國立交通大學

環境工程研究所

碩士論文

Mary .

基於移動污染風險潛勢指標之低污染公車補助 路線優先性分析 Priority Evaluation of Bus Routes for Low Emission Vehicle Subsidy based on Mobile Source Pollution Risk Potential Indicators

研 究 生:張嘉仁 指導教授:高正忠

中華民國 101 年 05 月

基於移動污染風險潛勢指標之低污染公車補助路線優先性分析 Priority Evaluation of Bus Routes for Low Emission Vehicle Subsidy based on Mobile Source Pollution Risk Potential Indicators

研 究 生:張嘉仁	Student : Jia-Ren Jang
指導教授:高正忠	Advisor: Jehng-Jung Kao
	國立交通大學
	環境工程研究所
	碩士論文

A Thesis

Submitted to Institute of Environmental Engineering

College of Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master Science

in

Environmental Engineering June 2012 Hsinchu, Taiwan, Republic of China

中華民國一百零一年六月

摘要

為提升空氣品質,補助推廣低污染公車為改善移污的策略之一。由於 全面更換低污染公車的成本頗高,為使補助經費能有效改善空氣品質,有 必要探討各公車路線更換低污染公車之優先性。

本研究因而依據移污濃度及其對沿線人口的影響程度建立指標評估 台北市各公車路線替換低污染公車的優先性。由於台北市公車路線眾多, 故本研究首先訂定初選原則刪除影響較小之路線。然後以 OSPM 移污街谷 模式依據各街道交通流量、沿線建築及氣象特性等因子模擬各街道之污染 程度及推估其空間分佈。然後依據移污濃度以及對沿線人口的影響建立污 染濃度-長度及吸入風險二組指標,首先建立單一污染物的指標,然後再依 據 REL_A及空氣品質標準為基準建立可供用以比較不同污染物影響程度的 指標,且進一步加總各污染物子指標建立綜合指標,以作為評估各路線補 助優先性之依據。

初選時共刪除路線 75 條,再依據行駛里程選取前 100 條路線進行後 續分析。由各路線 OSPM 模式模擬結果可看出移污濃度主要受道路寬度、 高度以及車流量影響較大。指標優先性分析方面,由於評估時有必要考量 對居民及活動人口的影響,故本研究建議採用吸入風險組的指標。單一污 染物子指標中 CO和 PM₁₀ 及 PM_{2.5} 子指標間相關性頗高,其餘子指標間的 相關性則不高,單一污染物子指標可考量採用 PSI 指標污染物 PM₁₀ 或是 與其相關性頗高的 CO 子指標。唯只考量單一子指標評估較不全面,且因 不同污染物所產生之影響不同,故本研究建議亦可考量採用綜合指標。

關鍵字:移動污染源、指標、低污染公車補助、街谷模式、永續環境系統 分析

i

Abstract

For improving ambient air quality, subsidy for low emission buses is a widely adopt policy to reduce mobile source pollution. Since the cost for replacing buses with low emission vehicles is quite high, prioritizing bus routes for increasing the effectiveness of the subsidy policy is thus desired.

Therefore, this study establishes indicators to evaluate the subsidy priority of a bus route according to simulated pollutant concentration and affected population along the route. Since there are too many bus routes in the studied area, Taipei City, this study excludes those routes with obviously low pollution impact first. Then, the Operational Street Pollution Model (OSPM) is applied to simulate the mobile source pollution along each route based on estimated traffic flow, buildings on both sides, and meteorological data. Two sets of indicators are established. The first set is computed according to pollutant concentration and route length, and the other is based on the estimated pollutant intake sum by affected population. Indicators for individual pollutants are established first. For comparing the results obtained for different pollutants, the Acute Reference Exposure Level (REL_A) and Air Quality Standard are applied to establish the other sets of indicators. Finally, aggregate indictors are set up by adding up all indicators for individual pollutants. The applicability of each indicator for prioritizing bus routes for subsidy is then evaluated.

Seventy-five routs with obviously low pollution impact are removed during the initial screening procedure. For the rest of routes, according to the trip length of each route, the top 100 routes are selected for further analyses. The results simulated by OSPM are mainly affected by street width, building height, and traffic flow. Because the impact on affected population along a route should be considered, the intake-sum indicators are thus recommended for prioritizing bus routes. Although the CO, PM_{10} , $PM_{2.5}$ indicators are highly correlated, others are not. For individual pollutant based indicators, either the PM_{10} , as the major PSI critical pollutant, or CO indicator is suggested. However, different pollutants have varied impacts on human, and the indicator based on one individual pollutant may not represent the overall effect from all pollutants. The aggregate indicator is therefore recommended for prioritizing bus routes for low emission vehicle subsidy.

Key words: mobile pollution source; indicator, subsidy for low emission buses; and sustainable environmental systems analysis.

致謝

感激指導教授高正忠老師這兩年來的指導,即便是在假日老師也總是 樂於撥出時間的指導我,並盡可能快的協助我研究上的事宜,並不厭其煩 地反覆叮囑寫作論文應注意的事情以及做研究的態度,以及生活上的幫助 和不時提醒我要多運動。這兩年來常常聽到老師說"知道要做的事情要趕快 做,不要拖",這句話不只可以用在做研究的態度,使我得已在畢業典禮前 順利口試,準時畢業,更可以用於生捱上的規劃。也感謝中興大學的陳鶴 文老師和陳維燁老師,在我口試時提出的建議以及指導,讓論文更完善, 使學生受益匪淺,不勝感激。

也感謝子欽學長,在論文題目上的協助以及即便在開始上班後仍舊撥 出時間指導我研究上的事宜。也感謝坤興學長在程式上的指導,以及宥禔 學姊在研究上的建議,以及心怡學姐在 GIS 軟體上的協助,也感謝冠華、 雅如、岳奇、科智幫助我解決研究上所遇到的瓶頸,讓我的研究過程得以 順利。

也謝謝同學彥宏和維祐的打鬧讓研究期間的生活更有趣;研究室的學 妹莛涵和佩樺每天中午幫忙訂便當和飲料;以及一起去吃飯、可樂趴、打 球打工的同伴們,都讓我研究所的生活更充實有趣。而在研究期間也得到 許多人在資料提供上的協助,包含了台北市交工處及台北市環保局技術室 職員們、GIS 廠商的技術支援、以及所辦小姐在流程上的協助。

最後要感謝父母兄弟,總是在背後做我最有利的支柱。也因為您們的 支持讓我可以專心致志的求學。

最後希望碩一的學妹以及即將近來研究室的學弟妹們,大家都可以達 到老師一年半畢業的期望。

張嘉仁 謹誌於交大

民國一百零一年六月

•

中文摘要i	
英文摘要ii	i
目錄ii	i
圖目錄iv	V
表目錄v	,
符號說明v	iii
第一章 前言1	
1.1 研究綠起1	
1.2 研究目的3	
1.3 論文進度報告書內容3	i.
第二章 文獻回顧4	
2.1 都市移污及其風險4	
2.2 移污空間分佈及公車所排放的污染物	
2.3 移污模擬模式	
2.4 低污染公車及補助政策9	1
2.4.1 低污公車9	1
2.4.2 低污染公車補助政策1	0
2.5 污染潛勢指標1	0
第三章 研究流程與方法1	3
3.1 研究流程1	3
3.2 案例區域資料建立1	5
3.2.1 交通流量推估以及歷年資料1	5
3.2.2 行駛速率推估以及歷年資料1	6
3.2.3 GOOGLE EARTH 資料庫1	7

3.3 公車路線初選原則20
3.4 OSPM 模式模擬20
3.4.1 OSPM 模式簡介21
3.4.2 OSPM 模式模擬
3.4.3 排放係數
3.5 公車路線篩選原則
3.6 公車路線移污潛勢指標建立31
3.6.1 基於污染濃度
3.6.2 基於風險
3.7 優先性分析方法
第四章 結果與討論37
4.1 案例區資料
4.2 公車路線初選
4.3 OSPM 模擬移污分佈
4.3.1 模式前處理
4.3.2 OSPM 模擬
4.4 公車路線篩選
4.5 公車路線移污潛勢指標計算45
4.5.1 基於污染濃度
4.5.2 基於風險
4.6 路線優先性評估94
第五章 結論與建議97
5.1 結論
5.2 建議101
參考文獻102
附錄 A109

圖	目	錄
---	---	---

圖 3.1 研究流程圖	14
圖 3.2 台北市建築區與道路示範 GIS 圖層	19
圖 3.3 台北市路網圖	19
圖 3.4 OSPM 的基礎理論模式	21
圖 3.5 再循環區示意圖	23
圖 3.6 範例街道 A 之模擬結果	25
圖 3.7 範例街道 B 之模擬結果	26
圖 3.8 街道基本地理資料介面	28
圖 3.9 OSPM 街道資料設定圖	28
圖 3.10 OSPM 基本交通流量資訊介面	29
圖 3.11 OSPM 城市之監測濃度和氣象資訊介面	29
圖 3.12 OSPM 模擬移污之平均濃度值介面	30
圖 4.1 公車路線 630 之路線圖及台北市建築物	38
圖 4.2 公車路線 630 之路線圖及 200m 內之台北市建築物	<mark>3</mark> 9
圖 4.3 OSPM 資料範例(以公車路線 630 例)	40
圖 4.4 OSPM 模擬公車路線(以路線 R1 為例)移污濃度結果範例	42
圖 4.5 OSPM 街道圖(以路線 R 為範例)	44
圖 4.6 CL _{CO} 、CL _{PM10} 、CL _{PM2.5} 各路線指標值除以最大值	48
圖 4.7 ISR ^w 和 ISR ^w _i 指標值排序	77

表目錄

表 2.1 一氧化碳對人體的影響	.5
表 3.1 各重點污染物 REL 值	.33
表 4.1 路線 A 之 CO 模擬結果	.43
表 4.2 CLi 指標之污染物值	.46
表 4.3 CLi 指標之污染物排序	.47
表 4.4 CLMi 指標之污染物值	. 49
表 4.5 CLMi 指標之污染物排序	. 50
表 4.6 CLR 各污染物指標值	. 52
表 4.7 CLR 指標之污染物排序	.53
表 4.8 CLRM _i 各污染物指標值	.54
表 4.9 CLRM _i 指標值排序	55
表 4.10 CLR 值及 CLR _i	.57
表 4.11 CLR 及 CLRi 排序	58
表 4.12 CLRM 及 CLRM _i	. 59
表 4.13 CLRM 及 CLRMi 排序	.60
表 4.14 CLS ^{PM10} 和 CLS ^{PM2.5} 指標值	61
表 4.15 CLS ^{PM10} 和 CLS ^{PM2.5} 指標值排序	61
表 4.16 CLSM ^{PM10} 和 CLSM ^{PM2.5} 指標值	. 62
表 4.17 CLSM ^{PM10} 和 CLSM ^{PM2.5} 指標值排序	. 62
表 4.18 IS ^w i 各污染物指標值	. 64
表 4.19 IS ^w i指標值排序	. 65
表 4.20 ISM ^w i 各污染物指標值	66
表 4.21 ISM ^w i 指標值排序	. 67
表 4.22 ISR ^w i 各污染物指標值	. 68

