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A Secure Disk System: Using File System Level

Knowledge for Disk Data Protection

Student: De-Sheng Tsai Advisor: Ruei-Chuan Chang
Advisor: Cheng-Chung Lin

Computer System Lab
Department of Computer Science and Information Engineering
National Chiao-Tung University

Abstract

When the system is attacked and the privilege of the administrator is gained by the
intruder, some important system files may be tampered with or destroyed. We propose
a secure disk system, called~SecDisk that is.local disk knowing the detailed
knowledge of how the file system abeve-is-using the-disk to protect on-disk data from
intrusions. As chips of microprocessors_and memory become smaller, faster and
cheaper, it is feasible to place these into disks. Once a disk system has power
computing capability, some functionality can be put into disks to improve system
performance.

Disks have vantages to do data protection. When the system is attacked, we can
safeguard data against intrusions because disks with computing power are
compromise-independent of client systems. We protect data by backing up files in
disk hidden space that is originally used for bad block remapping. We extend and
exploit it for our backup storage. In our experimental results, the cost of memory

space and time is reasonable and acceptable.
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1. Introduction

Nowadays, the attack technologies are numerous and diverse. It is difficult to
prevent all of these attacks despite the best efforts of system managers. While new
security technologies may make these attacks more difficult and less frequent,
intrusions still exist as long as there are security holes in the system such as buggy
software or fallible users. Once an intruder is successful to break into the system, he
can obtain the privilege of the administrator. With that privilege, he can disable the
intrusion detection mechanisms in the host operating system or disrupt the system by
accessing, modifying, or destroying the important system data. He can also hide his
activities through tampering with the audit log content so that the administrator cannot
restore the system to the safe state according.to the log.

Nearly all of the intrusion actions arexvisible n.disk systems. For example, disk
systems are involved when madifying important system data, tampering with audit
log content (to scrub evidence),. resetting-files’ -attributes (to hide changes), or
replacing system utilities (e.g. adding backdoors or Trojan horses) [16]. Moreover,
Intrusion Detection Systems (IDS) that are placed in disk systems can not be disabled
by intruders that successfully bypass the hosts” OS-level protection. Thus, a disk
system is a good point for intrusion detection and data protection [16].

With the rapid development of the semiconductor technology, it becomes feasible
to embed processors and memory in a disk system to enhance its power [1, 5, 13]. As
a sequence, some works in the host system may be offloaded into the disk to improve
the total system performance. For example, as computation occurs near data, we can
improve performance by reducing traffic between the host processor and the disk
system. Acarya [1] proposals an Active Disk architecture that integrates sufficient

processing power and memory into a disk drive and allows the application-specific



code to be downloaded to process data that is being read from (or written to) disk.
Sivathanu [15] proposes a new functionality, called File-Aware Caching SDS
(FAC-SDS). FAC-SDS can smartly cache files with suitable sizes in order to improve
the cache hit ratio.

It is difficult to accomplish these functions in a real disk system since it only uses a
simple block interface for communicating with the host system. A request the disk
receives through this interface means nothing but block transmission. Therefore, disks
need to know more information for accomplishing these functions. In [15], it
addresses this by extracting on-disk layout and understanding FS-level knowledge.
FS-level knowledge means that the disk system understands knowledge of how the
file system is using it, and exploits the knowledge to increase throughput or enhance
functionality. For example, if the disk system knews which blocks constitute a file, it
can perform smart pre-fetching-on.a'per-file basis. Based on this concept, we want to
add data protection and intrusion detection mechanisms into the disk system.

In this thesis, we describe the design.of a secure disk system named SecDisk. It
uses the knowledge of the file system running on it to protect important system data
and detect intrusions. If the host system wants to modify a block that belongs to a
need-to-be-protect file, SecDisk can notice this and back up the original data to a
hidden area that is not exposed to the host. As a result, the intrusion can be detected
and the original data can be recovered. Since existing disk drives do not allow us to
implement our mechanisms on them, we use an in-kernel implementation as the proof
of concept.

