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L 型邊界且為非均質非等向水層的半解析解 

 

研究生：朱韻如          指導教授：葉弘德 

 

國立交通大學環境工程研究所 

 

摘  要 

 

瞭解地下水層的水位空間分佈與水文地質參數，是評估地下水資源的開發量或整治

地下水污染的重要課題。以新竹含水層為案例，此含水層被斷層及河流圍繞，其形狀近

似為L形。本研究係建立數學模型，在定水頭邊界(河流)及不透水邊界(斷層)侷限下的L

形含水層，模擬地下水經多口井抽水後的暫態水力水頭分佈，此模型將考慮含水層的異

質性和非等向性。首先透過區域分割法建立數學模型，將該含水層分割成兩個子區域。

此模式考慮每個子區域各有不同的水力傳導係數，且各區域含水層皆具非等向性。藉由

分離變數法及考慮子區域間水位與流通量的連續條件，推導出Laplace域的半解析解。所

求得的解用來模擬L形含水層在抽水下的暫態水力水頭分佈；若L形含水層受汙染時，此

解可提供地下水流況資料，協助規劃地下水汙染物控制。此半解析解可更進一步描述梯

形含水層經抽水後的洩降分佈，本解亦可作為數值模式的驗核工具，分析數值模式在L

形凹角邊界處計算上可能產生的水位誤差。 

 

關鍵詞：不規則邊界、非等向、沖積扇含水層、水力傳導係數、區域分割法 
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Transient groundwater flow in heterogeneous and 

anisotropic aquifers with L-shaped boundaries 

Student：Yun-Ju Chu       Advisor：Hund-Der Yeh 

 

Institute of Environmental Engineering 

National Chiao Tung University 

 

ABSTRACT 

 

Understanding groundwater flow distribution is important for evaluating groundwater 

resource and dealing with groundwater pollution problems.  This study considers an aquifer 

bounded by faults and rivers in Hsinchu, Taiwan, and the aquifer can be approximately to 

have an L-shaped domain.  A mathematical model is developed to describe the transient 

groundwater flow due to multiple pumping in an anisotropic, heterogeneous aquifer with an 

L-shaped domain with impermeable boundary and constant-head boundary representing the 

fault and the river, respectively.  Method of domain decomposition is used to handle such an 

irregular boundary by dividing the aquifer into two sub-regions with different hydraulic 

conductivities.  Taking into account the continuity conditions of hydraulic head and flux at 

the boundary between two sub-regions, the solution of the model in Laplace domain is then 

derived by the method of separation of variables.  The semi-analytical solution can be used 

to assess the groundwater resources in transient pumping effect and provide flow information 

for pump-and-treat design if the aquifer has contamination.  The solution can also be applied 

to delineate the hydraulic head distributions in aquifers with trapezoid boundary and to verify 
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the numerical solutions which might give inaccurate results at the corner of the irregular 

boundary. 

Keywords: irregular boundary, anisotropy, alluvial aquifer, hydraulic conductivity, method of 

domain decomposition. 
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CHAPTER 1  INTRODUCTION 

 

Groundwater is an important water resource for agricultural, municipal and industrial 

uses.  The planning and management of water resources through investigation of the 

groundwater flow is one of the major tasks of practicing engineers.  The groundwater flow is 

highly dependent on the type and shape of the boundaries, especially when the aquifer domain 

has irregular shape.  Most literatures dedicated to the development of analytical models for 

flow in finite aquifers were to investigate the problems with, for example, rectangular 

boundary [Chan et al., 1976; Chan et al., 1977; Daly and Morel-Seytoux, 1981; Latinopoulos, 

P., 1982; Corapcioglu et al., 1983; Latinopoulos, P., 1984; Latinopoulos, P., 1985], 

wedge-shaped boundary [Chan et al., 1978; Falade, 1982; Holzbecher, 2005; Yeh et al., 2006; 

