W 4e 3D & AR 7N Ty

Using a Run-time Reconfiguration Scheduling to improve

performance for 3D Rendering on Reconfigurable System

12 3% e
Using a Run-time Reconfiguration Scheduling to improve

performance for 3D Rendering on Reconfigurable System

S R o] Student : Meng-Tao Lee
R AR Advisor : Chung-Ping Chung

A Thesis
Submitted to Department of Computer Science and Information Engineering
College of Electrical Engineering and Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

In

Computer Science and Information Engineering
June 2004
Hsinchu, Taiwan, Republic of China

TR Lz ERT

SIEREES 3 R AR BL

B2 2d ~FFNA42H 5 (F79) AL

3D ¢I]@7E‘“%IEI{E}§I@\7&EL§ET PRI RHEO R (RS AR R
EﬁF AT AR - (] e ¢$¢W§[ﬁl@*ﬁ* 7% P R I EJ’EIFE‘WIHH
HE Uﬁiguﬁ* ,IJ;IfUAIIF' l——'[z[i[apfﬁﬂa I f@?ﬁ?}ﬁﬁiﬂgu[JI/i 5 E
rawwﬁ PR A [) B g
VRN & N AIEAVIELET » RIFE E{fﬂﬁgq?#@}% J",lﬁjgﬁu Uﬁ o guglgu frJ
=i Ryl B¢ 3D f@l%é*fg‘““i/[llﬂ ok i gh_'r“ﬂ F— his o

1. %@ FUOTHE D PR T [fkgu[ﬁﬂ/i AT iﬂ’?‘/é‘j[ﬁ”?&

2. I HP ifHE'JE‘ﬁSIj‘ (5 PR B R IR SR DA PR B [RE AR

i [[l
i?ﬁ”iﬁﬁﬁ’ﬂﬁﬁMVwﬁ?u (M58 3D REIGEARN T 1" A 20k P det oy 5

- o
-

Using a run-time Reconfiguration
Scheduling to improve performance for
3D Rendering on Reconfigurable System

Student : Meng-Tao Lee Advisors : Dr. Chung-Ping Chung

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

ABSTRACT

3D rendering applications have lots " ofarithmetic- operations and high parallelism but
execution times of each data are not the equal. General purpose computing is not fast enough
for 3D rendering, Application specific ‘computing (ASC) supports customization of
applications in the form of hardware. Due to customization of hardware, this approach offers
maximum performance for executing applications, but it will also cost a lot of hardware
resource. In some situation with hardware constraint, it may not get high performance or even
can not execute by using ASC. Reconfigurable computing can execute lots of computation
with limited hardware resource and customize hardware circuit to fit the application needs for
high performance.

In this thesis, | discuss how 3D rendering application can be mapped into reconfigurable
system, by:

1. Analysis of rendering process: analyze operations, parallelism and computation flow

2. DFG scheduling: reuse hardware and decrease reconfigurable frequency using data

parallelism to minimize total execution time

Through this, | propose a method to execute 3D rendering application on reconfigurable

system.

Sl

Sl

HES ’%‘%TI&EJ?FZE’;:EZHF UPIRFSY 0 T PIPVRIRTSE A B o)
PR B T ﬁ@«aﬂup ' EIfESE) e ”ﬁlp |75 T M MpVE R
N ITPUL 'WN R inﬁ

53 Reconfigurable Computmg W‘LE‘FE J%4 TR ﬂ”j+ﬁ IRy 2R 5 R E I%’F}Wﬁ Exd
PR 1%@ TE R MRS rfrlﬂ fﬂﬁ‘iﬁl TS o B R RIS
RO VRS EE A E,Lﬁlﬁlﬁﬂ?’f?’ﬁ

B9 RIS AISE YIRS (S0 % I I SRR

EIGJ’F}IT—’ZI‘; YRV SR TR o B BRI IVE S BE riﬁ R (-
%@?wﬁ@ﬁﬂ B TP RO ORI S TR RE L]

,jJE*EE = S ?ﬁtiﬂ Fle ISR -
F*iﬁ% S O g e R B -

-l
Mk

o)) l'—'«l“
o e
(00]

Contents

BB [
N = S I ¥ 3 PR PRR i
= SRRSO i
(010 01 (=] 0 1 OO P R UP PP iv
I E 00 N IF=1] LSS Vi
LISE OF FIQUIES ... itieiti ettt et e s r e st e et e e seesse e seeneesreeteaneesneennes vii
(@8 aF=T o) = A 10 (0o [0 Tox 1 To] o I USSP 1
1.1 COMPUEET GraPNICS.iiiiiiieieiie sttt sttt b e re et sneenae e 1

1.2 Run-time RECONFIGUIALIONc..iiiiiiiiiiieieesie e 2

1.3 Motivation and ODJECHIVE ..t liifis . eeeireie e ceesie e 4

1.4 Organization of This FRESIS. . s, ity eereeeiieieeie e 4
Chapter 2 BaCKgrOUNG............ 5. s ssussuessums sifansasss s eeeneessessuesseessesssesssessesssessssssesssesssessesssenns 5
2.1 Reconfigurable MOdeIS..... L i 5
2.1.1 SINGIE CONEXT ittt enes 5

2.1.2 MUITICONTEXT ... e e 6

2.1.3 Partially Reconfigurable...........cooeiiiiiiii e 7

2.2 RENAEIING PIOCESSoiuiiieiite ittt 8
2.2.1 TranSTOrMATIONcvoviiii s 9

2.2.2 [T |) (1o SRS 13

2.2.3 e 0] 1703 (o] o FO USSR 23

2.2.4 RASTEIIZALION ... e 25

2.2.5 SNAAING .. 31

(@8 T o (= g T D 1] o[PSPPSR 35
3.l ANAIYSIS it e et e e reere e e are s 35

3.2 D] o USRS TPRRTRURURRS 39

KR B O o=] V7 L1 o] PSSR 40

3.4 Opportunity of IMPrOVEMENT.......cceiiiiiierieie e 40

3.5 Dynamic Task SCheduliNgccccviiiiieiiiccec e 41
Chapter 4 SIMUIALION........oiiii et nbe e nreas 42

4.1 SIMUIALION ENVIFONMENL. ..ottt e e e e e e e 42

4.2 SIMUIAION RESUITooviie et 42
Chapter 5 Conclusion and FULUIE WOTKc.ooiiiiiiiiieiiie e 47
T80 A O o 1] oo OSSPSR 47
5.2 FULUIE WOTK ..eiviiiieeet ettt 47
RETEIBNCE ...ttt b et e ettt b e nre s 49

List of Tables

Table 3-1 Basic operation for each stage.........cccccevveiiiiiiicce e, 38
Table 3-2 Resource and execution time of each Stage.........ccccevvvrveriiiniinie e, 39
Table 4-1 BENCAMAIKSooviiiieieieee e e 43
Table 4-2 Execution time COMPAriSON L........ccocviiiiriniiieieie e 43
Table 4-3 execution time COMPATISON 2........cccoveiuerieerieeieseeseseesee e seesraeeesseesaeens 44
Table 4-4 The comparison of fixed configuration design and RTRc.cc......... 46

Vi

List of Figures

Figure 1-1 The concept of Run-time Reconfigurationccccccoevevviiiiieicsiennen, 2
Figure 2-1 Reconfigurable MOdelS ..., 6
Figure 2-2 The architecture of programming bit ..o, 6
Figure 2-3 The minimum entities required in a practical viewing system 11
Figure 2-4 The calculation of Up VECIOr Vooveeiiiceeececee e 13
Figure 2-5 The difference between local reflection models and shading algorithms
.. 14
Figure 2-6 The concept of local reflection model ..., 15
Figure 2-7 The reflection phenomenaccccveveiie i e 16
Figure 2-8 The computer graphics SUrfacecccoveiveve v 16
Figure 2-9 The Phong diffuse COMPONENL -.........ccoeriiiieriiie e 19
Figure 2-10 The Phong-spectlar COMPONENTccovvrieieieieieseeeeeeeeeeees 20
Figure 2-11 The light IRtenSTIY i e 20
Figure 2-12 the VECIOr H .. i e e 21
Figure 2-13 The orientation of the light'Sourcecccooeiiiiniiiceee, 22
Figure 2-14 The projection in computer graphiCsccooeverenenenienineneieeees 23
Figure 2-15 The perspective ProjeCtionccccveveeieiieeneeie e see e 24
Figure 2-16 Deriving a perspective transformationcccoeeveiveiiievncie e 24
Figure 2-17 The concept of Bresenham’s algorithmcccccoveiiiiiniiiiee 26
Figure 2-18 The linKed LIStcooiiiiiiiee e 29
Figure 2-19 The problem with polygon boundariescccooeveeieiieincie e 30
Figure 2-20 The result of Rasterization rulesccccovevviveiiiecie s 31
Figure 2-21 The Gouraud Shadingccocceiiriiiiiniee e s 32
Figure 2-22 The difference between Gouraud and Phong shadingc.ccccceevenee. 34
Figure 3-1 The example of ReNAEring ProCeSS........cccveiverveeeriereeieseese e e see s 35
Figure 3-2 The DFG 0f ONE VEMEXccuveivieiicic e 35
Figure 3-3 The execution example of fixed configuration design.............ccceeveuenne 40
Figure 3-4 The execution example of modified fixed configuration design............ 40
Figure 3-5 The execution example of Run-time Reconfiguration design 41

Vil

Figure 4-1 The simulation result of different PE..........cccccoevviie i

Figure 4-2 The simulation result of cost fUNCLIONccocovviiiiiiniiicee e

viii

Chapter 1 Introduction

Computer graphics are traditionally computation intensive, it stared at high-end system such
as work stations for scientific purpose and then it showed up at the desktop computer. For now,
portable devices are going to have ability to perform 3D applications. As we can see, the
hardware resources for the computer graphics are getting less and less. If we can use lesser
hardware to accelerated larger portions of application, it will be beneficial for the small
system. In this thesis, we propose a method to analyze the application and propose a run-time

scheduling for that reconfigurable system.

