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摘  要 

 
3D 顯像程式需要大量的數學運算且資料之間的平行性極高，但是每筆資料處理的

時間卻不相同，使用微處理器來執行會使得效能不夠快，設計一個特定的硬體雖然可以

得到最大的效能，但是會用上非常多的硬體資源。在某些有硬體資源限制的情形下，有

可能會造成效能不彰亦或是根本無法在上面執行。而可重組式運算可以在有限的硬體資

源下進行大規模的運算，更能使硬體結構直接切合運算的需求，達到高效能的目的。因

此在本篇論文中，探討 3D 顯像程式如何在可重組式系統上執行，透過 

1. 程式分割：不破壞最大平行性的情形下，將程式分割成幾個片段 

2. 工作排程：利用資料平行性盡量重用硬體和並且減少重組的次數進而降低總執

行時間 

透過以上兩點，我希望可以找到一個讓 3D 顯像程式在可重組式系統上執行最適合的方

式。 
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ABSTRACT 

3D rendering applications have lots of arithmetic operations and high parallelism but 

execution times of each data are not the equal. General purpose computing is not fast enough 

for 3D rendering, Application specific computing (ASC) supports customization of 

applications in the form of hardware. Due to customization of hardware, this approach offers 

maximum performance for executing applications, but it will also cost a lot of hardware 

resource. In some situation with hardware constraint, it may not get high performance or even 

can not execute by using ASC. Reconfigurable computing can execute lots of computation 

with limited hardware resource and customize hardware circuit to fit the application needs for 

high performance.  

In this thesis, I discuss how 3D rendering application can be mapped into reconfigurable 

system, by: 

1. Analysis of rendering process: analyze operations, parallelism and computation flow 

2. DFG scheduling: reuse hardware and decrease reconfigurable frequency using data 

parallelism to minimize total execution time 

Through this, I propose a method to execute 3D rendering application on reconfigurable 

system. 
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Chapter 1 Introduction 

Computer graphics are traditionally computation intensive, it stared at high-end system such 

as work stations for scientific purpose and then it showed up at the desktop computer. For now, 

portable devices are going to have ability to perform 3D applications. As we can see, the 

hardware resources for the computer graphics are getting less and less. If we can use lesser 

hardware to accelerated larger portions of application, it will be beneficial for the small 

system. In this thesis, we propose a method to analyze the application and propose a run-time 

scheduling for that reconfigurable system. 

 

1.1 Computer Graphics  

Since the mid-1970s the developmental motivation of computer graphics from the 

viewpoint of its practitioners has been photorealism or the pursuit of techniques that 

make a graphics image of an object or scene in distinguishable from a TV image or 

photograph. A more recent strand of the application of these techniques is to display 

information in, for example, medicine, science and engineering. 

The calculation of light-object interaction is the foundation of photo-realism and this 

split neatly into two fields – the development of local reflection models and the 

development of global models. Local or direct reflection models only consider the 

interaction of an object with a light source as if the object and light were floating in dark 

space. That is, only the first reflection of light from the object is considered. Global 

reflection models consider how light reflects from one object and travels onto another. 

In other words the light impinging on a point on the surface can come either from a light 

source (direct light) or indirect light that has first hit another object. Although two 

partial solutions for global interaction, ray tracing and radiosity, are implementer, global 

interaction is still for the most part an unsolved problem. 

  Much modern scientific research comes from computer graphics research and early 
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major advances are created and consolidated into a practical technology. Later 

significant advances seem to be more difficult to achieve. We can say that most images 

are produced using the Phong local reflection model (first reported in 1975), fewer using 

ray tracing (first popularized in 1980) and fewer still using radiosity (first reported in 

1984). Although there is still much research being carried out in light-scene interaction 

methodologies much of the current research in computer graphics is concerned more 

with applications, for example, with such general applications as animation, 

visualization and virtual reality. In the most important computer graphics publication 

(the annual SIGGRAPH conference proceedings) there was in 1985 a total of 22 papers 

concerned with the production techniques of images (rendering, modeling and hardware) 

compared with 13 on what could loosely be called applications. A decade later in 1995 

there were 37 papers on applications and 19 on image production techniques. [1] 

 

1.2 Run-time Reconfiguration  

 

Frequently, the areas of a program that can be accelerated by using the reconfigurable 

hardware are too numerous or complex to be loaded simultaneously onto the available 

hardware. For these cases, if we can swap different configurations in and out of the 

reconfigurable hardware as they are needed during program execution, it will be 

beneficial (Figure 1.1). This concept is called run-time reconfiguration (RTR). 

 

Figure 1-1 The concept of Run-time Reconfiguration [2] 

 
  Run-time reconfiguration is based upon the concept of virtual hardware, which is 

similar to virtual memory. Here, the physical hardware is much smaller than the sum of 

the resources required by each of the configurations. Therefore, instead of reducing the 
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number of configurations that are mapped, we instead swap them in and out of the actual 

hardware as they are needed. Because run-time reconfiguration allows more sections of 

an application to be mapped into hardware than can be fit in a non-run-time 

reconfigurable system, a greater portion of the program can be accelerated. This 

provides potential for an overall improvement in performance. 

Configurations are swapped in and out of the reconfigurable hardware during a single 

program’s execution. Some of these configurations will likely require access to the 

results of other configurations. Configurations that are active at different periods in time 

therefore must be provided with a method to communicate with one another. Primarily, 

this can be done through the use of registers [7] [8] [9] [10], the contents of which can 

remain intact between reconfigurations. This allows one configuration to store a value, 

and a later configuration to read back that value for use in further computations. An 

alternative for reconfigurable systems that do not include state-holding devices is to 

write the result back to registers or memory external to the reconfigurable array, which 

is then read back by successive configurations [11].  

There are a few different configuration memory styles that can be used with 

reconfigurable systems. A single context device is a serially programmed chip that 

requires a complete reconfiguration in order to change any of the programming bits. A 

multicontext device has multiple layers of programming bits, each of which can be 

active at a different point in time. Devices that can be selectively programmed without a 

complete reconfiguration are called partially reconfigurable. These different types of 

configuration memory are described in more detail later. An advantage of the 

multicontext FPGA over a single context architecture is that it allows for an extremely 

fast context switch (on the order of nanoseconds), whereas the single context may take 

milliseconds or more to reprogram. The partially reconfigurable architecture is also 

more suited to run-time reconfiguration than the single context, because small areas of 

the array can be modified without requiring that the entire logic array be reprogrammed.  

For all of these run-time reconfigurable architectures, there are also some compilation 

issues which are not encountered in systems that only configure at the beginning of an 

application. For example, run-time reconfigurable systems are able to optimize based on 

values that are known only at run-time. Furthermore, compilers must consider the 

run-time reconfigurability when generating the different circuit mappings, not only to be 

aware of the increase in time-multiplexed capacity, but also to schedule reconfigurations 

so as to minimize the overhead that they incur. These software issues, as well as an 
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overview of methods to perform fast configuration, will be explored in the sections that 

follow. 
 

1.3 Motivation and Objective 

Now graphics accelerators are usually made by dedicated hardware, it can achieve very 

high performance but it loses the flexibility. Reconfigurable computing provides another 

way to accelerate the computer graphics applications which retain flexibility of a 

software solution. Once if we use reconfigurable hardware to accelerate such a 

application, scheduling is a critical issue that execution time of each stage in rendering 

process is not constant. 