表 4.23 ISR ^w i指標值排序	69
表 4.24 ISRM ^w i 各污染物指標值	70
表 4.25 ISRM ^w i指標值排序	71
表 4.26 ISR ^w 和 ISR ^w i指標值	73
表 4.27 ISR ^w 和 ISR ^w i指標值排序	74
表 4.28 ISRM ^w 和 ISRM ^w i指標值	75
表 4.29 ISRM ^w 和 ISRM ^w i指標值排序	76
表 4.30 ISS ^w _{PM10} 和 ISS ^w _{PM2.5} 指標值	78
表 4.31 ISS ^w PM10 和 ISS ^w PM2.5 指標值排序	78
表 4.32 ISSM ^w PM10 和 ISSM ^w PM2.5 指標值	79
表 4.33 ISSM ^w PM10 和 ISSM ^w PM2.5 指標值排序	79
表 4.34 IS ^a i 各污染物指標值	80
表 4.35 IS ^a i指標值排序	81
表 4.36 ISM ^a i各污染物指標值	82
表 4.37 ISM ^a i指標值排序	8 <mark>3</mark>
表 4.38 ISR ^a i 各污染物指標值	84
表 4.39 ISR ^a i 物指標值排序	85
表 4.40 ISRM ^a i 各污染物指標值	86
表 4.41 ISRM ^a i 各污染物指標值排序	87
表 4.42 ISR ^a 及 ISR ^a i指標值	88
表 4.43 ISR ^a 及 ISR ^a i 指標值排序	89
表 4.44 ISRM ^a 及 ISRM ^a i指標值	90
表 4.45 ISRM ^a 及 ISRM ^a i指標值排序	91
表 4.46 ISS ^a _{PM10} 和 ISS ^a _{PM2.5} 指標值	92
表 4.47 ISS ^a _{PM10} 和 ISS ^a _{PM2.5} 指標值排序	92
表 4.48 ISSM ^a PM10 和 ISSM ^a PM2.5 指標值排序	93

表 4.49 ISSM ^a PM10 和 ISSM ^a PM2.5 指標值排序	
表 4.47 ISS ^w PM10 及 ISS ^a PM10 指標值	95
表 4.48 ISR ^w 及 ISR ^a 指標值排序	

符號說明

loael :	會對人體健康造成影響之最低測試劑量
P :	總人口
C _{yi} :	地區 j 之污染物 y 之年平均濃度
δC_{ik} :	地區 i 時段 k 之污染物濃度
BR :	呼吸率
Q :	移污排放係數
D :	密度
L :	觀察路段長
A ^s _{PC} :小	型車車的靜態車輛面積
A ^s _{MC} :	機車的靜態車輛面積
A ^s _{TC} :	大型車的靜態車輛面積
A ^s _{BC} :	公車的靜態車輛面積
N _{PC} :	小型車車數量
N _{MC} :	機車數量
N _{TC} :	大型車數量
N _{BC} :	公車數量
β :	調整因子
V :	車流平均速度 2010 1010 1010 1010
U _r :	自由車流速率
W :	街道路寬
C _d :	街道上某一點的濃度
u _b :	沿街道的風速
$\sigma_z(x)$:	順風向之垂直分布參數
σ_{w} :	垂直方向之紊流速度分布

- α :常數
- σw0 : 車輛所引起的紊流參數
- h₀ : 初始擴散常數
- L_{rec} : 再循環區域的寬度
- σwt :頂端緣之通量速率
- u_t :上側端緣之通量速率
- ub :下側端緣之通量速率
- L_t :梯形頂邊長
- L_{s1} : 梯形斜邊長
- Ls2 : 梯形斜邊長
- LWC_i : 污染物 i 之長度加權平均的濃度值
- Cii : 污染物 i 路段 j OSPM 模擬出之平均污染物濃度值
- L_i : 為路段 j 的長度
- LWCM_i: 污染物 i 依據各路段所有時段濃度的最大值及以長度加權的平 均濃度值

411

- Cii : 污染物 i 路段 j 所有時段中之污染物濃度最大值
- CL_i : 為污染物 i 污染濃度-長度子指標
- CLM_i : 污染物 i 依各路段所有時段濃度最大值所計算之之污染濃度-長度子指標
- CLR_i : 污染物 i 以 REL 為基準所計算之子指標值
- CLRM_i: 污染物 i 依各路段所有時段污染濃度最大值所計算之子指標
- *REL_{Ai}* : 污染物 *i* 的 REL_A 值
- *IF_i* : 污染物 *i* 之 IF 值
- *P_i* : 路段 *j* 人口
- *C_{ijt}* : 污染物 *i* 於路段 *j* 時段 *t* 濃度

- njkv : 路段j車種k於不同速度下之車流量
- *E_{kv}*: 車種 k 於速度 v 時之排放係數
- *IS_i* : 吸入總量指標
- ISM_i : 以各路段所有時段濃度最大值計算之吸入總量指標
- ISR_i : 污染物 i 吸入總量 REL 子指標
- ISRM_i :以C_{ij}所計算出之子指標

第一章 前言

1.1 研究緣起

都市移動污染(以下簡稱移污)源已是都市地區空氣污染的主要成因。 為改善都市的移污問題,提升大眾交通工具之使用為一個有效的方法。唯 依據環保署污染排放清冊(TEDS7.0)(環保署,96年),一般公車之污染排放 量仍會排放 CO 約 2.5 克/公里.輛,為提升綠色運輸,台北市因而擬逐步汰 換舊型公車為油電混合動力公車之低污染公車(台北市交通局,100年)。 不過,全面替換低污染公車需大量之成本,因此,需發展適當方法評估各 公車路線替換低污染公車之優先性。本研究因而擬建立道路及路線移污潛 勢指標來評斷各路線公車補助優先性之問題。

由於台北市地區包含甚多公車,目前約有 307 條之公車路線,合計共 4060 輛公車(北市交工處,100 年)。如果逐條分析各公車路線,分析所需 資料及結果均會相當龐大,並須耗費許多時間。為了改善分析效率,宜篩 選優先性可能較高的公車路線,故本研究擬依據路線之影響人數、行經地 形等原則擬一套路線初選程序,剔除掉較次要的路線,以利於後續分析。

由於低污染公車主要是為了有效改善空氣品質,故公車替換優先性之 評估需考量各街道之空氣品質。然而,台北市街道眾多,不易一一直接監 測各街道之移污濃度,故需要藉由適當之模式來推估各街道之移污濃度。 此外,由於目前台北市之道路多為高樓,而道路兩旁的大樓高度、寬度及 其寬度比,以及街道的寬度乃至道路的封閉程度,都會造成街谷效應,影 響街道污染物濃度及擴散情形(Xie, 2007),故並不宜單以街道中之車流量 作為估算移污的依據。因此,需要採用適當的移污空品模式來評估都市之 空氣品質。 過去移污研究,常以 CALINE (Taseiko, 2009; Majumdar et al., 2010; Benson, 1992)或 Operational Street Pollution Model (OSPM) (Konstantinos et al., 2010; Wei et al., 2010; Ruwirn et al., 2000)來模擬都市移動污染之分佈。 然而, CALINE 僅考量地表二維模擬,造成低估街谷效應對移污之影響程 度,使得模擬結果常低於監測值(Taseiko, 2009)。OSPM 為一個以高斯擴散 模式為基礎的 3D 模型,其考量了移污排放量、氣象以及街道分布等資料 (Berkowicz, et al., 2010)。由於建築物亦會影響了風向,使得街谷中污染物 擴散的模式變得複雜,因此,於 OSPM 模式中,亦納入建築物位置、風向 以及街道角度等參數設定。在過去研究中, Jensen (1997)為了評估人暴露 於移污中之健康風險而發展結合 OSPM 和 GIS 之模式;董(90 年)以台中市 之實測值和 OSPM 模擬值做比對,修正風速因子後證實可較準確模擬出 CO、NOx、NO2;而蔡(97 年)也搭配 OSPM 估算出台北市道路中移污空間 之分布。由於 OSPM 可考量街谷效應以進行適當之模擬,故本研究擬以 OSPM 進行街道移污之模擬。

過去在評估交通面向之環境永續性時,常以大眾運輸系統之行駛里程 數及搭乘人次數(台北市交通局,99年)為指標。但汰換路線最長的公車為 低污染公車,並不一定最具環境效益,因為此路線公車可能並未行經人口 密集或空氣品質較差之地區。此外,低污染公車所改善之空氣品質,主要 是希望降低路線兩側之居民風險,特別是如醫院、學校等易受空氣品質惡 化影響之單位。因此,本研究擬考量空氣品質、人口、醫院及學校之空間 分佈,建立空間性污染及風險指標,作為低污染公車補助之依據,以提升 低污染公車政策推動之環境效益。

2

1.2 研究目的

本研究主要重點為擬定適當的程序及指標作為補助台北市低污染車<
輛汰換優先順序之依據。主要二個研究目的如下:

- 1 建立適當程序及指標供評估低污染公車補助路線優先順序:台北市公 車路線眾多,若一次性汰換所需花費甚鉅,故有必要建立適當的方法 決定補助的優先順序。由於此補助主要為了降低污染,故本研究將探 討依移污及人口分佈狀況來建立適當的程序及指標供排序。
- 2 建立適當方法評估城市的移污空間分布:本研究模擬對象乃是城市尺度,若模擬精細將花費甚多時間,不太可行,且結果不見得較實用, 故有必要探討適當的方法評估整個城市街道的移污空間分佈。

1.3 論文內容

本論文之後續章節中,第二章回顧都市移污及其風險、移污空間分佈 及公車所排放的污染物,移動污染源模擬模式、低污染公車補助政策及污 染潛勢指標;第三章說明本研究的流程與方法,包括收集建立案例區資料、 模擬移污分布、建立公車路線篩選原則以及公車路線移污潛勢指標之建立; 第四章討論分析案例區之移污分佈模擬以及路線初選和篩選之結果,並計 算公車路線移污潛勢指標,再由計算出之指標討論公車補助之優先性;第 五章為說明本研究之重要成果以及建議以供未來研究用。