1.1 Computer Graphics

Since the mid-1970s the ‘developmental-motivation of computer graphics from the
viewpoint of its practitioners has been photorealism or the pursuit of techniques that
make a graphics image of an object‘or scene in distinguishable from a TV image or
photograph. A more recent strand of the application of these techniques is to display
information in, for example, medicine, science and engineering.

The calculation of light-object interaction is the foundation of photo-realism and this
split neatly into two fields — the development of local reflection models and the
development of global models. Local or direct reflection models only consider the
interaction of an object with a light source as if the object and light were floating in dark
space. That is, only the first reflection of light from the object is considered. Global
reflection models consider how light reflects from one object and travels onto another.
In other words the light impinging on a point on the surface can come either from a light
source (direct light) or indirect light that has first hit another object. Although two
partial solutions for global interaction, ray tracing and radiosity, are implementer, global
interaction is still for the most part an unsolved problem.

Much modern scientific research comes from computer graphics research and early

major advances are created and consolidated into a practical technology. Later
significant advances seem to be more difficult to achieve. We can say that most images
are produced using the Phong local reflection model (first reported in 1975), fewer using
ray tracing (first popularized in 1980) and fewer still using radiosity (first reported in
1984). Although there is still much research being carried out in light-scene interaction
methodologies much of the current research in computer graphics is concerned more
with applications, for example, with such general applications as animation,
visualization and virtual reality. In the most important computer graphics publication
(the annual SIGGRAPH conference proceedings) there was in 1985 a total of 22 papers
concerned with the production techniques of images (rendering, modeling and hardware)
compared with 13 on what could loosely be called applications. A decade later in 1995

there were 37 papers on applications and 19 on image production techniques. [1]

1.2 Run-time Reconfiguration

Frequently, the areas of a program that can be accelerated by using the reconfigurable
hardware are too numerous or complex:to be loaded simultaneously onto the available
hardware. For these cases, if we can swap different configurations in and out of the
reconfigurable hardware as they are needed during program execution, it will be

beneficial (Figure 1.1). This concept is called run-time reconfiguration (RTR).

Application Source Code

Figure 1-1 The concept of Run-time Reconfiguration [2]

Run-time reconfiguration is based upon the concept of virtual hardware, which is
similar to virtual memory. Here, the physical hardware is much smaller than the sum of

the resources required by each of the configurations. Therefore, instead of reducing the

number of configurations that are mapped, we instead swap them in and out of the actual
hardware as they are needed. Because run-time reconfiguration allows more sections of
an application to be mapped into hardware than can be fit in a non-run-time
reconfigurable system, a greater portion of the program can be accelerated. This
provides potential for an overall improvement in performance.

Configurations are swapped in and out of the reconfigurable hardware during a single
program’s execution. Some of these configurations will likely require access to the
results of other configurations. Configurations that are active at different periods in time
therefore must be provided with a method to communicate with one another. Primarily,
this can be done through the use of registers [7] [8] [9] [10], the contents of which can
remain intact between reconfigurations. This allows one configuration to store a value,
and a later configuration to read back that value for use in further computations. An
alternative for reconfigurable systems that do not include state-holding devices is to
write the result back to registers or memory external to the reconfigurable array, which
is then read back by successive configurations [11].

There are a few different configuration“memory styles that can be used with
reconfigurable systems. A-single context device is a serially programmed chip that
requires a complete reconfiguration-in order to change any of the programming bits. A
multicontext device has multiple*layers of ;programming bits, each of which can be
active at a different point in time.” Devices that can be selectively programmed without a
complete reconfiguration are called partially reconfigurable. These different types of
configuration memory are described in more detail later. An advantage of the
multicontext FPGA over a single context architecture is that it allows for an extremely
fast context switch (on the order of nanoseconds), whereas the single context may take
milliseconds or more to reprogram. The partially reconfigurable architecture is also
more suited to run-time reconfiguration than the single context, because small areas of
the array can be modified without requiring that the entire logic array be reprogrammed.

For all of these run-time reconfigurable architectures, there are also some compilation
issues which are not encountered in systems that only configure at the beginning of an
application. For example, run-time reconfigurable systems are able to optimize based on
values that are known only at run-time. Furthermore, compilers must consider the
run-time reconfigurability when generating the different circuit mappings, not only to be
aware of the increase in time-multiplexed capacity, but also to schedule reconfigurations

so as to minimize the overhead that they incur. These software issues, as well as an

3

overview of methods to perform fast configuration, will be explored in the sections that

follow.

1.3 Motivation and Objective

Now graphics accelerators are usually made by dedicated hardware, it can achieve very
high performance but it loses the flexibility. Reconfigurable computing provides another
way to accelerate the computer graphics applications which retain flexibility of a
software solution. Once if we use reconfigurable hardware to accelerate such a
application, scheduling is a critical issue that execution time of each stage in rendering
process is not constant.

Here our objective is to analyze operations, parallelism and computation flow of

rendering process to design a Run-time.reconfiguration scheduling.

1.4 Organization of-This Thesis

The organization of this thesis is as follows: In Chapter 2, the background is presented.
In Chapter 3, analysis of the rendering process and the design of Run-time
reconfiguration are described. In Chapter 4, we analyze our simulation result and show
our simulation environment. Finally, conclusion and future work are presented in
Chapter 5.

Chapter 2 Background

In this chapter, we will introduce the backgrounds of reconfigurable models and computer

graphics.

2.1 Reconfigurable Models

Traditional FPGA structures have been single context which only allow one full-chip
configuration to be loaded at a time. However, designers of reconfigurable systems have
found this style of configuration to be too limiting or slow to efficiently implement
run-time reconfiguration. Thesfollowing discussion (reference from [2]) defines the
single context device, and.furtherrconsiders newer FPGA designs (multicontext and

partially reconfigurable), along with their impaction run-time reconfiguration.

2.1.1 Single Context

Current single context FPGAs are programmed using a serial stream of
configuration information. Because only sequential access is supported, any
change to a configuration on this type of FPGA requires a complete
reprogramming of the entire chip. Although this does simplify the reconfiguration
hardware, it does incur a high overhead when only a small part of the
configuration memory needs to be changed. Many commercial FPGAs are of this
style, including the Xilinx 4000 series [12], the Altera Flex10K series [13], and
Lucent’s Orca series [14]. This type of FPGA is therefore more suited for
applications that can benefit from reconfigurable computing without run-time
reconfiguration. A single context FPGA is depicted in Figure 2.1.

Single Context

{HEE
ot Multi-Contexl

i Just/ [
o' & "4 Y

U

{aler recnndiparation)

Partially Reconfigurable

Lo &/ F Legick :
Hreccaming ool geraliom H.-u:.ml‘f f’{ Raouting -
= infler reconfiguraion s

Figure 2-1 Reconfigurable Models [2]

In order to implement run-time recon-figuration onto a single context FPGA, the
configurations must be grouped into contexts, and each full context is swapped in
and out of the FPGA as needed. Because each of these swap operations involve
reconfiguring the entire FPGA, a good partitioning of the configurations between
contexts is essential in order to minimize the total reconfiguration delay. If all the
configurations used within-a certain‘time period are present in the same context, no
reconfiguration will <be , necessary: However, if a number of successive
configurations are each partitioned-into different contexts, several reconfigurations

will be needed, slowing the operation-of the runtime reconfigurable system.

iy [| 2 3 — active

Tl | | __ comfigzuration

| :
dain 1 T E s oi
| | Lad
(Y LS
o | ||a|f |}-:-| |+-=|

Figure 2-2 The architecture of programming bit [2]

A four-bit multicontexted programming bit[16]. PO-P3 are the stored programming
bits, while C0-C3 are the chip wide control lines that select the context to program or
activate.