  Here our objective is to analyze operations, parallelism and computation flow of 

rendering process to design a Run-time reconfiguration scheduling. 

 

1.4 Organization of This Thesis 

The organization of this thesis is as follows: In Chapter 2, the background is presented. 

In Chapter 3, analysis of the rendering process and the design of Run-time 

reconfiguration are described. In Chapter 4, we analyze our simulation result and show 

our simulation environment. Finally, conclusion and future work are presented in 

Chapter 5. 
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Chapter 2 Background 

In this chapter, we will introduce the backgrounds of reconfigurable models and computer 

graphics.  

 

2.1 Reconfigurable Models  

Traditional FPGA structures have been single context which only allow one full-chip 

configuration to be loaded at a time. However, designers of reconfigurable systems have 

found this style of configuration to be too limiting or slow to efficiently implement 

run-time reconfiguration. The following discussion (reference from [2]) defines the 

single context device, and further considers newer FPGA designs (multicontext and 

partially reconfigurable), along with their impact on run-time reconfiguration. 

 

2.1.1 Single Context 

Current single context FPGAs are programmed using a serial stream of 

configuration information. Because only sequential access is supported, any 

change to a configuration on this type of FPGA requires a complete 

reprogramming of the entire chip. Although this does simplify the reconfiguration 

hardware, it does incur a high overhead when only a small part of the 

configuration memory needs to be changed. Many commercial FPGAs are of this 

style, including the Xilinx 4000 series [12], the Altera Flex10K series [13], and 

Lucent’s Orca series [14]. This type of FPGA is therefore more suited for 

applications that can benefit from reconfigurable computing without run-time 

reconfiguration. A single context FPGA is depicted in Figure 2.1. 
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Figure 2-1 Reconfigurable Models [2] 

 

In order to implement run-time recon-figuration onto a single context FPGA, the 

configurations must be grouped into contexts, and each full context is swapped in 

and out of the FPGA as needed. Because each of these swap operations involve 

reconfiguring the entire FPGA, a good partitioning of the configurations between 

contexts is essential in order to minimize the total reconfiguration delay. If all the 

configurations used within a certain time period are present in the same context, no 

reconfiguration will be necessary. However, if a number of successive 

configurations are each partitioned into different contexts, several reconfigurations 

will be needed, slowing the operation of the runtime reconfigurable system. 

 

 

Figure 2-2 The architecture of programming bit [2] 

 
 

 

A four-bit multicontexted programming bit[16]. P0-P3 are the stored programming 
bits, while C0-C3 are the chip wide control lines that select the context to program or 
activate. 

2.1.2 Multicontext 

A multicontext FPGA includes multiple memory bits for each programming bit 

location [10] [15] [16] [17]. These memory bits can be thought of as multiple 

planes of configuration information, as shown in Figure 2.2. One plane of 

configuration information can be active at a given moment, but the device can 
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quickly switch between different planes, or contexts, of already-programmed 

configurations. In this manner, the multicontext device can be considered a 

multiplexed set of single context devices, which requires that a context be fully 

reprogrammed to perform any modification. This system does allow for the 

background loading of a context, where one plane is active and in execution while 

an inactive place is in the process of being programmed. Figure 2.2 shows a 

multicontext memory bit, as used in [16]. A commercial product that uses this 

technique is the CS2000 RCP series from Chameleon, Inc [17]. This device 

provides two separate planes of programming information. At any given time, one 

of these planes is controlling current execution on the reconfigurable fabric, and 

the other plane is available for background loading of the next needed 

configuration. 

Fast switching between contexts makes the grouping of the configurations into 

contexts slightly less critical, because if a configuration is on a different context 

than the one that is currently active, it can be activated within an order of 

nanoseconds, as opposed to milliseconds or longer. However, it is likely that the 

number of contexts within a given program is larger than the number of contexts 

available in the hardware. In this case, the partitioning again becomes important to 

ensure that configurations occurring in close temporal proximity are in a set of 

contexts that are loaded into the multicontext device at the same time. More 

aspects involving temporal partitioning for single- and multicontext devices will 

be discussed in the section on compilers for run-time reconfigurable systems. 

 

2.1.3 Partially Reconfigurable 

In some cases, configurations do not occupy the full reconfigurable hardware, or 

only a part of a configuration requires modification. In both of these situations, a 

partial reconfiguration of the array is required, rather than the full reconfiguration 

required by a single- or multicontext device. In a partially reconfigurable FPGA, 

the underlying programming bit layer operates like a RAM device. Using 

addresses to specify the target location of the configuration data allows for 

selective reconfiguration of the array. Frequently, the undisturbed portions of the 

array may continue execution, allowing the overlap of computation with 
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reconfiguration. This has the benefit of potentially hiding some of the 

reconfiguration latency. 

When configurations do not require the entire area available within the array, a 

number of different configurations may be loaded into unused areas of the 

hardware at different times. Since only part of the array is reconfigured at a given 

point in time, the entire array does not require reprogramming. Additionally, some 

applications require the updating of only a portion of a mapped circuit, while the 

rest should remain intact, as shown in Figure 2.1. For example, in a filtering 

operation in signal processing, a set of constant values that change slowly over 

time may be reinitialized to a new value, yet the overall computation in the circuit 

remains static. Using this selective reconfiguration can greatly reduce the amount 

of configuration data that must be transferred to the FPGA. Several run-time 

reconfigurable systems are based upon a partially reconfigurable design, including 

Chimaera [18], PipeRench [8] [19], NAPA [9], and the Xilinx 6200 and Vertex 

FPGAs [20] [21]. 

Unfortunately, since address information must be supplied with configuration 

data, the total amount of information transferred to the reconfigurable hardware 

may be greater than what is required with a single context design. This makes a 

full reconfiguration of the entire array slower than the single context version. 

However, a partially reconfigurable design is intended for applications in which 

the size of the configurations is small enough that more than one can fit on the 

available hardware simultaneously. Plus, as we discuss in subsequent sections, a 

number of fast configuration methods have been explored for partially 

reconfigurable systems in order to help reduce the configuration data traffic 

requirements. 

    

2.2 Rendering Process  

    In this thesis, we study the basic component of computer graphics from Alan Watt’s book 

[1]. Hence the following background is to refer to Alan Watt’s book [1]. 
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2.2.1 Transformation 

     Transformation includes three coordinate spaces:  

A. Local or modeling coordinates systems 

For ease of modelling it makes sense to store the vertices of a polygon mesh 

object with respect to some point located in or near the object. For example, 

we would almost certainly want to locate the origin of a cube at one of the 

cube vertices, or we would want to make the axis of symmetry of an object 

generated as a solid of revolution, coincident with the z axis. As well as 

storing the polygon vertices in a coordinate system that is local to the object, 

we would also store the polygon normal and the vertex normals. When local 

transformations are applied to the vertices of an object, the corresponding 

transformations are applied to the associated normals. 

 

B. World coordinate systems 

Once an object has been modeled the next stage is to place it in the scene that 

we wish to render. All objects that together constitute a scene have their 

separate local coordinate systems. The global coordinate system of the scene 

is known as the ‘world coordinate system’. All objects have to be 

transformed into this common space in order that their relative spatial 

relationships may be defined. The act of placing an object in a scene defines 

the transformation required to take the object from local space to world space. 