第二章 文獻回顧

本章中主要回顧及討論與本研究相關之文獻,探討過去移污之相關研 究成果。文獻回顧主要分為都市移污及其風險、移污空間分佈及公車所排 放的污染物、移污模擬模式、低污染公車及補助政策、污染潛勢指標等主 題。以下將一一說明之。

2.1 都市移污及其風險

都市中,空氣污染已經是一項非常重要之環境問題(Molina and Molina, 2004),其嚴重程度受到城市之大小、氣象條件、建築排列以及植披覆蓋率、 環境政策等因素所影響,而其主要來源之一即是移污,Kim(2011)指出當 VKT(vehicle-kilometers-traveled)增加,空氣中污染物濃度也將隨之提高。 隨著經濟的發展,國內機動車輛總數較去年成長了1%(約二十四萬輛)(交通 部,100年),亦因而顯著增加空氣污染。據統計,若長期暴露於空氣污染 下,會提高心血管以及呼吸等之發病率及其導致之死亡率(Dockery et al., 1993; Nel, 2005; Pope and Dockery, 2006)。移污產生之污染物有PM10、NO, 、CO等, 簡述如下: 111

1 懸浮微粒(PM10)

其主要來源為引擎燃燒後排氣中的含碳粒狀物和路面摩擦所引起的揚 塵,容易進入並累積在肺部,造成健康上的影響。造成之健康風險可用 式 2.1 以及 2.2 所示(Slezakova, 2000):

> Health risk = [Dose rate /loael] (2.1)

Dose rate = $[BR/BW] \int_{0}^{24} C(t) OF(t) dt$ (2.2)其中, loael表示為會對人體健康造成影響之最低測試劑量 2 氮氧化物(NO_x)

排氣管排出之氮氧化物主要為一氧化氮,但一氧化氮可在大氣中和氧化合成二氧化氮(NO₂),二氧化氮為褐色有毒氣體,對人體健康會造成呼吸方面之疾病或者是肺傷害。雖然氮氧化物是空氣中臭氧產生先驅物之一,但若 O₃ 濃度不高,則 NO 不太會轉換成 NO₂ (Olcese and Toselli, 2001)。

3 一氧化碳(CO)

依衛生署(97年),一氧化碳對人體健康的危害主要是降低血液輸送氧 氣的能力,這是因人體血液中血紅素和一氧化碳的親和力大於血紅素的親 和力。表 2.1 為美國 National Fire Protection Association 所出版之防火手冊 (NFPA, 2011)中所列的人體吸入一氧化碳量與時間下之症狀。Quenol(2006) 指出一氧化碳具有不易累積之特性,在交通量少之地方容易逸散,但在十 字路口或是交通量多的地方將提高。此外,由於移污皆會排出 CO和 NOx, 因此兩者之間有著很大的關聯性,Olcese and Toselli(1997)曾實測一日之中 的小時變化量,發現兩者之圖形十分雷同。

Im

11111

表 2.1 一氧化碳對人體的影響

	吸入一氧化碳含量、時間及中毒症狀		
項力	一氧化碳含量	人體暴露時間及生理症狀	
八			
1	0.005%(50ppm)	8小時內無不良影響	
2	0.02% (200ppm)	2-3 小時產生輕微頭痛。	
3	0.04% (400ppm)	2.5 小時-3.5 小時頭痛加劇。	
4	0.08% (800ppm)	45 分鐘會頭暈、反胃、抽筋,一小時候昏迷	
5	0.1%(1000ppm)	一小時候喪失意識	
6	0.16% (1600ppm)	20 分鐘會頭痛、暈眩,2小時死亡。	
7	0.32% (3,200ppm)	5-10 分鐘會頭痛、暈眩、嘔吐,30 分鐘會死亡。	
8	0.64% (6,400ppm)	1-2 分鐘內會頭痛、暈眩, 10-15 分鐘內會死亡。	
9	1.28% (12,800ppm)	1-3 分鐘會死亡。	

資料來源: NFPA(2011)

依據環保署統計(環保署,96年),移污所排出之一氧化碳約70.9 萬公 頓,約占總空氣污染之77.69%,故可推論車輛是造成一氧化碳污染的主因。 由此可見,一氧化碳之防治對移污相關控制策略佔了相當重要的地位。

2.2 移污空間分佈及公車所排放的污染物

由於街谷內空氣污染物之分布狀況會受到街谷之幾何特性的影響,如街谷視覺比例(H/W)、街谷長度(L/W)、兩旁建築物高度差、建築物屋頂形狀等,亦會受到風的影響。

Mukherjee *et al.*(2000)模擬新加坡街道移污排放之NO於大氣中所佔比例,發現來自移污之NO_x雖僅占大氣之24%,但在呼吸區域內卻占了40%, 顯示街谷的環境對於移污排放之污染具有加乘之效果。

Johnson and Hunter (1999)提到街谷中之流動受長度(L/W)影響較小, 但易被高度寬度比(H/W)左右。為了探討 PM 於垂直方向之分布, Kalaiarasan et al.(2009)做了一系列之實驗,其結果表示PM_{2.5}之平均顆粒濃 度最大值發生於中樓層附近,這是因為低樓層雖較接近移污排放源,但卻 會因為樹木攔截效果之關係使得濃度並不如中樓層高,唯此現象並不適用 沒有或樹木很少的街道。Wu et al.(2002)所得之結果即不太相同,其所測 得 PM 濃度在較近地面處時度高。而 Chan and Kowk(2000)研究 TSP、PM₁₀、 PM_{2.5}等粒狀污染物於垂直向之分布關係,發現隨著高度增加,衰減速度最 快為 TSP, PM₁₀ 次之, PM_{2.5} 最後。

Zoumakis(1995)量測街谷中 CO 之濃度和街谷高度,發現有下列指數 關係:

(2.3)

C(z) = A exp[-B(z/h)]

其中各參數之單位為 A:ppm; B 為無因次常數; z 為高度(m); h:為建築高度(m)。

Taseiko (2009)指出建築物之寬度、高度、以及兩相鄰建築物之間隔皆 會影響移污之擴散情形,增加間隔以及減少高度都可有效降低濃度之累積。 Theurer (1999)表示濃度隨著 H/W 增加以指數型態劇增;而同樣位於背風 面具同樣之 H/W 的建築,屋頂呈馬鞍型之濃度將低於平滑型。其認為移污 濃度可以下列函式表示:

 $C^{*}(x, y, z)=f(H/Ws, \delta Ws, Ls,, spacings, roof types, surroundings, vegetation$ and obstales) (2.4)

Kourtidis et al. (2002)研究街股中苯、甲苯、臭氧、二氧化氮和二氧化 硫等污染物,發現於冷天時一次污染物之濃度會比暖時濃度高出 2.5-4.4 倍。 此研究更發現污染物濃度易受風速影響,一次污染物隨著風速增加而濃度 減少,而臭氧反之。而 Huang et al. (2000)的實驗結果也顯示當風速愈快則稀釋效果愈好,建築物背風面之濃度也低於迎風面。

Xie et al. (2003)測量了 CO、NO、NO₂ 以及 NO_x 在垂直以及水平的分 布狀況,發現其分佈受到屋頂之風向影響,而背風面平均濃度比迎風面高 出一倍。Kastner-Klein and Plate (1999)研究建築物位置、風向、街谷長度 和屋頂形狀在風洞試驗中之現象, 其結果表示當風垂直街谷方向時將會 使濃度有最大值。

根據交通部統計(100),台灣機動車輛數已達 2,206 萬輛,為改善都市 空氣品質,政府推廣搭乘公車等公共運輸工具改善空氣品質。然傳統公車 多半以柴油為燃料,依行政院環境保護署研究報告(環保署,98年)指出, 柴油車所排放之粒狀污染物及硫氧化物,對空氣品質影響極大,其中粒狀 污染物容易進入呼吸道並積存於肺部、此外,粒狀污染物亦附著具致癌性 之多環芳香烴化合物(Polycylic Aromatic Hydrocarbons, PAHs)及硝基化多 環芳香烴化合物(Nitro-PAHs),會危害人體健康。

2.3 移污模擬模式

Caline-4 (Benson, 1992)是常用來評估移污的模式之一, Jones *et al.* (2000)認為 Caline-4 雖常用於評估公路移污,但表示若風速太低(<0.5m/s) 時該模式並不適用; Taseio (2009)也表示,由於 Caline-4 是二維模式,較常 用於平坦地區之空氣污染模擬,並不適合分析街谷效應,由於本研究之案 例區多為大樓林立之都會區,須考量到街道兩側連續高聳建築物所造成之 街谷效應之影響,因而此模式較不適用於本研究。

有關街谷模式, Yamartino and Wiegand (1986)曾依高斯煙羽模型及盒子模型發展了 Canyon Plume Box Model (CPBM),該模式亦考量風渦流之

影響,依據交通流量等資料推估街谷的污染物濃度,Gualtieri (2010)指出 由於 CPBM 對於建築物之間距沒有被妥善考慮到,因而不適合用於本研 究。

Operational Street Pollution Model (OSPM)為 Hertel and Berkowicz, (1989)所發展的半經驗三維模式,主要基於 CPBM (Yamartino and Wiegand, 1986)所發展出來的模式。Vardoulakis (2007)曾將 OSPM 和實測值做比較, 發現無論是逐時或隨風速之變化,都有著不錯的結果;而 Ziv (2002)於聖 彼得堡市中心實場調查與模式模擬結果做比對,亦表示 OSPM 所模擬結果 可接受,並表示 OSPM 對風速較小(<2m/s)之狀況的模擬結果佳;Jensen (1998)將結合 OSPM 與 GIS,並應用人口分佈資料評估移污對人體健康之 影響以及風險之管理。Berkowicz et al.(2010)指出 OSPM 不只考量移污排 放及再循環之貢獻,也考量城市背景值及街道結構等資料,此模式可以滿 足本研究的需求,故本研究採用 OSPM 模式來模擬街道兩旁之移污濃度, 進而據以估算其對民眾可能造成之健康風險。