Yeh et al., 2008; Chen et al., 2009; Sedghi et al., 2009; Sedghi et al., 2010], or triangle 

boundary [Asadi-Aghbolaghi et al., 2010].  However, it may not be uncommon that the 

boundaries of finite aquifers are irregular in real world.  For irregular aquifer domain with 

variable boundary conditions, the solutions of the mathematical model are generally 

developed by numerical approaches such as finite element methods and finite difference 

methods.  Taigbenu [2003] solved the problems for transient flow in multi-aquifer systems 

with arbitrarily domain geometry based on the Green element method (GEM).  Recently, 

various computer codes based on either finite difference or finite element algorithms, such as 

AQUIFEM-N, BEMLAP, FEMWATER, FTWORK, MODFLOW, and SUTRA, were adopted 

to simulate a variety of groundwater flow problems [Loudyi et al., 2007].  When modeling a 

complex groundwater flow due to pumping/injection in heterogeneous aquifer with irregular 

domain boundary and various types of boundary conditions, numerical methods are more 

suitable than analytical models.  However, numerical models usually require large amounts 

of hydrologic information as input data and CPU time for simulating complicated problems.  
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Besides, some numerical applications are restricted by criteria of spatial and temporal 

discretization for avoiding stability and/or numerical dispersion problems.  Thus, deriving an 

analytical model for describing the groundwater distribution in an aquifer with irregular 

domain boundaries is also beneficial from a practical point of view.  

Kuo et al. [1994] applied the image well theory and Theis’ equation to predict transient 

drawdown behavior in an aquifer with irregularly shaped boundaries.  However, the number 

of the image wells should be increased if the aquifer has very irregular and asymmetric 

boundary because insufficient number of the image wells might result in divergence 

[Matthews et al., 1954].  Read and Volker [1993] presented analytical solutions for steady 

seepage through hillsides with arbitrarily flow boundaries.  They used the least squares 

method for estimating the coefficients in a series expansion of the Laplace equation.  The 

least squares estimators, nevertheless, are equivalent to those derived using orthogonal 

function, that is, the basis function must be orthogonal [Carrier and Pearson, 1991].  Li et al. 

[1996] generalized and extended the results of Read and Volker [1990; 1993] and Read [1993] 

for Laplacian porous-media flow problems involving arbitrarily boundary conditions.  The 

solution procedure was obtained by means of an infinite series of orthonomal functions, and 

they introduced a method, called image-recharge method, to establish the recurrence 

relationship of the series coefficients.  Currently, Patel et al. [2011] used the method of 

decomposition adopted from Adomian [1994] to develop similarly analytical models for 

simulating groundwater flow in aquifers with irregular boundaries.  The magnitude of 

hydraulic head was however underestimated and some conditional restrictions are still 

required.  

Complication may arise when the boundaries of aquifer domain are irregular.  An 

aquifer in Hsinchu, Taiwan, sketched in Figure 1 is an example.  The figure illustrates the 

plan view of faults and rivers within the aquifer, which may be considered as an L-shaped 
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aquifer.  More detailed description about this aquifer is given in section 2.1.  The shading 

area in this schema designates the study area, which is adjacent to the Hsinchu Science Park 

(HSP).  There are many semiconductor, optoelectronics, and LCD (liquid crystal display) 

panel factories in the HSP.  It was reported that the HSP had the problem of DNAPL (dense 

non-aqueous phase liquid) contamination in groundwater in the past.  The purpose of study 

is to provide an analytical tool for simulating the flow field if the pump-and-treat method is 

adopted for pollution remediation.  To simplify this problem, the shape of the aquifer within 

the study area is approximated by a region delineated in Figure 2.  This thesis aims at 

developing an analytical model to describe the groundwater flow in such an aquifer with 

anisotropic and non-homogeneous hydraulic conductivities.  The L-shaped aquifer is divided 

into two sub-regions that each has a rectangular domain with homogeneous hydraulic 

conductivity.  In addition, two types of boundary conditions, i.e., constant-head boundaries 

and no-flow boundaries, are used to represent the physical reality and constrain the problem 

domain.  The Laplace-domain solution of the model is obtained after solving the governing 

equation along with boundary and continuity conditions via the Fourier finite cosine 

transform and the Laplace transform.  A steady-state solution before pumping is first 

developed to obtain the initial hydraulic head distribution in this L-shaped aquifer.  

Gaver-Stehfest algorithm is then taken to inverse Laplace-domain solution, and a series of 

transient hydraulic head distributions in time domain within the problem domain are obtained.  