If the object is being animated, then the animation system provides a 

time-varying transformation that takes the object into world space on a frame 

by frame basis. 

  The scene is lit in world space. Light sources are specified, and if the 

shaders within the renderer function are in world space then this is the final 

transformation that the normals of the object have to undergo. The surface 

attributes of an object – texture, colour, and so on – are specified and tuned 

in this space. 

 

C. Camera or eye view coordinate system 

The eye, camera or view coordinate system is a space that is used to establish 
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viewing parameters (view point, view direction) and a view volume. (A 

virtual camera is often used as the analogy in viewing systems, but if such an 

allusion is made we must be careful to distinguish between external camera 

parameters or those that affect the nature and size of the image on the film 

plane. Most rendering systems imitate a camera which in practice would be a 

perfect pinhole. However, there are other facilities in computer graphics that 

cannot be imitated by a camera and because of this the analogy is of limited 

utility.) 

  We will now deal with a basic view coordinate system and the 

transformation from world space to view coordinate space. The reason that 

this space exist, after all we could go directly from world space to screen 

space, is that certain operations ( and specifications ) are most conveniently 

carried out in view space.  

  We define a viewing system as being the combination of a view coordinate 

system together with the specification of certain facilities such as a view 

volume. The simplest or minimum system would consist of the following： 

 A view point which establishes the viewer’s position in world space;  

this can either be the origin of the view coordinate system or the centre 

of projection together with a view direction N. 

 A view coordinate system defined with respect to the view point. 

 A view plane onto which the two-dimensional image of the scene is 

projected. 

 A view frustum or volume which defines the field or view. 
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Figure 2-3 The minimum entities required in a practical viewing system [1] 

 

These entities are show in Figure 2.3. The view coordinate system, UVN, has 

N coincident with the viewing direction and V and U lying in a plane parallel 

to the view plane. We can consider the origin of the system to be the vie 

point C. The view plane containing U and V is of infinite extent and we 

specify a view volume or frustum which defines a window in the view plane. 

It is the contents of this window – the projection of that part of the scene that 

is contained within the view volume – that finally appears in the screen. 

  Thus, using the virtual camera analogue we have a camera that can be 

positioned anywhere in world coordinate space, pointed in any direction and 

rotated about the viewing direction N. 

  To transform points in world coordinate space we invoke a change of 

coordinate system transformation and this split into two components: a 

translational one and a rotational one. Thus:  

The minimum entities required in a 
practical viewing system. 
(a) View point C and viewing direction 

N. 
(b) A view plane normal to the viewing 

direction N positioned d units from 
C. 

(c) A view coordinates system with the 
origin C and UV axes embedded in 
plane parallel to the view plane. 

(d) A view volume defined by the 
frustum formed by C and the view 
plane window. 
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The only problem now is specifying a user interface for the system and 

mapping whatever parameters are used by the interface into U, V and N. A 

user needs to specify C, N and V. C is easy enough. N, the viewing direction 

or view plane normal, can be entered say, using two angles in a spherical 

coordinate system – this seems reasonably intuitive: 

θ  the azimuth angle 

φ  the colatitude or elevation angle 

where: 

sin cos
sin sin (4)

cos

x

y

z

N
N

N

φ θ
φ θ

φ

=
=

=

 

V is more problematic. For example, a user may require ‘up’ to be the same 

sense as ‘up’ in the world coordinates system. However, this cannot be 

achieved by setting: 

(0,0,1)V =  

because V must be perpendicular to N. A sensible strategy is to allow a user 

to specify an approximate orientation for V, say V’ and have the system 

calculate V. Figure 2.4 demonstrate this. V’ is the user-specified up vector. 

This is projected onto the view plane: 

' ( ' ) (5)V V V N N= − i  
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and normalized. U can be specified or not depending on the user’s 

requirements. If U is unspecified, it is obtained from: 

(6)U N V= ×  

This results in a left-hand coordinate system, which although somewhat 

inconsistent, conforms with our intuition of a practical viewing system, 

which has increasing distances from the view point as increasing values 

along the view direction axis. Having established the viewing transformation 

using UVN notation, we will in subsequent section use ( , , )v v vx y z  to 

specify points in the view coordinate system. 

 

 

Figure 2-4 The calculation of up vector V [1]  

 

The up vector V can be calculated 
from an ‘indication’ given by V’. 

2.2.2 Lighting 

Shading Pixels 

The first quality shading in computer graphics was developed by H. Gouraud in 

1971 (Gouraud 1971). In 1975 Phong Bui-Tuong (Phong 1975) improved on 

Gouraud’s model and Phong shading, as it is universally known, became the 

defacto standard in mainstream 3D graphics. Despite the subsequent development 

of ‘global’ techniques, such as ray tracing and radiosity, Phong shading has 

remained ubiquitous. This is because it enables reality to be mimicked to an 

acceptable level at reasonable cost. 

  There are two separate considerations to shading the pixels onto which a 

polygon projects. First we consider how to calculate the light reflected at any point 
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on the surface of an object. Given a theoretical framework that enables us to do 

this, we can then calculate the light intensity at the pixels onto which the polygon 

projects. The first consideration we call ‘local reflection models’ and the second 

‘shading algorithms’. The difference is illustrated conceptually in Figure 2.5. For 

example, one of the easiest approaches to shading – Gouraud shading – applies a 

local reflection models at each of the vertices to calculate vertex intensity, then 

derives a pixel intensity using the interpolation equations.  

 

 

 

Figure 2-5 The difference between local reflection models and shading algorithms [1] 

 

 

 

 

 

  Basically there is a conflict here. We only want to calculate the shade for each 

pixel onto which the polygon projects. But the reflected light intensity at every 

point on the surface of a polygon is by definition a world space calculation. We are 

basing the calculation on the orientation of the surface with respect to a light 

source both of which are defined in world space. Thus we use a 2D projection of 

the polygon as the basis of an interpolation scheme that controls the world space 

calculations of intensity and this is incorrect. Linear interpolation, using equal 

Illustrating the difference between local reflection models and shading 
algorithms. 
(a) Local reflection models calculate light intensity as any point P on the 

surface of an object. 
(b) Shading algorithms interpolate pixel values from calculated light 

intensities at the polygon vertices. 

 14



increments, in screen space does not correspond to how the reflected intensity 

should vary across the face of the polygon in world space. One of the reasons for 

this is that we have already performed a (non-linear) perspective transformation to 

get into screen space. Like many algorithms in 3D computer graphics it produces 

an acceptable visual result, even using incorrect mathematics. However, this 

approach does lead to visible artifacts in certain contexts.  

 

Local reflection models 

A local reflection model enables the calculation of the reflected light intensity 

from a point on the surface of an object. Here we will confine ourselves to 

considering, from a practical view point, the most common model and see how it 

fits into a renderer. 

  This model, introduced in 1975, evaluates the intensity of the reflected light as a 

function of the orientation of the surface at the point of interest with respect to the 

position of a point light source and surface properties. We refer to such a model as 

a local reflection model because it only considers direct illumination. It is as if the 

object under consideration was an isolated object floating in free space. Interaction 

with other objects that result in shadows and inter-reflection are not taken into 

account by local reflection models. This point is emphasized in Figure 2.6. 