2.4 低污染公車及補助政策

本節主要回顧低污染公車之國內外發展及相關的補助政策,以下分別 說明之。

2.4.1 低污染公車

雖然使用公車等大眾運輸系統可以有效的減少都市中移污之危害, 但 Vahdani et al. (2011)認為為了更進一步解決空污之問題,使用更乾淨的 能源取代傳統柴油公車是有必要的。為此,Offer et al. (2011)指出使用氫燃 料電池電力公車等已經是英國目前的推廣政策之一。Sperling (1999)則指出 義大利、加拿大已開始使用 Liquid propane gas(LPG)作為新型態之燃料來 源,更指出早在 1992 年日本之加油站就已提供補充甲醇燃料之服務。可 看出低污染公車已逐漸受各國所重視。Saldarriaga-Isaza et al. (2009)認為為 了解決都市中空氣污染之問題,推廣低污染車輛是個可行的解決方案。舉 例來說,相較於傳統柴油車輛,Kojima (2001)表示,使用天然氣車輛可節 省約 20-35%的能耗;而在污染減量方面,CO 約可減 84%、NO_x 可減 58%、 PM 可減 97%。Nazir (2010)表示,由於石油的短缺以及為了減排溫室氣體, 美國正積極推廣油電混合(hybrid)車輛。Wall et al. (2008)指出若和傳統柴油 公車比較,油電混合動力車之油耗量降低 20-43%。污染減量方面,Merkisz and Pielecha (2010)表示,和傳統柴油公車相比較,於交通繁忙時,CO 約 可減 65%、HC 減 24%、CO₂減 18%,但NO_x卻上升了 80%;而在交通順暢 時,CO 約可減 63%、HC 減 78%、CO₂減 15%,但 NO_x卻上升了 130%。 Pielecha 認為 NO_x上升之原因是引擎燃燒效率太差之故,因此低污染公車 除了 NO_x以外,可顯著減少公車的污染排放量。

有鑑於低污染公車可顯著減少污染排放量,北市府藉由 2010 台北國際花卉博覽會之機會,購置 47 輛油電混合動力公車(北市交通局,99 年), 且將進一步鼓勵業者採用。

2.4.2 低污染公車補助政策

據北市公共運輸處表示(100年),油電混合公車市價約 950 萬元,約 為一般傳統公車之三倍,價格仍舊相當高昂。因此,有必要提供補助,以 增加業者採用的誘因,以下將回顧國外推行低污染公車之相關政策。

Zhang and Sheng (2009)做了七項推廣低污染公車政策之調查,分別為 補助購買低污染公車、低利率購車貸款、燃料補助、更多燃料填充站、發 展更多種類之低污染公車、加強低污染公車馬力之研究、提高法定載客量。 其調查結果發現,使公車業者將傳統柴油公車汰換為低污染公車誘因較大 的政策依序為補助購買低污染公車、設置更多燃料填充站及燃料補助。唯 Oram (1980)則認為補助應該兼顧路線長短以及行駛地段。唯目前並沒有一 定系統性的方法可供決定低污染公車補助的優先順序,本研究因而將發展 潛勢指標供評估各路線公車替換為低污染公車之優先性,以作為決定補助 順序之依據。

2.5 污染潛勢指標

Stieb et al. (2008)認為空氣品質指標雖可藉由制定標準濃度用來評斷 目前之空氣品質之優劣,但無法直接反映出對健康之影響,因此他導入了 恕限值(threshold)之概念並設計新的指標系統;Kassomenos et al. (1999)則 依照污染物濃度對人體之危害性分成了 Limit Value、Target Value、Alert Threshold、Guide Value 四個標準並制定出六個層級,用來評斷目前空氣品 質對人體之傷害性。而美國 EPA(2007)亦提出 Integrated Risk Information System (IRIS)方法,依污染物濃度除上污染物參考危害濃度作為參考指標, 當商超過1時即表示可能會產生健康危害。

由於空氣污染對人體健康有著顯著之危害,因此 WHO(2004)將空氣 污染、和交通相關之指標、以及對健康之危害(人曝露於 PM 下所損失之健 康年數)等納入評估,且以下式評估污染物之曝露風險:

 Expy=SUM{(Pj/P)*Cyj}
 (2.5)

 其中P為總人口;Pj為地區j之人口數;Cyj為地區j之污染物y之年平均

 濃度。Wallner (2011)亦認為評估空氣污染物之危害性時須考量不同地理條

 件下之平均濃度以及人口比重。

Bennett et al. (1984)以 intake fraction(iF)表示人由污染源攝入污染量之 比值,用以表示污染物和攝入量之關係。為評估移污對人之影響, Greco et al. (2007)採用 iF 評估 PM 對人體之危害性,其模擬範圍為 5000 公尺內, 其定義如下列:

 $iF_{jk} = \sum_{i} (P_{ij} \delta C_{ik}) * BR/Q$ (2.6)

其中P_{ij}是地區 i 中路段 j 之預期影響人口數; SC_{ik}是地區 i 時段 k 之污染物 濃度; BR 是呼吸率(breathing rate); Q 為移污排放係數。其實驗結果表明 200 公尺內之影響可占總影響之 43%。Carella *et al.* (2009)也曾以 iF 評估 CO 以及 NO₂ 之影響。由於 OSPM 為街谷模式,因此使用 iF 法時主要考量 街道兩旁之人口,故 Zhou and Levy (2008) 將一地區之人口平均分配到每 一個區塊,並且假設所有居民平均分散在各區塊的周界旁,再將每一個區 塊人口數除以周長即可得到每一街段之居住人口,再將街道兩邊街段之人 口數相 加即 可得到街道兩旁之人口;而該地區之工作人口則採用 McPherson and Michael (2004)提出之 LANL 方法計算。

鄭(87)指出國內估算日間活動人口之方法大致可分為二種,第一種是 以交通工具旅次來計算,但此種方法多以行政區域為單位探討,鮮少建立 更小尺度之研究,故不適合用於本研究;第二種是以工作人口作為日間活 動人口之代表,但這與實際上之日間活動人口定義不符合,故也不適用。 而胡(93)採用土地使用分區資料推估日間人口之方法,其以台北市各分區 不同行業別樓地板面積和使用人數之關係計算人口。然本研究之所取得的 資料無法得知各建築物之使用類別,故此法亦不適用。此外,內政部建研 所(89)也曾基於不同行業別來計算日間人口,但也因同問題而無法使用。 此外,由於本研究是以各公車路線探討沿線人口之風險,本研究因而依據 Zhou and Levy (2008)將總人口平均分配到每一個區塊之概念,發展適用於 推估公車路線沿線人口之估算方法。

為考量街谷效應所造成污染物空間分布之差異以及所造成之危害不同,本研究將由 OSPM 模式模擬依 IRIS 以及 iF 所建議的方式評估曝露風

12

險,分別制定出基於污染物濃度以及基於空間性風險之指標系統。

第三章 研究流程與方法

本研究重點主要是建立適當移污指標供作為決定低污染公車補助路 線次序之依據。本章首先概要說明研究流程,接著一一詳細說明研究的主 要步驟。

3.1 研究流程

本研究流程圖如圖 3.1 所示,主要分為資料收集及整理、公車路線篩 選原則、OSPM 模式模擬、公車路線移污潛勢指標及優先性分析方法,以 下一一概要說明之:

- 資料收集與整理:除了相關文獻與報告,主要收集案例區域(台北市)資料,由於台灣公路上行駛車種組成和國外情形不盡相同,且機車佔顯著比例,故將收集車流量之國內文獻所提及之估算方法、車流速度及其個別之歷年資料,並藉由疊合GOOGLE EARTH 資料庫及台北市 GIS 圖程,找出市區中道路之寬度和鄰近道路旁之建築物高度。
- 2. 公車路線篩選原則:由於台北市公車路線甚多,不適合一一詳細分析, 此步驟主要目的有二,一為初選,即先行排除對人體健康風險較小之 公車路線,如山區等地方,以利於進行後續模擬;其二為篩選,淘汰 掉模擬結果相對較低之路線,減少後續評估之負擔。
- 3. OSPM 模式模擬:依所收集資料及排放係數,並依據台北市政府的 3D 圖層計算所得之建築物高、路寬等資訊,並依據陳(94)估算車流量、及 車速之資料,作為納入評估公車路線所需之道路資料,並由北市環保 局(99)收集 OSPM 所需之氣象資料,以 OSPM 模式模擬移污之空間分 布。
- 公車路線移污潛勢指標建立:主要以各路線所模擬的污染物濃度及所可 能造成的風險為依據建立指標。
- 優先性分析方法:依據所建立的公車路線移污潛勢指標分析各路線補助 的優先性,以作為補助順序之依據。

3.2 案例區域資料

由於人力資源有限,故不可能在台北市各道路做車流量和行駛速率、 以及道路長寬及其兩旁建築物高度之實地調查。本研究因而以現有資料推 估全市之車流量及行駛速率,以及由台北市的 3D Google Earth 資料庫擷取 出道路寬度及其兩旁建築物高度等資料。

3.2.1 交通流量推估以及歷年資料

本研究採用陳(94)提出之車流量推估模式,依據現有資料推估全市之 車流量。其流程包含設定初始流量、由路口型態決定流量關係式及其交集、 車流量收斂程度、推估總排放量並依比例分配於各街道中,以下說明本研 究之推估流程。

- 首先依據交通部(99 年)之車流樣調查資料,找出各流量站之路口位置 以及座標。
- 藉由路網數值圖(交通部,97年)找出十字路口座標,並依此抓出每一 條路之起終點座標便於做流量推估。
- 3. 流量推估
 - 3.1. 輸入初始流量:於有流量調查之路口,其流量為實地調查值;沒有 調查之路段,初始流量範圍為0至該路段最大容量。初始流量只 有在首次運算時會使用到,之後反覆運算所用之值均為上一次運 算之結果。

: 0

- 3.2. 流量關係式:流量之關係式係依流量守恆之原理建立,且以路口之 轉向比分配車流,其餘無轉向比之路口則假設和鄰近路口相同。
- 3.3. 截取關係式交集:若該路段有流量資料,則流量為定值;沒有流量 之路段即由所得關係式求出路段流量之上下限,並取交集以得到 路段流量範圍。

3.4. 重複上述步驟直到車流量收斂:各路段每計算一次就將本次運算 結果和上次運算結果做比較,若任一無車流量路段流量範圍縮減 程度與上一次運算相比大於1輛車/hr,則繼續運算直到縮減程度 小於1輛車/hr為止。