2.1.2 Multicontext

A multicontext FPGA includes multiple memory bits for each programming bit
location [10] [15] [16] [17]. These memory bits can be thought of as multiple
planes of configuration information, as shown in Figure 2.2. One plane of

configuration information can be active at a given moment, but the device can

6

quickly switch between different planes, or contexts, of already-programmed
configurations. In this manner, the multicontext device can be considered a
multiplexed set of single context devices, which requires that a context be fully
reprogrammed to perform any modification. This system does allow for the
background loading of a context, where one plane is active and in execution while
an inactive place is in the process of being programmed. Figure 2.2 shows a
multicontext memory bit, as used in [16]. A commercial product that uses this
technique is the CS2000 RCP series from Chameleon, Inc [17]. This device
provides two separate planes of programming information. At any given time, one
of these planes is controlling current execution on the reconfigurable fabric, and
the other plane is available for background loading of the next needed
configuration.

Fast switching between contexts makes the grouping of the configurations into
contexts slightly less critical, because if a configuration is on a different context
than the one that is currently:active, it can be activated within an order of
nanoseconds, as opposed to milliseeconds or longer. However, it is likely that the
number of contexts within a given program is larger than the number of contexts
available in the hardware. In this'case, the partitioning again becomes important to
ensure that configurations ‘occurring in close temporal proximity are in a set of
contexts that are loaded into the multicontext device at the same time. More
aspects involving temporal partitioning for single- and multicontext devices will

be discussed in the section on compilers for run-time reconfigurable systems.

2.1.3 Partially Reconfigurable

In some cases, configurations do not occupy the full reconfigurable hardware, or
only a part of a configuration requires modification. In both of these situations, a
partial reconfiguration of the array is required, rather than the full reconfiguration
required by a single- or multicontext device. In a partially reconfigurable FPGA,
the underlying programming bit layer operates like a RAM device. Using
addresses to specify the target location of the configuration data allows for
selective reconfiguration of the array. Frequently, the undisturbed portions of the

array may continue execution, allowing the overlap of computation with

7

reconfiguration. This has the benefit of potentially hiding some of the
reconfiguration latency.

When configurations do not require the entire area available within the array, a
number of different configurations may be loaded into unused areas of the
hardware at different times. Since only part of the array is reconfigured at a given
point in time, the entire array does not require reprogramming. Additionally, some
applications require the updating of only a portion of a mapped circuit, while the
rest should remain intact, as shown in Figure 2.1. For example, in a filtering
operation in signal processing, a set of constant values that change slowly over
time may be reinitialized to a new value, yet the overall computation in the circuit
remains static. Using this selective reconfiguration can greatly reduce the amount
of configuration data that must be transferred to the FPGA. Several run-time
reconfigurable systems are based upon a partially reconfigurable design, including
Chimaera [18], PipeRench [8] [19], NAPA [9], and the Xilinx 6200 and Vertex
FPGAs [20] [21].

Unfortunately, since-address information must be supplied with configuration
data, the total amount of ‘information transferred to the reconfigurable hardware
may be greater than what Is required with-a single context design. This makes a
full reconfiguration of.the “entire array Slower than the single context version.
However, a partially reconfigurable ‘design is intended for applications in which
the size of the configurations is small enough that more than one can fit on the
available hardware simultaneously. Plus, as we discuss in subsequent sections, a
number of fast configuration methods have been explored for partially
reconfigurable systems in order to help reduce the configuration data traffic

requirements.

2.2 Rendering Process

In this thesis, we study the basic component of computer graphics from Alan Watt’s book

[1]. Hence the following background is to refer to Alan Watt’s book [1].

2.2.1 Transformation

Transformation includes three coordinate spaces:

A

Local or modeling coordinates systems

For ease of modelling it makes sense to store the vertices of a polygon mesh
object with respect to some point located in or near the object. For example,
we would almost certainly want to locate the origin of a cube at one of the
cube vertices, or we would want to make the axis of symmetry of an object
generated as a solid of revolution, coincident with the z axis. As well as
storing the polygon vertices in a coordinate system that is local to the object,
we would also store the polygon normal and the vertex normals. When local
transformations are applied to the vertices of an object, the corresponding

transformations are applied to the associated normals.

World coordinateisystems

Once an object has.been modeled the-next stage is to place it in the scene that
we wish to render. All-objects that-together constitute a scene have their
separate local coordinate systems. Fhe global coordinate system of the scene
is known as the ‘world coordinate system’. All objects have to be
transformed into this common space in order that their relative spatial
relationships may be defined. The act of placing an object in a scene defines
the transformation required to take the object from local space to world space.
If the object is being animated, then the animation system provides a
time-varying transformation that takes the object into world space on a frame
by frame basis.

The scene is lit in world space. Light sources are specified, and if the
shaders within the renderer function are in world space then this is the final
transformation that the normals of the object have to undergo. The surface
attributes of an object — texture, colour, and so on — are specified and tuned

in this space.

Camera or eye view coordinate system

The eye, camera or view coordinate system is a space that is used to establish

9

viewing parameters (view point, view direction) and a view volume. (A
virtual camera is often used as the analogy in viewing systems, but if such an
allusion is made we must be careful to distinguish between external camera
parameters or those that affect the nature and size of the image on the film
plane. Most rendering systems imitate a camera which in practice would be a
perfect pinhole. However, there are other facilities in computer graphics that
cannot be imitated by a camera and because of this the analogy is of limited
utility.)

We will now deal with a basic view coordinate system and the
transformation from world space to view coordinate space. The reason that
this space exist, after all we could go directly from world space to screen
space, is that certain operations (and specifications) are most conveniently
carried out in view space.

We define a viewing system as being the combination of a view coordinate
system together with the specification of certain facilities such as a view

volume. The simplest or minimum system would consist of the following :

® A view paint;which establishes: the viewer’s position in world space;
this can either be'the‘origin of the view coordinate system or the centre
of projection‘together with a view direction N.
A view coordinate'system defined with respect to the view point.

® A view plane onto which the two-dimensional image of the scene is
projected.

® Aview frustum or volume which defines the field or view.

10

(a) “ The minimum entities required in a
i practical viewing system.
(v > (a) View point C and viewing direction
o N.
g (b) A view plane normal to the viewing
direction N positioned d units from
C.
. (c) A view coordinates system with the
NV ; origin C and UV axes embedded in
plane parallel to the view plane.
. (d) A view volume defined by the
¢ frustum formed by C and the view
plane window.

View
volume
View plane

window

Figure 2-3 The minimum entities required in a practical viewing system [1]

These entities are show in Figure 2.3. The view coordinate system, UVN, has
N coincident with the viewing direction and V and U lying in a plane parallel
to the view plane. We can consider the origin of the system to be the vie
point C. The view plane containing U and V is of infinite extent and we
specify a view volume or frustum which defines a window in the view plane.
It is the contents of this window — the projection of that part of the scene that
is contained within the view volume — that finally appears in the screen.

Thus, using the virtual camera analogue we have a camera that can be
positioned anywhere in world coordinate space, pointed in any direction and
rotated about the viewing direction N.

To transform points in world coordinate space we invoke a change of
coordinate system transformation and this split into two components: a

translational one and a rotational one. Thus:

11

yV =Tview yW (1)
ZV ZW
1 1
where:
Tview = RT (2)
and:
1 0 0 -C, U, Uy u, 0
01 0 -C V. V. V. 0
T= y R=| * y : 3)
0 01 -C, N, Ny N, O
0 00 1 0O 0 o0 1

The only problem now is specifying a user interface for the system and
mapping whatever parameters are used by the interface into U, V and N. A
user needs to specify.C,;N and V. C-is easy enough. N, the viewing direction
or view plane normal, can be entered say, using two angles in a spherical
coordinate system — this'seems reasonably intuitive:

6 the azimuth angle

¢ the colatitude or elevation angle

where:

N, =singcosd

N, =singsing 4)

N, =cos¢

V is more problematic. For example, a user may require ‘up’ to be the same
sense as ‘up’ in the world coordinates system. However, this cannot be
achieved by setting:

V =(0,0,1)

because V must be perpendicular to N. A sensible strategy is to allow a user
to specify an approximate orientation for V, say V’ and have the system
calculate V. Figure 2.4 demonstrate this. V’ is the user-specified up vector.
This is projected onto the view plane:

V =V'—(V'N)N ®)

12

and normalized. U can be specified or not depending on the user’s
requirements. If U is unspecified, it is obtained from:

U=NxV (6)
This results in a left-hand coordinate system, which although somewhat
inconsistent, conforms with our intuition of a practical viewing system,
which has increasing distances from the view point as increasing values
along the view direction axis. Having established the viewing transformation

using UVN notation, we will in subsequent section use (X,,Y,,z,) to

specify points in the view coordinate system.

N The up vector V can be calculated
l : from an “indication’ given by V’.

Figure 2-4 The calculation of up vector-V/ [1]

2.2.2 Lighting

Shading Pixels
The first quality shading in computer graphics was developed by H. Gouraud in
1971 (Gouraud 1971). In 1975 Phong Bui-Tuong (Phong 1975) improved on
Gouraud’s model and Phong shading, as it is universally known, became the
defacto standard in mainstream 3D graphics. Despite the subsequent development
of ‘global’ techniques, such as ray tracing and radiosity, Phong shading has
remained ubiquitous. This is because it enables reality to be mimicked to an
acceptable level at reasonable cost.

