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I 

 

滲漏含水層考慮彎曲效應之地下水流半解析解 

 

研究生：游佳琪        指導教授：葉弘德 

 

國立交通大學環境工程研究所 

 

摘  要 

    傳統地下水理論假設含水層總應力為一定值，且忽略受壓含水層在抽水時所

伴隨產生的力學行為，但實際抽水時，水層結構可能會像平板一樣彎曲。本研究

目的為探討定流量抽水下，推導滲漏受壓含水層受到彎曲效應影響所產生洩降分

佈的半解析解。本研究利用所發展出的半解析解，探討滲漏受壓含水層系統在定

抽水率下，洩降分佈受到彎曲及滲漏效應的影響。藉由建立數學模式，以描述滲

漏受壓含水層系統承受滯水層中彎曲效應影響的洩降分佈。此模式包括三個耦合

的控制方程式，分別是描述受壓水層暫態洩降分佈方程式、滲漏水層暫態洩降分

佈方程式、及基於板殼理論所描述水層彎曲效應的方程式；接著，針對此三個方

程式，應用拉普拉斯（Laplace）和漢可爾（Hankel）轉換方法求得模式的半解析

解，最後，使用修正 Crump 方法進行數值逆轉推求時間域的結果。此新解在忽

略彎曲或滲漏效應下，可分別簡化至拉普拉斯域的 Hantush (1960) 解和時間域的

Wang et al. (2004) 解。本研究利用所推得的解作分析，顯示抽水試驗初期含水層

洩降受到彎曲效應的影響，而試驗晚期則受到含水層滲漏因子的影響較為明顯。

敏感度分析結果顯示，含水層壓縮性只在試驗初期敏感，造成含水層釋放出的水

量較傳統地下水理論估計值小。因含水層洩降分佈在試驗晚期對滯水層水力傳導

係數較具敏感度，導致相較於無滲漏受壓含水層具有較小的含水層洩降分佈。此

外，洩降對含水層的厚度及水力傳導係數具有最高的敏感度。 

關鍵字：地下水、定流量抽水、滲漏受壓含水層、彎曲效應 
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Semi-Analytical Solution of Groundwater flow in a 

Leaky Confined Aquifer under Bending Effect 

 

Student：Chia-Chi Yu     Advisor：Hund-Der Yeh 

 

Institute of Environmental Engineering 

National Chiao Tung University 

 

ABSTRACT 

Traditionally, the groundwater flow induced by pumping often assumes that the 

total stress of aquifer maintains constant all the time and the aquitard mechanical 

behavior is negligible. The formation of the aquifer system may actually bend like a 

plate when subject to pumping. This study aims at developing a new semi-analytical 

model for investigating the impacts of aquitard bending and leakage rate on the 

drawdown of the confined aquifer due to a constant-rate pumping in a leaky confined 

aquifer (LCA) system. A mathematical model is first build for delineating the LCA 

drawdown distribution subject to bending effect emerged in the confining unit. This 

model contains three governing equations, delineating the transient behavior of 

drawdown distributions in the aquitard and the confined aquifer and the vertical 
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displacement based on a thin plate theory of small-deflection in response to aquitard 

bending. The semi-analytical solution is found by employing the methods of the 

Laplace transform and Hankel transform. The corresponding time-domain result of 

the derived solution is established by applying the modified Crump method. Without 

considering the bending effect, this new solution can reduce to the Hantush solution in 

Laplace domain (Hantush, M.S., 1960. Modification of the theory of leaky aquifers. 

Journal of Geophysical Research 65(11), 3713-3725). On the other hand, this solution 

reduces to the Wang et al. solution (Wang, X.S., Chen, C.X., Jiao, J.J., 2004. Modified 

Theis equation by considering the bending effect of the confining unit. Advances in 

Water Resources 27(10), 981-990.) in time domain when neglecting the leakage effect. 

The results predicted from the present solution show that the aquifer drawdown will 

be influenced by the bending effect at early time and the leakage effect at late time. 

The results of sensitivity analysis indicate that the skeleton compression of the aquifer 

is sensitive only at early time, causing less amount of water released from pumped 

aquifer than that predicted by the traditional groundwater theory. The aquifer 

drawdown is more sensitive to aquitard’s hydraulic conductivity at late time, leading 

smaller drawdown than non-leaky one. Additionally, both the hydraulic conductivity 

and thickness of the aquifer are the most sensitive parameters to the predicted 

drawdown. 
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NOTATION 

The following symbols are used in this thesis: 

b : Aquifer thickness [L] 

b' : Aquitard thickness [L] 

c : Sm D /w [L
4
] 

D : Flexural rigidity of the aquitard [N．L] 

E : Young’s modulus of the aquitard [N/L
2
] 