We Dbriefly describe our architecture as follows. Currently, we focus our design on
Linux Ext2 file system to develop these mechanisms. In SecDisk, we have a
component, called extractor, to get the FS-level knowledge. Based on the disk layout

structure defined by Ext2, we extract information from on-disk blocks. There is a rule
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table in SecDisk that stores blocks’ permissions (not allowed for read/write/delete)
and rule policies (warning/backup). The administrator sets which files have which
permissions and rules and SecDisk translates them into blocks through file-to-block
semantic translation. With the FS-level knowledge and rule table, the component in
SecDisk, called interceptor, can filter and inspect block requests issued from the file
system. To protect data, SecDisk backs up the original data when the changes to data
are issued from the file system and we have a recovery mechanism that helps the
administrator to restore the data. Besides, SecDisk logs the data access traffic between
the file system and the disk for intrusion detection and this log content is stored in the
hidden space.

Our contribution is that we design a system that enables a block-interface based
local disk system to provide data protection and intrusion detection. According to the
experimental results, the cost -of .memory: is acceptable and in normal cases, the
overhead is nearly none. When violations-occur and SecDisk does backup actions,
although the time that backup ‘actiens _take ‘is long and degrades the system
performance in our experiments, we think that it is acceptable and reasonable. The
backup actions are taken when the protected data are modified and that means that
someone is attacking the system. Degrading the system performance not only slows
the intrusions down but also lets the administrator be aware of the intrusions right
away. From the experimental results, it is feasible to add these mechanisms into real
disk drives with computing power. Moreover, although we design the mechanisms for
a local disk, we consider that the mechanisms can also be deployed in Storage Area
Network (SAN) [6].

The remainder of this thesis is organized as follows. In Chapter 2, we discuss
related work. In Chapter 3, we describe our design objectives and issues. Chapter 4

describes the implementation of our secure disk system. Chapter 5 evaluates the
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performance. Finally, we conclude in Chapter 6.




2. Related Work

The work related to our effort fall into three categories: 1. traditional intrusion

detection, 2. disk intrusion detection, 3. extract FS-level knowledge.

2.1 Traditional Intrusion Detection

In order to prevent intrusions, many Intrusion Detection Systems (IDSs) [2, 12]
have been developed, which fall into following the two categories: network-based and
host-based IDSs. Network-based IDSs [3, 11] are embedded in sniffers or firewalls for
examining suspicious traffic or traffic with attack signatures. Host-based IDSs are
embedded within host operating systems for inspecting information, such as execution
of an abnormal sequence of system,calls'[4, 9].or process profiling [10], for signs of

intrusions or suspicious behavior.

2.2 Disk Intrusion Detection

In self-securing storage system (SSS) [16], it proposes a new place to detect
intrusion, that is, disk systems. Some intruder actions (such as modifying the audit log
content, adding backdoors, and etc) are visible in the storage system and it is very
hard to disable the IDSs that deployed in the storage system. The difference between
our system and SSS describes as follows. SSS’s storage system is a NFS server (file
server) with an object-based store. An object-based store [8] simplifies access control
when compared to a standard block-based disk. In it, a file consists of a single object
stored as a unit on the disk rather than blocks in a traditional block disk. That is, the
basic unit between the file system and the disk is an object rather a block. Because of
that, data protection with versioning is easier and more efficient. However, most

modern computer systems still access disks via standard block interfaces (e.g., ATA,
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SCSI). Therefore, their research results can not be applied directly to these systems. In
our architecture, we design data protection and intrusion detection in a local disk with
a standard block interface. This makes it possible for most computer systems to use
our architecture to protect data. Moreover, data protection in a block-based local disk

is more complicated than that in an object-based disk.

2.3 Extract FS-level Knowledge

Currently, it is feasible to embed processors and memory chips in a disk system to
enhance its power. As a consequence, some researches [1, 5, 13, 15] put forward the
concepts that some works in the host system may be offloaded into the disk to
improve the total system performance. But it is hard to implement these functions in a
block-based interface disk without enough FS-level information. To address this,
semantically-smart disk system™ (SDS).[15] - proposes that the disk system
automatically gains the detailed"knowledge-of-how the file system above is using the
disk system. Based on this concept, we design data protection and intrusion detection
mechanisms in block-based disk systems. Our goal is different from SDS’s. SDS
exploits the FS-level knowledge to improve performance, while we use the

knowledge to protect data and detect intrusions.



3. Design

The design objectives of SecDisk are as follows. First, when our system encounters
attacks, the integrity and safety of the protected data should always be guaranteed.
Second, SecDisk can detect some intrusion actions that may be hidden by intruders at
the file system level. These actions include adding backdoors or tampering with log
content, and etc.