There are two separate considerations to shading the pixels onto which a

polygon projects. First we consider how to calculate the light reflected at any point

13

on the surface of an object. Given a theoretical framework that enables us to do
this, we can then calculate the light intensity at the pixels onto which the polygon
projects. The first consideration we call ‘local reflection models’ and the second
‘shading algorithms’. The difference is illustrated conceptually in Figure 2.5. For
example, one of the easiest approaches to shading — Gouraud shading — applies a
local reflection models at each of the vertices to calculate vertex intensity, then

derives a pixel intensity using the interpolation equations.

World coordinate space Screen spa

Figure 2-5 The difference between local reflection models and shading algorithms [1]

Illustrating the difference between local reflection models and shading

algorithms.

(a) Local reflection models calculate light intensity as any point P on the
surface of an object.

(b) Shading algorithms interpolate pixel values from calculated light
intensities at the polygon vertices.

Basically there is a conflict here. We only want to calculate the shade for each
pixel onto which the polygon projects. But the reflected light intensity at every
point on the surface of a polygon is by definition a world space calculation. We are
basing the calculation on the orientation of the surface with respect to a light
source both of which are defined in world space. Thus we use a 2D projection of
the polygon as the basis of an interpolation scheme that controls the world space

calculations of intensity and this is incorrect. Linear interpolation, using equal

14

increments, in screen space does not correspond to how the reflected intensity
should vary across the face of the polygon in world space. One of the reasons for
this is that we have already performed a (non-linear) perspective transformation to
get into screen space. Like many algorithms in 3D computer graphics it produces
an acceptable visual result, even using incorrect mathematics. However, this

approach does lead to visible artifacts in certain contexts.

Local reflection models

A local reflection model enables the calculation of the reflected light intensity
from a point on the surface of an object. Here we will confine ourselves to
considering, from a practical view point, the most common model and see how it
fits into a renderer.

This model, introduced in 1975, evaluates the intensity of the reflected light as a
function of the orientation of the surface at the point of interest with respect to the
position of a point light source and surface properties. We refer to such a model as
a local reflection model‘because it-only:considers direct illumination. It is as if the
object under consideration was an isolated object floating in free space. Interaction
with other objects that result-in" shadows-and inter-reflection are not taken into

account by local reflection models. This point is emphasized in Figure 2.6.

Ihrect

Direct

SN Indirect
D\
A\

‘ P \ - Indirec A ‘ P, \

Figure 2-6 The concept of local reflection model [1]

(@) A local reflection model calculates intensity at P, and P, considering direct
illumination only.

(b) Any indirect reflected light from A to B or from B to A is not taken into
account.

15

The physical reflection phenomena that the model simulates are:
® Perfect specular reflection
® Imperfect specular reflection

® Perfect diffuse reflection

Figure 2-7 The reflection phengmena [1]

The three reflection phenomena used in computer graphics.
(a) Perfect specular reflection.

(b) Imperfect specular reflection.

(c) Perfect diffuse reflection.

Imperfect specular reflection

—

Iransparent layer
Perfect diffuse reflection

Diffuse surface

Figure 2-8 The computer graphics surface [1]

These are illustrated in Figure 2.7 for a point light source that is sending an
infinitely thin beam of light to a point on a surface. Perfect specular reflection

occurs when incident light is reflected, without diverging, in the ‘mirror’ direction.

16

Imperfect specular reflection is that which occurs when a thin beam of light strikes
an imperfect mirror, that is a surface whose reflecting properties are that of a
perfect mirror but only at a microscopic level — because the surface is physical
rough. Any area element of such a surface can be considered to be made up of
thousands of tiny perfect mirrors all at slightly different orientations.

Perfect specular reflection does not occur in practical but we use it in ray tracing
models simply because calculating interaction due to imperfect specular reflection
Is too expensive. A perfect diffuse surface reflects the light equally in all directions
and such a surface is usually called matte.

The Phong reflection model considers the reflection from a surface to consist of
three components linearly combined:

Reflected light = ambient light + diffuse component + specular component
The ambient term is a constant and simulates global or indirect illumination. This
term is necessary because parts of a surface that cannot ‘see’ the light source, but
which can be seen by the viewer,sneed to be lit. Otherwise they would be rendered
as black. In reality such lighting-comes-from global or indirect illumination and
simply adding a constant ‘side-step . the complexity of indirect or global
illumination calculation.

It is useful to consider what types of surface such a model simulates. Linear
combination of a diffuse and specular component occurs in polished surfaces such
as varnished wood. Specular reflection results from the transparent layer and
diffuse reflection from the underlying surface (Figure 2.8). Many different
physical types, although not physical the same as a varnished wood, can be
approximately simulated by the same model. The veracity of this can be
demonstrated by considering looking at a sample of real varnished wood, shiny
plastic and gloss paint. If all contextual clues are removed and the reflected light
from each sample exhibited the same spectral distribution, an observer would find
it difficult to distinguish between the samples.

As well as possessing the limitation of being a local model, the Phong reflection
model is completely empirical or imitative. One of its major defects is that the
value of reflected intensity calculated but the model is a function only of the
viewing direction and the orientation of the surface with respect to the light source.
In practical, reflected light intensity exhibits bi-directional behavior. It depends
also on the direction of the incident light. This defect has led to much research into

17

physically based reflection models, where an attempt is made to model reflected
light by simulating real surface properties. However, the subtle improvements
possible by using such models — such as the ability to make surface look metallic —
have not resulted in the demise of the Phong reflection model and the main thrust
of current research into rendering methods deals with the limitation of ‘localness’.
Global methods, such as radiosity, result in much more significant improvements
to the apparent reality of a scene.

Leaving aside, for a moment, the issue of color, the physical nature of a surface
is simulated by controlling the proportion of the diffuse to specular reflection and
we have the reflected light:

I =k, I, +k 1, +Kk]I, (7)
Where the proportions of the three components, ambient, diffuse and specular are
controlled by three constant, where:

k, +k, +k =1 8)
Consider |,. This is evaluated as:

I, =1,co0s6 (9)
where:

I, is the intensity of theincident light

€ is the angle between’the surface normal at the point of interest and the
direction of the light source

In vector notation:
I, =1.(L-N) (10)

The geometry is shown in Figure 2.9

18

\

Figure 2-9 The Phong diffuse component [1]

Now physically the specular reflection consists of an image of the light source
‘smeared’ across an area of the:surface resulting in what is commonly known as a
highlight. A highlight is‘only seen by a‘viewer if the viewing direction is near to
the mirror direction. \We therefore simulate specular reflection by:

I, =1,cos"Q (11)
where:

Q is the angle between the viewing direction and the mirror direction R

n is an index that simulate the degree of imperfection of a surface
When n = oo the surface is a perfect mirror — all reflected light emerges along
the mirror direction. For other values of n an imperfect specular reflector is
simulated (Figure 2.7 b). The geometry of this is shown in Figure 2.10. In vector

notation we have:
I, =1 (RV)" (12)

Bringing these terms together gives:

I =k,1, +1(k,(LN) +k (RV)") @3)
The behavior of this equation is illustrated in Figure 2.11. Figure 2.11 shows the

light intensity at a single point P as a function of the orientation of the viewing

vector V . The semicircle is the sum of the constant ambient term and the diffuse

19

term — which is constant for a particular value of N . Addition of the specular

term gives the profile shown in the figure. As the value of n is increased the

specular bump is narrowed.

Figure 2-10 The Phong,specular component{1]

n=10, 20, 40, 80, 160

~e

Figure 2-11 The light intensity [1]

The light intensity at point P as a function of the orientation of
the viewing vector V.

Local reflection model — practical points
A number of practical matters that deal with color and the simplification of the

geometry now need to be explained.
The expense of the above shading equation, which is applied a number of times at

every pixel, can be considerably reduced by making geometric simplifications that

20

reduce the calculation time, but which do not affect the quality of the shading.

First if the light source is considered as a point source located at infinity the L is
constant over the domain of the scene. Second we can also place the view point at
infinity making V constant. Of course, for the view and perspective transformation,
the view point needs to be firmly located in world space so we end up using a
finite view point for the geometric transformation and an infinite one for the

shading equation.

Next the vector R is expensive to calculate and it is easier to define a vector
H (Halfway) which is the unit normal to a hypothetical surface that is oriented in
a direction halfway between the light direction vector L and the viewing vector

V (Figure 2.12). It is easily seen that:

Lk 4H

Figure 2-12 the vector H [1]

H is the normal to a surface orientation that would reflect all the light along V.

H=(L+V)/2 (14)
This is the orientation that a surface would require if it was to reflect light
maximally along the V direction. Our shading equation now becomes:

I =1k, +1,(k, (L\N) +k (NeH)") (15)
because the term (NeH) varies in the same manner as (ReV) . These

simplifications mean that 1 is now a function only of N .