J0(‧) : Bessel function of first kind of order zero 

K' : Hydraulic conductivity of the aquitard [L/t] 

n : Porosity of the aquifer 

p : Laplace variable 

Pz : Lateral pressure [N/m
2
] 

ql : Leakage rate of the aquitard from the centerline of the pumping well [L/t] 

Q : Pumping flow rate[L
3
/t] 

r : Radial distance [L] 

T : Transmissivity of the aquifer [L
2
/t] 

s : Aquifer drawdown [L] 

~

s  : Aquifer drawdown in Laplace domain [L] 

'
~

s  : Aquitard drawdown in Laplace domain [L] 

s′ : Aquitard drawdown [L] 

S : Storage coefficient of the aquifer 

S' : Storage coefficient of the aquitard 

Sm : Skeleton compression of the aquifer 



 

XI 

Sw : Storage coefficient of water expansion 

t : Time from the start of the test [t] 

ν : Poisson’s ratio of the aquitard 

w : Vertical downward displacement [L] 

z : Vertical distance from the bottom of impermeable layer [L] 

α : Compressibility of aquifer matrix [L
2
/N] 

β : Hankel transform parameter 

βw : Compressibility of water [L
2
/N] 

)(  : Tβ
2
(1+cβ

4
)/(S+Sw cβ

4
)  

w : Specific weight of water [N/L
3
] 

Δp : pore pressure change [N/L
2
] 

Δσ : Total stress change [N/L
2
] 

Δσ′ : Effective stress variation [N/L
2
] 

η : )''/(' KbpS  

ζ : An additional amount of water released from aquifer per unit time 
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CHAPTER 1  INTRODUCTION 

 

1.1 Background 

Hantush (1960) presented a Laplace-domain solution of transient drawdown in a 

leaky confined aquifer (LCA) called as the Hantush solution. His solution was 

obtained under the assumptions that (1) water was pumped at a constant-flux rate 

from a fully penetrating well; (2) the aquifer formation was isotropic and homogenous; 

(3) the leakage rate from the aquitard was proportional to the drawdown at any point; 

(4) the storages in both the aquitard and aquifer were considered; and (5) the 

hydraulic head in the layer supplying leakage rate was constant. The Hantush solution 

was obtained by utilizing the Hankel and Laplace transforms with corresponding 

boundary conditions.  

In the past, the conventional groundwater theory generally assumed the total 

stress of the aquifer as a constant value and ignored the mechanical behavior in 

confining unit when the aquifer was subject to pumping. In reality, most geologic 

formations have rigidity and the aquifer formation may bend like a plate during 

pumping. Therefore, the amount of water released from aquifer system might differ 

from the estimation by the traditional groundwater theory. The study of aquifer 

drawdown and downward vertical displacement provides an important framework for 
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understanding the drawdown distribution in a LCA system with considering both the 

bending effect and leakage effect. 

1.2 Literature Review 

1.2.1 Pumping drawdown in aquifer systems  

In the past, there were many studies focusing on the prediction of drawdown 

distribution in a confined aquifer system. For instance, Denis and Motz (1988) 

developed a solution for both transient and steady-state drawdowns in a coupled 

aquifer system. Their solution included the effects of water storage in confining unit 

and the evapotranspiration (ET) on drawdown distribution. The result showed that the 

increase in the ET rate caused less pumping time in reaching its steady-state condition. 

In other words, the increase in confining unit storage made the time to approach its 

steady-state condition longer, and delayed the drawdown response time, especially 

within the un-pumping aquifer. Hunt and Scott (2005) pointed out the major 

difference among three solutions of Theis and Branch (1935), Hantush and Jacob 

(1955), and Boulton (1954; 1963) for transient flow toward the pumping well, and a 

new solution was applied to the Boulton solution for free-surface drawdown in the top 

layer. Note there were two restrictions in their study. One was that the largest 

transmissivity of any un-pumped layer should not overtake about 5 % to the 

transmissivity of pumped layer. The other was that the elastic storage of any 
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un-pumped layer must be less than the specific yield of the top unconfined layer. 

Based on force balance and transient flow equations, Yeh et al. (1996) developed a 

three-dimensional Galerkin finite element model for simulating the land 

displacements due to pumping. Li (2007) presented an analytic solution, by utilizing 

the velocity and displacement to delineate the aquifer horizontal movement. 

Additionally, the displacement was induced by well extraction or injection in a LCA 

system. The result indicated that the vertical water flow was a critical factor for the 

aquifer radial movement and the radial flow velocity was much more responsive than 

the aquifer displacement to the vertical flow. Wen et al. (2008) introduced drawdown 

solutions for non-Darcian flow toward the pumping well in an aquifer-aquitard system 

with considering the impacts of the wellbore storage and leakage. Through sensitivity 

analysis, they demonstrated that the leakage effect on drawdown distribution was 

significant only in late pumping period and the effect of wellbore storage was at early 

pumping time. In addition, the results of non-Darcian flow compared to Darcian flow 

showed a larger aquifer drawdown at early pumping time and smaller at late time. 

