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Transient groundwater flow in heterogeneous and

anisotropic aquifers with L-shaped boundaries

Student : Yun-Ju Chu Advisor : Hund-Der Yeh

Institute of Environmental Engineering

National Chiao Tung University

ABSTRACT

Understanding groundwater flow2istribution is important for evaluating groundwater
resource and dealing with groundwaterpollution”problems.  This study considers an aquifer
bounded by faults and rivers in HsiaghU, Taiwan; and the aquifer can be approximately to
have an L-shaped domain. A mathematical model is developed to describe the transient
groundwater flow due to multiple pumping in an anisotropic, heterogeneous aquifer with an
L-shaped domain with impermeable boundary and constant-head boundary representing the
fault and the river, respectively. Method of domain decomposition is used to handle such an
irregular boundary by dividing the aquifer into two sub-regions with different hydraulic
conductivities. Taking into account the continuity conditions of hydraulic head and flux at
the boundary between two sub-regions, the solution of the model in Laplace domain is then
derived by the method of separation of variables. The semi-analytical solution can be used
to assess the groundwater resources in transient pumping effect and provide flow information
for pump-and-treat design if the aquifer has contamination. The solution can also be applied

to delineate the hydraulic head distributions in aquifers with trapezoid boundary and to verify



the numerical solutions which might give inaccurate results at the corner of the irregular

boundary.

Keywords: irregular boundary, anisotropy, alluvial aquifer, hydraulic conductivity, method of

domain decomposition.
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CHAPTER1 INTRODUCTION

Groundwater is an important water resource for agricultural, municipal and industrial
uses. The planning and management of water resources through investigation of the
groundwater flow is one of the major tasks of practicing engineers. The groundwater flow is
highly dependent on the type and shape of the boundaries, especially when the aquifer domain
has irregular shape. Most literatures dedicated to the development of analytical models for
flow in finite aquifers were to investigate the problems with, for example, rectangular
boundary [Chan et al., 1976; Chan et al., 1977; Daly and Morel-Seytoux, 1981; Latinopoulos,
P., 1982; Corapcioglu et al., 1983; Latinopoulos, P., 1984; Latinopoulos, P., 1985],
wedge-shaped boundary [Chan et al., 1978; Falade, 1982; Holzbecher, 2005; Yeh et al., 2006;
Yeh et al., 2008; Chen et al., 2009;s8€edghi etial., 2009; Sedghi et al., 2010], or triangle
boundary [Asadi-Aghbolaghi et al; 2010].-~ZHo6wever, it may not be uncommon that the
boundaries of finite aquifers are irregilar in reak®world. For irregular aquifer domain with
variable boundary conditions, the solutions of the mathematical model are generally
developed by numerical approaches such as finite element methods and finite difference
methods. Taigbenu [2003] solved the problems for transient flow in multi-aquifer systems
with arbitrarily domain geometry based on the Green element method (GEM). Recently,
various computer codes based on either finite difference or finite element algorithms, such as
AQUIFEM-N, BEMLAP, FEMWATER, FTWORK, MODFLOW, and SUTRA, were adopted
to simulate a variety of groundwater flow problems [Loudyi et al., 2007]. When modeling a
complex groundwater flow due to pumping/injection in heterogeneous aquifer with irregular
domain boundary and various types of boundary conditions, numerical methods are more
suitable than analytical models. However, numerical models usually require large amounts

of hydrologic information as input data and CPU time for simulating complicated problems.



Besides, some numerical applications are restricted by criteria of spatial and temporal
discretization for avoiding stability and/or numerical dispersion problems. Thus, deriving an
analytical model for describing the groundwater distribution in an aquifer with irregular
domain boundaries is also beneficial from a practical point of view.

Kuo et al. [1994] applied the image well theory and Theis’ equation to predict transient
drawdown behavior in an aquifer with irregularly shaped boundaries. However, the number
of the image wells should be increased if the aquifer has very irregular and asymmetric
boundary because insufficient number of the image wells might result in divergence
[Matthews et al., 1954]. Read and Volker [1993] presented analytical solutions for steady
seepage through hillsides with arbitrarily flow boundaries. They used the least squares
method for estimating the coefficients in a series expansion of the Laplace equation. The
least squares estimators, nevertheless,yaréleguivalent to those derived using orthogonal
function, that is, the basis function mustbe-orthagonal [Carrier and Pearson, 1991]. Li et al.
[1996] generalized and extended théxesulisief-Read-and Volker [1990; 1993] and Read [1993]
for Laplacian porous-media flow problems involving arbitrarily boundary conditions. The
solution procedure was obtained by means of an infinite series of orthonomal functions, and
they introduced a method, called image-recharge method, to establish the recurrence
relationship of the series coefficients. Currently, Patel et al. [2011] used the method of
decomposition adopted from Adomian [1994] to develop similarly analytical models for
simulating groundwater flow in aquifers with irregular boundaries. The magnitude of
hydraulic head was however underestimated and some conditional restrictions are still
required.