For colored objects we generate three components of the intensity 1, I, and

I, controlling the color of the objects by appropriate setting of the diffuse

21

reflection coefficients k , k, and k. In effect the specular highlight is just the

reflection of the light source in the surface of the object and we set the proportions

of the k, to match the color of the light. For a white light, k, is equal in all
three equations. Thus we have:

I =1k, +1((k, (L:N)+k, (NH)")

= 1Ky + 1 ((Kgg (LeN) + ko (NH)") (16)
I, =1k, + 1, ((ky, (LeN)+ K, (N-H)")

Local reflection model — light source considerations

One of the most limiting approximations in the above model is reducing the light
source to a point at infinity. A simple directional light (non-point) is easily
modeled and the following was suggested by Warn (1983). In this method a
directional light source is modeled in the same way as a specularly reflecting
surface, where the light emitted from the source is given by a cosine function
raised to a power. Here we assume that for a directional source, the light intensity

in a particular direction,.given by theangle ¢ is:

I, cos" ¢ @7
Now ¢ is the angle“hetween —L, the direction of the point on the surface that
we are considering, and "L, the orientation of the light source (Figure 2.13). The

value of I, that we use in the shading equation is then given by:
=1 (-LeL)" (18)

Note that we can no longer consider the vector L constant over the scene.

_,/ Object surface

Figure 2-13 The orientation of the light source [1]

Light source represented as a specularly reflecting surface.

22

2.2.3 Projection

Because the viewing surface in computer graphics is deemed to be flat we consider
the class of projections known as planar geometric projections. Two basic
projections, perspective and parallel, are now described. These projections and the

difference in their nature is illustrated in Figure 2.14.

2, 3 nl .
Projection plane

Projectors are

parallel

Perspective projection

Figure 2-14 The projection in computer graphics [1]

Two points projected onto a plane using parallel and perspective projections.

A perspective projection is the more popular or common choice in computer
graphics because it incorporates foreshortening. In a perspective projection relative
dimensions are not preserved, and a distant line is displayed smaller than a nearer
line of the same length (Figure 2.15). This effect enables human beings to perceive
depth in a two-dimensional photograph or a stylization of three-dimensional reality.
A perspective projection is characterized by a point known as the centre of
projection and the projection of three-dimensional point onto the view plane is the
intersection of the line from each point to the centre of projection. These lines are

called projectors.

23

e
P Sl
Centre of el

projection

View plane

Figure 2-15 The perspective projection [1]

In a perspective projection a distant line is displayed smaller than a nearer line the same
length.

View plane
- View plane
- = -
Looking along y axis
X L\‘
* Plxy, voe 23)
P(x,, ¥, 2.)
* ¥y V. /
Looking along x axis L/
e
-} - o
View plane

Figure 2-16 Deriving a perspective transformation [1]

Figure 2.16 show how a perspective projection is derived. Point P (x,,V,,Z,)

is a three-dimensional point in the view coordinate system. This point is to be

projected onto a view plane normal to the z, axis and positioned at distant d from

the origin of this system. Point P’ is the projection of this point in the view plane

and has two-dimensional coordinates (x,,y,) in a view plane coordinate system

with the origin at the intersection of the z, axis and the view plane.

24

To express this non-linear transformation as a 4x4 matrix we can consider it in
two-parts — a linear part followed by a non-linear part. Using homogeneous
coordinates we have:

X=X,

Y=Yy,

Z=z, (19)
w=z,/d

We can now write:

X X,
Y y
=T ! 20
7 pers ZV ()
w 1
where:
10 0 O
01 0 O
T .= 21
pers 0 0 1 0 ()
0 0 1/d 0
following this with the perspective divide, we have:
X, =X/w
y,=Y/w (22)
z,=21w

In a parallel projection, if the view plane is normal to the direction of projection

then the projection is orthographic and we have:

XS:XV yS:yV ZS:ZV (23)
Expressed as a matrix:
1000
0100
T.= 24
10 0 00 (24)
0 001

2.2.4 Rasterization

Having looked at how general points within a polygon can be assigned intensities

25

that are determined from vertex values, we now look at how we determine the
actual pixels which we require intensity values for. The process is known as
rasterization or scan conversion. We consider this somewhat tricky problem in two
parts. First, how do we determine the pixels which the edge of a polygon straddles?
Second, how do we organize this information to determine the interior points?
Rasterizing edges

There are two difference ways of rasterizing an edge, based on whether line
drawing or solid area filling is being used. Line drawing is not covered here, since
we are interested in solid object. However, the main feature of line drawing
algorithm (for example, Bresenham’s algorithm (Bresenham 1965)) is that they
must generate a linear sequence of pixels with no gaps (Figure 2.17). For solid
area filling, a less rigorous approach suffices. We can fill a polygon using
horizontal line segments; these can be thought of as the intersection of the polygon
with a particular scan line. Thus, for any given scan line, what is required is the
left- and right-hand limits of .segment that is the intersections of the scan line with
left- and right-hand polygon edges.-This: means that for each edge’s intersections
with the scan lines-(Figure 2.17-b). "Fhis sequence may have gaps, when
interpreted as a line, as shown-by the.right-hand edge in the diagram.

Figure 2-17 The concept of Bresenham’s algorithm [1]

Pixel sequences required for (a) line drawing and (b) polygon filling

The conventional way of calculating these pixels coordinates is by use of what
is grandly referred to as a “digital differential analyzer’, or DDA for short. All this
really consists of is finding how much the x coordinate increases per scan line, and
then repeatedly adding this increment.

Let (x.,Y,), (X.,Y.) be the start and end points of the edge (we assume that

26

Yy, > Y,). The simplest algorithm for rasterizing sufficient for polygon edges is:
X=X,
m = (%, = x) (Y, - .)
for y==y, to y, do
output(round(x), y)
X:=X+m
The main drawback of this approach is that m and x need to be represented as
floating point values, with a floating point addition and real-to-integer version
each time round the loop. A method due to Swanson and Thayer (Swanson and
Thayer 1986) provides an integer-only version of this algorithm. It can be derived
from the above in two logical stages. First we separate out x and m into integer and
fractional parts. Then each time round the loop, we separate add two parts, adding
a carry to the integer part should the fractional part overflow. Also, we initially set
the fractional part of x to -0.5 to make rounding easy, as well as simplifying the
overflow condition. In pseudocode:
Xi =X
xf =-0.5
mi = (X, — X,)div(y, £V,)
mf == (X, —X,) /(Y. — Yo)—mi
for y=y, to y, do
output(xi, y)
Xi := Xi + mi
xf = xf +mf
if xf >0.0 then {xi:=xi+1xf :=xf-1.0}
Because the fractional part is now independent of the integer part, it is possible
to scale it throughout by 2(ye - ys) , Which the effect of converting everything to

integer arithmetic:

27

Xi = X,
xt=—(y. - ¥)
mi = (x, — X,)div(y, - y,)
mf = 2*[(x, — X;,) mod(y, — ;)]
for y=y, to y, do
output(xi, y)
Xi = Xi+mi
xf .= xf +mf
if xf>0 then {xi:=xi+1xf:=xf-2(y,-vy,)}

Although this approach now to involve two divisions rather than one, they are
both integer rather than floating point. Also, given suitable hardware, they can
both be evaluated from the same division, since the second (mod) is simply the
remainder from the first (div). Finally it only remains to point out that the

2(y,—Y,) within the loop is constant and would in practical be evaluated just

once outside it.

Rasterizing polygons

Now that we know how to find pixels along the polygon edges, it is necessary to
turn our attention to filling the polygons themselves. Since we are concerned with
shading, “filling a polygon’-means-finding the pixel coordinates of interior points
and assigning to these ‘a value calculated using one of the incremental shading
schemes described in 2.2.5. We need to generate pairs of segment end points and
fill in horizontally between them. This is usually achieved by constructing an
‘edge list’ for each polygon.

In principle this is done using an array of linked lists, with an element for each
scan line. Initially all the elements are set to NIL. Then each edge of the polygon is
rasterized in turn, and the x coordinate of each pixel (x, y) thus generated is
inserted into the linked list corresponding to that value of y. Each of the linked lists
is then sorted in order of increasing x. The result is something like that shown in
Figure 2.18. Filling-in of the polygon is then achieved by, for each scan line,
taking successive pairs of x values and filling in between them (because a polygon
has to be closed, there will always be an even number of elements in the linked
list). Note that this method is powerful enough to cope with concave polygons

with holes.

28

|
[~ H—CX _

I e g BRC o ENC D
A~~~ CX

[1]

N

_IX

Figure 2-18 The linked list [1]

An example of a linked list maintained in polygon rasterization.

In practice, the sorting of the linked lists is achieved by inserting values in the
appropriate place initially, rather than by a big sort at the end. Also, as well as
calculating the x value and sorting it for each pixel on an edge, the appropriate
shading values would be calculated and stored at the same time (for example,
intensity value for Gouraud shading; %, y and z components of the interpolated
normal vector for Phong shading).