The first objective is our primary goal. When a malicious intruder breaks into the
system, he usually can get the privilege of the system administrator. With that
privilege, he can access and control all of the system resources without any limitation.
For example, he can arbitrarily read, write, or modify system files (such as password,
configuration, executable files, and etc.).. These actions may make our system messy
or even crashed. Thus, we want'to ensure the, integrity and safety of the important
system files. Besides, for intrusion‘detection, SecDisk logs the traffic of the important
system files between the file“system and-‘the ‘disk. With that log content, the
administrator can determine the damage 'caused by the intruders and fix the system.

Figure 1 shows the architecture of a system based on SecDisk. The SecDisk may be
a local disk that attacked direct to the client system, or a network attacked disk that
exports a block interface, which is used in a SAN [6] environment. The client system
is the host system including operating system, file system, and etc. The SecDisk
system has extra computing power and memory in which there are storage and an
interceptor wrapper. Between the two systems there is a standard block interface (e.g.
SCSI, IDE/ATA). The storage includes two parts: exposed storage (used by the client
system to store data) and hidden storage (used by SecDisk to back up data and log
information). There are several components in the interceptor wrapper. The rule table

stores the access permissions (no-read/no-write/no-delete) and violation policies



(warning/backup) of the protected files in block formats.

Host

Operating System

File System

Disk Driver

Requests

Block Interface

SecDisk

m ™ Recovery

Interceptor Manger Logger

o Backup Warning

Extractor Handler || Handler

[ [
Rule
Table

Interceptor Wrapper
!\1
\ .
Console

Figure 1: Architecture of SecDisk

We illustrate a rule example in Table 1. In our experiments, we use it as our file

model to protect. All files in Table 1 are set with permissions of no-write and

no-delete. And their policies are set either warning or backup as the administrator

wants. When the block requests violate the access permissions, the set policy action of

the protected data will be taken. The extractor extracts the on-disk layout structures

and the interceptor uses the layout information to inspect block requests and judges

them by consulting the rule table. The recovery component recovers the data from the




backup and the logger component logs the violation messages for the administrator to
detect intrusions. The console is a communication channel for the administrator to use
SecDisk system. Through this channel, the administrator can setup the files that

needed to be protected and the corresponding rules.

File Permission Policy
letc no-write | no-delete backup
/boot no-write | no-delete backup
/bin no-write | no-delete warning
/sbin no-write | no-delete warning
/usr/sbin no-write | no-delete warning
lusr/bin no-write_ | no-delete warning
/lib no-write | no-delete warning

Table 1: Rule Example

Figure 2 shows the flow of how SecDisk handles the block requests. First, all block
requests which are issued form the host system are intercepted and checked by the
interceptor. Second, the checking is performed by examining the protection rule of the
blocks, which are stored in the rule table. Third, if a block request is judged legal, the
interceptor is allowed to get the data block from the exposed storage. Otherwise, the
interceptor sends the request to the logger component. Fourth, the logger records the
request in the hidden storage for future intrusion analysis and recovery. Fifth,
according to the violation policy of the request stored in the rule table, the request is
sent to either the warning or the backup handler. Under the warning policy, the

warning handler just delivers a warning sign about protection violation. Under the



backup policy, the backup handler not only delivers a warning sign but also backs up

the requested block in the hidden storage when it is changed. Note that these two

policies can be used in different conditions, which will be discussed in Section 3.4.

Finally, SecDisk allows the access request to the exposed storage.

@ Block Requests

&)

2) ¥
Rule ===
Interceptor
Table - P
T~
~ @
Hidden |¢—-q LOBger
Storage @
L
“‘--..._|_____________,_,..=-"’
¥ ¥
Backup Warning
Handler Handler

T
~

Fxposed
Storage
’_,_,.,--'—'_'_'_-_'_‘-'—-._\_‘\

\__‘__/

©

Figure2: Processing Flow of Requests

In the following, we discuss the design issues of the SecDisk system and the way

we address these issues.
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3.1 On-Disk Structure Extraction

Traditionally, a disk system receives a series of block requests, which are either
read or write. For a read request, the disk can not tell if the block belongs to a file
with secret data. For a write request, the disk does not know whether the write which
corresponds to a file content update, a file deletion, or a metadata modification.
Therefore, in order to provide useful data protection functionality in the disk system,
the disk system must have some file system knowledge. That is, it must know the
information of the file system running on top of it. The way to know that information
IS to extract the on-disk layout structure. In an Ext2 file system, for example, if an
existing file is modified by an intruder, the updated inode and data blocks will be
written back to the disk. The disk system must know the ranges of address of inode
blocks and data blocks so that the disk system canefficiently and correctly exam these
requests to find changes. Therefore,.in order ta add protection mechanisms into disks,
our first step is to discover and acquire the detailed information of on-disk structures.