3.2.2 行駛速率推估以及歷年資料

由於 OSPM 模擬需要各路段之平均車流速度,但車流平均速度調查無 法遍及各路口,故需藉由車流模型推算各路段車流平均速度。

在傳統車流模型中,所謂密度是指單位長度下,路段所行駛的車輛數, 單位為每公里之車輛數。然而在混合車流中,車輛數不能完全反映真實的 交通車流狀況,特別是將機車的部分,故須進一步針對汽車及機車等不同 車種的行為特性,重新建構車流模式。故本研究採用許(96)提出之巨觀車 流模式,算出街道內車流密度,該模式計算方式如下式:

$$D = \frac{A_{PC}^{S} * N_{PC} + A_{MC}^{S} * N_{MC} + A_{TC}^{S} * N_{TC} + A_{BC}^{S} * N_{BC}}{I * M}$$

其中D為密度,L為觀察路段長;W為觀察路段車道寬;A^S_{PC}、A^S_{MC}、A^S_{TC}、A^S_{BC} 為小型車車、機車、大型車、公車的靜態車輛面積;N_{PC}、N_{MC}、N_{TC}、N_{BC}為小 型車車、機車、大型車、公車數量。

(3.1)

(3.2)

求得密度之後,流量、密度、車速之關係式如下:

 $Q=\beta D*V$

其中, β 為調整因子; D 為密度(veh/km); Q 為流量(veh/hr); V 為車流平均速度(km/hr)。

唯由於式 3.2 實際應用時,所得的車速不太合理,加上其未交代如何 決定調整因子,故本研究最後未採用,改用β交通運研所(76年)提出之密 度、速度關係式: $V=U_r*exp(-D)$

其中,Ur為自由車流速率。

3.2.3 台北市 3D Google Earth 資料庫

為了估算模擬街道移污所需的一些參數值,本研究由北市都發局(99 年)所建立之台北市 3D Google Earth建築物圖層截取出模式所需之路寬、 建築物高、以及路長。

由於街谷效應所需之路寬參數為兩旁建築物間之距離,主要以在街道 兩旁的建築物資訊決定這些參數,本研究採用以下步驟估算所需的參數資 料:

- 將台北市 3D Google Earth 建築物圖層及公車站牌點(台北市交通局,99年)和路網數值圖(交通部,97年)之座標格式由 WGS84
 轉換成 97TM2 並以 shapfile 格式匯入 ArcGIS(ESRI, 2011),如圖 3.2。
- 路網部分,刪除公車不會經過的道路,如國道及其附屬道路、產業道路、快速道路、大部分巷弄、無路名道路等。少部分公車會經過且較寬的巷道仍保留。刪減過後之路網圖如圖 3.3。
- 3. 藉由路網數值圖以及站牌點座標找出公車路線所經過之路段代碼,並擷取出各代碼之資料。站點座標部分由於去回路線相差不甚大,故僅考慮去程路線。取得距道路 200m 內之所有建築物及其高度。
- 4. 沿路線每隔一段距離選一點,分別往道路兩邊擴展一百公尺,若 在此範圍內有碰觸到建築物,則取該建築物之高度並記錄此時接 觸到建築物之距離以及所編製之建築物代碼。雖然此時碰觸到建 築物之長度即為該建築物和道路之距離,但近路口之地點多半不 會有建築物,導致可能會變成碰到別一街區的建築物。因此若將

此段道路內之寬度平均,則結果將不準確。故本研究之街谷寬度 以及車道寬遂藉由 Google Earth 以人工判定之方式決定,並同時 決定受體點位置。

- 5. 於定義一棟建築物之方面,連續建築物若高度相同即便屬於不同 建築物代碼,也歸類為同一棟建築物。且因為每棟建築物之間並 非全然緊連,會存在寬度很小的縫隙,亦會使程式誤判後排建築 物。因此若建築物寬度小於2公尺者,則略過不予採計。在決定 街谷寬度之後,若建築物離道路之距離大於街谷寬度之一半加上 20公尺,則判定此棟建築物不在街谷範圍內,此時設定路旁無建 築物,高度為零。
- 6. OSPM所需設定之建築物General height,本研究先以建築物高度 分類,把不同高度之建築物以其面對道路寬度乘以高度所得面積 按大小作排序,選出面積最大者之高度做為General height。唯建 築物若很高即便面路寬度小亦會使得面積很大,且高度超過一定 值後對街谷效應之影響也不會顯著增加,因此若建築物高度超過 12公尺則以12公尺計。
- 7. 將彎曲的道路適度的分段,且讓每一段儘可能為直線,以利於進行 OSPM 模式模擬。道路分段原則主要有四項:(1)由 3.2.1 節所得到有流量資料之路口均作為分段點;(2)將彎曲的道路分段; (3)OSPM 建議所模擬的道路長度不宜太長,因此本研究設定一段道路的長度上限為 170m;(4)因 OSPM 設定兩旁建築除了 General height 外,至多只能再設定 12 組建築物,因此若一段道路中的額外建築物超過 12 組,也必須再分段。
- 8. 並同時計算道路長度以及方向角等 OSPM 模式所需之參數。

18

圖 3.3 台北市路網圖

3.3 公車路線初選原則

根據北市交工處之統計,目前總公車路線約有 306 條,共 4060 輛公 車,由於路線及數量甚多,不易一一模擬故本研究將進行街道污染模擬前 先作初選,先篩除污染或影響較小之路線;初選之後才進行模擬,且再根 據模擬後之結果再作一次篩選,淘汰移污模擬結果相對低之路線,以節省 後續分析所需的時間與人力。以下一一敘述所採用的篩選原則。

本研究制定出四項原則,如下所述:

- 淘汰明顯經過人口較少路線:由於此類路線行經之路段非人口稠密之 處,且沒有高樓林立,較不影響污染物之擴散,故預期對人體健康風 險較小,加上所擬補助的油電混合動力車目前在技術上面臨動力較不 足之問題,行駛山路等爬坡路段較有困難,故本研究首先將行駛山區 等人口較少的之路線剔除掉。
- 淘汰觀光以及工業區接駁車:由於此類路線行駛路段多半不在市區內, 故也予以刪除。
- 日總行駛里程:依路線每日行駛班次乘以城市內行駛總里程數,選擇前 一百名。

雖然車流亦是一個可考量的篩選因子,唯因本研究並沒有每一路段的 實際車流,故未納入。

3.4 OSPM 模式模擬

街道移污對民眾之影響固然會受到交通排放源之影響,但空間條件亦 是重要因子之一。如愈寬敞愈開放之街道污染之擴散效果愈好,反之愈差。 此外,氣象條件如風速等亦會影響街谷中之污染濃度。因此,本研究將採 用 OSPM(Hertel O et al., 1989)模擬街道中之移污所造成之污染。本節首先 介紹 OSPM 之原理,接著說明模擬之流程,最後說明所採用的排放係數。 OSPM 是基於 CPB Model(Yamartino and Wiegand, 1986)所發展出來的 模式,如圖 3.4 所示,其模擬之濃度來源分為直接擴散濃度和街道內再循 環濃度。

$$dQ = \frac{Q}{W}dx \tag{3.4}$$

其中 Q 為移污之排放系數(gm⁻¹s⁻¹), W 為街道路寬(m)。 而離線源距離為 x 處之濃度為:

$$dC_{d} = \sqrt{\frac{2}{\pi} \frac{dQ}{u_{b} \sigma_{z}(X)}}$$
(3.5)

其中 C_d 為該點之濃度; u_b 為沿街道的風速; $\sigma_z(X)$ 為順風向之垂直分布參 數。 ($\sigma_z(X)$) is modelled assuming that the dispersion of the plume is solely
governed by the mechanical turbulence 且假設不受熱紊流所影響,,來源主要為風和交通因子:

$$\sigma_{\rm w} = ((\alpha u_{\rm b})^2 + {\sigma_{\rm W0}}^2)^{1/2}$$
(3.6)

其中σw為垂直方向之紊流速度分布;α是常數,訂為0.1;σwo為車輛所引起的紊流參數。

故可得到σ_z(X):

$$\sigma_z(X) = \sigma_w \frac{x}{u_b} + h_0$$
(3.7)

其中 h₀為初始擴散常數,一般設為 2m。 而當風向都垂直於街道時,可得到直接擴散濃度之公式

$$Cd = \sqrt{\frac{2}{\pi}} \frac{Q}{W\sigma_w} \ln \frac{h_0 + (\sigma_w/u_b)W}{h_0}$$
(3.8)

而再循環之濃度計算是採用盒子模式模擬,如圖 3.5 所示,假設街道 之循環流動似梯形,再循環區即沿著梯形之邊緣流動,但可能會因為下風 處有缺口而被限制住。移污每單位長度之進流率如下:

INFLOW =
$$\frac{Q}{W} L_{rec}$$
 (3.9)
其中 L_{rec} 為再循環區域的寬度,如圖 3.3b 所示。

而出流率為:

$$OUTFLOW = C_{rec}(\sigma_{wt}^* L_t + u_t^* L_{s1} + u_b L_{s2})$$
(3.10)

其中σ_{wt} 為頂端緣之通量速率; ut 為上側端緣之通量速率; ub 為下側端緣之 通量速率; Lt 為梯形頂邊長、Ls1及Ls2為梯形斜邊長,並且考慮到再循環區 域的延展性與街道的幾何形式。 此時假設:

- 假設進入再循環區之濃度等於流出再循環區之濃度,並且於此區內混 合效果佳。
- 當風渦流拓展到整個街谷內時,迎風面之直接擴散濃度為零,只剩下 再循環部分所貢獻之濃度;但於背風面之污染物濃度為兩者之和。而 直接擴散濃度通常會大於再循環部分之濃度。

摘自 Hertel(1997).