These semi-analytical solutions can be used to predict various groundwater flow fields if 

different pump-and-treat schemes are considered in the remedial design for the L-shaped 

aquifer.  
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CHAPTER 2  MATHEMATICAL MODEL 

 

2.1 Conceptual model  

Figure 1 shows a schema for an aquifer in Hsinchu, which is situated in the northwest of 

Taiwan.  The study area is confined by the Hsinchu fault in the north, the Hsincheng fault in 

the west, the Shihtan fault in the southeast, the Touchien River in the east, and the Jhonggang 

River in the south.  Physically, faults and perennial rivers can be considered as impermeable 

boundaries and constant-head boundaries, respectively.  To simplify this problem, the 

domain of the study area is approximated to be L-shaped, as delineated in Figure 2.  The 

origin of the coordinate is at the intersection of boundary AB and boundary BC.  The 

Hsincheng fault, the Hsinchu fault, and the Shihtan fault, which are separately represented as 

boundaries AB, BC, and DE, are considered as impermeable boundaries.  The Jhonggang 

River and the Touchien River, which are respectively expressed as boundaries 1S  and 2S , 

are considered as constant-head boundaries.  This L-shaped aquifer is divided into two 

sub-regions, named regions 1 and 2 and the hydraulic heads in these two regions are 

expressed as ),,(1 tyx=φ  and ),,(2 tyx=φ . 

 

2.2 Governing equation and related boundary and initial condition 

The governing equation describing the hydraulic head distribution in region 1 for the 

k th well located at ),( 11 kk yx  with a pumping rate per unit width of kQ1  ]/[ 2 TL  is 

expressed as 

∑
=

−−−
∂
∂

=
∂
∂

+
∂
∂ M

k
kkksyx yyxxQ

t
S

y
K

x
K

1
111

1
12

1
2

12
1

2

1 )()( δδφφφ ,  

10 lx ≤≤ , 10 by ≤≤                                                        (1) 
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and the hydraulic head distribution in region 2 for the k th well located at ),( 22 kk yx  with a 

pumping rate per unit width of kQ2  ]/[ 2 TL  is 

∑
=

−−−
∂
∂

=
∂
∂

+
∂
∂ N

k
kkksyx yyxxQ

t
S

y
K

x
K

1
222

2
22

2
2

22
2

2

2 )()( δδφφφ ,  

20 lx ≤≤ , 21 byb ≤≤                                                       (2) 

where subscripts 1 and 2 denote the regions 1 and 2, respectively, sS ][ 1−L  is the specific 

storage, xK ]/[ TL  and yK ]/[ TL  are the hydraulic conductivities in x- and y-direction, 

respectively.  The Dirac delta function )(⋅δ  ][ 1−L  is defined in Table 1. 

The boundary conditions for region 1 can be expressed as: 

11 h=φ , at 1lx = , 10 by ≤≤                                                  (3) 

01 =
∂
∂

x
φ , at 0=x , 10 by ≤≤                                                 (4) 

01 =
∂
∂

y
φ , at 0=y , 10 lx ≤≤                                                 (5) 

01 =
∂
∂

y
φ , at 1by = , 12 lxl ≤≤                                                (6) 

and the boundary conditions for region 2 are  

02 =
∂
∂

x
φ , at 0=x , 21 byb ≤≤                                                (7) 

02 =
∂
∂

x
φ , at 2lx = , 21 byb ≤≤                                                (8) 

22 h=φ , at 2by = , 20 lx ≤≤                                                 (9) 

The continuity requirements of hydraulic head and flux at 1by =  are, respectively, 

),(),( 1211 bxbx φφ = , at 20 lx ≤≤                                              (10) 
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and 

11

2
2

1
1

by
y

by
y y

K
y

K
== ∂

∂
=

∂
∂ φφ , at 20 lx ≤≤                                        (11) 