Complication may arise when the boundaries of aquifer domain are irregular. An
aquifer in Hsinchu, Taiwan, sketched in Figure 1 is an example. The figure illustrates the

plan view of faults and rivers within the aquifer, which may be considered as an L-shaped



aquifer. More detailed description about this aquifer is given in section 2.1. The shading
area in this schema designates the study area, which is adjacent to the Hsinchu Science Park
(HSP). There are many semiconductor, optoelectronics, and LCD (liquid crystal display)
panel factories in the HSP. It was reported that the HSP had the problem of DNAPL (dense
non-aqueous phase liquid) contamination in groundwater in the past. The purpose of study
is to provide an analytical tool for simulating the flow field if the pump-and-treat method is
adopted for pollution remediation. To simplify this problem, the shape of the aquifer within
the study area is approximated by a region delineated in Figure 2. This thesis aims at
developing an analytical model to describe the groundwater flow in such an aquifer with
anisotropic and non-homogeneous hydraulic conductivities. The L-shaped aquifer is divided
into two sub-regions that each has a rectangular domain with homogeneous hydraulic
conductivity. In addition, two types ofishoundary conditions, i.e., constant-head boundaries
and no-flow boundaries, are used to/represept the\physical reality and constrain the problem
domain. The Laplace-domain solutionfafitiermadel is obtained after solving the governing
equation along with boundary and continuity conditions via the Fourier finite cosine
transform and the Laplace transform. A steady-state solution before pumping is first
developed to obtain the initial hydraulic head distribution in this L-shaped aquifer.
Gaver-Stehfest algorithm is then taken to inverse Laplace-domain solution, and a series of
transient hydraulic head distributions in time domain within the problem domain are obtained.
These semi-analytical solutions can be used to predict various groundwater flow fields if
different pump-and-treat schemes are considered in the remedial design for the L-shaped

aquifer.



CHAPTER 2 MATHEMATICAL MODEL

2.1 Conceptual model

Figure 1 shows a schema for an aquifer in Hsinchu, which is situated in the northwest of
Taiwan. The study area is confined by the Hsinchu fault in the north, the Hsincheng fault in
the west, the Shihtan fault in the southeast, the Touchien River in the east, and the Jhonggang
River in the south. Physically, faults and perennial rivers can be considered as impermeable
boundaries and constant-head boundaries, respectively. To simplify this problem, the
domain of the study area is approximated to be L-shaped, as delineated in Figure 2. The
origin of the coordinate is at the intersection of boundary AB and boundary BC. The
Hsincheng fault, the Hsinchu fault, and the Shihtan fault, which are separately represented as
boundaries AB, BC, and DE, are consideredtas impermeable boundaries. The Jhonggang

River and the Touchien River, which are“réspectively expressed as boundaries S, and S,,

are considered as constant-head boundariesi™ This L-shaped aquifer is divided into two
sub-regions, named regions 1 and 2 and the hydraulic heads in these two regions are

expressed as ¢ =(x,y,t) and ¢, =(X,y,t).

2.2 Governing equation and related boundary and initial condition

The governing equation describing the hydraulic head distribution in region 1 for the
kth well located at (x,,Y,) With a pumping rate per unit width of Q, [L*/T] is

expressed as

0% 0% 8¢
K 6X21+Ky1 8y21 =9y 5'[1 kZ;,Qlk (X=X, )oY = Yy),

0<x<l, 0<y<b (1)



and the hydraulic head distribution in region 2 for the k th well located at (x,,,Y,,) with a

pumping rate per unit width of Q,, [L*/T] is

3¢, O, _. O 3
KX2 aXZZ + Ky2 ay22 = SSZ 8t2 _EQZké‘(X_XZk)é‘(y_ ka)l

0<x<l,, by<y<h, )
where subscripts 1 and 2 denote the regions 1 and 2, respectively, S _[L™] is the specific
storage, K, [L/T] and K, [L/T] are the hydraulic conductivities in x- and y-direction,

respectively. The Dirac delta function &(-) [L™] is defined in Table 1.