圖 3.5 再循環區(a)街道中的再循環區示意圖; (b)下風處的建築物阻斷再循

環區示意圖。

圖 3.6(a)與 3.6(b)所示範例街道 A 與 B 之模式模擬結果,均為一條高 20m 寬 20m、900 輛小車以及 100 輛大車、車流速度為 40lm/h 之東西向道 路,範例 A 二旁有 20m 高的建築物,但 B 只有南側有。排放密度為 1000 units $m^{-1}s^{-1}$ 。圖 3.4 表示為當風速為 8、6、4、2、1、0.5、0 m/s 時,位於南北 兩受體點之濃度皆為風向之函數,並呈現出背風面之濃度高於迎風面之濃 度,且當風向為 90 和 270 度時,會有濃度最大值產生。當風速小於 2m/s 時,風的流動則漸減,直到幾乎不流動(風速等於零),此時風向的影響也 消失。

圖 3.5 由於只有南側街道旁有建築物。從北邊之受體點結果可以發現 當風速較快時,除了平行街道之風向外其餘濃度皆不高,其可能原因是缺 少再循環部分之貢獻。當風速較慢時,結果則類似圖 3.4。

由於 OSPM 模式之模擬方式為基於簡化過後之街谷風流動結構以及 擴散條件,因此為了修正 OSPM 之模擬,比較不同區域之實測結果也是相 當重要的參考依據。

3.4.2 OSPM 模式模擬

OSPM 模式模擬所需資料包含交通資料、排放係數、街道資料、氣象 資料以及背景濃度等,本研究將分為建立街道基本資料、輸入交通相關資 料、建立城市背景資料及模式模擬四個步驟進行,以下分別說明之:

 建立街道資料:包括街道名稱、街道寬度、街道方向、受體點兩端之街 道長度、受體點座標、受體點高以及建築物高度、位置、和建築物高 度的 General height,如圖 3.6 以及圖 3.7。其中街道寬度以及方向已在 3.2.3 節說明如何處理; OSPM 主要模擬街道以某點為中心往道路兩端 展開之沿線濃度,然 OSPM 之建議街道受體點兩側長度不宜太長,唯 由於實際道路狀況道路往往並非呈直線,故有必要進行適度的分段, 分段方法如 3.2.3 所述;由於台北市交通監測站之採樣高度約為 3.5 公 尺高,故本研究將 OSPM 道路兩旁受體點高度假設在 3.5m 處。 建築 物高度除可輸入平均高度,於一條道路中尚可另外接受十二組不同高 度之建築物,並以相對於方格北(地圖所指北方)之角度輸入相對位置。

- 2. 輸入交通相關資料:輸入各時段不同車種之小時車流量、車速及不同車輛之排放係數。本研究與蔡(2008)一樣採用陳(94)所建議方法推估車流量,車速則用前述許(96)之方法推估。本研究所取得之資料雖僅有7時至9時及17時至19時等時段的交通資料,但由於此四個時段為交通尖峰時刻,雖不足以代表一天之變化量但可表示一天中污染之峰值,故可用以估算民眾一天中最大之污染量及風險;而沒有資料的時段可輸入-99,OSPM將不會模擬缺資料之時段,如圖3.8。排放係數則是參考中鼎(100年)之TEDS7.1之資料,將在後續章節詳細說明。
- 建立城市背景資料:背景資料為一年資料量,涵蓋每小時的風速、風向、 NO2濃度、O3濃度、CO濃度、PM10濃度、地球輻射量、混合層高度、 大氣溫度、相對溼度等監測資料,如圖 3.9。
- 模式模擬:按照上述三個步驟設定之後,即可執行 OSPM 進行模擬,如
 圖 3.10 所示,結果為各個街道之兩個測點的平均移污濃度值。

St.	treet Col	llection [C:\Users\use	r\Desktop\os	pm\data\do	ne\10861\10861.str]		8 ×
Sele	ect File	Edit Selected Edit No	ew 🕴 Select M	tap			
	Active	Street Name	X coordinate	Y coordinate	Traffic File	Daily Traffic	Travel Speed S 🔺
	[X]	62-01-13-99	309542.3	2774380	C:\Users\user\Desk		3 🗖
	[X]	73-02-16-121	311423.7	2773887	C:\Users\user\Desk		24
	[X]	00-00-12-61	300029.6	2767754	C:\Users\user\Desk		12
	[X]	00-01-12-168	300085.6	2767857	C:\Users\user\Desk		12
	[X]	00-02-06-53	300144.8	2767952	C:\Users\user\Desk		12
	[X]	01-00-04-22	300167.7	2767982	C:\Users\user\Desk		1!
	[X]	02-00-05-30	300182.6	2768003	C:\Users\user\Desk		1!
	[X]	03-00-12-92	300212.1	2768057	C:\Users\user\Desk		12
	[X]	03-01-12-110	300262.9	2768146	C:\Users\user\Desk		6
	[X]	03-02-08-73	300308.6	2768227	C:\Users\user\Desk		1!
	IN1	04.00.12.58	200351.8	2769247	C:\ Icare\ucar\Dack	1	2,
							•
	Load	from Project Use data	a from existing	g OSPM sing	le-street project		S <u>a</u> ve
	Ec	fit <u>S</u> treet Test Stre	eet Conf. < S	how only on err	or 🗌		Cl <u>o</u> se
	Ed	lit <u>T</u> raffic		Sho <u>w</u> Stree	ts	<u>H</u> elp	<u>C</u> ancel

摘自 OSPM(Hertel and Berkowicz,1989)

圖 3.9 OSPM 街道資料設定圖.

Day Case 1 of 1	Mandag-S寬。	dag 🔽				9	5.2% CAT 20	10 🔻
Hour	All vehicles	moto	PAS_Car	Vans	Buses	Speed short (km/h)	Speed long (km/h)	Cold Starts (%)
00-01	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
01-02	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
02-03	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
03-04	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
04-05	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
05-06	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
06-07	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
07-08	228.0	85.0	126.0	16.0	1.0	2.3	2.3	0.0
08-09	2341.0	79.0	2243.0	18.0	1.0	0.0	0.0	0.0
09-10	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
10-11	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
11-12	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
12-13	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
13-14	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
14-15	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
15-16	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
16-17	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
17-18	1773.0	1608.0	152.0	12.0	1.0	0.1	0.1	0.0
18-19	280.0	1.0	200.0	78.0	1.0	0.0	0.0	0.0
19-20	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
20-21	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
21-22	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
22-23	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0

摘自 OSPM(Hertel and Berkowicz,1989) 圖 3.10 OSPM 基本交通流量資訊介面

	_					100 M	1 A A					AND DESCRIPTION	Sector 1	
day	•	month .		year 🔹	hour 🔹	DayOfWeek 🔹	u_mast 🔹	Wind_dir 🔹	GlobalRad 🔹	H_mix +	Temperature 🔹	R_hum 🔹	cNOX_r 🔹	cNO2_r
	1		1	2000	1	6	-99	-99	-99	-99	-99	-99	-99	
	1		1	2000	2	6	-99	-99	-99	-99	-99	-99	-99	
	1		1	2000	3	6	-99	-99	-99	-99	-99	-99	-99	
	1		1	2000	4	6	-99	-99	-99	-99	-99	-99	-99	
	1		1	2000	5	6	-99	-99	-99	-99	-99	-99	-99	
	1		1	2000	6	6	-99	-99	-99	-99	-99	-99	-99	
	1		1	2000	7	6	-99	-99	-99	-99	-99	-99	-99	
	1		1	2000	8	6	0.2	96	131.1	-99	18.2	-99	72.1	
	1		1	2000	9	6	5.2	99	95.8	-99	19	-99	6.2	
	1		1	2000	10	6	-99	-99	-99	-99	-99	-99	-99	
	1		1	2000	11	6	-99	-99	-99	-99	-99	-99	-99	
	1		1	2000	12	6	-99	-99	-99	-99	-99	-99	-99	
	1		1	2000	13	6	-99	-99	-99	-99	-99	-99	-99	
	1		1	2000	14	6	-99	-99	-99	-99	-99	-99	-99	
	1		1	2000	15	6	-99	-99	-99	-99	-99	-99	-99	
	1		1	2000	16	6	-99	-99	-99	.99	-99	-99	-99	
	1		1	2000	17	6	-99	-99	-99	.99	-99	-99	-99	
	1		1	2000	18	6	3.1	343	344.2	-99	14.3	-99	83	
	1		1	2000	19	6	15	213	210.2	.99	10.6	-99	21.2	
	1		1	2000	20	6	-99	-99	-99	-99	-99	-99	-99	
	1		1	2000	21	6	-99	-99	-99	.99	-99	-99	-99	
	1		1	2000	22	6	-99	-99	-99	-99	-99	-99	-99	
	1		1	2000	23	6	-99	-99	-99	.99	-99	-99	-99	
	1		1	2000	24	6	-99	-99	-99	-99	-99	-99	-99	
			71			· ·								

摘自 OSPM(Hertel and Berkowicz,1989)

圖 3.11 OSPM 城市之監測濃度和氣象資訊介面.

OSPM 雖有內建適合丹麥使用的排放係數,但可能不太適用於台灣, 故為了更符合台灣地區之情形,有必要進一步建立排放係數之資料。本研 究因而參考「全國性空氣污染物排放量趨勢資料之管理與建置檢討 計畫」(環保署,98年)修正國內全國性排放清冊(Taiwan Emission Data System)(TEDS7.0)(中鼎,96年)所產生之TEDS7.1,做為參考依據,建立 OSPM之本土化排放係數。TEDS估算不同車種在不同時速下之排放係數, 包含自用小客車、營業小客車(即計程車)、汽油小貨車、柴油小貨車、公 車、客運車、大客車、大貨車、二行程機車及四行程機車。

3.5 公車路線篩選原則

由於初選過後之公車路線依舊許多,故有必要更進一步篩選。故將根據模擬結果再作一次篩選後才計算公車路線移污潛勢指標及進行路線優

先性分析。採用以長度為權重的污染濃度(length-weighted concentration, LWC)為篩選指標,計算公式如下列:

$$LWC_i = \sum_j (C_{ij} * L_j) / \sum_j L_j$$
(3.12a)

$$LWCM_{i} = \sum_{j} (C_{ij} * L_{j}) / \sum_{j} L_{j}$$
 (3.12b)

其中 LWC_i為污染物 i 之長度加權平均的濃度值(µg/m³); C_{ij}為污染物 i 路 段 j OSPM 模擬出之平均污染物濃度值(µg/m³); L_j為路段 j 的長度(m); LWCM_i為污染物 i 依據各路段所有時段濃度的最大值及以長度加權的平均 濃度值(µg/m³); C_{ij}為污染物 i 路段 j 所有時段中之污染物濃度最大值(µ g/m³)。預期最後篩選 30-50 條路線進行優先性評估。

3.6公車路線移污潛勢指標建立

本研究將依據OSPM模擬結果建立兩組指標供進行路線優先性分析, 一為基於污染濃度,其二為基於風險,以下之分別敘述之。

3.6.1 基於污染濃度的指標組

由於上一節 LWC 指標是算整個路線的加權平均濃度值,無法表示總 體的影響,故不太適合作為路線優先性分析用的指標,本研究因而將以不 同污染物(包括 CO、NO₂、O₃、PM₁₀及 PM_{2.5})濃度乘上道路長度定為污染 濃度-長度(Concentration-length, CL)指標作為評估路線的總體影響程度之 依據,指標計算方式如下列:

$$CL_i = \left(\sum_{j} C_{ij} * L_j\right) \tag{3.13a}$$

$$CLM_i = \left(\sum_j C_{ij} * L_j\right) \tag{3.13b}$$

其中, *CL_i*為污染物*i*污染濃度-長度子指標(μg/m²); *CLM_i*為污染物*i*依各路段所有時段濃度最大值所計算之之污染濃度-長度子指標(μg/m²); *C_{ijt}*、 *L_i及 C_{ii}*同式 3.11。

