I∆ , the change in intensity from one

pixel to the next, is:

, , 1

()

(26)

b a
b a

s n s n s

xI I I
x x

I I I−

∆
∆ = −

−
= + ∆

Because the intensity is only calculated at vertices the method cannot adequately

deal with highlights and this is its major disadvantage. The cause of this defect can

be understood by examining Figure 2.22a. We have to bear in mind that the

polygon mesh is an approximation to a curved surface. For a particular viewing

and light source direction we can have a diffuse component at A and B and a

specular highlight confined to some region between them. Clearly if we are

deriving the intensity at pixel P from information at A and B we will not calculate

a highlight. This situation is nearly taken care of by interpolating vertex normals

rather than intensities as shown in Figure 2.22b. This approach is know as Phong

shading.

Figure 2-21 The Gouraud Shading [1]

 32

The vertex normal NA is the average of the normals N1, N2, N3 and N4, the normals of the
polygon that meet at the vertex.

Interpolative shading techniques – Phong shading

Here we interpolate vertex normals across the polygon interior and calculate for

each polygon pixel projection an interpolated normal. This interpolated normal is

then used in the shading equation which is applied for every pixel projection. This

has the geometric effect (Figure 2.22) of ‘restoring’ some curvature to polygonally

faceted surface.

 The price that we pay for this improved model is efficiency. Not only is the

vector interpolation three times the cost of intensity interpolation, but each vector

has to be normalized and a shading equation calculated for each pixel projection.

 Incremental computation can be employed as with intensity interpolation, and

the interpolation would be implemented as:

, , 1

, , 1

, , 1

(27)
sx n sx n sx

sy n sy n sy

sz n sz n sz

N N N
N N N

N N N

−

−

−

= + ∆

= + ∆

= + ∆

Where sxN , syN and szN are the components of a general scan line normal

vector sN and:

() (sx bx ax
b a

xN N N
x x
∆

∆ = −
−

28)

 33

Figure 2-22 The difference between Gouraud and Phong shading [1]

Illustrating the difference between Gouraud and Phong shading.
(a) Gouraud shading
(b) Phong shading

 34

Chapter 3 Design

In this chapter, we analyze the operations, parallelism and computation flow for rendering

process and propose a run-time reconfiguration scheduling.

3.1 Analysis

Now we know how the rendering process goes. It is shown in Figure 3.1. Data flow

graph of each stage would be shown in Figure 3.2.

Figure 3-1 The example of Rendering process

Figure 3-2 The DFG of one vertex

 35

(a) Transformation DFG of one vertex

(b) Lighting DFG of one vertex

(c) Projection DFG of one vertex

 36

Figure3.2
(e) Rasterization DFG of one line

 37

(e) Shading DFG of one scan line

Basic requirement of arithmetic units is listed in the Table 3.1.

Table 3-1 Basic operation for each stage

 Mul Add sub div other total Process unit

Transformation 4*4 3*4 1*4 0 0 32 Vertex

Lighting 24 15 0 0 10 49 Vertex

Projection 4*4 3*4 0 0 0 28 Vertex

Rasterization 5 6 7 5 2 25 Edge

Shading 4 5 6 4 2 21 Pixel

In the Table 3.1, we can see that we need the operation of multiplication, division, add,

subtract and other (shift, AND, OR, compare, LUT…). 3D computer graphics

 38

applications are usually 8-bits, 12-bits and above operations, so I think the

coarse-grained architecture would be suitable for my design. As we can see, we need

multiplication and division operations as much as add and subtract operations, hence I

assume the Processing Element (PE) has ability to process multiplication, division, add

and subtract with multiplication and division operations take multiple cycles and add

and subtract operations are single cycle execution. Besides PE also can do other

operations (shift, AND, OR, compare, LUT…). Hence execution time and resource of

each stage with one polygon is shown in Table 3.2.