The boundary conditions for region 1 can be expressed as:

¢ =h,at x=1, 0<y<h (3)
%:O,at x=0, 0<y<Dh (4)
OX
0
%zo,at y=0, 0<x<l, ®)
%zo,at y=hy, 1, <x<l, (6)

and the boundary conditions for region 2 are

d
%:O,at x=0, b, <y<b, (7)
o¢
6_><2:O'at x=1,, by <y<h, (8)
¢, =h,,at y=b,, 0<x<lI, 9)

The continuity requirements of hydraulic head and flux at y =b, are, respectively,

& (x,b) =¢,(x,b),at 0<x<I, (10)



and

K 6 ¢l

o %,
yl ay

y2

,at 0<x<lI, (11)
y=b;

y=by

In order to express the solutions in dimensionless form, following dimensionless
variables are introduced: ¢ =(4-h)/h , 4 =(4-h)h, . t =K, t/Sgb;
K =KalK,, k,=K,/K,, X =x/l, y =ylb,, where ¢ and ¢ stand for the
dimensionless hydraulic heads for regions 1 and 2, respectively, t refers to the
dimensionless time during the test, x; and «x, represent the anisotropic ratio of hydraulic
conductivity in region 1 and 2, respectively, x* and y"denote the dimensionless coordinate
variables, b’ is the dimensionless y-direction distance from the origin to the outer boundary
of region 1 (i.e. b, =b,/b,), and I, sig'the dimensionless x-direction distance from the origin
to the outer boundary of region 2 {i.e.. IZZ=1,./1,)= In addition, Q, and Q,, are lumped
parameters defined as b;Q, /K ,h and7hi@'7 K ,h,, respectively.

A steady-state hydraulic head distribution should be obtained as an initial condition for
solving the transient flow equation during Laplace transform. Detailed derivation for
steady-state solutions for regions 1 and 2 before pumping are given in Appendix A, and the

results are, respectively, expressed as

B (YY) = Y A CinEM, Y ) COS(2,X) (12)
and

£ (K1Y =2 A (D F (1Y) + B,y ) cos(arX) (13)
with



B(n,y) = A, ] hzhie%”"‘” (14)
2

E(m,y") =e™n e Y (15)

F(n, y*) = e—any* _ eQZn(y*—Z) (16)

where the symbols A,., A,,, 4

a,, Q. Q,,and A , aredefinedin Table 1. The

m?

coefficientsin C,, and D,, are solved simultaneously from following two equations

J'O'z cos(4,, x") cos(a, x")dx”

B K 1 *
Clm:zDz A2n y2h_2F(n!y)

n (m,y" ' (17)
w5 A Ko P By )‘y*=bf ,[0 cos® (A, X )dx”
and
1 - X )
D, =3C,, 2 Mu E(MB) J, cosfiaxpoes@i)dx”  g(n,b;) (18)
2n m=0 im Azn hz F(n,b;) J‘GCOSZ((Z X*)dX* F(n,bl*)
0 n
with
' «  OE(M,y")
R (19)
oy
vty < F(Y)
F'(ny)=—227~ "
oy

Since the initial condition is available, the solution of hydraulic head for a heterogeneous,
anisotropic aquifer with L-shaped domain can be obtained via finite cosine transform and
Laplace transform. The derivations for transient solutions are given in Appendix B and the
results of the dimensionless hydraulic heads in Laplace-domain for regions 1 and 2 are,

respectively,



4 (X.y',p)= iAu (TLEG, Y, p) + i,y P)cos(AX) (21)

i=0

and

8, (X, p)=j§;,Az,-(szE2(j,y*, p)+F,(J,y", p))cos(a;x’) (22)
with

E,(i,y, p)=e“Y +e (23)
E,(j.y . p)=e"" —e" (24)

1mAm |ClmE(rTl y )

Z « CoS(A; g ) SV WH (¥ — vii)

=, . © A
¢,y ,p)=EZ

Bgrhy o600

o h, +¢2p(J Yy, p) (26)