 

Figure 2-6 The concept of local reflection model [1] 

 

 

 

(a) A local reflection model calculates intensity at Pb and Pa considering direct 
illumination only. 

(b) Any indirect reflected light from A to B or from B to A is not taken into 
account. 
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  The physical reflection phenomena that the model simulates are: 

 Perfect specular reflection 

 Imperfect specular reflection  

 Perfect diffuse reflection 

 

Figure 2-7 The reflection phenomena [1] 

 

 

 

 

Figure 2-8 The computer graphics surface [1] 

 

These are illustrated in Figure 2.7 for a point light source that is sending an 

infinitely thin beam of light to a point on a surface. Perfect specular reflection 

occurs when incident light is reflected, without diverging, in the ‘mirror’ direction. 

The three reflection phenomena used in computer graphics. 
(a) Perfect specular reflection. 
(b) Imperfect specular reflection. 
(c) Perfect diffuse reflection. 
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Imperfect specular reflection is that which occurs when a thin beam of light strikes 

an imperfect mirror, that is a surface whose reflecting properties are that of a 

perfect mirror but only at a microscopic level – because the surface is physical 

rough. Any area element of such a surface can be considered to be made up of 

thousands of tiny perfect mirrors all at slightly different orientations. 

Perfect specular reflection does not occur in practical but we use it in ray tracing 

models simply because calculating interaction due to imperfect specular reflection 

is too expensive. A perfect diffuse surface reflects the light equally in all directions 

and such a surface is usually called matte. 

The Phong reflection model considers the reflection from a surface to consist of 

three components linearly combined: 

Reflected light = ambient light + diffuse component + specular component  

The ambient term is a constant and simulates global or indirect illumination. This 

term is necessary because parts of a surface that cannot ‘see’ the light source, but 

which can be seen by the viewer, need to be lit. Otherwise they would be rendered 

as black. In reality such lighting comes from global or indirect illumination and 

simply adding a constant side-step the complexity of indirect or global 

illumination calculation. 

  It is useful to consider what types of surface such a model simulates. Linear 

combination of a diffuse and specular component occurs in polished surfaces such 

as varnished wood. Specular reflection results from the transparent layer and 

diffuse reflection from the underlying surface (Figure 2.8). Many different 

physical types, although not physical the same as a varnished wood, can be 

approximately simulated by the same model. The veracity of this can be 

demonstrated by considering looking at a sample of real varnished wood, shiny 

plastic and gloss paint. If all contextual clues are removed and the reflected light 

from each sample exhibited the same spectral distribution, an observer would find 

it difficult to distinguish between the samples. 

  As well as possessing the limitation of being a local model, the Phong reflection 

model is completely empirical or imitative. One of its major defects is that the 

value of reflected intensity calculated but the model is a function only of the 

viewing direction and the orientation of the surface with respect to the light source. 

In practical, reflected light intensity exhibits bi-directional behavior. It depends 

also on the direction of the incident light. This defect has led to much research into 
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physically based reflection models, where an attempt is made to model reflected 

light by simulating real surface properties. However, the subtle improvements 

possible by using such models – such as the ability to make surface look metallic – 

have not resulted in the demise of the Phong reflection model and the main thrust 

of current research into rendering methods deals with the limitation of ‘localness’. 

Global methods, such as radiosity, result in much more significant improvements 

to the apparent reality of a scene. 

  Leaving aside, for a moment, the issue of color, the physical nature of a surface 

is simulated by controlling the proportion of the diffuse to specular reflection and 

we have the reflected light: 

(7)a a d d s sI k I k I k I= + +  

Where the proportions of the three components, ambient, diffuse and specular are 

controlled by three constant, where: 

1 (a d sk k k+ + = 8)  

Consider dI . This is evaluated as: 

cos (9)d iI I θ=  

where: 

  iI  is the intensity of the incident light 

  θ  is the angle between the surface normal at the point of interest and the 

direction of the light source 

In vector notation: 

   ( ) (10)d iI I L N=
JK JJK
i

The geometry is shown in Figure 2.9 
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Figure 2-9 The Phong diffuse component [1] 

   

Now physically the specular reflection consists of an image of the light source 

‘smeared’ across an area of the surface resulting in what is commonly known as a 

highlight. A highlight is only seen by a viewer if the viewing direction is near to 

the mirror direction. We therefore simulate specular reflection by: 

   cos (11)n
s iI I= Ω

where: 

  Ω  is the angle between the viewing direction and the mirror direction R
JK

  

  n  is an index that simulate the degree of imperfection of a surface  

When  = ∞  the surface is a perfect mirror – all reflected light emerges along 

the mirror direction. For other values of  an imperfect specular reflector is 

simulated (Figure 2.7 b). The geometry of this is shown in Figure 2.10. In vector 

notation we have: 

n

n

   ( ) (12n
s iI I R V=

JK JK
i )

Bringing these terms together gives: 

  

 ( ( ) ( ) ) (13)n
a a d sI k I I k L N k R V= + +

JK JJK JK JK
i i

The behavior of this equation is illustrated in Figure 2.11. Figure 2.11 shows the 

light intensity at a single point P as a function of the orientation of the viewing 

vector V
JK

. The semicircle is the sum of the constant ambient term and the diffuse 
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term – which is constant for a particular value of N
JJK

. Addition of the specular 

term gives the profile shown in the figure. As the value of  is increased the 

specular bump is narrowed.  

n

 

 

Figure 2-10 The Phong specular component [1] 

 
 
 

 

Figure 2-11 The light intensity [1] 

 

 

Local reflection model – practical points  

A number of practical matters that deal with color and the simplification of the 

geometry now need to be explained.  

The expense of the above shading equation, which is applied a number of times at 

every pixel, can be considerably reduced by making geometric simplifications that 

The light intensity at point P as a function of the orientation of 
the viewing vector V. 
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reduce the calculation time, but which do not affect the quality of the shading. 

First if the light source is considered as a point source located at infinity the L
JK

 is 

constant over the domain of the scene. Second we can also place the view point at 

infinity making V constant. Of course, for the view and perspective transformation, 

the view point needs to be firmly located in world space so we end up using a 

finite view point for the geometric transformation and an infinite one for the 

shading equation. 

  Next the vector R
JK

 is expensive to calculate and it is easier to define a vector 

H
JJK

 (Halfway) which is the unit normal to a hypothetical surface that is oriented in 

a direction halfway between the light direction vector L
JK

 and the viewing vector 

 (Figure 2.12). It is easily seen that:  V
JK

 

. 