The best way to obtain the on-disk.information is to automatically infer the file
system type without the administrator involvement. SDS [15] has evaluated the costs
and benefits of acquiring on-disk knowledge of Berkeley FFS-like file systems,
finding that it is feasible and valuable. In SDS, it exploits the knowledge to improve
system performance. Based on the concept of SDS, we use the knowledge to develop
protection mechanisms. So far, inferring all kinds of file systems automatically is
nearly impossible. Moreover, we put our focus on developing protection mechanisms.
Therefore, we choose one of the most popular file system, Ext2, as the target file

system when we design SecDisk.
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Boot
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Block | Descriptors | Bitmap Bitmap | Table ata blocks

Figure 3: On-Disk Layout of Ext2

Figure 3 shows the on-disk layout of an Ext2 file system. In an Ext2 file system, a
disk is partitioned into several block groups. In each block group, there are several
types of blocks: superblock, group descriptors, data bitmap, inode bitmap, inode table
blocks, and data blocks. Superblock is the most important block in an Ext2 file system
because it includes all file system wide_information. By extracting the information
from a superblock, we can obtain-the positions-of-the other types of blocks. For
example, we may get a result that is simifar-to-the following. Block 0 is superblock,
block 1 is group descriptor, block 2 is:data bitmap, block 3 is inode bitmap, block
4~49 are inode table blocks, and block 50~1000 are data blocks. With this information,
we can just inspect the blocks that we concern about. For example, if we want to
protect the system password file from being modified, we only have to inspect inode

or data blocks to see if the inode or data of the password file is modified.

3.2 Semantic Translation between Users and Disk System

Knowing the type of a given block is not enough to achieve the goal of file
protection. As we mentioned above, a system administrator has to specify the files to
be protected and the protection policies via a private secure channel before using the

SecDisk. This indicates that the administrator deals with files, instead of disk blocks.
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Traditionally, the file-to-block translation is done by the file system. However, as a
disk system, the help of the file system is not available. Moreover, the file system is
not trusted. Once the system is invaded, an intruder can gain control of the file system
and give incorrect information to cheat and mislead the administrator. Therefore, it is
necessary for SecDisk to perform the file-to-block semantic translation. This gives the
administrator a file-system environment that they are familiar with to set the
protection rules of files. A protected file will be translated into the corresponding
inode and data block numbers on the disk. With these block numbers, our disk system
can then set protection rules on these blocks to protect them. In the following, we
describe how the translation is done in the SecDisk system.

Basically, we use the same mechanism as the file system. In a file system, each file
has an inode that stores the positigns of all the data blocks for that file. Therefore we
can know the data block numbers.if we get.the inode. The inode can be gotten by
examining data blocks of the parent directory-of that file. Thus, if we can get the
inode position of the root directory,“we.can find out the inodes and the data blocks of
any given files. In an Ext2, the inode number of the root directory is fixed as 2. Given
a file path, SecDisk locates position of the root inode and extracts its data blocks to
get the inode number of the next entry following the root directory in the file path.

This step repeats until the inode of the target file is found.

3.3 Block Protection and Intrusion Detection
In this section, we describe our key issues about what block requests our disk
system inspects for protection and intrusion detection. In addition, we also describe

what intrusion detection we implement on SecDisk system.
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3.3.1 Block Protection

In SecDisk, there is a rule table for storing rules of protected blocks. The rules
specify that what permissions of blocks are allowed and what reactions are taken as
block requests against rules occur.