FG,Y . p) ==, (L p)e" " +A,,

= . S h1 | oy bh—h 6y
Y P)=A Kuh 1-e"Y )2 2_1hY
¢2p(] y p) J,o(SSl K h2 02( ) p h2 )
A, AN Ky *
+§ 2j° 7 n,j | S 2D2n , F(n,y*) (27)
= 2 S Ky, 6] — Q3 F(n,b,)

1 - UMMV
H_Z ;i COS(a X5, ) SINN(@; (Yo — Y DH(Y =Y, 5)
P =

where p is the Laplace variable and the symbols «;, 4;, 4, 0;, A;q, Ayy Ay Agi,

and H(:) are described in Table 1.

n j?
The coefficients in Egs. (21) and (22) are obtained via continuity conditions of hydraulic

head and flux. They can be solved by following two equations simultaneously

8



I; * * *
i A, Ky, hy E'(], y* p)| j cos(4;x ) cos(a;x )dx
2
Ay Kby ESGLY p)‘ .[:cosz(/iix*)dx*

I2 * * *
= Ay Ky by By, D) IO cos(4 x") cos(a;x")dx

+ — - (28)
JZ=(; Ay Kyl hl E1 i,y .p) ‘y*=bf Io Cosz(/lix*)dx*
4y D)
EGY )|
and
P S, B EGHp) oo coste
i Ay hy Ex(Jby,p) Izcosz(a.x*)dx*
(29)
i h, Ay ¢1p(| bl,p)J' cos(A, X~ )cos(a ;X Ydx” Fz(J',bl*, p)
= h, A, E,(i.b, p) " E,(ib,p)

with
i E,(i,y", p)

El f f i — 30
(i,y,p) Y (30)
i 9E,(J,y . p)

E(Ly . p)=———"""" 31
(1,y . p) & (31)
T oF,(j,y", p)

F'(ly,p)=—"—" 32
(1,y . p) & (32)

¢1 i,y p)
¢1p i,y p)= T (33)



CHAPTER 3 NUMERICAL RESULTS

Following sections present the investigations of the head distribution in the L-shaped
aquifer, the effect of anisotropy and heterogeneity of the problem domain, and transient
pumping effect with multi-well locations in regard to the aquifer parameters for predicting

flow field bounded by constant-head and no-flow boundaries.

3.1. Steady-state head distribution

Consider a hypothetical aquifer with two sub-regions. Region 1 has an area of 900 m

x 300 m while the area of region 2is 300 m x 300 m. The heads at boundaries x =900 m

and y=600 m are respectively kept at h, =85 m and h, =80 m, specific storage is 10

m™ for those two regions, and the aquifer thickness is 80 m. Figure 3 shows the

steady-state hydraulic head distribution,_predietedby Eqgs. (12) and (13), in the aquifer before

pumping. Three different anisotropic satfesof hydraulic conductivity values, 1, 2, and 0.5,
are considered in cases (a) - (c) listedipssFalle" 2 and the simulated head distributions are
shown in Figures 3a - 3c. The aquifer shown in Figure 3a is isotropic (i.e.,

Ka=K, =K, =K, =520 m/day). This figure displays that the groundwater flows from

right to left, because the hydraulic head at boundary x =900 m is higher than that at boundary

y =600 m. The flow field schematic diagram is obtained by Darcy’s law with hydraulic

head distribution in order to express direction and magnitude of flow velocity. The result
illustrates that the flow field in region 1 is mainly in x-direction while that in region 2 is in
y-direction. This is because the shape of the aquifer and the no-flow boundaries constrain
flow paths. The effect of anisotropy on the groundwater flow is demonstrated in Figures 3b
and 3c. These three figures indicate that the flow velocity in x-direction increases with

anisotropic ratio.

10



3.2. Spatial and temporal head distribution

Since the transient solution developed in this study is in Laplace domain, Laplace
inversion technique is required to obtain the hydraulic head distributions in real time.
Stehfest algorithm [Stefest, 1970; Chang et al., 2010] is used to numerically inverse the
transient solution. The hydraulic head distributions at three different times, i.e., t=2 hrs,

2 days, and 7 days are shown in Figures 4a — 4c, respectively. Two wells are installed at
(850 m, 150 m) and (150 m, 550 m) with a pumping rate 16 m®/day and the conductivities
K, and K, are 520 m/day for both regions 1 and 2. Those figures show that the

aquifer drawdown increases with pumping time. The differences in hydraulic heads shown
in Figures 4b and 4c is very small, indicating that the groundwater flow becomes steady after

2 days pumping in this simulated scenario.