 

Figure 2-12 the vector H [1] 

 H is the normal to a surface orientation that would reflect all the light along V
 

( ) / 2 (14)H L V= +
JJK JK JK

 

This is the orientation that a surface would require if it was to reflect light 

maximally along the  direction. Our shading equation now becomes: V
JK

( ( ) ( ) ) (15)n
a a i d sI I k I k L N k N H= + +

JK JJK JJK JJK
i i  

because the term (N H )
JJK JJK
i  varies in the same manner as ( )R V

JK JK
i . These 

simplifications mean that I  is now a function only of . N

For colored objects we generate three components of the intensity rI , gI  and 

bI  controlling the color of the objects by appropriate setting of the diffuse 

21



reflection coefficients ,  and rk bk gk . In effect the specular highlight is just the 

reflection of the light source in the surface of the object and we set the proportions 

of the sk  to match the color of the light. For a white light, sk  is equal in all 

three equations. Thus we have: 

(( ( ) ( ) )

(( ( ) ( ) ) (16)

(( ( ) ( ) )

n
r a ar i dr sr

n
g a ag i dg sg

n
b a ab i db sb

I I k I k L N k N H

I I k I k L N k N H

I I k I k L N k N H

= + +

= + +

= + +

JK JJK JJK JJK
i i
JK JJK JJK JJK
i i
JK JJK JJK JJK
i i

 

Local reflection model – light source considerations 

One of the most limiting approximations in the above model is reducing the light 

source to a point at infinity. A simple directional light (non-point) is easily 

modeled and the following was suggested by Warn (1983). In this method a 

directional light source is modeled in the same way as a specularly reflecting 

surface, where the light emitted from the source is given by a cosine function 

raised to a power. Here we assume that for a directional source, the light intensity 

in a particular direction, given by the angle φ  is : 

   cos (17)m
sI φ

Now φ  is the angle between L−
JK

, the direction of the point on the surface that 

we are considering, and sL
JJK

, the orientation of the light source (Figure 2.13). The 

value of iI  that we use in the shading equation is then given by: 

   ( ) (1m
i s sI I L L= −

JK JJK
i 8)

Note that we can no longer consider the vector L
JK

 constant over the scene. 

 

Figure 2-13 The orientation of the light source [1] 

 

 
Light source represented as a specularly reflecting surface. 
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2.2.3 Projection 

Because the viewing surface in computer graphics is deemed to be flat we consider 

the class of projections known as planar geometric projections. Two basic 

projections, perspective and parallel, are now described. These projections and the 

difference in their nature is illustrated in Figure 2.14. 

 

Figure 2-14 The projection in computer graphics [1] 

 

 

  A perspective projection is the more popular or common choice in computer 

graphics because it incorporates foreshortening. In a perspective projection relative 

dimensions are not preserved, and a distant line is displayed smaller than a nearer 

line of the same length (Figure 2.15). This effect enables human beings to perceive 

depth in a two-dimensional photograph or a stylization of three-dimensional reality. 

A perspective projection is characterized by a point known as the centre of 

projection and the projection of three-dimensional point onto the view plane is the 

intersection of the line from each point to the centre of projection. These lines are 

called projectors. 

 

Two points projected onto a plane using parallel and perspective projections. 
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Figure 2-15 The perspective projection [1] 

 

 

 

Figure 2-16 Deriving a perspective transformation [1] 

 

  Figure 2.16 show how a perspective projection is derived. Point P ( , , )v v vx y z  

is a three-dimensional point in the view coordinate system. This point is to be 

projected onto a view plane normal to the  axis and positioned at distant d from 

the origin of this system. Point P’ is the projection of this point in the view plane 

and has two-dimensional coordinates 

vz

( , )s sx y  in a view plane coordinate system 

with the origin at the intersection of the  axis and the view plane. vz

In a perspective projection a distant line is displayed smaller than a nearer line the same 
length. 
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  To express this non-linear transformation as a 4x4 matrix we can consider it in 

two-parts – a linear part followed by a non-linear part. Using homogeneous 

coordinates we have:  

(19)
/

v

v

v

v

X x
Y y
Z z
w z d

=
=
=
=

 

We can now write: 

(20)

1

v

v
pers

v

X x
Y y

T
Z z
w

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

where: 

1 0 0 0
0 1 0 0

(21)
0 0 1 0
0 0 1/ 0

persT

d

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

following this with the perspective divide, we have: 

/
/ (22)
/

s

s

s

x X w
y Y w
z Z w

=
=
=

 

In a parallel projection, if the view plane is normal to the direction of projection 

then the projection is orthographic and we have: 

(23)s v s v s vx x y y z z= = =  

Expressed as a matrix: 

1 0 0 0
0 1 0 0

(24)
0 0 0 0
0 0 0 1

ortT

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

2.2.4 Rasterization 

Having looked at how general points within a polygon can be assigned intensities 
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that are determined from vertex values, we now look at how we determine the 

actual pixels which we require intensity values for. The process is known as 

rasterization or scan conversion. We consider this somewhat tricky problem in two 

parts. First, how do we determine the pixels which the edge of a polygon straddles? 

Second, how do we organize this information to determine the interior points? 

Rasterizing edges 

There are two difference ways of rasterizing an edge, based on whether line 

drawing or solid area filling is being used. Line drawing is not covered here, since 

we are interested in solid object. However, the main feature of line drawing 

algorithm (for example, Bresenham’s algorithm (Bresenham 1965)) is that they 

must generate a linear sequence of pixels with no gaps (Figure 2.17). For solid 

area filling, a less rigorous approach suffices. We can fill a polygon using 

horizontal line segments; these can be thought of as the intersection of the polygon 

with a particular scan line. Thus, for any given scan line, what is required is the 

left- and right-hand limits of segment that is the intersections of the scan line with 

left- and right-hand polygon edges. This means that for each edge’s intersections 

with the scan lines (Figure 2.17 b). This sequence may have gaps, when 

interpreted as a line, as shown by the right-hand edge in the diagram. 

 

Figure 2-17 The concept of Bresenham’s algorithm [1] 

 

 

  The conventional way of calculating these pixels coordinates is by use of what 

is grandly referred to as a ‘digital differential analyzer’, or DDA for short. All this 

really consists of is finding how much the x coordinate increases per scan line, and 

then repeatedly adding this increment. 

  Let ( , )s sx y , ( , )e ex y  be the start and end points of the edge ( we assume that 

Pixel sequences required for (a) line drawing and (b) polygon filling 
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ey y> s

)

−

). The simplest algorithm for rasterizing sufficient for polygon edges is: 

   

:
: ( ) /( )

:
( ( ),

:

for to do

s

e s e s

s e

x x
m x x y y

y y y
output round x y
x x m

=
= − −

=

= +

The main drawback of this approach is that m and x need to be represented as 

floating point values, with a floating point addition and real-to-integer version 

each time round the loop. A method due to Swanson and Thayer (Swanson and 

Thayer 1986) provides an integer-only version of this algorithm. It can be derived 

from the above in two logical stages. First we separate out x and m into integer and 

fractional parts. Then each time round the loop, we separate add two parts, adding 

a carry to the integer part should the fractional part overflow. Also, we initially set 

the fractional part of x to -0.5 to make rounding easy, as well as simplifying the 

overflow condition. In pseudocode: 

:
: 0.5
: ( ) ( )
: ( ) /( )

:
( , )

:
:

0.0 { : 1; : 1.0}

s

e s e s

e s e s

s e

xi x
xf
mi x x div y y
mf x x y y mi
for y y to y do

output xi y
xi xi mi
xf xf mf
if xf then xi xi xf xf

=
= −
= − −
= − − −

=

= +
= +

> = + =

 

  Because the fractional part is now independent of the integer part, it is possible 

to scale it throughout by ( )2 e sy y− , which the effect of converting everything to 

integer arithmetic: 
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:
: ( )
: ( ) ( )
: 2*[( ) mod( )]

:
( , )

:
:

0 { : 1; : 2(

s

e s

e s e s

e s e s

s e

e s

xi x
xf y y
mi x x div y y
mf x x y y
for y y to y do

output xi y
xi xi mi
xf xf mf
if xf then xi xi xf xf y y

=

= − −

= − −

= − −
=

= +
= +

> = + = − )}−

 

Although this approach now to involve two divisions rather than one, they are 

both integer rather than floating point. Also, given suitable hardware, they can 

both be evaluated from the same division, since the second (mod) is simply the 

remainder from the first (div). Finally it only remains to point out that the 

 within the loop is constant and would in practical be evaluated just 

once outside it. 