Yang and Yeh (2009) provided a mathematical model in a two-zone LCA and 

developed a transient solution in Laplace domain. Their mathematical model 

accounted for the influence of skin zone, finite radius well, and aquitard storage. The 

aquifer drawdown of considering the effects of skin zone and aquitard leakage was 
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larger than that neglecting those two effects. The leakage effect on drawdown 

distribution was obvious at late pumping time. Furthermore, a smaller hydraulic 

conductivity and/or larger thickness of the aquitard led a larger aquifer drawdown. 

The results of sensitivity analysis showed that the influence of negative skin zone was 

larger than that of positive skin zone on aquifer drawdown, and the impact of finite 

radius and aquitard storage on the drawdown was merely significant in the early 

pumping period. 

 Zhan and Bian (2006) presented analytical/semi-analytical solutions for 

constant-flux and constant-drawdown pimping tests in a LCA with a fully penetrating 

vertical well to predict the leakage rate and volume. They generalized the solutions to 

finite-size aquifers with lateral impermeable boundaries, which might be practical for 

managing the multi-layered aquifers. Hunt and Scott (2007) developed an 

approximate solution to describe water flow toward the pumping well in an 

aquifer-aquitard-aquifer system. They improved the previous studies of Hemker and 

Maas (1987) and made the solution much easier, efficient and able to investigate the 

constraints on approximate solution and physical behavior in the multi-layered aquifer 

systems. The results indicated that the horizontal flow of aquitard was negligible 

when both the transmissivity and storage of aquitard were less than 10 % of those the 

pumped aquifer. Li and Neuman (2007) provided a semi-analytical solution in a 
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five-layered aquifer system and evaluated the time-domain results through a 

numerical inversion algorithm. Their results of the solution indicated that the 

influence of pumping on the drawdown may spread across all five layers during a 

sufficiently long pumping duration. 

Sekhar et al. (1994) developed a numerical model for estimating the parameter of 

anisotropic leaky aquifer system with unknown principal axes. Their numerical model 

could addtionally operate under limit data (i.e., only three wells and two pumping test 

data). The goverening parameters were eatimated by a sensitivity analysis technique. 

Forthermore, the sensitivity coefficients were assessed based on a modified parameter 

perturbation techique. Hu and Chen (2008) compared the difference of the analytical 

and numerical models for transient flow to the pumping well in a confined-unconfined 

aquifer system. The analytical results indicated that the drawdowns predicted by 

Chen’s model (Chen, 1974; 1983) were more reasonable than those obtained from 

Moench and Prickett’s model (Moench and Prickett, 1972) except as the radial 

distance or aquifer thickness was large. Barua and Bora (2010) obtained a 

steady/quasi-steady model for a partially penetrating well with a finite skin thickness 

in a confined aquifer. With pumping test data, the model could determine the skin 

thickness and the hydraulic conductivities of the skin and formation zones in an 

artesian aquifer. Previous studies of the analytical and numerical solutions were 
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mostly based on several assumptions when making the drawdown predictions. On the 

contrary, the Barua and Bora model (2010) considered various effects (i.e., partially 

penetrating well, finite skin thickness, bottom flow, and finite horizontal and lateral 

aquifer flow system) and the model might be more suitable to describe the field tests. 

    Various types of effect on the drawdown distribution in the aquifer system had 

been investigated by past studies. For instance, the Noordbergum effect and bending 

effect had been considered to explore their influence on pumping drawdown in an 

aquifer system. The noordbergum effect (Kim and Parizek, 1997) was produced due 

to the difference of poroelastic response to hydraulic pumping stress in an aquifer 

system. Kim and Parizek (1997) applied a linear poroelasticity theory to compare the 

difference caused by the Noordbergum effect in the aquifer-aquitard-aquifer system 

and the single-layered aquifer system. They indicated that the Noordbergum effect 

significantly influenced the drawdown distribution in the early pumping period. Wang 

et al. (2004) applied the thin plate theory on small deflection to the Theis and Branch 

equation (1935) and derived an analytical solution describing the aquifer drawdown 

distribution. The results indicated that the aquifer drawdown under bending effect was 

larger than that predicted by the Theis and Branch solution (1935), and the difference 

was obvious near the pumping well at early time. According to field test data, the 

aquifer drawdown was dramatically affected by the bending effect as water was 
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pumped from a high compressible aquifer layer. 

1.2.2 The thin plate theory on small displacement 

    The mathematics of Biot’s theory or poroelastic solid theory is much more 

complicated than the thin plate theory in modeling. The thin plate theory on small 

displacement is therefore applied to describe the mechanical behavior of a pumped 

LCA system. A thin plate is defined as the thickness or length of prismatic member 

(e.g., cylinder) is relatively small compared with the dimensions in the middle surface 

of the plate. The terminology of small-deflection means that the lateral displacement 

of the plate in the vertical direction is smaller than a half of the plate thickness (Boresi 

et al., 1993).  