然而一路線不同污染物之大小趨勢未必雷同,且不同污染物對人體的 影響程度不同,所以必須另想方法建立能同時考量不同污染物的綜合指標。 故本研究依據 OEEHA(2008)所公佈各污染物的急性危害暴露濃度(Acute Reference Exposure Level, REL_A)為基準進一步建立另一組指標,各參考污 染物REL_A如表 3.1 所列,污染物種類包含了 CO、NO₂、O₃,而懸浮微粒因 化學種類繁多,故較難界定對健康有害之閥值(threshold)(曾,100 年),因 而懸浮微粒目前尚無 REL_A 資料。此指標取不同污染物濃度與各污染物 REL_A的比值,為無因次的 REL 當量值,再乘上道路長度作為評估子指標, 然後再將各子指標累加成綜合指標,指標計算方式如下列:

$CLR_i = \sum_j (C_{ij} * L_j / REL_{Ai})$	(3.14a)
$CLRM_{i} = \sum_{j} (C_{ij} * L_{j} / REL_{Ai})$	(3.14b)

其中, CLR_i 為污染物 i 以 REL 為基準所計算之子指標值(REL 當量值-m); CLRM_i 則為污染物 i 依各路段所有時段污染濃度最大值所計算之子指標 (REL 單位當量-m); REL_{Ai} 為污染物 i 的 REL_A 值;C_{ijt}、L_j及 C_{ij} 同式 3.11。 再進一步計算綜合指標,計算方式如下列:

$$CLR = \sum_{i} CLR_{i}$$
(3.15a)
$$CLRM = \sum_{i} CLRM_{i}$$
(3.15b)

污染物	一氧化碳	二氧化氮	臭氧	PM ₁₀
REL_A^1	23000	470	180	魚
空氣品質	35 ppm	0.25 ppm	240 ppm	$325^2 \mu{ m g/m}^3$
標準	(小時平均	(小時平	(小時平	$125 \mu\mathrm{g/m^3}$
	值)	均值)	均值)	(24 小時值)
1 資料來源	· OEHHA(2	2008) • REL	值單位為	$(l g/m^3 \circ$

表 3.1 各重點污染物 RELA 值以及空氣品質標準值

²為 PM₁₀ 虛擬的小時平均值標準(參見本文之說明)

由於 REL_A 沒有 PM 相關資料,因此本研究再以國內之空氣品質標準 為基準建立另一組指標,但由於 PM₁₀ 沒有小時平均值標準,只有 24 小時 值標準,故不適用,本研究因而以下述方式估算一個虛擬的 PM₁₀ 小時平 均值標準,主要依據 NO₂ 的小時平均值以及年平均值標準,假設此二標準 所造成之污染程度相同,且假設不同污染物之空氣品質標準值之意義相同, 故本研究藉由 NO₂ 之小時平均值標準(0.25ppm=470 μg/m³)和年平均值標 準(0.05ppm=94 μg/m³)之比值,再依 PM₁₀ 的年平均值標準(65 μg/m³)換算 出 PM₁₀ 小時平均值為 325 μg/m³(= 65*470/94),並據以作為換算基準建立 綜合指標。依據空氣品質所建立的綜合指標為 CLS 和 CLSM,計算方式類 似式 3.14 和 3.15。但各污染物以小時濃度及小時平均值標準為基準。

3.6.2 基於風險的指標組

由於移污即便濃度相同但於不同地理條件所造成之危害程度不一,尤 其是對人口較多的地區影響會較大,因此本研究將參考 Bennett *et al.* (2006) 所使用之 Intake Fraction (IF)法。IF 法之定義為個體吸入污染物量之總和除 上污染物之總排放量,依據此原則,本研究將以下式計算 IF 值:

$$IF_{i} = \sum_{t} \sum_{j} (P_{j} * C_{ijt} * BR) / \sum_{v} \sum_{k} \sum_{j} n_{jkv} * E_{kv}$$
(3.16)

其中, *IF_i*表示污染物*i*之IF值; *P_j*表示路段*j*人口; *C_{ijt}*表示污染物*i* 於路段*j* 時段*t* 濃度; BR 是呼吸率; *n_{jkv}*表示路段 j 車種 k 於不同速度下之車流量; *E_{kv}*表示車種 k 於速度 v 時之排放係數。

然而由於 IF 主要是評估吸入污染物占總排放量的比例值,雖然亦可 作為評選的一個依據,但無法反應出衝擊程度大小,故可能不太適合作為 分析路線優先性的依據。故本研究主要考量吸入總量作為子指標,再將各 子指標累加成綜合指標,稱之為吸入總量(Intake Sum, IS)指標,子指標計 算方式如下列:

$$IS_{i} = \sum_{j} P_{j} * C_{ij} * BR$$

$$ISM_{i} = \sum_{j} P_{j} * C_{ij} * BR$$
(3.17a)
(3.17b)

其中,*IS*_{*i*}為吸入總量指標(µg/hr);*P*_{*j*}為人口;BR 為呼吸率(m³/hr-person); *ISM*_{*i*}為以各路段所有時段濃度最大值計算之吸入總量指標(µg/hr);*C*_{*ijt*}、*L*_{*i*} 及*C*_{*ij*}同式 3.11。

本研究再將吸入總量子指標除以各污染物 REL_A建立新的子指標 (Intake Sum REL,ISR)指標,計算方式如下列:

$$ISR_{i} = \sum_{j} P_{j} * C_{ij} * BR / REL_{Ai}$$
(3.18a)

$$ISRM_{i} = \sum_{i} P_{j} * C_{ij} * BR / REL_{Ai}$$
(3.18b)

其中, ISR_i 為污染物 i 吸入總量 REL 子指標; ISRM_i 為以 C_{ij}所計算出之子 指標; C_{ijt}、L_i及 C_{ij}同式 3.11; P_j及 BR 同式 3.18 上二式之綜合指標以下列計算:

$$ISR = \sum_{i} ISR_{i} \tag{3.19a}$$

$$ISRM = \sum ISRM_i \tag{3.19b}$$

受移污影響人口部分則首先估算街道兩旁的居民,本研究採用以下二個方式推估之:

- 1. 住址點 GIS 資料: 以 3.2.3 節所決定出之道路寬度再延伸 20m 作為 被移污影響之範圍,並以此範圍內之住址點人口為被影響之居民。
 再依據台北市主計處(100)調查之分區每戶平均人口數決定各住址 點人數。
- 由 3D 建築資料推估:依建築物的面向道路的寬度及高度推估戶數。
 並依台北市主計處(100)之分區每戶平均人口數決定居住每戶平均人口。

唯考量街道旁之居民無法完整反映出移污所造成之影響,尚包括工作 人口及其他活動人口,工作人口部分,本研究將藉由台北市主計處(100) 所統計之就業人口,再依台北市商業處統計之臺北市商業登記家數統計之 行業分區統計資料(100),分配各區之工作人口;而活動人口中的學生通勤 人口,將以台北市主計處(99)所統計之各區各階段之在學人數做為學生數; 本研究以各公車路線站台北市各行政分區經 3.2.3 節所篩選過後之街道總 長度比例分配活動人口。最後將沿線兩旁居住人口加上活動人口即是受移 污影響之人口。

由於受影響人口中之居民計算方式有兩種,故式 3.21a 中 ISR 又可在 分為以住址點計算居民之指標 ISR_a和以面寬計算得到居民之指標 ISR_w; 式 3.21b 也可又可再分為以住址點計算居民之指標 ISRM_a和以面寬計算得 到居民之指標 ISRM_w。

最後再以空氣品質標準(請參見 3.5.1)建立 ISS_a、ISS_w、ISSM_a、ISSM_w, 計算方式同式 3.18 和 3.19,但以空氣品質標準取代 REL_A。

3.6 路線優先性分析方法

由於汰換路線長但經過人口少的公車為低污染公車並不一定最具環 境效益,因此本研究在上一節建立以改善公車路線兩旁居民之風險為基準 制定污染長度及吸入總量與風險等指標,並據以進行優先性分析。

由於不同指標所代表的意義不太相同,各指標的不同點主要在於計算 方法及所考量的因子,並不是針對不同因子分析,例如 ISRi和 ISR 差異在 於前者為依據單一污染物的當量值大小比較,可比較不同污染物的影響程 度,而後者是綜合指標,主要將各污染物 RELA當量值相加,考慮的是污 染物綜合影響; ISR 與 ISRM 的差異主要是前者採平均濃度,後者採用最 大濃度; CLR 與 ISR 間的差異是前者只考量濃度,而後者進一步考量對沿 線人口的影響。故不同指標不太適合設定權重共同使用。本研究因而比較 每一個指標的前 n 名,分析其排序的相似度與差異性,且參考路線的基本 資料,作為決定補助路線優先順序的依據。

第四章 結果與討論

本章主要說明及討論研究所得之結果,首先說明案例區資料以及公車 路線初選,再將初選後之路線以 OSPM 模擬污染分布並作進一步路線篩選, 再把模擬值套入所擬定的指標運算,最後將依指標值作路線優先性評估。 以下各節一一說明之。

4.1 案例區資料

本研究之案例區為台北市,此部分資料包含城市背景資料、進行研究 所須資料,以下一一說明之:

- 1 氣象資料:由台北市環保局技術室(99年)得到承德站、中北站兩交通測 站之污染物實測值以及城市氣象逐時資料如風速、風向、溫度、濕度, 以及污染物背景濃度如NO_x、NO₂、O₃、CO、PM₁₀。
- 2 街道資料:由交通部之路網數值圖(97年)得到道路資料如座標、長度、 道路類型等,以及由台北市都發局(99年)結合 Google Earth 所建立之 Taipei3D Buildings,為 3D 建築物資料,包括所在位置、高度、寬度等 資料,將據以建立 OSPM 模擬所需的資料。
- 3 人口資料:由台北市主計處(100年)取得就業人口,台北市商業處(100年)得到各行業分區家數統計數據,台北市主計處(99年)搜集到各區之 學生人數,將用於推估街道移污的影響人口。
- 4 車流資料:由台北市交通局(99年)蒐集各交通流量站之車流量資料,內 容含7點到8點、8點到9點、17點到18點、18點到19點共四個交 通尖峰時段之大型車、小型車、機車以及公車之流量資料以及轉向比, 將用以推估車流量。
- 5 公車資料:由台北市交工處(99 年)取得公車站牌點座標,以及按路線別 之年駛班次和行駛里程之統計資料。這些資料將用於構建各路線的地

理資訊資料及用於路線初選。

4.2 公車路線初選

依據 3.3 節所述之初選原則,本研究首先刪除觀光區接駁車共 55 條、 工業區接駁車 20 條。而所剩餘之路線再以每年總行駛里程做排序,選出 年行駛里程前一百名之公車路線(如附錄 A),此 100 條路線再由取得之公 車站牌點座標(台北市交工處,99 年),配合路網數值圖(交通部,97 年) 以及台北市 3D 建築物圖層(台北市都發局,99 年)繪出公車路線圖,如圖 4.1 所示,為路線 A(詳見附錄 A)和全台北市所有建築物圖,圖 4.2 顯示路 線 A 和所經路段於道路中心線左右各 100m 內之建築物,其中灰色部分為 建築物。初選後所選的 100 條路線將以 OSPM(Hertel and Berkowicz, 1989) 模擬沿線移污污染分佈。

圖 4.1 公車路線 630 之路線圖及台北市建築物

圖 4.2 公車路線 630 之路線圖及 200m 內之台北市建築物 4.3 OSPM 模擬移污分佈

本研究將依據前一節所建立起之案例區資料及前處理所得資料以 OSPM 模擬移污之分佈,並與實測值比對。

4.3.1 模式前處理

依 3.2.1 節參照陳(94)提出之車流量推估模式算出各路口車流量及 3.2.2 節參照許(96)提出之巨觀車流模式所算出之車流密度並進一步得到平 均車流速度後,依照 OSPM 之 traffic file 之格式製作,範例如圖 4.3(a)所示; 依 3.2.3 所計算得到之街道資料範例則如圖 4.3(b)所示。

.