2( )e sy y−

Rasterizing polygons 

Now that we know how to find pixels along the polygon edges, it is necessary to 

turn our attention to filling the polygons themselves. Since we are concerned with 

shading, ‘filling a polygon’ means finding the pixel coordinates of interior points 

and assigning to these a value calculated using one of the incremental shading 

schemes described in 2.2.5. We need to generate pairs of segment end points and 

fill in horizontally between them. This is usually achieved by constructing an 

‘edge list’ for each polygon. 

  In principle this is done using an array of linked lists, with an element for each 

scan line. Initially all the elements are set to NIL. Then each edge of the polygon is 

rasterized in turn, and the x coordinate of each pixel (x, y) thus generated is 

inserted into the linked list corresponding to that value of y. Each of the linked lists 

is then sorted in order of increasing x. The result is something like that shown in 

Figure 2.18. Filling-in of the polygon is then achieved by, for each scan line, 

taking successive pairs of x values and filling in between them (because a polygon 

has to be closed, there will always be an even number of elements in the linked 

list). Note that this method is powerful enough to cope with concave polygons 

with holes. 
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Figure 2-18 The linked list [1] 

 

 

  In practice, the sorting of the linked lists is achieved by inserting values in the 

appropriate place initially, rather than by a big sort at the end. Also, as well as 

calculating the x value and sorting it for each pixel on an edge, the appropriate 

shading values would be calculated and stored at the same time ( for example, 

intensity value for Gouraud shading; x, y and z components of the interpolated 

normal vector for Phong shading). 

  If the object contains only convex polygons then the linked x lists will only ever 

contain two x coordinates; the data structure of the edge list is simplified and there 

is no sort required. It is not a great restriction in practical computer graphics to 

constrain an object to convex polygons. 

  One thing that has been slightly glossed over so far is the consideration of 

exactly where the borders of a polygon lie. This can manifest itself in adjacent 

polygons either by gaps appearing between them, or by them overlapping. For 

example, in Figure 2.19, the width of the polygon is 3 units, so it should have an 

area of 9 units, whereas it has been rendered with an area of 16 units. The 

traditional solution to this problem, and the one usually advocated in textbook, is 

to consider the sample point of the pixel to lie in its centre, that is, at 

. (A pixel can be considered to be a rectangle of finite area with 

dimensions 1.0*1.0, and its sample point is the point within the pixel area where 

the scene is sampled in order to determine the value of the pixel.) So, for example, 

the intersection of an edge with a scan line is calculated for y+0.5, rather than for y, 

as we assumed above. This is messy, and excludes the possibility of using 

integer-only arithmetic. A simpler solution is to assume that the sample point lies 

( 0.5, 0.5x y+ + )

An example of a linked list maintained in polygon rasterization. 

 29



at one of the four corners of the pixel; we have chosen the top right-hand corner of 

the pixel. This has the consequence that the entire image is displaced half a pixel 

to the left and down, which in practice is insignificant. The upshot of this is that it 

provides the following simple Rasterization rules: 

(1) Horizontal edges are simply discarded. 

(2) An edge which goes from scan line  to  should generated x values 

for scan lines  through to 

bottomy topy

bottomy 1topy −  (that is missing the top scan line), or 

if  then it generates no values. bottom topy = y

(3) Similarly, horizontal segments should be filled from leftx  to 1rightx −  (with 

no pixels generated if left rightx x= ). 

 

Figure 2-19 The problem with polygon boundaries [1] 

 

 

Incidentally, in rule (2) and (3), whether the first or last element is ignored is 

arbitrary, and the choice is based around programming convenience. The four 

possible permutations of these two rules define the sample point as one of the 

four corners of the pixel. The effect of these rules can be demonstrated in 

Figure 2.20. Here we have three adjacent polygons A, B and C, with edges a, b, 

c, and d. the rounded x values produced by these edges for the scan shown are 

2, 4, 4, and 7 respectively. Rule 3 then gives pixels 2 and 3 for polygon A, 

none for polygon B, and 4 to 6 for polygon C. Thus, overall, there are no gaps, 

and no overlapping. The reason why horizontal edges are discarded is because 

the edges adjacent to them will have already contributed the x values to make 

up the segment (for example, the base of the polygon in Figure 2.18; note also 

that, for the sake of simplicity, the scan conversion of this polygon was not 

done strictly in accordance with the Rasterization rules mentioned above). 

Problems with polygon boundaries – a 9-pixel polygon fills 16 pixels. 
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Figure 2-20 The result of Rasterization rules [1] 

 

 
Three polygons intersecting a scan line. 

2.2.5 Shading 

Interpolative shading techniques 

Having dealt with the problem of calculating light intensity at a point, we now 

consider how to apply such a model to a polygon and calculate the light intensity 

over its surface. Two classic techniques have emerged – Gouraud and Phong 

shading. Phong interpolation gives the more accurate highlights – as we shall see – 

and is generally the preferred model. Gouraud shading on the other hand is 

considerably cheaper. Both techniques have been developed both to interpolate 

information efficiently across the face of a polygon and to diminish the visibility 

of the polygon edges in the final shading image. Information is interpolated from 

values at the vertices of a polygon and the situation is exactly analogous to depth 

interpolation. 

Interpolative shading techniques – Gouraud shading  

In Gouraud shading we calculate light intensity – using the local reflection 

model – at the vertices of the polygon and then interpolation between these 

intensities to find values at projected pixels. To do this we use the bilinear 

interpolation equations, the property p being the vertex intensity I . The particular 

surface normals used at a vertex are special normals called vertex normals. If we 

consider a polygon in isolation then, of course, the vertex normals are parallel. 

However, in Gouraud shading we use special normals called vertex normals and it 

is this device that reduces the visibility of polygon edges. Consider Figure 2.21. 

Here the vertex normal AN
JJJK

 is calculated by averaging 1N
JJK

, ,  and 2N
JJK

3N
JJK

4N
JJK

. 
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 1 2 3 4 (25)AN N N N N= + + +
JJJK JJK JJK JJK JJK

AN
JJJK

 is then used to calculated an intensity at vertex A that is common to all the 

polygons that share vertex A. 

  For computational efficiency the interpolation equations are implemented as 

incremental calculations. This is particularly important in the case of the third 

equation, which is evaluated for every pixel. If we define  to be the 

incremental distance along a scan line then 

x∆

I∆ , the change in intensity from one 

pixel to the next, is: 

, , 1

( )

(26)

b a
b a

s n s n s

xI I I
x x

I I I−

∆
∆ = −

−
= + ∆

 

Because the intensity is only calculated at vertices the method cannot adequately 

deal with highlights and this is its major disadvantage. The cause of this defect can 

be understood by examining Figure 2.22a. We have to bear in mind that the 

polygon mesh is an approximation to a curved surface. For a particular viewing 

and light source direction we can have a diffuse component at A and B and a 

specular highlight confined to some region between them. Clearly if we are 

deriving the intensity at pixel P from information at A and B we will not calculate 

a highlight. This situation is nearly taken care of by interpolating vertex normals 

rather than intensities as shown in Figure 2.22b. This approach is know as Phong 

shading. 