As considering small deflections, the corrdinate axes in the deformed and 

un-deformed states have a negligible difference; therefore, this study excludes the 

problem of axes rotation. According to the Kirchoff assumption (Boresi et al., 1993), 

the straight-line normal to the un-deformed middle surface remains normal to the 

deformed middle surface. Boresi et al. (1993) combined the strain-displacement 

relations on small displacement with the Kirchoff assumption for linear elastic 

isotropic materials to produce the governing equation describing the bending of the 

thin plate.  
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1.3 Objectives 

The total stress of the aquifer system is generally assumed to be constant in 

traditional groundwater theory. Based on previous studies, the aquifer drawdown 

might be influenced by the bending effect at early pumping time and the leakage 

effect at late pumping time. Neglecting those two effects might cause under- or 

over-estimation in aquifer drawdown. The volume of water released from the aquifer 

estimated by the thin plate theory is less than that by the conventional groundwater 

theory at early pumping time. The objective of this thesis is to develop a mathematical 

model with considering the bending effect for describing the groundwater drawdown 

distribution in a LCA system.  The pumping well is assumed to fully penetrate the 

confined aquifer. The leakage rate from the aquitard is proportional to the drawdown 

over the whole pumping period. The storages of the aquitard and aquifer are also 

considered in the model. This model consists of three governing equations: an 

equation describing the vertical displacement in response to the bending effect, and 

two transient equations delineating the drawdown distributions in the confined aquifer 

and the aquitard. The solution of the model in Laplace domain is developed by 

sequentially applying the Hankel transform and Laplace transform. The time-domain 

results are numerically evaluated by utilizing a Laplace inversion scheme called as the 

modified Crump method. Moreover, the present solution is capable of investigating 
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the effects of aquitard bending and leakage rate on the drawdown distribution. 
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CHAPTER 2  METHODS 

 

A new mathematical model is developed to describe the drawdown in a LCA 

with the consideration of the bending effect induced by a constant-flux pumping at a 

fully penetrating well. A schematic representation of the cross-section of a radial LCA 

system is illustrated in Fig. 1. The aquifer is overlain by an aquitard and underlain by 

an impermeable layer. Both storage and vertical flow in the aquitard are considered in 

the model. The assumptions made for the conceptual model are as follows: 

1. The aquifer and aquitard are homogeneous, isotopic, of constant thickness and 

infinite in radial extent. 

2. The base rock is non-deformable. 

3. The flow directions are horizontal in the confined aquifer and vertical in the 

aquitard. 

4. The pumping well fully penetrates the confined aquifer with a constant-flux 

pumping rate. 

5. The influence of bending effect on downward displacement only exists in the 

vertical direction. 

6. The water table of the upper unconfined aquifer is assumed unchanged over the 

whole pumping period. 
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2.1 Mathematical Model  

Based on those assumptions and with considering the bending effect, the 

governing equation describing the drawdown distribution in a LCA can be written as 
























t

trs
Sq

r

trs

rr

trs
T l

),(),(1),(
2

2

                         (1) 

where s(r, t) is the aquifer drawdown, T is the transmissivity of the aquifer, S is the 

storage coefficient of the aquifer, ql is the leakage rate of the aquitard, r is the radial 

distance from the centerline of the pumping well, t is the time from the start of the test, 

andζ is an additional amount of water released from aquifer per unit time when the 

aquifer due aquitard bending. The leakage rate ql equals ztzsK  /),(  where K′ is 

hydraulic conductivity of the aquitard, s′(z, t) is the drawdown in the aquitard, and z is 

the vertical distance from the bottom of impermeable layer. Note that S = Sm + Sw 

where Sm = wb is the storage due to skeleton compression of the aquifer, Sw = 

wbnw is the storage due to water expansion, w is the specific weight of water, b is 

the thickness of the aquifer, α is the compressibility of aquifer matrix, w is the 

compressibility of water, and n is the porosity of the aquifer. Since the vertical 

downward displacement, w(r, t), occurs in response to the phenomena of aquitard 

bending and aquifer matrix compression simultaneously (Wang et al., 2004), ζ is 

equal to t/),(t/),(  trsStrw m . Note that Eq. (1) reduces to Wang et al.’s flow 

equation (2004,Eq.(20)) if neglecting the leakage term.  
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The initial drawdown of the aquifer is assumed zero, i.e. 

0)0,( rs                                                           (2)    

As r approaches infinity, the remote boundary is considered as a zero drawdown 

condition and specified as  

0),(  ts                                                           (3) 

Based on Darcy’s law, the boundary condition at the wellbore for a constant-flux 

pumping is expressed as 

T

Q

r

trs
r

r 2

),(
lim

0










                                                 (4) 

where Q is a constant pumping rate.   