Our primary goal is to protect files against attacks. Through file-to-block
translation, we can know the inode and data blocks of a file. After the translation, we
can ensure that a block request does not violate the rules for the file. Currently, the
protection focuses on regular files and directories. The protection for other file types
(e.g., symbolic link, FIFO, char devices, block devices, and etc.) is left as the future
work. The rules of a file can be the combination of the following options: no-read,
no-write, and no-delete. For the first two options, SecDisk inspects all block requests
that corresponds to data blocks to.dook for the block requests that belong to that file.
For the no-delete option, SecDisk inspects all.block requests that corresponds to inode
blocks to look for the block request that-belongs to'that file. As mentioned before, an
inode is metadata of a file in Ext2 file system./Afile’s inode with a non-zero value of
deletion time represents the deletion of the file. Thus, to protect a file from not being
deleted, SecDisk inspects the deletion time value of the watched file’s inode to see if a
deletion occurs.

From above discussion, in order to realize these three options, SecDisk just needs
to inspect two types of blocks: inode and data blocks. Examining these block types,

we can efficiently ensure the protected files to be safe.

3.3.2 Intrusion Detection
System log content is an important source for the administrator to detect and
analyze attacks. For example, we may not allow some important files or directories to

be changed, such as adding files to the directories or modifying the files’ content. But
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some crafty intruders may tamper with or erase the log content. Thus, the
administrator has no idea what intruders have done to the system. In most attacks,
intruders may access and modify disk data to damage the system and these actions are
all seen in the disk system. Therefore, SecDisk keeps the disk access log in the hidden
storage to allow the administrator to analyze it. Because the log content is stored in
the hidden storage that can avoid attacks, the administrator can use it to find out the
attacks, determine the damage caused by intruders and restore the changed files to
original status. In order to reduce the size of the log content and make the analysis
more efficient, SecDisk just logs the accessing actions that are related to the watched
files (set by the administrator for protection).

Besides, there are other complicated intrusion detection methods, such as virus
scanning, can be implemented in the disk system. However these methods require
more resources and may decrease the disk performanee. Thus, we currently focus our
efforts on the protection mechanismsi.Advanced.detection methods are left as future

work.

3.4 Protection Policies

When a request against the rule occurs, its corresponding protection policy is taken.
In SecDisk, we design two policies: warning and backup. The administrator can set
different policies for different files according to his consideration. In this section, we

elaborate on these two policies.

3.4.1 Warning
Warning policy does a simple action. When a violation occurs, SecDisk just
delivers the warning sign of the violation to the console. These actions help the

administrator detect the attacks right away when the intruders modify the protected
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system data, and the administrator can take some actions to fix the system. Delivering
the warning signs causes less overhead to our system. Therefore, in our design, this
policy is suitable for protecting less important files, or in the condition that the

administrator does not want to sacrifice the system throughput.

3.4.2 Backup

In our system, backup is the main policy for protecting data. When a protected file
is modified by an intruder, SecDisk backs it up in the hidden storage for future
recovery. A file consists of one or more data blocks. Only the modified blocks are
backed up. We illustrate our backup mechanism with an example in Figure 4. Given
that a file “foo” is composed of data blocks on the disk. If one of the protected blocks
is modified by the high-level system, SecDisk backs up the original data of the
modified block to the hidden space. After the backup action, SecDisk should record
the relation between the protected files-and-backup blocks. That includes which file
the backup block belongs to, the offset.of the block in the file, and etc. With that
information, we can recover the original file from these backup blocks through a
recovery mechanism. Through the console, the administrator can instruct SecDisk to

recover backed up files from the blocks in the hidden storage to their original status.
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Figure 4: A Backup Example

Note that the backup is performed only for the first write to the block. That is, when
the block of a file is first modified since the:file is set protected, SecDisk backs it up
and removes the block from the=protected block list. This is because the goal of our
protection mechanism is to guarantee that-the original data is kept safe and integrity
when the system is attacked. Therefore; afterfirst modified, SecDisk does not back it
up again.

If the administrator wants to ensure file safety, he can use the backup policy. But it
results in more overheads than the warning policy. This will decrease the total disk
performance. We will discuss this in detail in the performance evaluation section.