Table 3-2 Resource and execution time of each stage

 PEs Execution Time

Transformation 32*3=96 M+3

Lighting 49*3=147 3M+3

Projection 28*3=84 M+2

Rasterization&

Shading

25*2+21=71 2M+2+Rn*(2M+2+Sn)

In Table 3.2, M means multiplication execution cycles of one PE and Rn, means

pixels generated from Rasterization stage and Sn means pixels generated from shading

stage.

3.2 Design

For now we know that execution time and resource of processing one polygon, we can

consider how to process multiply polygons.

Fixed Configuration Design :

It is common to think that we give a fixed configuration for each stage and the

execution model would be shown in Figure 3.3. It is a pipeline design with

unbalance stages. Here I do not focus on finding a balance pipeline design for

the rendering application and one nature of Rasterization/Shading stage will

 39

cause the pipeline design unbalance.

Figure 3-3 The execution example of fixed configuration design

3.3 Observation

In 3D computer graphics application, execution cycles of Rasterization/Shading stage is

not constant because a polygon size projected to the view plane would not be the same

with other polygons. For this characteristic, if there is no buffer between each two stage,

it will cause some stage to wait using fixed configuration design. Besides, total

execution time is usually dominated by the R/S stage.

3.4 Opportunity of improvement

According to the observation, we can improve the fixed configuration design by adding

buffers between each two stages to solve stage waiting problem and we can use multiple

copies of stage hardware if one stage executed time is long. Hence the execution model

of modified fixed configuration design would be shown in Figure 3.4.

Figure 3-4 The execution example of modified fixed configuration design

 In the other hand, we can use Runt-time Reconfiguration design to improve original

fixed configuration design. Run-time Reconfiguration is based upon the concept of

virtual hardware, which is similar to virtual memory. In fixed configuration design, we

 40

have fixed configuration of each stage unless we redesign it but in Run-time

Reconfiguration design we only need to reconfigure the reconfigurable hardware into

the stage we want. The disadvantage is that reconfigurable hardware resource is limited.

If we use more hardware resource for one stage, it means less hardware resource will be

left for other stages. Hence scheduling is important for Run-time Reconfiguration design.

The execution model example would be shown in Figure 3.5.

Figure 3-5 The execution example of Run-time Reconfiguration design

3.5 Dynamic Task Scheduling

A dynamic task scheduling for Run-time Reconfiguration design is executed by a

controller in Reconfigurable system.

 In the rendering applications, one polygon would be processed through four stages

(Transformation, Lighting, Projection and Rasterization/Shading) and every polygon is

ready for T stage at the beginning and can be parallel processed. Because there is a

reconfiguration overhead using Run-time Reconfiguration design and buffer size is

limited, so the scheduling should satisfy:

1. If buffer size is full, reconfigure the hardware to process those polygon in buffer

2. Minimize configuration overhead

Here I propose a best fit scheduling which process polygons of buffer size. It will

execute like this. First, partition all polygons into several sets which are as the same size

as buffer size. Second, we configure the entire reconfigurable hardware into several

transformation configurations and parallel process one set polygons as much as

hardware can. Third, we configure the entire reconfigurable hardware into several

lighting stage configurations and parallel process those polygons which are generated by

previous stage in the buffer. Then process those polygons in projection stage and next

rasterization/shading stage using similar scheduling. When one set of polygons finishes,

next set of polygons will be processed in the same way until all polygon finish.

 41

Chapter 4 Simulation

In this Chapter, we will describe the simulation environment and show the simulation result of
total execution time under several PE number.

4.1 Simulation Environment

In this thesis, we assume our PE has ability to do add, subtraction, multiplier and

division with add and subtraction both are single cycle execution but multiplier and

division are multiple cycle execution. Here we assume multiplier and division take five

cycles to finish the operation because each PE is an 8-bit ALU. Another assumption is

that each configuration takes 1000 cycle. Nowadays average configuration time is

ranged form nanosecond to microsecond. If our reconfigurable hardware runs at

100MHz, 1000 cycles are equal to 10 microseconds. It is conservative assumption.

Finally, we use multicontext reconfigurable system with partially reconfigurable models

and place & route problem is ignored in this thesis.