In order to express the solutions in dimensionless form, following dimensionless 

variables are introduced: 111
*
1 /)( hh−= φφ , 212

*
2 /)( hh−= φφ , 2

211
* / bStKt sy= ,  

111 / yx KK=κ , 222 / yx KK=κ , 1
* / lxx = , 2

* /byy = , where *
1φ  and *

2φ  stand for the 

dimensionless hydraulic heads for regions 1 and 2, respectively, *t  refers to the 

dimensionless time during the test, 1κ  and 2κ  represent the anisotropic ratio of hydraulic 

conductivity in region 1 and 2, respectively, *x  and *y denote the dimensionless coordinate 

variables, *
1b  is the dimensionless y-direction distance from the origin to the outer boundary 

of region 1 (i.e. 21
*
1 / bbb = ), and *

2l  is the dimensionless x-direction distance from the origin 

to the outer boundary of region 2 (i.e. 12
*
2 / lll = ).  In addition, *

1kQ  and *
2kQ  are lumped 

parameters defined as 111
2
2 / hKQb yk　  and 222

2
2 / hKQb yk　 , respectively. 

A steady-state hydraulic head distribution should be obtained as an initial condition for 

solving the transient flow equation during Laplace transform.  Detailed derivation for 

steady-state solutions for regions 1 and 2 before pumping are given in Appendix A, and the 

results are, respectively, expressed as 

)cos(),(),( *

0

*
11

***
1 xymECyx m

m
mm λφ ∑

∞

=

∆=                              (12) 

and 

)cos()),(),((),( *

0

**
22

***
2 xynBynFDyx n

n
nn αφ ∑

∞

=

+∆=                       (13) 

with  
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)1(

2

12*
20,

* *
2),( −Ω−

∆= y
n

ne
h

hhlynB                                    (14) 

*
1

*
1),( * yy mm eeymE Ω−Ω +=                                       (15) 

)2(* *
2

*
2),( −ΩΩ− −= yy nn eeynF                                     (16) 

where the symbols m1∆ , n2∆ , mλ , nα , m1Ω , n2Ω , and 0,n∆  are defined in Table 1.  The 

coefficients in mC1  and nD2  are solved simultaneously from following two equations 

∫
∫∑

∞

= =
∆
∆

= 1

0

**2

0

***

0
*

*

1

2

1

2

1

2
21

)(cos

)cos()cos(

),('
),('
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2

*
1

* dxx

dxxx

ymE
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h
h

K
K
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m

l
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n byy

y

m

n
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λ

αλ
                 (17) 

and 

),(
),(

)(cos

)cos()cos(

),(
),(

*
1

*
1

0 *

0

*2
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0

**

*
1

*
1

2

1
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1
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*
2
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dxxx
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= ∑
∫

∫∞

= α

αλ
            (18) 

with  

*

*
* ),(),('

y
ymEymE

∂
∂

=                                         (19) 

*

*
* ),(),('

y
ynFynF

∂
∂

=                                          (20) 

Since the initial condition is available, the solution of hydraulic head for a heterogeneous, 

anisotropic aquifer with L-shaped domain can be obtained via finite cosine transform and 

Laplace transform.  The derivations for transient solutions are given in Appendix B and the 

results of the dimensionless hydraulic heads in Laplace-domain for regions 1 and 2 are, 

respectively, 
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where p is the Laplace variable and the symbols jα , iλ , iµ , jθ , 0,j∆ , i1∆ , j2∆ , im,Λ , 

jn,Λ , and )(⋅H  are described in Table 1.   

 The coefficients in Eqs. (21) and (22) are obtained via continuity conditions of hydraulic 

head and flux.  They can be solved by following two equations simultaneously 
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CHAPTER 3  NUMERICAL RESULTS 

Following sections present the investigations of the head distribution in the L-shaped 

aquifer, the effect of anisotropy and heterogeneity of the problem domain, and transient 

pumping effect with multi-well locations in regard to the aquifer parameters for predicting 

flow field bounded by constant-head and no-flow boundaries.  