Besides warning and backup policies, there is one more policy we can use in
SecDisk, named rejection policy. As its name indicates, SecDisk will reject block
requests if they are against protection rules. In the no-read permission, its
corresponding violation policy is rejection policy. This is strongest and safest
protection policy. But this policy results in the stat inconsistency between the file
system and the disk. Generally, a file system keeps on-disk data structures (such as

superblocks and bitmaps) in memory for performance purpose. Thus, in the disk
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system, if we refuse a block request that has been allowed by the file system, the state
inconsistency problem occurs. That inconsistency makes our system messy. For
example, if the file system deletes a file is not permitted by our disk system rules, it
frees the corresponding inode and data blocks of the file and resets the inode bitmap
and data bitmap. Later it may use these blocks for next creation of a new file. But in
our disk system, we refuse that block request. So there is a collision between the new
file and the original file. The new file does not exist on the disk and the original file is
not seen by file system. This policy may be used when the administrator wants to
strongly protect the files in any situation. Because of the inconsistency problem, we

do not apply the policy to our system.
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4. Implementation

We need a disk system with computing power to implement our design but now, it
is not easy to obtain this type of disks. Thus, in order to prove our concept, we
implement our mechanisms as a kernel module (named Interceptor Wrapper) and a
user process (named Setup Rule Process). Our implementation is in a host PC running
Linux with kernel 2.4.18 and Ext2 file system. Figure 5 depicts our infrastructure and
a flow of how our system works.

First, the extractor extracts the on-disk Ext2 layout structures to gain information
(such as block type position range) for protection. Second, the administrator sets
file-based protection rules through the setup rule process. Then, these rules are
translated into block format. Third, the block-format rules are stored into the rule
table via our implemented system calls.’Fourth, afterwards all block requests issued
from the file system are interpased by the interceptor. Fifth, the interceptor compares
the requested block number with the.block-numbers stored in the rule table. This
comparison is to find out if this block number-is set watched by the administrator. If it
is not found in the rule table, the interceptor lets the request access the physical disk
without any intervention. Sixth, if the requested block number is in the rule table, the
logger logs the violation of the requested block number for intrusion detection.
Seventh, the corresponding protection action is taken depending on what policy
(Backup or Warning) is set by the administrator. Finally, SecDisk lets the request to

access the physical disk.
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Figure 5: Infrastructure of SecDisk

The hidden storage showed in Figure 5 is false hidden storage. Because we do not
implement in a real disk system, we allocate some space from the file system
pretended as hidden storage. In the following, we describe detailed functionality and

implementation processes of each component in our infrastructure.
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4.1 Set Rule Process

The set-rule process is an interface for the administrator to communicate with the
SecDisk. Its major functionality is to support a file-system environment for the
administrator to set the protection rules. It performs two actions: the file-to-block
translation and storing the rules into the rule table. In the following, we describe how
we implement these two functions.

In the Ext2 file system, directories are implemented as a special kind of file whose
data blocks store all the entries in that directory. Each entry (i.e., ext2_dir_entry_2)
contains the corresponding inode number. Figure 6 shows an example of the data
contents in the root directory. Given any file path for file-to-block translation (for
easy explanation, we assume that the file pathis“/homel/usr/sam”.), we get the root
directory (inode number 2) and-extract its inode fields to locate its data blocks. We
compare the name following the root.directory-in thefile path with each name field in
the root directory entry to get the nextentry’s-inode. In our example, the next entry is
“homel” and we get its inode number 67. This step repeats until the inode of the
target file, “sam”, is found. With the inode of the target file, we can get all the data
block numbers of that file.

After getting the inode and data block numbers of a given file, we store the
numbers with the corresponding rule in the rule table. This is done via the SetRule()
system call implemented by us. In addition to SetRule() system call, we also
implement DelRule() and ListRule() system calls for the administrator to mange rules

in the rule table.
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Figure 6: Entries of Root Directory

4.2 Interceptor Wrapper
Our protection mechanisms are implemented.in the interceptor wrapper. In the
following, we describe each component”in the wrapper and their implementation

details.

4.2.1 Rule Table

The rule table stores the block numbers (inodes and data blocks), permissions
(no-read, no-write, and no-delete), and protection policies (warning or backup) of the
protected files. As the files that need to be protected become more, the size of the rule
table becomes larger. Therefore, doing comparison efficiently in such a large table is
required, or the system performance will be degraded. With this performance
consideration, the rule table is built up using hash tables. In our implementation, we

use two hash tables for storing inode block numbers and data block numbers

22



respectively.
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Figure 7 shows an example of the inode hash table. Each entry means an inode and
it points to its first data block. There are several inodes in a type of inode block. For

efficiency of the searching, SecDisk records the inode number and its located block

pointers to next block belonging to the same file

Figure 7:/Inode Hash Table

number of a protected file.