If the object contains only convex polygens then the linked x lists will only ever
contain two x coordinates; the datastructure of the edge list is simplified and there
IS no sort required. It is"not.a great restriction in practical computer graphics to
constrain an object to convex polygons.

One thing that has been slightly glossed over so far is the consideration of
exactly where the borders of a polygon lie. This can manifest itself in adjacent
polygons either by gaps appearing between them, or by them overlapping. For
example, in Figure 2.19, the width of the polygon is 3 units, so it should have an
area of 9 units, whereas it has been rendered with an area of 16 units. The
traditional solution to this problem, and the one usually advocated in textbook, is
to consider the sample point of the pixel to lie in its centre, that is, at

(x+0.5,y+0.5). (A pixel can be considered to be a rectangle of finite area with

dimensions 1.0*1.0, and its sample point is the point within the pixel area where
the scene is sampled in order to determine the value of the pixel.) So, for example,
the intersection of an edge with a scan line is calculated for y+0.5, rather than for vy,
as we assumed above. This is messy, and excludes the possibility of using

integer-only arithmetic. A simpler solution is to assume that the sample point lies

29

at one of the four corners of the pixel; we have chosen the top right-hand corner of
the pixel. This has the consequence that the entire image is displaced half a pixel
to the left and down, which in practice is insignificant. The upshot of this is that it
provides the following simple Rasterization rules:

(1) Horizontal edges are simply discarded.

(2) An edge which goes from scan line Y, ,,, t0 V,, should generated x values
for scan lines y, ..., throughto vy, -1 (thatis missing the top scan line), or
it Yoowom = Yiop then it generates no values.

-1 (with

(3) Similarly, horizontal segments should be filled from x to X,

no pixels generated if X, = X)-

——

Figure 2-19 The problem.with polygon boundaries [1]

Problems with polygon boundaries — a 9-pixel polygon fills 16 pixels.

Incidentally, in rule (2) and (3), whether the first or last element is ignored is
arbitrary, and the choice is based around programming convenience. The four
possible permutations of these two rules define the sample point as one of the
four corners of the pixel. The effect of these rules can be demonstrated in
Figure 2.20. Here we have three adjacent polygons A, B and C, with edges a, b,
¢, and d. the rounded x values produced by these edges for the scan shown are
2, 4, 4, and 7 respectively. Rule 3 then gives pixels 2 and 3 for polygon A,
none for polygon B, and 4 to 6 for polygon C. Thus, overall, there are no gaps,
and no overlapping. The reason why horizontal edges are discarded is because
the edges adjacent to them will have already contributed the x values to make
up the segment (for example, the base of the polygon in Figure 2.18; note also
that, for the sake of simplicity, the scan conversion of this polygon was not

done strictly in accordance with the Rasterization rules mentioned above).

30

Figure 2-20 The result of Rasterization rules [1]

Three polygons intersecting a scan line.

2.2.5 Shading

Interpolative shading techniques

Having dealt with the problem of calculating light intensity at a point, we now
consider how to apply such a model to-a polygon and calculate the light intensity
over its surface. Two classic techniques-have emerged — Gouraud and Phong
shading. Phong interpolation gives the more accurate highlights — as we shall see —
and is generally the~preferred. model. Gouraud shading on the other hand is
considerably cheaper. Both technigues have been developed both to interpolate
information efficiently across the face of a polygon and to diminish the visibility
of the polygon edges in the final shading image. Information is interpolated from
values at the vertices of a polygon and the situation is exactly analogous to depth
interpolation.

Interpolative shading techniques — Gouraud shading

In Gouraud shading we calculate light intensity — using the local reflection
model — at the vertices of the polygon and then interpolation between these
intensities to find values at projected pixels. To do this we use the bilinear
interpolation equations, the property p being the vertex intensity | . The particular
surface normals used at a vertex are special normals called vertex normals. If we
consider a polygon in isolation then, of course, the vertex normals are parallel.
However, in Gouraud shading we use special normals called vertex normals and it

Is this device that reduces the visibility of polygon edges. Consider Figure 2.21.

Here the vertex normal N, is calculated by averaging N,, N,, N, and N,.

31

N,=N+N, +N; +N, (25)
N, is then used to calculated an intensity at vertex A that is common to all the

polygons that share vertex A.

For computational efficiency the interpolation equations are implemented as
incremental calculations. This is particularly important in the case of the third
equation, which is evaluated for every pixel. If we define Ax to be the
incremental distance along a scan line then Al , the change in intensity from one
pixel to the next, is:

AX
(Ib_la)
Xp = Xq

+ Al (26)

Al =

IS,I’] = Is,n—l

Because the intensity is only calculated at vertices the method cannot adequately
deal with highlights and this is-its major disadvantage. The cause of this defect can
be understood by examining Figure 2.22a. We have to bear in mind that the
polygon mesh is an approximation'to a curved surface. For a particular viewing
and light source direction,we-can have a diffuse component at A and B and a
specular highlight confined to some region between them. Clearly if we are
deriving the intensity at pixel P from information at A and B we will not calculate
a highlight. This situation is nearly taken care of by interpolating vertex normals
rather than intensities as shown in Figure 2.22b. This approach is know as Phong

shading.

Figure 2-21 The Gouraud Shading [1]

The vertex normal N, is the average of the normals Ny, N, N3 and Ng4, the normals of the
polygon that meet at the vertex.

Interpolative shading techniques - Phong shading

Here we interpolate vertex normals across the polygon interior and calculate for
each polygon pixel projection an interpolated normal. This interpolated normal is
then used in the shading equation which is applied for every pixel projection. This
has the geometric effect (Figure 2.22) of ‘restoring’ some curvature to polygonally
faceted surface.

The price that we pay for this improved model is efficiency. Not only is the
vector interpolation three times the cost of intensity interpolation, but each vector
has to be normalized and a shading equation calculated for each pixel projection.

Incremental computation can be employed as with intensity interpolation, and

the interpolation would be implemented as:

Nsx,n = Nsx,n—l +ANsx
Nsy,n = Nsy,n—l +ANsy (27)
st,n = st,n—l +ANSZ

Where N ,N,, and=N_| are-the components of a general scan line normal

vector N, and:

ANsx = (Nbx_Nax) (28)

33

Iy=shade finction (Nly) a=shade function (NE) Te=interpolate (74 Jz)

My)
A w4 B
Polygons & Swface —_—
(&)
—_—
(b

Figure 2-22 The difference between Gouraud and Phong shading [1]

Ilustrating the difference between Gouraud and Phong shading.
(&) Gouraud shading
(b) Phong shading

34

Chapter 3 Design

In this chapter, we analyze the operations, parallelism and computation flow for rendering
process and propose a run-time reconfiguration scheduling.

3.1 Analysis

Now we know how the rendering process goes. It is shown in Figure 3.1. Data flow
graph of each stage would be shown in Figure 3.2.

Verteco —»| Mat | Ligh | L[2aa ﬁthﬂmmﬂ_;]
Iy
Vertex 1 Mot | L Ligh | L} M Jrcrenent y |—#
]
_‘Il.n:rm::rlz_x]
ertex 2 —»| Mat L Ligh L__| Mat s

Figure 3-1 The example of Rendering process

A X dAp ¥ AL AW G X 8pF 3 T 3y W 831X 8p ¥ 333D 3x W A H ¥ Sz I Au W

Figure 3-2 The DFG of one vertex

35

(a) Transformation DFG of one vertex

Ly My Ly Mo Lz Ik Vi M Wi Db Vi N Ly Vi Ly V3 Lz Vs
it I I | it I i I A5
< 7 R |
A A I
A A A
Ed ME4d IdbEd l [z lsgkKs [shKE:
w
s it it Id & it Id I A
¢ 3 4 '
I I % CE | R i
Iar Eo ' b IS M
T 7 lagka T \a "{ gx l
% M ||| M 4 D LUT
I T ey —*
A A

ik

b A

4

IJ'CI..'_._

I I

(b) Lighting DFG of one vertex

A £ @y ¥ odp £ o4y W oaAyn X 8n ¥V odp T odp W &) X 333 ¥V 83 T oAzy W oAy K Sy ¥ oAy T Sy W

ST S S ST S T I TN 1
it} it} it} M it} it} it}

b
it}

TS 1 I . SO) ¢

NN NS N
A A A A

N NS
! '

11

Slﬂ

(c) Projection DFG of one vertex

36

AW S AR
A A A A
N N
] j

S13 1y

1|i']-F.