4.2 Simulation Result

We choose Venus, UTAH teapot and Bunny69k model for benchmark. They are very

familiar in computer graphics. I will simulate different PE number and different buffer

size to see the influence to the reconfigurable system. The parameters of each

benchmark are listed in Table 4.1. Scales means that the size projected to the view plane

of the benchmark. Different scales of same benchmark have different execution time of

rasterization/shading stage and we are going to see what is will cause in our simulation.

 42

Table 4-1 Benchmarks

 Vertices Scale

Venus 1396 1

6400 5

6400 10 Utah
Teapot 6400 20

Bunny69k 69451 2

In original fixed configuration design, it use 398 PEs(96 for transformation, 147 for

lighting, 84 for projection and 71 for rasterization/shading) for execution, each stage is

executed one polygon at a time. In the next, I simulate modified fixed configuration

design for different PE numbers and the result is listed in Table 4.2.

Table 4-2 Execution time comparison 1

 Venus teapot-5 teapot_10 teapot-20 bunny69k
(1,1,1,1) 755402 134436 170544 442977 1997474
(1,1,1,2) 377845 134436 134439 227994 1458507
(1,1,1,3) 251979 134439 157645 1458507
(1,1,1,4) 189154 134465

(1,1,1,5) 151232 134465

(1,1,1,10) 76314

(1,1,1,20) 40339

(1,1,1,30) 32574

(1,1,1,31) 32451

(1,1,1,32) 32451

First column represent number of fixed hardware (transformation, lighting, projection,

rasterization/shading). Two to four copies of rasterization/shading hardware are enough

but it needs thirty-one copies in Venus model that is because projected size of every

polygon in Venus model on view plane is much bigger than other models. After this

simulation, I found another bottleneck that lies in light stage. Hence I use two copies

lighting hardware to reduce average execution cycle of a polygon in lighting. Because

execution cycles of a polygon in transformation stage and projection stage are 8 and 7

cycles but execution cycles of one polygon in lighting stage is 21 cycles. After I use two

copies of lighting stage hardware, execution cycle of a polygon in lighting stage will

reduce to 10.5 cycle approximate to 8 or 7 cycles than 21 cycles. It makes data flow

 43

more smoothly but it cost more hardware. The result is listed in Table 4.3.

Table 4-3 execution time comparison 2

 venus teapot-5 teapot_10 teapot-20 bunny69k
(1,2,1,1) 755402 106866 166607 442977 1997075
(1,2,1,2) 377838 67240 85294 221511 998771
(1,2,1,3) 251968 67240 67247 149247 729284
(1,2,1,4) 189137 64247 114037 729284
(1,2,1,5) 151410 92921

(1,2,1,6) 126211 78860

(1,2,1,7) 108451 68816

(1,2,1,8) 94995 67273

(1,2,1,9) 84573 67273

(1,2,1,10) 76265 67273

(1,1,1,20) 39840

(1,1,1,30) 27908

(1,1,1,40) 22000

(1,1,1,50) 19375

(1,1,1,55) 18556

(1,1,1,57) 18338

(1,1,1,59) 18199

(1,1,1,60) 18150

(1,1,1,61) 18150

We can see total execution time decrease by adding one copies of lighting hardware.

Once if we want to improve performance, we can just add more hardware but cost may

goes to high. It means that we add double hardware but we may not decrease half

execution time. We can use the cost function () (Time hardware)α β× to represent this

and hardware here means PE number. Time in fixed configuration design only means

execution time but it represents execution time and reconfiguration time in Run-time

Reconfiguration design. Hence the cost function will become

() (exe recT T hardware)α β+ × .

 In Run-time Reconfiguration design, I simulate every ten PE numbers from 147 PE

numbers to 497 PE numbers. Because bunny69k model execution cycles are much more

than others, I use an independent figure to show avoiding other result can’t be seen

clearly. Figure 4.1a and 4.1b are the execution cycles of each models.