3.1. Steady-state head distribution 

Consider a hypothetical aquifer with two sub-regions.  Region 1 has an area of 900 m 

×  300 m while the area of region 2 is 300 m ×  300 m.  The heads at boundaries =x 900 m 

and =y 600 m are respectively kept at =1h 85 m and =2h 80 m, specific storage is 410−  

1−m  for those two regions, and the aquifer thickness is 80  m.  Figure 3 shows the 

steady-state hydraulic head distribution, predicted by Eqs. (12) and (13), in the aquifer before 

pumping.  Three different anisotropic ratios of hydraulic conductivity values, 1, 2, and 0.5, 

are considered in cases (a) - (c) listed in Table 2 and the simulated head distributions are 

shown in Figures 3a – 3c. The aquifer shown in Figure 3a is isotropic (i.e., 

==== 2211 yxyx KKKK 520 m/day).  This figure displays that the groundwater flows from 

right to left, because the hydraulic head at boundary =x 900 m is higher than that at boundary 

=y 600 m.  The flow field schematic diagram is obtained by Darcy’s law with hydraulic 

head distribution in order to express direction and magnitude of flow velocity. The result 

illustrates that the flow field in region 1 is mainly in x-direction while that in region 2 is in 

y-direction.  This is because the shape of the aquifer and the no-flow boundaries constrain 

flow paths.  The effect of anisotropy on the groundwater flow is demonstrated in Figures 3b 

and 3c.  These three figures indicate that the flow velocity in x-direction increases with 

anisotropic ratio. 
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3.2. Spatial and temporal head distribution 

Since the transient solution developed in this study is in Laplace domain, Laplace 

inversion technique is required to obtain the hydraulic head distributions in real time.  

Stehfest algorithm [Stefest, 1970; Chang et al., 2010] is used to numerically inverse the 

transient solution.  The hydraulic head distributions at three different times, i.e., 2=t  hrs, 

2 days, and 7 days are shown in Figures 4a – 4c, respectively.  Two wells are installed at 

(850 m, 150 m) and (150 m, 550 m) with a pumping rate 16 daym /3  and the conductivities 

xK  and yK  are 520 daym /  for both regions 1 and 2.  Those figures show that the 

aquifer drawdown increases with pumping time.  The differences in hydraulic heads shown 

in Figures 4b and 4c is very small, indicating that the groundwater flow becomes steady after 

2 days pumping in this simulated scenario.   

 

3.3. Effect of heterogeneity 

 Figure 5 demonstrates the effect of heterogeneity on the groundwater distribution.  

Two types of aquifer formation materials, coarse sand and fine sand, are considered for the 

present aquifer system.  In Figure 5a, the aquifer in region 1 with coarse sand medium has 

hydraulic conductivity of 520 m/day while that in region 2 with fine sand medium has 

hydraulic conductivity of 50 m/day.  In contrast to Figure 5a, the aquifer shown in Figure 5b 

is considered to be homogeneous with coarse sand medium. The well with pumping rate of 

8 daym /3  is located at ),( yx = (700 m, 140 m).  The hydraulic head distribution shown in 

these two figures are significantly different at =t 7 days.  The drawdown shown in Figure 

5a is much larger than that in Figure 5b because the aquifer in region 2 is relatively low 

permeable. 
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3.4. Multi-pumping/injection wells 

 The effect of the well locations upon the hydraulic head distribution in an aquifer with 

irregular boundary is investigated in Figure 6.  The conductivities  xK  and yK  are 520 

m/day for the whole region.  One pumping well with a rate of daym /6 3  is located at (100 

m, 100 m) and two injection wells with a rate of daym /3 3  are placed at (400 m, 150 m) and 

(150 m, 400 m).  Figure 6 illustrates that the groundwater flow within the contaminated area 

can be restrained by those three wells.  As demonstrated here, the semi-analytical solution 

can be used to predict the flow field induced by multi-wells in an L-shaped aquifer.  Coupled 

with an optimization algorithm, this solution can be used to determine the well number, well 

locations, and their pumping rates for pump-and-treat design in an L-shaped aquifer if it has 

been contaminated. 

 

3.5. Trapezoid aquifer 

 The present solutions can also be used to predict the flow induced by pumping in a 

trapezoid aquifer with 45 degree at the acute angle as shown in Figure 7.  Following two 

conditions must be met if employing the present solution to predict the flow in a trapezoid 

aquifer.  They are the aquifer must be isotropic and homogeneous and the hydraulic heads at 

two constant-head boundaries have to be equal.  A dashed line can be drawn between two 

re-entrant angles as shown in Figure 7b and an imaginary pumping well should be placed at 

the location which is symmetric to the pumping well with respect to the dashed line.  Thus, 

the dashed line can be considered as an impermeable boundary for the trapezoid aquifer.  