Ty
b4
st
i Cortroller
l & & & &
» L L 4 L L 4
le sz 1i|krlz sz 1i||rTlr er 1|I*'Tlg Vzg 1i|krl’r:u VZh
L 4 ¥ ¥ ¥ ¥
Driwr Diiw Diiw Diwr DCiw
L S r¥ry ¥y L A i ¥y
I Il Il I Il
T T T T T ‘
Wi Vo Vo V 2z Vo,
Add Add Add Add Add —
Vi Vi Vi Vi Vi
Figure3.2

(e) Rasterization DFG of one line

37

lx
N
aub
(3 Cortroller
l . L
® & & 3
Ve Mo Vii Va Vlg Vzg Vie Va
¥ L A b 4 v
Diw Diw Div Diw
L A) L A J L S) ¥y
Il 5| I Il
T T T T '
M Vi V 2z Vo
Add Add Add Add —
Vi Vi Vig Viy

(e) Shading DFG of one scan line

Basic requirement of arithmetic units is listed in the Table 3.1.

Table 3-1 Basic operation for each stage

IMul JAdd Jsub |div fother Jtotal [Process unit
Transformation 4*4 [3*4 |14 [0 0 32 \Vertex
Lighting 24 15 0 0 10 49 \Vertex
Projection 4*4 13*4 |0 0 0 28 \ertex
Rasterization 5 6 7 5 2 25 |[Edge
Shading 4 5 6 4 2 21 Pixel

In the Table 3.1, we can see that we need the operation of multiplication, division, add,
subtract and other (shift, AND, OR, compare, LUT...). 3D computer graphics

38

applications are usually 8-bits, 12-bits and above operations, so | think the
coarse-grained architecture would be suitable for my design. As we can see, we need
multiplication and division operations as much as add and subtract operations, hence |
assume the Processing Element (PE) has ability to process multiplication, division, add
and subtract with multiplication and division operations take multiple cycles and add
and subtract operations are single cycle execution. Besides PE also can do other
operations (shift, AND, OR, compare, LUT...). Hence execution time and resource of

each stage with one polygon is shown in Table 3.2.

Table 3-2 Resource and execution time of each stage

PEs Execution Time
Transformation 32*3=96 IM+3
Lighting 49*3=147 3M+3
Projection 28*3=84 iM+2
Rasterization& 25*2+21=71 2M+2+Rn*(2M+2+Sn)
Shading

In Table 3.2, M means multiplication execution cycles of one PE and Rn, means
pixels generated from Rasterization stage and Sn means pixels generated from shading
stage.

3.2 Design

For now we know that execution time and resource of processing one polygon, we can
consider how to process multiply polygons.
Fixed Configuration Design :
It is common to think that we give a fixed configuration for each stage and the
execution model would be shown in Figure 3.3. It is a pipeline design with
unbalance stages. Here | do not focus on finding a balance pipeline design for
the rendering application and one nature of Rasterization/Shading stage will

39

cause the pipeline design unbalance.

Figure 3-3 The execution example of fixed configuration design

3.3 Observation

In 3D computer graphics application, execution cycles of Rasterization/Shading stage is
not constant because a polygon size projected to the view plane would not be the same
with other polygons. For this characteristic, if there is no buffer between each two stage,
it will cause some stage to wait using fixed configuration design. Besides, total

execution time is usually dominated by the R/S stage.

3.4 Opportunity offimprovement

According to the observation, we can improve the fixed configuration design by adding
buffers between each two stages to solve stage waiting problem and we can use multiple
copies of stage hardware if one stage executed time is long. Hence the execution model
of modified fixed configuration design would be shown in Figure 3.4.

Figure 3-4 The execution example of modified fixed configuration design

In the other hand, we can use Runt-time Reconfiguration design to improve original
fixed configuration design. Run-time Reconfiguration is based upon the concept of

virtual hardware, which is similar to virtual memory. In fixed configuration design, we

40

have fixed configuration of each stage unless we redesign it but in Run-time
Reconfiguration design we only need to reconfigure the reconfigurable hardware into
the stage we want. The disadvantage is that reconfigurable hardware resource is limited.
If we use more hardware resource for one stage, it means less hardware resource will be
left for other stages. Hence scheduling is important for Run-time Reconfiguration design.

The execution model example would be shown in Figure 3.5.

Figure 3-5 The execution example of Run-time Reconfiguration design

3.5 Dynamic Task Scheduling

A dynamic task scheduling for Run-time. Reconfiguration design is executed by a
controller in Reconfigurable system.

In the rendering applications; one-pelygon would be processed through four stages
(Transformation, Lighting, Projection and-Rasterization/Shading) and every polygon is
ready for T stage at the beginning and can be parallel processed. Because there is a
reconfiguration overhead using Run-time Reconfiguration design and buffer size is
limited, so the scheduling should satisfy:

1. If buffer size is full, reconfigure the hardware to process those polygon in buffer

2. Minimize configuration overhead

Here | propose a best fit scheduling which process polygons of buffer size. It will
execute like this. First, partition all polygons into several sets which are as the same size
as buffer size. Second, we configure the entire reconfigurable hardware into several
transformation configurations and parallel process one set polygons as much as
hardware can. Third, we configure the entire reconfigurable hardware into several
lighting stage configurations and parallel process those polygons which are generated by
previous stage in the buffer. Then process those polygons in projection stage and next
rasterization/shading stage using similar scheduling. When one set of polygons finishes,
next set of polygons will be processed in the same way until all polygon finish.

4

Chapter 4 Simulation

In this Chapter, we will describe the simulation environment and show the simulation result of
total execution time under several PE number.

4.1 Simulation Environment

In this thesis, we assume our PE has ability to do add, subtraction, multiplier and
division with add and subtraction both are single cycle execution but multiplier and
division are multiple cycle execution. Here we assume multiplier and division take five
cycles to finish the operation because each PE is an 8-bit ALU. Another assumption is
that each configuration takes: 1000 cycle. Nowadays average configuration time is
ranged form nanosecond -to microsecond.. If-our reconfigurable hardware runs at
100MHz, 1000 cycles are-equal to-10 microseconds. It is conservative assumption.
Finally, we use multicontext reconfigurable system with partially reconfigurable models

and place & route problem is ignared-in-this thesis.

4.2 Simulation Result

We choose Venus, UTAH teapot and Bunny69k model for benchmark. They are very
familiar in computer graphics. | will simulate different PE number and different buffer
size to see the influence to the reconfigurable system. The parameters of each
benchmark are listed in Table 4.1. Scales means that the size projected to the view plane
of the benchmark. Different scales of same benchmark have different execution time of

rasterization/shading stage and we are going to see what is will cause in our simulation.

42

Table 4-1 Benchmarks

\ertices Scale
\Venus 1396 1

6400 5
Utah 6400 10
Teapot 6400 20
Bunny69k 69451 2

In original fixed configuration design, it use 398 PEs(96 for transformation, 147 for
lighting, 84 for projection and 71 for rasterization/shading) for execution, each stage is
executed one polygon at a time. In the next, | simulate modified fixed configuration
design for different PE numbers and the result is listed in Table 4.2.

Table 4-2 Execution time comparison 1

\enus teapot-5 [teapot 10 [teapot-20 [bunny69k
(1,1,1,1) 755402 134436| 470544 442977 1997474
(1,1,1,2) 377845 134436)= 134439 | 227994| 1458507
(1,1,1,3) 251979 134439 .~157645| 1458507
(1,1,1,4) 189154 134465
(1,1,1,5) 151232 134465
(1,1,1,10) 76314
(1,1,1,20) 40339
(1,1,1,30) 32574
(1,1,1,31) 32451
(1,1,1,32) 32451

First column represent number of fixed hardware (transformation, lighting, projection,
rasterization/shading). Two to four copies of rasterization/shading hardware are enough
but it needs thirty-one copies in Venus model that is because projected size of every
polygon in Venus model on view plane is much bigger than other models. After this
simulation, | found another bottleneck that lies in light stage. Hence | use two copies
lighting hardware to reduce average execution cycle of a polygon in lighting. Because
execution cycles of a polygon in transformation stage and projection stage are 8 and 7
cycles but execution cycles of one polygon in lighting stage is 21 cycles. After I use two
copies of lighting stage hardware, execution cycle of a polygon in lighting stage will

reduce to 10.5 cycle approximate to 8 or 7 cycles than 21 cycles. It makes data flow

43

more smoothly but it cost more hardware. The result is listed in Table 4.3.

Table 4-3 execution time comparison 2

venus teapot-5 [teapot 10 [teapot-20 [bunny69k
(1,2,1,1) 755402| 106866| 166607 442977 1997075
(1,2,1,2) 377838 67240 85294 221511) 998771
(1,2,1,3) 251968 67240 67247 149247 729284
(1,2,1,4) 189137 64247 114037 729284
(1,2,1,5) 151410 92921
(1,2,1,6) 126211 78860
(1,2,1,7) 108451 68816
(1,2,1,8) 94995 67273
(1,2,1,9) 84573 67273
(1,2,1,10) 76265 67273
(1,1,1,20) 39840
(1,1,1,30) 27908
(1,1,1,40) 22000
(1,1,1,50) 19375
(1,1,1,55) 18556
(1,1,1,57) 18338
(1,1,1,59) 18199
(1,1,1,60) 18150
(1,1,1,61) 18150

We can see total execution time decrease by adding one copies of lighting hardware.
Once if we want to improve performance, we can just add more hardware but cost may
goes to high. It means that we add double hardware but we may not decrease half

execution time. We can use the cost function «(Time)x g(hardware) to represent this

and hardware here means PE number. Time in fixed configuration design only means
execution time but it represents execution time and reconfiguration time in Run-time

Reconfiguration design. Hence the cost function will become

+T,..)x f(hardware).

exe

In Run-time Reconfiguration design, | simulate every ten PE numbers from 147 PE
numbers to 497 PE numbers. Because bunny69k model execution cycles are much more
than others, | use an independent figure to show avoiding other result can’t be seen
clearly. Figure 4.1a and 4.1b are the execution cycles of each models.