2.1.1 Aquitard 

With considering the aquitard storage effect, the governing equation delineating 

the drawdown in the aquitard is given as  

t

tzs
S

z

tzs
Kb











),(),(
2

2

                                             (5) 

where s′(z, t) is the drawdown in the aquitard, z is the vertical distance from the 

bottom of impermeable layer, b′ is the thickness of the aquitard, and S′ is the storage 

coefficient of the aquitard. 

The initial and boundary conditions are: 

  00,  zs                                                           (6) 

  bztrstzs  ,,),(                                                  (7) 
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and 

bbztzs  ,0),(                                                 (8)  

2.1.2 Vertical downward displacement  

The traditional groundwater theory only considers the aquifer matrix 

compressibility and water expansion which produce the release of water from a unit 

horizontal area of the aquifer. When the confining unit is subject to the bending effect, 

the volume of water released from the confined aquifer is different from that 

computed via the conventional groundwater theory (Wang et al., 2004). Since the 

thickness of confining unit is very small when compared with the dimensions of the 

radial extent of the aquitard and thus treated as a thin plate. The thin plate theory is 

then adopted to describe the vertical deflection caused by the bending effect on the 

aquitard. The thin plate theory of small-deflection is also employed to describe the 

mechanisms of bending effect and aquifer matrix compressibility simultaneously. 

The deformation is assumed elastic and emerges only in the vertical direction. 

The deflection of the aquitard (i.e., vertical downward displacement) is equal to the 

reduction of confined aquifer thickness (Δb) as a result of increasing effective stress, 

which can be specified as 

'),(  btrw                                                       (9) 

where the change of effective stress (Δσ′) is identical to the change of total stress (Δσ) 
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minus the change of pore pressure (Δp), i.e., Δσ′ = Δσ – Δp (Bear, 1988). Note that the 

total stress is assumed constant in the traditional groundwater theory, thus Δσ′ = – Δp. 

The change of pore pressure associated with aquifer drawdown is 

),( trsp w                                                      (10) 

With the relationships of Sm = wb and Eqs. (9) and (10), the change of total stress 

can be expressed as 

),(),( trstrw
S

w

m

w 


                                              (11) 

The governing equation accounting for the aquitard bending can be denoted as (Boresi 

et al., 1993)  

zPtrw
rrrrrr

D 

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2

2

2

2

                                   (12) 

where Pz is the vertical pressure and D is the flexural rigidity of the aquitard denoted 

as (Boresi et al., 1993) 

)1(12

'
2

3




Eb
D                                                     (13) 

where E and ν are Young’s modulus and Poisson’s ratio of the aquitard, respectively.  

The vertical pressure (Pz) is equal to the change of total stress in the opposite 

direction Thus Eq. (12) can be rewritten as  
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                (14) 

The associated initial and boundary conditions are  

0)0,( rw                                                          (15) 



 

15 

0),(  tw                                                         (16) 

and 

0
),0(






r

tw
                                                       (17) 

2.2 Semi-Analytical Solutions 

2.2.1 Aquitard flow 

Laplace transform is defined as   



0

)()(F(p) dttfetfL pt , where p is the 

Laplace variable. Applying Laplace transform to remove parameter of time for Eqs. 

(5), (7) and (8) leads to  

0),('
),(' ~

2

2

~
2

 pzs
dz

pzsd
 , 

''

'2

Kb

pS
                                   (18) 

bzprspzs  ),,(),('
~~

                                             (19) 

and  

bbzpzs  ,0),('
~

                                               (20) 

where ),('
~

pzs  is the drawdown of the aquitard in Laplace domain and  prs ,
~

 is 

the drawdown of the aquifer in Laplace domain.  

The general solution of Eq. (18) is  

)cosh()sinh(),(' 21

~

zczcpzs                                         (21) 

where c1 and c2 are undetermined constants. Substituting Eq. (21) into Eqs. (19) and 

(20) results in the undetermined constants as  
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),(
)sinh(

))'(cosh( ~

1 prs
b

bb
c



 
                                           (22) 

and 

),(
)sinh(

))'(sinh( ~

2 prs
b

bb
c



 
                                             (23) 

The solution for aquitard drawdown can be obtained by substituting Eqs. (22) and (23) 

into Eq. (21). After some manipulations, the aquitard drawdown in Laplace domain 

can then be expressed as  

 
  
 

 prs
b

zbb
pzs ,

sinh

sinh
,'

~~









                                     (24) 

According to the mass conservation, the leakage rate from the aquitard into the 

confined aquifer is  

bz

l
dz

pzsd
Kq






),(
~

~

                                                  (25) 

Substituting Eq. (24) into Eq. (25), the leakage rate entering the confined aquifer in 

Laplace domain can be obtained as  

),()coth(
~

'
~

prsbKql                                              (26)  