3.3. Effect of heterogeneity

Figure 5 demonstrates the effect of heterogeneity on the groundwater distribution.
Two types of aquifer formation materials, coarse sand and fine sand, are considered for the
present aquifer system. In Figure 5a, the aquifer in region 1 with coarse sand medium has
hydraulic conductivity of 520 m/day while that in region 2 with fine sand medium has
hydraulic conductivity of 50 m/day. In contrast to Figure 5a, the aquifer shown in Figure 5b

is considered to be homogeneous with coarse sand medium. The well with pumping rate of
8m®/day is located at (x,y)= (700 m, 140 m). The hydraulic head distribution shown in

these two figures are significantly different at t =7 days. The drawdown shown in Figure
5a is much larger than that in Figure 5b because the aquifer in region 2 is relatively low

permeable.

11



3.4. Multi-pumping/injection wells

The effect of the well locations upon the hydraulic head distribution in an aquifer with

irregular boundary is investigated in Figure 6. The conductivities K, and K, are 520

m/day for the whole region. One pumping well with a rate of 6m®/day is located at (100

m, 100 m) and two injection wells with a rate of 3m?*®/day are placed at (400 m, 150 m) and

(150 m, 400 m). Figure 6 illustrates that the groundwater flow within the contaminated area
can be restrained by those three wells. As demonstrated here, the semi-analytical solution
can be used to predict the flow field induced by multi-wells in an L-shaped aquifer. Coupled
with an optimization algorithm, this solution can be used to determine the well number, well
locations, and their pumping rates for pump-and-treat design in an L-shaped aquifer if it has

been contaminated.

3.5. Trapezoid aquifer

The present solutions can also be used to predict the flow induced by pumping in a
trapezoid aquifer with 45 degree at the acute angle as shown in Figure 7. Following two
conditions must be met if employing the present solution to predict the flow in a trapezoid
aquifer. They are the aquifer must be isotropic and homogeneous and the hydraulic heads at
two constant-head boundaries have to be equal. A dashed line can be drawn between two
re-entrant angles as shown in Figure 7b and an imaginary pumping well should be placed at
the location which is symmetric to the pumping well with respect to the dashed line. Thus,
the dashed line can be considered as an impermeable boundary for the trapezoid aquifer.

Figure 7b demonstrates the transient drawdown distribution at t= 2 days for the pumping

well located at (180 m, 76 m) and (76 m, 180 m) with the rate of 40 m*®/day. The

12



conductivities K, and K, are 2x10?m/s and specific storage S, is 1x10° m™ for

the whole region, and the hydraulic heads at the boundaries (x = 200 m and y =200 m) are

equal to 30 m. The aquifer thickness is 20 m. As a result, a symmetric pattern of the
hydraulic head distribution can be observed in the figure. The hydraulic head distribution in
the right trapezoid aquifer with a pumping well shown in Figure 7a can therefore be simulated
as a part of hydraulic head distribution in Figure 7b. To our knowledge, the semi-analytical
solution describing the flow induced by pumping in trapezoid aquifers has never before been
presented. The solution derived herein for an L-shaped aquifer can accordingly be applied to

solve the flow problems in trapezoid aquifers.

13



CHAPTER 4 CONCLUDING REMARKS

A new semi-analytical model has been developed to analyze the hydraulic head
distributions induce by pumping in a heterogeneous and anisotropic aquifer with an L-shaped
domain. Method of domain decomposition is used to divide the aquifer into two sub-regions
with different hydraulic conductivities. Steady-state solution is first derived and used as the
initial condition before pumping in the L-shaped aquifer system. The Laplace-domain
solution of the model is derived using the Fourier finite cosine transform and the Laplace
transform. The Stehfest algorithm is then adopted to evaluate the time-domain results. The
effects of anisotropy, heterogeneity, and boundary conditions due to pumping are investigated.
The present solutions can describe the steady-state and transient distribution of hydraulic head
induced by pumping in L-shaped aquifers. Following conclusions can be drawn from this
study:

1. The steady-state hydraulic head=distributions ihticate that the flow in region 1 is mainly in
x-direction and in region 2 is in y=dit€ction.

2. The anisotropic ratio has a significant effect on the flow pattern. The flow velocity in
x-direction increases with anisotropic ratio.