44

4000000
3500000
3000000
2500000
2000000
1500000
1000000
500000
0

Cycle count

147

>~ o~ = =~ =
0w N O O =
— N QN ® ™

— bunny69k

Figure 4-1 The simulation result of different PE

(a) Cycle count of different PE for bunny69k

500000
400000
300000
200000
100000

Cycle count

0

— teapot-20
— teapot-10
teapot-5

venus

147 197 247 297 347 397 447 497

(b) Cycle count of different PE for other
Figure 4.2 shows the cost function:

700000000
600000000
500000000
400000000
300000000
200000000
100000000

0

Cost

147

[o o S
W N O O
— N QA ®

— bunny69k

Figure 4-2 The simulation result of cost function

(a) Cost function of different PE for bunny69k

100000000
S0000000 | N | [t
60000000 —— teapot-10
S 40000000 B U teapot-5
20000000 T
0

A S R AN P AR WA
NS AR PN PN AP ORI

(b) Cost function of different PE for other

Lowest cost of each model are at PE numbers is 297 except Venus model is 427 that
is the same reason as more copies of rasterization/shading stage hardware. | compare
lowest cost of Run-time Reconfiguration:and modified fixed configuration design. The
result is listed in Table 4.4.

Table 4-4 The comparison of fixed configuration design-and RTR

Venus Teapot-5 +| Teapot-10 | Teapot-20 | Bunny69k
?{'X"e%ified PE 2604 616 687 971 687
configuration Cycle 27908 67240 64247 67273 729284
design COSt | 72670432 | 41419840 | 46198689 | 66820336 | 501018108
Run-time PE 1407 297 297 297 297
reconfiguratio | Cycle | 146605 129921 | 144854 | 213951 | 1579774
n design COSt | 60638765 | 38586537 | 43021638 | 63543447 | 469192878

46

Chapter 5 Conclusion and Future
work

In this chapter, according to previous discussions, we have some conclusions and find some

future works for research.

5.1 Conclusion

The hardware accelerated architectures for computer graphics now have two approaches.
One is fixed configuration design‘another is,Run-time Reconfiguration design. From the
cost function, Run-time Reeonfiguration design wins a little bit. If you want to find a
very short execution time solution, there is no doubt that fixed configuration design is
what you looking for. But-if youwant.-a-low cost solution, Run-time Reconfiguration
design may be suitable for<yeur needs. There is another advantage for Run-time
Reconfiguration design, flexibility. In this thesis, flexibility means we can reconfigure
the reconfigurable hardware between 4 stages (transformation, lighting, projection and
rasterization/shading). That is why we can use smaller hardware to execute massive
computations. We even can use it to accelerate other algorithms only if we have their

configurations which are complied configurations or manually generated.

5.2 Future work

First, place and route problem we ignored is a critical issue if we want to implement a
reconfigurable system. During execution, run-time relocation of PE and data transfer
can not be ignored. Second, configuration time problem is another issue to the

performance. If we can reduce configuration time by using configuration prefetching

47

and configuration compression, total execution time will be reduced. Last, if
configurations can be generated automatically by the compiler, we can accelerate more
than rendering process and previous two points we talk about are the work of the
compiler. The issue of every reconfigurable system is the lack of a good compiler.

Hence the compiler of reconfigurable system is a good topic of research.

48

Reference

[1]: Alan Watt, 3D Computer Graphics, Third edition, Addison-Wesley, USA, 2000.
[2]: Katherine. Compton, cott. Hauck, “Reconfigurable Computing: A survey of System and

software,” ACM Computing Survey, June 2002.

[3]: Purna, K. M. G. and Bhatia, D.,” Temporal Partitioning and Scheduling Data Flow Graphs
for Reconfigurable Computers”, IEEE Trans. Computer, Vol. 48, NO. 6, 579-590, 1999

[4]: Henry Styles, Wayne Luk,” Customising Graphics Applications: Techniques and
Programming Interface”, IEEE Symposium on Field-Programmable Custom Computing
Machines, 2000

[5]: Arunachalam Ramanathan, Nirupama Ramaswamy, Jeevan Chittamuru, Krishna Prasad
Valluru,” Low Power Reconfigurable Core For 3D Graphics Shading and Texture Mapping”,
Umass project, 2001

[6]: Pavel Zemick, “Hardware Accleration of Graphics and Imaging Algorithm Using
FPGASs”, ACM Spring Conference of Computer Graphics, 2002

[7]: EBELING, C., CRONQUIST; D.'C.,;;AND-FRANKLIN, P. RaPiD—Reconfigurable
pipelined datapath. Lecture Notes in ComputerScience 1142—*“Field-Programmable Logic:
Smart Applications, New Paradigms and Compilers.” R. W. Hartenstein, M. Glesner, Eds.
Springer-Verlag, Berlin, Germany, 126-135, 1996.

[8]: CADAMBI, S., WEENER, J., GOLDSTEIN, S. C., SCHMIT, H., AND THOMAS, D. E.
“Managing pipeline reconfigurable FPGA,” ACM/SIGDA International Symposium on
FPGAs, 55-64, 1998.

[9]: RUPP, C. R., LANDGUTH, M., GARVERICK, T., GOMERSALL, E., HOLT, H.,
ARNOLD, J. M., AND GOKHALE, M. ,“The NAPA adaptive processing

architecture,” IEEE Symposium on Field-Programmable Custom Computing Machines,
28-37, 1998.

[10]: SCALERA, S. M. AND VAZQUEZ, J. R. “The design and implementation of a context
switching FPGA,” IEEE Symposium on Field- Programmable Custom Computing Machines,
78-85, 1998.

[11]: HAUCK, S. AND BORRIELLO, G. “Pin assignment for multi-FPGA systems,” IEEE
Trans. Comput. Aid. Desi. Integ. Circ. Syst. 16, 9, 956-964, 1997.

49

[12]: XILINX, INC. “The Programmable Logic Data Book,” Xilinx, Inc., San Jose, CA,
1994,

[13]: ALTERA CORPORATION. “Data Book,” Altera Corporation, San Jose, CA, 1998.
[14]: LUCENT TECHNOLOGIES, INC. “FPGA Data Book,” Lucent Technologies, Inc.,
Allentown, PA, 1998.

[15]: DEHON, A. “DPGA Utilization and Application,” ACM/SIGDA International
Symposium on FPGAs, 115-121, 1996.

[16]: TRIMBERGER, S., CARBERRY, D., JOHNSON, A., AND WONG, J. “A
time-multiplexed FPGA,” IEEE Symposium on Field-Programmable Custom Computing
Machines, 22-28, 1997.

[17]: CHAMELEON SYSTEMS, INC. “CS2000 Advance Product Specification,”
Chameleon Systems, Inc., San Jose, CA, 2000.

[18]: HAUCK, S., FRY, T. W., HOSLER, M. M., AND KAQO, J. P. “The Chimaera
reconfigurable functional unit,” IEEE Symposium on Field-Programmable Custom
Computing Machines, 87-96, 1997.

[19]: GOLDSTEIN, S. C., SCHMIT, H., BUDIWY, M:, CADAMBI, S., MOE, M., AND
TAYLOR, R. “PipeRench: A Reconfigurable Architecture and Compiler,” IEEE Computer,
vol. 33, No. 4, 2000.

[20]: XILINX, INC. “XC6200: Advance'Product Specification,” Xilinx, Inc., San Jose, CA,
1996.

[21]: XILINX, INC. “VirtexTM 2.5 V Field Programmable Gate Arrays: Advance Product
Specification,” Xilinx, Inc., San Jose, CA, 1999.

50

	摘 要
	ABSTRACT
	誌謝
	Contents
	List of Tables
	List of Figures
	Introduction
	Computer Graphics
	Run-time Reconfiguration
	Motivation and Objective
	Organization of This Thesis

	Background
	Reconfigurable Models
	Single Context
	Multicontext
	Partially Reconfigurable

	Rendering Process
	Transformation
	Lighting
	Projection
	Rasterization
	Shading

	Design
	Analysis
	Design
	Observation
	Opportunity of improvement
	Dynamic Task Scheduling

	Simulation
	Simulation Environment
	Simulation Result

	Conclusion and Future work
	Conclusion
	Future work

	Reference