 

Figure 2-21 The Gouraud Shading [1] 
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The vertex normal NA is the average of the normals N1, N2, N3 and N4, the normals of the 
polygon that meet at the vertex. 



 

Interpolative shading techniques – Phong shading 

Here we interpolate vertex normals across the polygon interior and calculate for 

each polygon pixel projection an interpolated normal. This interpolated normal is 

then used in the shading equation which is applied for every pixel projection. This 

has the geometric effect (Figure 2.22) of ‘restoring’ some curvature to polygonally 

faceted surface. 

  The price that we pay for this improved model is efficiency. Not only is the 

vector interpolation three times the cost of intensity interpolation, but each vector 

has to be normalized and a shading equation calculated for each pixel projection. 

  Incremental computation can be employed as with intensity interpolation, and 

the interpolation would be implemented as: 

  

, , 1

, , 1

, , 1

(27)
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−
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Where sxN , syN  and szN  are the components of a general scan line normal 

vector sN  and: 

  

( ) (sx bx ax
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∆
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−
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Figure 2-22 The difference between Gouraud and Phong shading [1] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Illustrating the difference between Gouraud and Phong shading. 
(a) Gouraud shading 
(b) Phong shading 
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Chapter 3 Design 

In this chapter, we analyze the operations, parallelism and computation flow for rendering 

process and propose a run-time reconfiguration scheduling. 

 

3.1 Analysis 

Now we know how the rendering process goes. It is shown in Figure 3.1. Data flow 

graph of each stage would be shown in Figure 3.2.  

 

 
Figure 3-1 The example of Rendering process 
 

 
Figure 3-2 The DFG of one vertex 
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(a) Transformation DFG of one vertex 
 

 
(b) Lighting DFG of one vertex 
 
 

 
(c) Projection DFG of one vertex 

 36



 
Figure3.2 
(e) Rasterization DFG of one line 
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(e) Shading DFG of one scan line 

 

Basic requirement of arithmetic units is listed in the Table 3.1.  

 

Table 3-1 Basic operation for each stage 

  Mul Add sub div other total Process unit 

Transformation  4*4 3*4 1*4 0 0 32 Vertex 

Lighting 24 15 0 0 10 49 Vertex 

Projection 4*4 3*4 0 0 0 28 Vertex 

Rasterization 5 6 7 5 2 25 Edge 

Shading 4 5 6 4 2 21 Pixel 

In the Table 3.1, we can see that we need the operation of multiplication, division, add, 

subtract and other (shift, AND, OR, compare, LUT…). 3D computer graphics 
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applications are usually 8-bits, 12-bits and above operations, so I think the 

coarse-grained architecture would be suitable for my design. As we can see, we need 

multiplication and division operations as much as add and subtract operations, hence I 

assume the Processing Element (PE) has ability to process multiplication, division, add 

and subtract with multiplication and division operations take multiple cycles and add 

and subtract operations are single cycle execution. Besides PE also can do other 

operations (shift, AND, OR, compare, LUT…). Hence execution time and resource of 

each stage with one polygon is shown in Table 3.2.  

 

Table 3-2 Resource and execution time of each stage 

  PEs Execution Time 

Transformation  32*3=96 M+3 

Lighting 49*3=147 3M+3 

Projection 28*3=84 M+2 

Rasterization& 

Shading 

25*2+21=71 2M+2+Rn*(2M+2+Sn)

   

In Table 3.2, M means multiplication execution cycles of one PE and Rn, means 

pixels generated from Rasterization stage and Sn means pixels generated from shading 

stage. 

 

3.2 Design 

For now we know that execution time and resource of processing one polygon, we can 

consider how to process multiply polygons. 

Fixed Configuration Design : 

It is common to think that we give a fixed configuration for each stage and the 

execution model would be shown in Figure 3.3. It is a pipeline design with 

unbalance stages. Here I do not focus on finding a balance pipeline design for 

the rendering application and one nature of Rasterization/Shading stage will 
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cause the pipeline design unbalance. 

 
Figure 3-3 The execution example of fixed configuration design 

 

3.3 Observation 

In 3D computer graphics application, execution cycles of Rasterization/Shading stage is 

not constant because a polygon size projected to the view plane would not be the same 

with other polygons. For this characteristic, if there is no buffer between each two stage, 

it will cause some stage to wait using fixed configuration design. Besides, total 

execution time is usually dominated by the R/S stage. 
 

3.4 Opportunity of improvement 

According to the observation, we can improve the fixed configuration design by adding 

buffers between each two stages to solve stage waiting problem and we can use multiple 

copies of stage hardware if one stage executed time is long. Hence the execution model 

of modified fixed configuration design would be shown in Figure 3.4. 

 
Figure 3-4 The execution example of modified fixed configuration design 
 

  In the other hand, we can use Runt-time Reconfiguration design to improve original 

fixed configuration design. Run-time Reconfiguration is based upon the concept of 

virtual hardware, which is similar to virtual memory. In fixed configuration design, we 
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have fixed configuration of each stage unless we redesign it but in Run-time 

Reconfiguration design we only need to reconfigure the reconfigurable hardware into 

the stage we want. The disadvantage is that reconfigurable hardware resource is limited. 

If we use more hardware resource for one stage, it means less hardware resource will be 

left for other stages. Hence scheduling is important for Run-time Reconfiguration design. 

The execution model example would be shown in Figure 3.5. 

 
Figure 3-5 The execution example of Run-time Reconfiguration design 
 

3.5 Dynamic Task Scheduling 

A dynamic task scheduling for Run-time Reconfiguration design is executed by a 

controller in Reconfigurable system. 

  In the rendering applications, one polygon would be processed through four stages 

(Transformation, Lighting, Projection and Rasterization/Shading) and every polygon is 

ready for T stage at the beginning and can be parallel processed. Because there is a 

reconfiguration overhead using Run-time Reconfiguration design and buffer size is 

limited, so the scheduling should satisfy: 

1. If buffer size is full, reconfigure the hardware to process those polygon in buffer 

2. Minimize configuration overhead 

Here I propose a best fit scheduling which process polygons of buffer size. It will 

execute like this. First, partition all polygons into several sets which are as the same size 

as buffer size. Second, we configure the entire reconfigurable hardware into several 

transformation configurations and parallel process one set polygons as much as 

hardware can. Third, we configure the entire reconfigurable hardware into several 

lighting stage configurations and parallel process those polygons which are generated by 

previous stage in the buffer. Then process those polygons in projection stage and next 

rasterization/shading stage using similar scheduling. When one set of polygons finishes, 

next set of polygons will be processed in the same way until all polygon finish.  
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Chapter 4 Simulation 

In this Chapter, we will describe the simulation environment and show the simulation result of 
total execution time under several PE number. 
 