4.2.2 Interceptor and Extractor

The interceptor interposes the block requests and filters them. In our current
implementation, SecDisk just needs to compare the block numbers that are located in
the ranges of the inode and data blocks. Requests to all the other types of blocks are
passed. That makes the comparison more efficient. In order to obtain this knowledge,

SecDisk first performs on-disk layout discovery. That is the job of the extractor. As

23



we mentioned before, this is done by extracting the information form the superblock.
With the on-disk layout knowledge, the interceptor can do the correct filtering when

block requests comes.

4.2.3 Logger

Through recording the actions of accessing the disk data, the administrator has
clues to determine the damage caused by intruders. In our system, this is done by the
logger but it does not log all of these actions. When a block request against the rule
occurs, the logger logs this violation along with the file name that the block request
number belongs to. It is very possible for intruders to modify the important system
files when they attack the system. In SecDisk, most of the important system files are
set protected. Thus, we can check'this log content to see if our system is suffering

attacks right now.

4.2.4 Protection Policy and Recovery.

In this section, we describe the implementation of the two protection policies in the
prototype system. For the warning policy, our ideal method is to deliver a warning
sign to the console to notify the administrator that the protection rule is violated. In
our current implementation, SecDisk just prints the messages into the system message
buffer. In Linux, we can use the command, dmesg, to see the messages.

For the backup policy, in addition to the action of the warning policy, SecDisk
backs up the protected blocks that are modified in the hidden space. As mentioned
before, we allocate some space in advance from the disk and pretend it as the hidden
space. Figure 8 shows an example of how the backup action works. First, we assume a
file, named test, with inode number 11 and four data blocks, number 40, 41, 43, 47. If

the blocks with number 41 and 43 are modified, we back up the original content of the
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blocks in the hidden storage. For simplicity of management and recovery, SecDisk
will create a new file with the same file path name of the original file. In this example,
a file, named test, will be created in the root directory in the hidden space. . And the
first two blocks of this file are the backup blocks. After backup actions, SecDisk
correlates the new file with the original one. In our example, the modified blocks are
number 41 and 43 and their corresponding positions of the original files are 2 and 3.
Our backup mechanism is a block-based backup. That is, SecDisk backs up the
modified blocks of a file, not backs up all blocks of the file. Therefore, SecDisk must
record what block numbers of a file are backed up. To implement this, we use a data
structure to record them to store the right positions of the blocks in the new file
corresponding to the original file. In this example, SecDisk records that in the new file,
its first block is the position 2 and its second block is the position 3. With this
information, SecDisk can recover data from the hidden space correctly.

Recovery performs the inverse actions-of-the backup. This is the job of the recovery
component. The administrator gives a.file path*that he wants to recover, and then
SecDisk searches the hidden storage for that file. After finding it, SecDisk can recover

the original data.
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Figure 8: A Backup Example
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5. Performance Evaluation

In this chapter, we use several experiments to measure the overhead of our
prototype SecDisk system. These experiments aim to show that the overhead is
acceptable and it is feasible to implement our mechanisms in a real disk system. Our
machine is a host PC that is equipped with a Pentium 4 1.6GHz processor, 256MB

DDRAM, and a ST340016A, 40G disk with 7200 RPM.

5.1 Installation Overhead

Before SecDisk can start to work, two things need to do: extracting on-disk layout
and setting rule time. The former, as mentioned before, is just to locate the superblock
and gain the information by extracting the superblock. This action is simple and fast,
and thus it nearly costs no overhead.

We measure the setting rule-time of various sets of files and Figure 9 shows the
results. We give different sets of files, ranging-from-1000 to 10000, and measure their
translation time. The time ranges from: 166 milliseconds to 2.589 seconds. We
consider that generally, 10000 files are enough for the administrator to set and it is

acceptable to take 2.589 seconds to translate them.
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Figure 9: Set Rule Time

5.2 Runtime Overhead
In this section, we start to measure the different kinds of overhead when SecDisk

runs.