Figure 7b demonstrates the transient drawdown distribution at =t  2 days for the pumping 

well located at (180 m, 76 m) and (76 m, 180 m) with the rate of 40 daym /3 .  The 
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conductivities xK  and yK  are 2102 −× sm /  and specific storage sS  is 5101 −× 1−m  for 

the whole region, and the hydraulic heads at the boundaries ( =x  200 m and =y 200 m) are 

equal to 30 m.  The aquifer thickness is 20 m.  As a result, a symmetric pattern of the 

hydraulic head distribution can be observed in the figure.  The hydraulic head distribution in 

the right trapezoid aquifer with a pumping well shown in Figure 7a can therefore be simulated 

as a part of hydraulic head distribution in Figure 7b.  To our knowledge, the semi-analytical 

solution describing the flow induced by pumping in trapezoid aquifers has never before been 

presented.  The solution derived herein for an L-shaped aquifer can accordingly be applied to 

solve the flow problems in trapezoid aquifers. 
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CHAPTER 4  CONCLUDING REMARKS 

A new semi-analytical model has been developed to analyze the hydraulic head 

distributions induce by pumping in a heterogeneous and anisotropic aquifer with an L-shaped 

domain.  Method of domain decomposition is used to divide the aquifer into two sub-regions 

with different hydraulic conductivities.  Steady-state solution is first derived and used as the 

initial condition before pumping in the L-shaped aquifer system.  The Laplace-domain 

solution of the model is derived using the Fourier finite cosine transform and the Laplace 

transform.  The Stehfest algorithm is then adopted to evaluate the time-domain results.  The 

effects of anisotropy, heterogeneity, and boundary conditions due to pumping are investigated.  

The present solutions can describe the steady-state and transient distribution of hydraulic head 

induced by pumping in L-shaped aquifers.  Following conclusions can be drawn from this 

study: 

1. The steady-state hydraulic head distributions indicate that the flow in region 1 is mainly in 

x-direction and in region 2 is in y-direction.  

2. The anisotropic ratio has a significant effect on the flow pattern.  The flow velocity in 

x-direction increases with anisotropic ratio. 

3. The developed solution can be used to assess the effects of heterogeneity and multi-well 

locations on the head distribution.  In addition, it can also be used to solve the flow 

problems in trapezoid aquifers. 
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APPENDIX A: STEADY STATE SOLUTIONS FOR AN 

L-SHAPED AQUIFER WITHOUT PUMPING 

 

In accordance with the dimensionless variables defined in section 2.2, Eqs. (1) and (2) 

can be written, respectively, as 
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The dimensionless boundary conditions for region 1 can be expressed as: 

0*
1 =φ , at 1* =x , *

1
*0 by ≤≤                                                (A3) 
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Similarly, the dimensionless boundary conditions for region 2 are  
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1
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hh −
=φ , at 1* =y , *

2
*0 lx ≤≤                                            (A9) 

The continuity conditions of hydraulic head and flux in dimensionless form are, 

respectively,  
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Without the pumping, the steady-state solution for groundwater flow can be solved after 

removing all the right-hand side terms in Eqs. (A1) and (A2).  Multiplying Eq. (A1) by 

)cos( *xmλ  and integrating it from 0* =x  to 1* =x  in region 1 with boundary conditions 

Eqs. (A3) and (A4), Eq. (A1) is then transformed to  
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where πλ )2/1( += mm , ...3,2,1,0=m . 