3. The developed solution can be used to assess the effects of heterogeneity and multi-well
locations on the head distribution. In addition, it can also be used to solve the flow

problems in trapezoid aquifers.

14
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APPENDIX A: STEADY STATE SOLUTIONS FOR AN

L-SHAPED AQUIFER WITHOUT PUMPING

In accordance with the dimensionless variables defined in section 2.2, Egs. (1) and (2)

can be written, respectively, as

b, 52¢1 5¢1 5¢1

K1 |2 o 6’y = lek5(X —ka)5(y*—YIk),
0<x <1, 0<y <b/ (A1)
and

b 6°¢, 0°¢, S, ody XL . . R
o Ty s, Kyl @O0 =)l ¥z,

0<x <, by<y <1 (A2)

The dimensionless boundary conditténsforirggion 1 can be expressed as:

¢ =0,at x =1, 0<y <b/ (A3)

%:O,at X =0, 0<y <b/ (A4)
OX

6¢£:O,at y' =0, 0<x <1 (A5)
oy

Z¢£=0,at y =hb, IL<x <1 (A6)
y

Similarly, the dimensionless boundary conditions for region 2 are

a¢§:0,at X =0, b <y <1 (A7)
OX
gf,%:O,at X =1, b <y <1 (A8)

18



¢;=h2_h1,at y =1, 0<x" <1 (A9)

The continuity conditions of hydraulic head and flux in dimensionless form are,

respectively,

h, (X,b)) = he, (X',b)), at 0<x <1, (A10)
and
of, o, N
K, h—= =K,,h,—4 ,at 0<x <I, (All)
Ty y =by Ty y =by

Without the pumping, the steady-state solution for groundwater flow can be solved after
removing all the right-hand side terms in Egs. (Al) and (A2). Multiplying Eg. (Al) by
cos(4,x) and integrating it from X E0/:t0 X \&1 in region 1 with boundary conditions

Egs. (A3) and (A4), Eq. (Al) is thenctrahstermed to

. 0%
QLd —ay—quZO (AL2)
with
— L g
4" = [ 4 cos(2,x")dx
where A, =(m+1/2)z, m=0123....

Similarly, Eq. (A2) can be transformed via multiplying Eq. (A2) by cos(e,x”) and
integrating it from x =0 to x =1, in region 2 with boundary conditions Egs. (A7) and

(A8). The result is

2
g -2 g (A13)
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7 * I; * * *
4, = | " # cos(a,x)dx
where a, =nz/l;, n=0123....

The general solutions of Egs. (A12) and (A13) are

4 (m,y") =C,e™ +C, e % (A14)
and
4, (n,y") = D% +D, e (A15)

where Q. = A,\Jx, b,/l, and Q, =a,\/x,b,/l,. The coefficients C,,, C,,, D,, and
D,, are unknowns and to be determined. Using boundary conditions Egs. (A5) and (A9),

the following relation can be obtained

Clm = C2m (A16)
and
D, =A h, —hy e —D, g 2% (AL17)
1n n,0 h 2 2n
2
1,n=0
where A = 0 nzd’

Substituting Egs. (A16) and (A17) into Egs. (A14) and (A15), the inversions of ¢~ and

¢, lead to Egs. (12) and (13). The Fourier finite cosine inversions for regions 1 and 2 are

1 (M.Y) = 2 By (M, y)c08(2,) (A18)
B0 = 2 A8 (1Y) cos(@,) (AL9)

The coefficients of C,, and D,, obtained by using the boundary condition Eq. (A6)

and the continuity conditions Egs. (A10) and (All) are given in Egs. (17) and (18),

respectively.
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APPENDIX B: TRANSIENT STATE SOLUTIONS

Multiplying Eq. (A1) by cos(4x") and integrating it from x =0 to x =1 in region

1 with boundary conditions Egs. (A3) and (A4), Eqg. (A1) can be transformed as

A2 5¢1 _ o4 .
Qo + oy 'S ZQlk cos(A X, )S(Y" = Vi) (B1)

with
T * 1 * * *
¢ = | 4 cos(4,x")dx
where 4 =(i+1/2)x/1;, i=0123..,and Q, = 4./x; b,/l,.
Similarly, Eq. (A2) can be transformed via multiplying Eq. (A2) by cos(ajx*) and

integrating it from x =0 to X =l ol Tegiony2 with boundary conditions Egs. (A7) and

(A8). The result is

*

%4, K, S, op &%
¢2 _ yl g2 ¢2 _ZQZk Cos(lix2k)§(y —ka) (BZ)

Q2 g +-L 2
ZJ¢2 ay ? Ky2 Ssl ot k=1

with

7 * I; * * *

o, :jo #, cos(a;x )dx

where o, = jz/l;, j=0123..,and Q,; =a;/x,b,/l;.