 44

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

14
7

18
7

22
7

26
7

30
7

34
7

38
7

42
7

46
7

C
yc

le
 c

ou
nt

bunny69k

Figure 4-1 The simulation result of different PE

(a) Cycle count of different PE for bunny69k

0

100000

200000

300000

400000

500000

147 197 247 297 347 397 447 497

C
yc

le
 c

ou
nt teapot-20

teapot-10

teapot-5

venus

(b) Cycle count of different PE for other

Figure 4.2 shows the cost function:

0

100000000

200000000

300000000

400000000

500000000

600000000

700000000

14
7

18
7

22
7

26
7

30
7

34
7

38
7

42
7

46
7

C
os

t

bunny69k

Figure 4-2 The simulation result of cost function

 45
(a) Cost function of different PE for bunny69k

0

20000000

40000000

60000000

80000000

100000000

14
7

18
7

22
7

26
7

30
7

34
7

38
7

42
7

46
7

C
os

t

teapot-20

teapot-10

teapot-5

venus

(b) Cost function of different PE for other

 Lowest cost of each model are at PE numbers is 297 except Venus model is 427 that

is the same reason as more copies of rasterization/shading stage hardware. I compare

lowest cost of Run-time Reconfiguration and modified fixed configuration design. The

result is listed in Table 4.4.

Table 4-4 The comparison of fixed configuration design and RTR

 Venus Teapot-5 Teapot-10 Teapot-20 Bunny69k

PE 2604 616 687 971 687
Cycle 27908 67240 64247 67273 729284

Modified
fixed
configuration
design cost 72672432 41419840 46198689 66820336 501018108

PE 427 297 297 297 297
Cycle 146695 129921 144854 213951 1579774

Run-time

reconfiguratio

n design cost 62638765 38586537 43021638 63543447 469192878

 46

Chapter 5 Conclusion and Future
work

In this chapter, according to previous discussions, we have some conclusions and find some

future works for research.

5.1 Conclusion

The hardware accelerated architectures for computer graphics now have two approaches.

One is fixed configuration design another is Run-time Reconfiguration design. From the

cost function, Run-time Reconfiguration design wins a little bit. If you want to find a

very short execution time solution, there is no doubt that fixed configuration design is

what you looking for. But if you want a low cost solution, Run-time Reconfiguration

design may be suitable for your needs. There is another advantage for Run-time

Reconfiguration design, flexibility. In this thesis, flexibility means we can reconfigure

the reconfigurable hardware between 4 stages (transformation, lighting, projection and

rasterization/shading). That is why we can use smaller hardware to execute massive

computations. We even can use it to accelerate other algorithms only if we have their

configurations which are complied configurations or manually generated.

5.2 Future work

First, place and route problem we ignored is a critical issue if we want to implement a

reconfigurable system. During execution, run-time relocation of PE and data transfer

can not be ignored. Second, configuration time problem is another issue to the

performance. If we can reduce configuration time by using configuration prefetching

 47

and configuration compression, total execution time will be reduced. Last, if

configurations can be generated automatically by the compiler, we can accelerate more

than rendering process and previous two points we talk about are the work of the

compiler. The issue of every reconfigurable system is the lack of a good compiler.

Hence the compiler of reconfigurable system is a good topic of research.

 48

Reference

[1]: Alan Watt, 3D Computer Graphics, Third edition, Addison-Wesley, USA, 2000.

[2]: Katherine. Compton, cott. Hauck, “Reconfigurable Computing: A survey of System and

software,” ACM Computing Survey, June 2002.

[3]: Purna, K. M. G. and Bhatia, D.,” Temporal Partitioning and Scheduling Data Flow Graphs

for Reconfigurable Computers”, IEEE Trans. Computer, Vol. 48, NO. 6, 579-590, 1999

[4]: Henry Styles, Wayne Luk,” Customising Graphics Applications: Techniques and

Programming Interface”, IEEE Symposium on Field-Programmable Custom Computing

Machines, 2000

[5]: Arunachalam Ramanathan, Nirupama Ramaswamy, Jeevan Chittamuru, Krishna Prasad

Valluru,” Low Power Reconfigurable Core For 3D Graphics Shading and Texture Mapping”,

Umass project, 2001

[6]: Pavel Zemick, “Hardware Accleration of Graphics and Imaging Algorithm Using

FPGAs”, ACM Spring Conference of Computer Graphics, 2002

[7]: EBELING, C., CRONQUIST, D. C., AND FRANKLIN, P. RaPiD—Reconfigurable

pipelined datapath. Lecture Notes in Computer Science 1142—“Field-Programmable Logic:

Smart Applications, New Paradigms and Compilers.” R. W. Hartenstein, M. Glesner, Eds.