5.2.1 Memory Cost

First of all, we measure the memory cost of our data structure for storing the
information of protected blocks. As showed in Table 1, we use these file sets as our
experimental model and Table 2 shows the detailed information of these file sets.
There are 8674 files and total size is 219124 KB. We evaluate the memory cost of
each file set. In our SecDisk system, we use two hash tables for storing inode blocks
and their data blocks. Their usage is showed in Table 3. If we select all of the file sets
to protect, the most memory is used for data blocks and the total size is 2.335 MB. We
think that this cost is acceptable if it is implemented in a real disk. The administrator

can only select some files that he cares the most to protect.
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File Sets File Numbers Size (KB)
/sbin 167 9040
/bin 72 7928
fusr/sbin 1809 115708
{usr/bin 243 83960
/lib 1625 39644
/boot 11 3824
letc 1311 6332
{usr/include 3436 28582
8674 295018
Table 1: Model File Sets
File sets Inode (KB) Data (KB) Total (KB)
/sbin 4.676 63.28 67.956
/bin 2.016 55.496 57.512
fusr/sbin 78.625 809.956 888.581
lusr/bin 6.804 587.72 594.524
/lib 45.5 277.508 323.008
/boot 0.308 26.768 27.076
letc 36.708 44.324 81.032
lusr/include 96.208 200.074 296.282
270.845 2065.126 2335.971

Table 2: Memory Cost
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5.2.2 Legal Access Overhead

In this subsection, we want to know what the overhead costs if our protection
mechanism is on, but accessing behavior does not violate the rules. In this condition,
the main overhead is the time that comparison the requested block with the ones in the
rule table. We set our model file set (showed in Table 1) to protect. We use a
benchmark, PostMark [PostMark], as our behavior model. PostMark is a file
benchmark and is initially configured to create a number of file. When PostMark
starts to run, it performs transactions, including read, write, append, create, and delete,
to those files randomly, and report the transaction rate as the result. In our experiment,
the environment is: 764 created, 243 read, 257 append, and 764 deleted. Table 4
shows the time. Without protection mechanism, it takes 39 seconds. With protection
mechanism, it takes 41 seconds.. It only cost 5% overhead in our experiment. It
presents that in most conditions=(without violating.rules), SecDisk can work as well as

the system without the protection mechanism.

Without Protection With Protection

39 (seconds) 41 (seconds)

Table 3: Time of PostMark

5.2.3 Backup Overhead
In the following, we evaluate the overhead of backup mechanism. We use three

experiments to display this.

5.2.3.1 The Backup Time of Different File Size
First, we evaluate the backup time of single file with different file size and Figure

10 shows it. In this experiment, our file size is presented by block numbers and one
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block stands for 4096 bytes. Therefore, the experimental file size ranges from 1KB (1
block) to 1.6MB (400 blocks) and its cost time ranges from 0.17 second to 24.135
seconds. Our backup action is to backup modified blocks to hidden space. Accessing

disk originally takes longer in the system and we think that this result is expectable.
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Figure 10: Backup Time

5.2.3.2 Make Kernel

In this experiment, we compare the- performance between with backup actions
and without backup actions and-we use.make kernel-for our benchmark. In the Linux
kernel source directories, there are.about 11000 files in these directories and the total
size is 160 MB. For convenient of measurement, we pick up some files, that is used
while making kernel, from the different directories and set them with no-read
permissions and backup policies. That is, in making kernel period, each file (*.c and
*.h) read from the disks is backed up by our SecDisk. Figure 11 shows the result. The
original making kernel time is 420 seconds and the overhead time ranges from 14.39

seconds to 133.36 seconds.

31



O Original @ Overhead

700

650

600

550

500
450
400 [ [
350 Ff [
300 Ff [
250 Tf [
200 Ff [
150 F1
100 Ff [

Time (second)

0 40 69

5.2.3.3 Delete Files

In this experiment, we choose two file sets, etc and boot, to delete. These files are
set with no-delete permissions and backup policies. Their information of numbers and
size is listed in Table 5. The result is that although these two file sets have almost the
same size, the time taking by deleting the boot file set is shorter than the time taking

by deleting the etc file set. The reason is that the etc file set has more files than the

Number of Files

Figure:11:"Make Kernel

106 117 120 132 204 302 948

boot set’s and thus deleting the etc file set needs to take more time.

Delete Files Number / Size (KB) Time (s)
letc/* 1311 /6332 180.14
/boot/* 21 /6164 74.212

Table 4: Time of Deleting Files

32




From the above three experiments, the overhead of the backup actions seems large
and may degrade the performance. But the backup actions are taken when illegal
actions violate the rules. T