2.2.2 Drawdown and vertical downward displacement  

The relationship between the solutions of aquifer drawdown and vertical 

downward displacement can be found by applying the Hankel transform and Laplace 

transform to Eqs. (1) and (14). The detailed development for the Laplace-domain 

solutions are presented in Appendix A and the solutions of the aquifer drawdown and 

vertical downward displacement are obtained, respectively, as  
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
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and 
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p

Q
prw
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m     (28) 

where  is the Hankel transform parameter , wmDSc / , J0(‧) is the Bessel 

function of first kind of order zero, and    442 /1)(  cSScT w . 
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CHAPTER 3  SPECIAL CASES 

 

Two special cases are considered; one neglects the bending effect while the other 

ignores the leakage effect. Note that these two special cases illustrated in sections 3.1 

and 3.2 can be considered that the present solution contains the solutions of Hantush 

(1960) and Wang et al. (2004). 

3.1 Neglecting bending effect 

     Neglecting the bending effect leads the parameter c to be zero and indicates that 

the formation is not rigid. Under this circumstance, Eq. (27) for the aquifer drawdown 

reduces to  







dr

pT

Q
prs )(J

2
),( 0

0 22

~







                                       (29) 

According to McLachlan (1955, p.203, Eq. (200)) that 



0

2

00 )1/()()(  drJrK , 

Eq. (29) can be expressed as 

)(
2

),( 0

~

rK
pT

Q
prs 




                                                 (30) 

where 
TpSTbk //)'coth('  

Eq. (30) is identical to the Laplace domain 

solution given by Hantush (1960, Eq. (40)) for the leaky flow problem. Note that 

Hantush (1960) gave only small- and large-time solutions because the inversion of Eq. 

(30) to time domain may not be possible.  
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3.2 Neglecting leakage effect 

For the case where there is no leakage in a confined aquifer system, the hydraulic 

conductivity of the aquitard can be considered as zero. As a result, Eq. (27) reduces to  







0
0

~

)(
)(

)(1

2
),( 






drJ

ppT

Q
prs                                     (31) 

Applying the inverse Laplace transform to Eq. (31), the corresponding solution in 

time domain is  

 
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

0
0

)(
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2
),( 
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

drJ
e

T

Q
trs

t

                                    (31) 

which is exactly the same as the solution presented in Wang et al. (2004, Eq. (26)). 
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CHAPTER 4 RESULTS AND DISCUSSION  

 

Eqs. (27) and (28) are in terms of integrals and contain the hyperbolic cosine and 

Bessel functions. Their solutions in time domain may not be tractable via analytical 

inversions. Therefore, the time-domain results are obtained by applying the numerical 

inversion routine DINLAP of IMSL (2003). This routine is developed based on a 

numerical algorithm presented by Crump (1976) and de Hoog et al. (1982). Note that 

this routine had been successfully utilized to groundwater study as Yang and Yeh 

(2005). The integrals of Eqs. (27) and (28) for the integration range from zero to 

infinity are difficult to accurately evaluate since the complexity of the product of the 

hyperbolic cosine and Bessel functions appeared in the integrands. The hyperbolic 

cosine and Bessel functions can be approximated using the formulas given in Watson 

(1958) and Abramowitz and Stegun (1964). A numerical approach containing a root 

search scheme, the Gaussian quadrature, and the Shanks method (Shanks, 1955) can 

be used to evaluate Eqs. (27) and (28). This approach had been applied successfully to 

evaluate some complicated equations appeared in groundwater problems (e.g., Yang et 

al. 2006).  

4.1 Case study: A hypothetical aquifer system 

A hypothetical case is used to illustrate the impacts of aquitard bending and 
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leakage in a LCA system. This system contains an unconfined aquifer on the top, a 

confined aquifer consisted of silty sand at the bottom, and an aquitard of clayey silt in 

between. The parameters of the aquifer and aquitard in the LCA system are presented 

in Table 1.  

Fig. 2 shows the temporal drawdown distribution in the aquifer for r = 5 m and 

10 m at small and large pumping times. At small pumping time, the aquifer drawdown 

predicted from the Theis solution agrees with that from the Hantush solution as 

demonstrated in Fig. 2a. Additionally, the aquifer drawdown calculated from the 

present solution matches with that from the Wang et al. solution (2004). This result 

indicates that the water released from the bending aquifer system is less than that from 

the non-bending one at early pumping time. The differences in the drawdowns 

predicted by the present solution and the Hantush solution are 16.6 cm and 8.4 cm at r 

= 5 m and 10 m, respectively, when t = 1 min. Fig. 2a also shows that the effect of 

aquitard bending on the aquifer drawdown decreases with increasing pumping time 

and radial distance and becomes negligible after twenty minutes. This result is 

consistent with one of the conclusions given in Wang et al. (2004). In the period from 

20 to 1000 minutes, there is no obvious difference in aquifer drawdown among those 

four solutions. Fig. 2b shows that the present solution matches with the Hantush 

solution and the Theis solution agrees with the Wang et al. solution after 1000 minutes. 