Then, taking Laplace transforms with respect to t of Egs. (B1) and (B2) with the initial

conditions Egs. (12) and (13), respectively, results in

=, 0°
_:ui2¢1 ¢i12 :__ZAlm m|C1mE(m y)

(B3)
_BZQ;( cos(2 Xy )5 (Y = V)

and
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27+ 5252* I; Ky S
-0/¢, +—5=—-= ZAZnAn](DZHF(n y)+B(n,y))
ay Ky2 sl n=0 (B4)

2
1 N . * * *
_BZQZk cos(a X5 )5(Y" = ¥ai)

*
N

with
Gy P =[ 9 Gy et

The general solutions of Egs. (B3) and (B4) can be expressed as

6 G,y p) =Tee" +T,e™ +4.(3,y",p) (B5)
and
8 (Y p)=Te™ +T,e +4,.(i,y" p) (B6)

The particular solutions Z;(i,y*, p) and ZZ’;(j,y*, p) presented as Egs. (25) and (27)

are, respectively, from

= ,. * eﬂy v . * * e_#iy* o . * *

Aoy p) == —[e TGy, p)d SRy, p)dy (B7)
:u| zlul

and

= egy e_ejy* 0.y

"Gy p) = iy Py ———[e™ T,(j,y", p)dy” B8

(1Y P) =5 (i Y, p)dy Zejf ,(i Y, p)dy (B8)

with

IN(A' p)___zAlm miCimE(M, Y )__ZQm cos(4%y )S(Y " — Vi) (B9)

o ;Kyl Ssz

L3,y . p)=-*% D AuA, (D, F(n,y)+B(n,y"))

2 KyZ Ssan

(B10)
1 - * * *
_BZQZk cos(a; Xy )3 (Y = Ya)
k=1

In addition, T;, T,, T;; and T,; are unknown coefficients to be determined. Using
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boundary conditions Egs. (A5) and (A9), the following relations can be obtained

Ti=Ty (B1D
and

— . —0. I* h - =~k - *
T, =-T,e e (Aj,O_[iz) 2h . —¢,,(1,b,, ) (B12)

2
1,j=0

where A;, = J. :

’ 0, j=0

Substituting Egs. (B11) and (B12) into Egs. (B5) and (B6), respectively, the inversions of

Zl* and ;Z lead to Egs. (21) and (22). The Fourier finite cosine inversions for regions 1 and

2 are
5.y p) = A (Y, p)Cos(4X) (B13)
5 (Y D)= Y Ay (3.Y. ) cosieg) (B14)

The coefficients of T, and T,; “@btaineddy using the boundary condition Eg. (A6) and

the continuity conditions Egs. (A10) and (All) are presented as Egs. (28) and (29),

respectively.
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Table 1. Notations.

Q, DA b/, v=m,i

Q,, DK, 0, /1, w=n, j

Ay | © owr/ly, w=0123.., w=n, ]
Avemi Do (v+1/2xll, v=0123..., v=m,i
1 i 02 17) 22+ p

0, D02 112l +x,(S,, 1S, P

nj
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1, m=i
A, ) )
{O,m;&l

. 1,y >y
H(Y —Yu) {0 y*<;*
, i
* * 1 1 y* > y;
H(Y —Y,;) {0 y < y*”
' 2j

Table 2. The constant-head boundaries and the anisotropic ratio

conductivities for cases (a) — (c)

of the hydraulic

anisotropic ratio

constant-head of hydraulic

boundary (m) hydraulic conductivity (m/s) conductivity

Case h, h, Ka K K,z K,, K, %,
a 85 80 0.003 01003 0.003 0.003 1 1
b 85 80 0.006 0.003 0.006 0.003 2 2
C 85 80 0.0015 0:003 0.0015 0.003 0.5 0.5

ax, represents the anisotropic ratio ofithé hydrauli€ conductivity in region 1
bx, represents the anisotropic ratio of the'fiydraulic conductivity in region 2
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