Springer-Verlag, Berlin, Germany, 126–135, 1996.

[8]: CADAMBI, S., WEENER, J., GOLDSTEIN, S. C., SCHMIT, H., AND THOMAS, D. E.

“Managing pipeline reconfigurable FPGA,” ACM/SIGDA International Symposium on

FPGAs, 55–64, 1998.

[9]: RUPP, C. R., LANDGUTH, M., GARVERICK, T., GOMERSALL, E., HOLT, H.,

ARNOLD, J. M., AND GOKHALE, M. ,“The NAPA adaptive processing

architecture,“ IEEE Symposium on Field-Programmable Custom Computing Machines,

28–37, 1998.

[10]: SCALERA, S. M. AND VAZQUEZ, J. R. “The design and implementation of a context

switching FPGA,” IEEE Symposium on Field- Programmable Custom Computing Machines,

78–85, 1998.

[11]: HAUCK, S. AND BORRIELLO, G. “Pin assignment for multi-FPGA systems,” IEEE

Trans. Comput. Aid. Desi. Integ. Circ. Syst. 16, 9, 956–964, 1997.

 49

[12]: XILINX, INC. “The Programmable Logic Data Book,” Xilinx, Inc., San Jose, CA,

1994.

[13]: ALTERA CORPORATION. “Data Book,” Altera Corporation, San Jose, CA, 1998.

[14]: LUCENT TECHNOLOGIES, INC. “FPGA Data Book,” Lucent Technologies, Inc.,

Allentown, PA, 1998.

[15]: DEHON, A. “DPGA Utilization and Application,” ACM/SIGDA International

Symposium on FPGAs, 115–121, 1996.

[16]: TRIMBERGER, S., CARBERRY, D., JOHNSON, A., AND WONG, J. “A

time-multiplexed FPGA,” IEEE Symposium on Field-Programmable Custom Computing

Machines, 22–28, 1997.

[17]: CHAMELEON SYSTEMS, INC. “CS2000 Advance Product Specification,”

Chameleon Systems, Inc., San Jose, CA, 2000.

[18]: HAUCK, S., FRY, T. W., HOSLER, M. M., AND KAO, J. P. “The Chimaera

reconfigurable functional unit,” IEEE Symposium on Field-Programmable Custom

Computing Machines, 87–96, 1997.

[19]: GOLDSTEIN, S. C., SCHMIT, H., BUDIU, M., CADAMBI, S., MOE, M., AND

TAYLOR, R. “PipeRench: A Reconfigurable Architecture and Compiler,” IEEE Computer,

vol. 33, No. 4, 2000.

[20]: XILINX, INC. “XC6200: Advance Product Specification,” Xilinx, Inc., San Jose, CA,

1996.

[21]: XILINX, INC. “VirtexTM 2.5 V Field Programmable Gate Arrays: Advance Product

Specification,” Xilinx, Inc., San Jose, CA, 1999.

 50

	摘 要
	ABSTRACT
	誌謝
	Contents
	List of Tables
	List of Figures
	Introduction
	Computer Graphics
	Run-time Reconfiguration
	Motivation and Objective
	Organization of This Thesis

	Background
	Reconfigurable Models
	Single Context
	Multicontext
	Partially Reconfigurable

	Rendering Process
	Transformation
	Lighting
	Projection
	Rasterization
	Shading

	Design
	Analysis
	Design
	Observation
	Opportunity of improvement
	Dynamic Task Scheduling

	Simulation
	Simulation Environment
	Simulation Result

	Conclusion and Future work
	Conclusion
	Future work

	Reference