Similarly, Eq. (A2) can be transformed via multiplying Eq. (A2) by )cos( *xnα  and 

integrating it from 0* =x  to *
2

* lx =  in region 2 with boundary conditions Eqs. (A7) and 

(A8). The result is  
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with  
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 The general solutions of Eqs. (A12) and (A13) are 
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where 1211 lbmm κλ=Ω  and 1222 lbnn κα=Ω .  The coefficients mC1 , mC2 , nD1  and 

nD2  are unknowns and to be determined.  Using boundary conditions Eqs. (A5) and (A9), 

the following relation can be obtained   
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Substituting Eqs. (A16) and (A17) into Eqs. (A14) and (A15), the inversions of *
1φ  and 

*
2φ  lead to Eqs. (12) and (13). The Fourier finite cosine inversions for regions 1 and 2 are 
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The coefficients of mC1  and nD2  obtained by using the boundary condition Eq. (A6) 

and the continuity conditions Eqs. (A10) and (A11) are given in Eqs. (17) and (18), 

respectively. 
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APPENDIX B: TRANSIENT STATE SOLUTIONS  

 

Multiplying Eq. (A1) by )cos( *xiλ  and integrating it from 0* =x  to 1* =x  in region 

1 with boundary conditions Eqs. (A3) and (A4), Eq. (A1) can be transformed as  
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Then, taking Laplace transforms with respect to t of Eqs. (B1) and (B2) with the initial 

conditions Eqs. (12) and (13), respectively, results in 

∑

∑

=

∞

=

−−

Λ∆−=
∂
∂

+−

M

k
kkik

m
mimmi

yyxQ
p

ymEC
y

1

*
1

**
1

*
1

0

*
1,12*

*
1

2
*

1
2

)()cos(1

),(
2
1~~

δλ

φφµ

　　　　　　　

                                 (B3) 
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 The general solutions of Eqs. (B3) and (B4) can be expressed as 
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In addition, iT1 , iT2 , jT1  and jT2  are unknown coefficients to be determined. Using 



 23 

boundary conditions Eqs. (A5) and (A9), the following relations can be obtained   
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Substituting Eqs. (B11) and (B12) into Eqs. (B5) and (B6), respectively, the inversions of 
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The coefficients of iT1  and jT2  obtained by using the boundary condition Eq. (A6) and 

the continuity conditions Eqs. (A10) and (A11) are presented as Eqs. (28) and (29), 

respectively.  
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Table 1. Notations. 
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Table 2. The constant-head boundaries and the anisotropic ratio of the hydraulic 

conductivities for cases (a) – (c) 

Case 

constant-head  
boundary )(m  

  
 

hydraulic conductivity )/( sm  

 anisotropic ratio 
of hydraulic 
conductivity 

1h  2h   1xK  1yK  2xK  2yK   1κ
a     

2κ
a  

a 85 80  0.003 0.003 0.003 0.003  1 1 
b 85 80  0.006 0.003 0.006 0.003  2 2 
c 85 80  0.0015 0.003 0.0015 0.003  0.5 0.5 

1κ
a  represents the anisotropic ratio of the hydraulic conductivity in region 1 

2κ
b  represents the anisotropic ratio of the hydraulic conductivity in region 2 
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Figure 1. Map of an aquifer in Hsinchu, Taiwan. The study area is shaded. (modified from 

Hydrological year book of Taiwan, 2010, Part II-River stage and discharge, and Taiwan 

Active Fault Information System) 
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Figure 2. An L-shaped alluvial aquifer with two sub-regions.  
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(a) 

 

(b) 

 

(c) 

Figure 3. Steady-state hydraulic head distribution in the aquifer with anisotropic ratio of  

(a) 1, (b) 2, (c) 0.5. 
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(a) =t 2 hrs 

 

(b) =t 2 days 

 

(c) =t 7 days 

Figure 4. Hydraulic head distributions in aquifers with == yx KK  520 m/day at time (a) 2 

hrs, (b) 2 days, (c) 7 days. 
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(a) 

 

(b) 

Figure 5. Transient hydraulic head distributions induce by pumping at =t 7 days in  

(a) heterogeneous aquifer and (b) homogeneous aquifer. 

 

Region 1 )3000,9000( mymx ≤≤≤≤ : coarse sand  
Region 2 )600300,3000( mymmx ≤≤≤≤ : fine sand  
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Figure 6. Hydraulic head distributions induced by two injection wells and one pumping well 

at =t 1 day.  
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(a) 

 

(b) 

Figure 7. (a) A trapezoid aquifer (b) The head distribution induced by two pumping wells 

located at (76 m, 180 m) and (180 m, 76 m) at =t 2 days. 
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