 

22 

With considering the leakage effect, the time-drawdown curves approach a constant 

value for the cases with and without accounting for the bending effect. On the 

contrary, the aquifer drawdown keeps increasing when neglecting the leakage effect. 

    Fig. 3 exhibits the spatial drawdown distribution for the aquifer system under 

pumping when subject to both the bending and leakage effects. The 

distance-drawdown curves indicate that bending effect is significant near the pumping 

well at short pumping time. On the other hand, the influence of leakage rate on the 

drawdown curve is more obvious at long pumping time. These results indicate that 

neglecting the bending effect would lead to under-estimation of drawdown at early 

time and ignoring the impact of leakage rate might result in over-estimation of 

drawdown at late time. 

Fig. 4 demonstrates temporal displacement and drawdown curves at r = 5 m. As 

shown in the figure, the displacement is proportional to aquifer drawdown over the 

whole pumping period. In fact, the vertical downward displacement represented by Eq. 

(28) depends on the aquifer drawdown described by Eq. (27). Because the aquifer 

drawdown increases with pumping time, the vertical downward displacement also 

increases with pumping time.  

4.2 Analysis based on dimensionless parameters  

For the convenience of discussion, the aquifer drawdown is expressed in terms of 
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the dimensionless parameters sD, tD, and rD, which are defined as )4//( TQssD  , 

)/(4 2rsTttD   and )/(4 DSrr mwD   . The curves of sD versus tD at rD = 0.1 are 

plotted in Fig. 5 for Sw/S ranging from zero to unity. The aquifer matrix is 

incompressible when Sw/S equals unity. Under this circumstance, the present solution 

reduces to the Hantush solution, which is independent of Sw/S. The aquifer drawdown 

increases with aquifer skeleton compression at early pumping time. As tD is larger 

than 20, the present solution agrees with the Hantush solution. 

4.3 Sensitivity analysis 

Sensitivity analysis provides an indication for the model output (i.e., drawdown) 

in response to the change of model parameter. The model parameters often have 

different unit and magnitude. The normalized sensitivity is commonly used to 

evaluate and compare the sensitivities of the model to different parameter defined as  
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


                                                     (32) 

where Xi,k is normalized sensitivity coefficient of the model, depending on the kth 

input parameter (Pk) at the ith observation point and the derivative of the output 

quantity (Oi) with respect to the Pk. The derivative term in Eq. (32) can be 

approximated by the finite-difference formula as  
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where Δ Pk is a small increment selected as 10
-3 

× Pk. 
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     The parameters of the aquifer and aquitard used in the sensitivity analysis for the 

LCA subject to the bending effect are listed in Table 1. Fig. 6 shows the curves of 

normalized sensitivity of the aquifer drawdown to each of parameters b, b′, K, K′, α, βw 

and S′. The aquifer thickness and hydraulic conductivity have obvious negative 

influences on the aquifer drawdown. Their effects increase with pumping time before 

10
5
 and then keep a constant magnitude after that time. For the aquitard storage 

coefficient and water compressibility, they have less impact on aquifer drawdown over 

the whole observation period. Before 20 minutes, the aquitard thickness and elastic 

aquifer matrix compressibility product positive influences on the aquifer drawdown, 

which correspond to the result in Fig. 2(a), demonstrating the impact of the bending 

effect. This result indicates the importance of bending effect in a LCA at early pumping 

time. In the period between 20 and 1000 minutes, the influences of parameters b′, K′, α, 

βw and S′ on the aquifer drawdown are insignificant. After 1000 minutes, the elastic 

aquifer matrix compressibility still shows minor influence and the aquitard thickness 

demonstrates positive impact on the aquifer drawdown. For aquitard hydraulic 

conductivity, its influence on aquifer drawdown is minor before 1000 minutes, and 

exhibits negative effect after that time.  

    According to the sensitive analysis, the thickness and hydraulic conductivity of 

the aquifer are the most influential factors on the aquifer drawdown among the 
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considered parameters. These two parameters present significant negative effect on the 

aquifer drawdown distribution. Furthermore, the thickness of the aquitard shows small 

positive effect at early time and large at late time and the hydraulic conductivity of the 

aquitard presents a large negative effect at late time. The compressibility of aquifer 

matrix only reveals a slightly positive effect at early time. The compressibility of water 

and aquitard storage display almost no influence over the whole pumping time.  
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CHAPTER 5  CONCLUTIONS  

 

This thesis provides an analytical framework for understanding the drawdown 

distribution with the consideration of both the bending effect and leakage effect in a 

LCA system subject to pumping at a fully penetrating well. The mathematical model 

developed herein involves three equations for describing the vertical displacement in 

response to the bending effect and the drawdown distributions in the aquifer and 

aquitard. The Laplace-domain solutions of this model are derived by sequentially 

applying the Hankel transform and Laplace transform and the corresponding 

time-domain results are obtained by employing the modified Crump method. The 

conclusions can be drawn as follows: 

1. Contrary to the traditional groundwater theory, the present solution demonstrates 

a larger drawdown at early pumping time due to the effect of aquitard bending 

and a smaller drawdown at late pumping time due to the influence of leakage 

rate.  