4.1 Simulation Environment 

In this thesis, we assume our PE has ability to do add, subtraction, multiplier and 

division with add and subtraction both are single cycle execution but multiplier and 

division are multiple cycle execution. Here we assume multiplier and division take five 

cycles to finish the operation because each PE is an 8-bit ALU. Another assumption is 

that each configuration takes 1000 cycle. Nowadays average configuration time is 

ranged form nanosecond to microsecond. If our reconfigurable hardware runs at 

100MHz, 1000 cycles are equal to 10 microseconds. It is conservative assumption. 

Finally, we use multicontext reconfigurable system with partially reconfigurable models 

and place & route problem is ignored in this thesis. 

 

4.2 Simulation Result 

We choose Venus, UTAH teapot and Bunny69k model for benchmark. They are very 

familiar in computer graphics. I will simulate different PE number and different buffer 

size to see the influence to the reconfigurable system. The parameters of each 

benchmark are listed in Table 4.1. Scales means that the size projected to the view plane 

of the benchmark. Different scales of same benchmark have different execution time of 

rasterization/shading stage and we are going to see what is will cause in our simulation. 
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Table 4-1 Benchmarks 

  Vertices Scale 

Venus 1396 1 

6400 5 

6400 10 Utah 
Teapot 6400 20 

Bunny69k 69451 2 
 

In original fixed configuration design, it use 398 PEs(96 for transformation, 147 for 

lighting, 84 for projection and 71 for rasterization/shading) for execution, each stage is 

executed one polygon at a time. In the next, I simulate modified fixed configuration 

design for different PE numbers and the result is listed in Table 4.2.  

 

Table 4-2 Execution time comparison 1 

 Venus teapot-5 teapot_10 teapot-20 bunny69k
(1,1,1,1) 755402 134436 170544 442977 1997474
(1,1,1,2) 377845 134436 134439 227994 1458507
(1,1,1,3) 251979  134439 157645 1458507
(1,1,1,4) 189154   134465  

(1,1,1,5) 151232   134465  

(1,1,1,10) 76314     

(1,1,1,20) 40339     

(1,1,1,30) 32574     

(1,1,1,31) 32451     

(1,1,1,32) 32451     

   

First column represent number of fixed hardware (transformation, lighting, projection, 

rasterization/shading). Two to four copies of rasterization/shading hardware are enough 

but it needs thirty-one copies in Venus model that is because projected size of every 

polygon in Venus model on view plane is much bigger than other models. After this 

simulation, I found another bottleneck that lies in light stage. Hence I use two copies 

lighting hardware to reduce average execution cycle of a polygon in lighting. Because 

execution cycles of a polygon in transformation stage and projection stage are 8 and 7 

cycles but execution cycles of one polygon in lighting stage is 21 cycles. After I use two 

copies of lighting stage hardware, execution cycle of a polygon in lighting stage will 

reduce to 10.5 cycle approximate to 8 or 7 cycles than 21 cycles. It makes data flow 
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more smoothly but it cost more hardware. The result is listed in Table 4.3.  

 

Table 4-3 execution time comparison 2 

 venus teapot-5 teapot_10 teapot-20 bunny69k
(1,2,1,1) 755402 106866 166607 442977 1997075
(1,2,1,2) 377838 67240 85294 221511 998771
(1,2,1,3) 251968 67240 67247 149247 729284
(1,2,1,4) 189137  64247 114037 729284
(1,2,1,5) 151410   92921  

(1,2,1,6) 126211   78860  

(1,2,1,7) 108451   68816  

(1,2,1,8) 94995   67273  

(1,2,1,9) 84573   67273  

(1,2,1,10) 76265   67273  

(1,1,1,20) 39840     

(1,1,1,30) 27908     

(1,1,1,40) 22000     

(1,1,1,50) 19375     

(1,1,1,55) 18556     

(1,1,1,57) 18338     

(1,1,1,59) 18199     

(1,1,1,60) 18150     

(1,1,1,61) 18150     

   

We can see total execution time decrease by adding one copies of lighting hardware. 

Once if we want to improve performance, we can just add more hardware but cost may 

goes to high. It means that we add double hardware but we may not decrease half 

execution time. We can use the cost function ( ) (Time hardware)α β×  to represent this 

and hardware here means PE number. Time in fixed configuration design only means 

execution time but it represents execution time and reconfiguration time in Run-time 

Reconfiguration design. Hence the cost function will become 

( ) (exe recT T hardware)α β+ × .  

  In Run-time Reconfiguration design, I simulate every ten PE numbers from 147 PE 

numbers to 497 PE numbers. Because bunny69k model execution cycles are much more 

than others, I use an independent figure to show avoiding other result can’t be seen 

clearly. Figure 4.1a and 4.1b are the execution cycles of each models. 
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Figure 4-1 The simulation result of different PE 

 
 
(a) Cycle count of different PE for bunny69k 
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(b) Cycle count of different PE for other 

Figure 4.2 shows the cost function: 
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Figure 4-2 The simulation result of cost function 
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(a) Cost function of different PE for bunny69k 
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(b) Cost function of different PE for other 

 

  Lowest cost of each model are at PE numbers is 297 except Venus model is 427 that 

is the same reason as more copies of rasterization/shading stage hardware. I compare 

lowest cost of Run-time Reconfiguration and modified fixed configuration design. The 

result is listed in Table 4.4.  

 

Table 4-4 The comparison of fixed configuration design and RTR 

 Venus Teapot-5 Teapot-10 Teapot-20 Bunny69k 

PE 2604 616 687 971 687
Cycle 27908 67240 64247 67273 729284

Modified 
fixed 
configuration 
design cost 72672432 41419840 46198689 66820336 501018108

PE 427 297 297 297 297
Cycle 146695 129921 144854 213951 1579774 

Run-time 

reconfiguratio

n design cost 62638765 38586537 43021638 63543447 469192878 
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Chapter 5 Conclusion and Future 
work 

 

 

 

In this chapter, according to previous discussions, we have some conclusions and find some 

future works for research. 

 

5.1 Conclusion 

The hardware accelerated architectures for computer graphics now have two approaches. 

One is fixed configuration design another is Run-time Reconfiguration design. From the 

cost function, Run-time Reconfiguration design wins a little bit. If you want to find a 

very short execution time solution, there is no doubt that fixed configuration design is 

what you looking for. But if you want a low cost solution, Run-time Reconfiguration 

design may be suitable for your needs. There is another advantage for Run-time 

Reconfiguration design, flexibility. In this thesis, flexibility means we can reconfigure 

the reconfigurable hardware between 4 stages (transformation, lighting, projection and 

rasterization/shading). That is why we can use smaller hardware to execute massive 

computations. We even can use it to accelerate other algorithms only if we have their 

configurations which are complied configurations or manually generated.  

 

5.2 Future work 

First, place and route problem we ignored is a critical issue if we want to implement a 

reconfigurable system. During execution, run-time relocation of PE and data transfer 

can not be ignored. Second, configuration time problem is another issue to the 

performance. If we can reduce configuration time by using configuration prefetching 
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and configuration compression, total execution time will be reduced. Last, if 

configurations can be generated automatically by the compiler, we can accelerate more 

than rendering process and previous two points we talk about are the work of the 

compiler. The issue of every reconfigurable system is the lack of a good compiler. 

Hence the compiler of reconfigurable system is a good topic of research. 
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