2. Without the presence of aquitard leakage in a confined aquifer system, the 

present solution reduces to the Wang et al. solution (Wang et al., 2004), which 

accounts for the effect due to aquitard bending. Additionally, the Hantush 

solution (Hantush, 1960) has been shown as a special case of the present solution 
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when neglecting the effect of aquitard bending.  

3. Based on the thin plate theory, the vertical downward displacement is found 

proportional to the aquifer drawdown. The strength of bending effect fades out as 

the radial distance and pumping time increases. Sensitivity analysis shows that 

the aquifer drawdown is sensitive to the aquifer skeleton compression only at 

early time; therefore, neglecting the impact of bending effect leads to 

overestimate of water released from the aquifer system at short pumping period. 
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APPENDIX A: DERIVATION OF THE LAPLACE-DOMAIN SOLUTION TO 

EQUATIONS (27) AND (28) 

Taking the Laplace transform to Eqs. (1) and (14) results in 
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where ),(
~

prql  is the leakage rate of the aquitard in Laplace domain and ),(
~

pr  is 

an additional amount of water released from aquifer per unit time in Laplace domain. 

The boundary conditions of Eqs. (3), (4), (16) and (17) in Laplace domain are 
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Substituting Eqs. (26) and (A4) into Eq. (A1) yields 
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   Hankel transform of zero order is defined as 



0

0 )()()( drrJrrfF  . 
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Employing the Hankel transform to remove the radial distance for Eqs. (A2) and (A7) 

produces 

),()1)(,( 4 psScpw m                                            (A8) 

and 

p

Q
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where and the variables ),( ps   and ),( pw   are the aquifer drawdown and 

vertical downward displacement in Laplace-Hankel domain, respectively. Eq. (A8) 

can be rewritten as  
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Substituting Eq. (A10) into Eq. (A9), the aquifer drawdown can be expressed as 
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The vertical downward displacement in a LCA system can be obtained after 

substituting Eq. (A11) into Eq. (A10) and the result in Laplace-Hankel domain is 
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Utilizing the inverse Hankel transform to Eqs. (A11) and (A12), the Laplace-domain 

solutions of the aquifer drawdown and vertical downward displacement in a LCA with 

considering the bending effect can be found as Eqs. (27) and (28). 
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Table 1 Aquifer and aquitard properties in a leaky confined aquifer system. 

 

Layer Property Value Unit 

Aquitard:  Aquitard thickness (b') 25 m 

clayey silt Storage coefficient of the aquitard (S') 0.0001   

  Hydraulic conductivity of the aquitard (K') 0.004 m/day 

  Young's modulus (E) 7×10
6
 N/m

2
 

  Poisson’s ratio (v) 0.3   

  Flexural rigidity (D) 1×10
10

 N．m 

Aquifer  Aquifer thickness (b) 50 m 

silty sand Transmmisivity (T) 200 m
2
/day 

  Storage coefficient of the aquifer (S) 3.91×10
-3

   

  Compressibility of the elastic aquifer matrix (α) 7.88×10
-9

 m
2
/N 

  Compressibility of water (βw) 4.8×10
-10

 m
2
/N 

  Storage coefficient of skeleton compression (Sm) 3.85×10
-3

   

  Storage coefficient of water expansion(Sw) 5.87×10
-5

   

  Pumping rate (Q) 1000 m
3
/day 

  Specific weight of water (w) 9777 N/m
3
 

  Porosity (n) 0.25   
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
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Top of aquitard before pumping

Top of aquitard during pumping

 

 

Fig.1 Idealized representation of a leaky confined aquifer subject to pumping at a 

fully penetrating well 
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Fig. 2(a) Fig. 2 The time-drawdown curves for r = 5 m and 10 m (a) at small time (b) 

at large time. 
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Fig. 2(b) 
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Fig. 3 The distance-drawdown curves for the influences of bending effect and leakage 

effect. 
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Fig. 4 The time-drawdown curve and vertical downward displacement at r = 5 m. 
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Fig. 5 The curves of dimensionless drawdown sD versus dimensionless time tD at rD = 

0.1 for various values of Sw/S. 
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Fig. 6 Plots of the time-drawdown curve and the normalized sensitivities of the 

parameters K’, S’, b’, K, α, βW and b versus time. 

 