-

							· · · ·	
Hour	All vehicles	moto	PAS_Car	Vans	Buses	Speed short (km/h)	Speed long (km/h)	Cold Starts (%)
00-01	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
01-02	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
02-03	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
03-04	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
04-05	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
05-06	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
06-07	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
07-08	228.0	85.0	126.0	16.0	1.0	12.3	12.3	0.0
08-09	2341.0	79.0	2243.0	18.0	1.0	0.0	0.0	0.0
09-10	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
10-11	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
11-12	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
12-13	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
13-14	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
14-15	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
15-16	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
16-17	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
17-18	1773.0	1608.0	152.0	12.0	1.0	3.1	3.1	0.0
18-19	280.0	1.0	200.0	78.0	1.0	1.1	1.1	0.0
19-20	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
20-21	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
21-22	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
22-23	-396.0	-99.0	-99.0	-99.0	-99.0	-99.0	-99.0	0.0
23-24	-396.0	-99.0	-99.0	-99.0	-99.0	33.1	33.1	0.0

(b)街道資料

圖 4.3 OSPM 資料範例(以公車路線 630 例)(a) 街道交通資料(b)街道資料

4.3.2 OSPM 模擬

本研究以 OSPM 模擬公車路線中各移污的濃度,包含 CO、NO、NO₂、 O₃、PM₁₀及 PM_{2.5}。圖 4.4 為 OSPM 模擬路線 A(詳見附錄 A)於上午 7 時至 9 時以及 17 時至 19 時四小時之平均濃度,該四小時為交通尖峰時段,故 模擬濃度會較高,代表街道兩旁民眾於一天之中所遭受到之最大影響。

OSPM 模擬結果舉例 CO,表 4.1 表示路線 R1 部分路段污染物 CO 模擬結果,其中 StreetLength 表示路線長,Width 表示路段寬,flow 表示上午 E7 時至 9 時以及 17 時至 19 時四小時車流量。由路段 R1A 和 R1B 發現, 道路長度對 CO 濃度影響並不大;由路段 R1C、R1E 得知,當四小時車流 量由 1537 上升到 4569 輛時,CO 濃度由 1.12ppm 上升到 1.66ppm;由 R1G 和 R1H 發現,當寬到由 28m 下降到 19m 時,CO 濃度由 1.11ppm 上升到 1.21ppm;觀察 R1I 和 R1J 發現,當 General Height 由 21m 上升到 27m, CO 濃度由 4.65ppm 提升到 6.24ppm。由此可看出街道中移污濃度之改變受 到建築物高度以及車流量的影響較大,受模擬長度的影響較小。

由OSPM模擬結果發現,街道的封閉性亦會影響濃度。路段 R1K 和 R1L 於道路長度、道路寬度、車流量條件相似且 R1L 之 General Height 高 於 R1K 之條件下,兩者 CO 濃度卻相似。但若看圖 4.5 可以發現,R1K 之 街道封閉性大於 R1L。但另一方面,於車流量相似的條件下,雖然建築物 高度增加時會加深街谷並增加封閉性,不利於污染物的擴散,但若街道也 同時變寬,則會改善擴散,案例如路段 R1M 及 R1N。雖然兩者之車流量 以及街道長度相似,且 R1M 之 General Height 大於 R1N,但 R1M 之寬度 也比 R1N 寬,因而改善了擴散情形。

41

圖 4.4 OSPM 模擬公車路線(以路線 R1 為例)移污濃度結果範例 (a)O3; (b)CO; (c)NO;(d)NO2;(ePM10;及(f)M2.5。

路段編號	CO	General Height	Street Length	width	flow
R1A	0.97	12	169	12.5	15
R1B	0.97	12	54	12.5	15
R1C	1.66	3	55	14	4569
R1D	2.93	21	67	13	6490
R1E	0.974	6	109	14	1537
R1F	1.22	3	121	19	1537
R1G	1.12	3	171.0	28	1537
R1H	1.22	3	121.0	19	1537
R1I	4.65	21	43	35	15628
R1J	6.24	27	75	35	15628
R1K	0.97	3	44.0	23	90
R1L	0.97	30	50.0	23	90
R1M	0.97	36	94.0	32	90
R1N	0.97	6	83.0	24	90

表 4.1 路線 A 之 CO 模擬結果

CO 單位為 ppm; General height 單位為 m; StreetLength 單位為 m;

widht 單位為 m; flow 單位為 vehicles/4hrs。

(b)路段 R1L

圖 4.5OSPM 街道圖(以路線 R 為範例)(a)路段 R1K (b)路段 R1L

4.4 公車路線篩選

研究初期原本以為進行指標計算將會花費甚多時間,故原規劃透過 LWC 指標組再作一次篩選,。然而於實際進行指標計算時,發現計算速度 並沒有預期的慢,遂決定針對初選所選的100條路線全部進行指標計算。

4.5 公車路線移污潛勢指標計算

本研究依據所建立之基於污染濃度以及基於風險兩類指標,計算出篩 選過後各公車路線指標值,以作評估補助路線優先性之依據。本研究取各 指標前十名路線之聯集,並據以分析指標用於篩選路的適宜性,並於下一 節進行路線補助之優先性評估。

4.5.1 基於污染濃度

基於污染濃度指標組為 CL 指標組,所考量的主要因子為各路線所排放 污染物乘以距離的加總量。於此節討論此指標組各指標的前十名路線,比 較依據不同汙染物所得結果之差異。

表4.2所列為各CL指標前十名路線之聯集,其中Route表示路線代碼;, CL_{aveCO}(x10⁹)表示某路線之各路段CO平均濃度乘上各路段長路之和。表 4.3 則是表 4.2 中各指標的排序。由表 4.2 中可看出各污染物濃度和單程單 趟長度、班次、以及行駛總長度並無明顯關係,此乃由於各污染物亦受到 各路線沿線街道狀況如建築物高度、街道寬度,以及車流量和速度所影響, 亦可能受到各街道不同汽機車組成所影響。

觀察表 4.2, CL_{CO}、CL_{PM10}、CL_{PM2.5}以及 CL_{PM10}、CL_{PM2.5}之間相關性 較高,圖 4.6 為將此三污染物分別除上其最大值。由圖 4.6 可看出前七條 路線於 CL_{CO}、CL_{PM10}、CL_{PM2.5}之排序幾乎相同。再由表 4.2 和 4.3 發現, CL_{CO}、CL_{NO}、CL_{PM10}、CL_{PM2.5}之污染濃度最低值均為路線 R22,而於此表 格中,CL_{CO}、CL_{PM10}、CL_{PM2.5}之最大污染濃度路線均為 R28, 且路線 R28 之 CL_{NO} 亦在第二順位, CL_{NO2} 是第 13, 而 CL_{O3} 為相對較低之 37。此結果 顯示路線 28 污染危害性相對於其他路線是較高的。此外,路線 R31 也有 類似的狀況。

Route	$CL_{CO}(10^{9})$	$CL_{NO}(10^8)$	$CL_{NO2}(10^8)$	$CL_{O3}(10^7)$	$CL_{PM10}(10^8)$	$CL_{PM25}(10^8)$
R28	20.435	69.386	1.579	3.465	5.615	5.681
R31	19.111	63.870	1.525	3.465	5.312	5.389
R79	16.433	53.799	1.126	2.215	4.411	4.417
R94	16.225	52.184	1.071	2.115	4.343	4.341
R41	12.554	34.031	1.079	3.603	3.402	3.542
R42	11.713	44.931	1.224	3.026	3.380	3.486
R60	10.428	63.974	1.401	1.528	3.463	3.522
R20	9.941	29.821	0.933	2.864	2.730	2.837
R1	7.911	26.792	2.896	13.107	2.849	3.767
R25	7.376	59.015	1.604	3.107	2.660	2.850
R2	6.791	18.785	2.738	13.554	2.549	3.480
R48	6.393	57.080	1.429	2.036	2.415	2.549
R79	6.245	38.910	1.929	6.575	2.409	2.867
R32	6.103	65.463	1.579	1.912	2.544	2.695
R4	5.208	25.188	2.201	8.196	2.099	2.744
R10	5.097	47.332	1.677	4.909	2.254	2.588
R8	4.944	41.249	1.771	5.321	2.225	2.621
R11	4.664	12.515	1.344	6.169	1.604	2.027
R3	4.371	12.139	1.929	9.666	1.731	2.399
R13	3.927	77.646	1.965	5.297	2.846	3.182
R6	3.749	29.790	1.946	7.222	1.997	2.551
R5	3.653	48.468	2.239	6.416	2.522	3.071
R18	3.380	69.025	1.401	2.253	2.165	2.308
R33	2.961	64.332	1.563	2.773	2.221	2.448
R9	2.938	7.227	1.187	6.124	1.180	1.598
R22	2.426	7.191	1.078	5.590	0.968	1.342

表 4.2 CLi 指標之污染物值

單位:mµg/m³。

表 4.3 CLi 指標之污染物排序

Route	CL _{CO}	CL _{NO}	CL _{NO2}	CL _{O3}	CL _{PM10}	CL _{PM25}	
R28	1	2	13	37	1	1	
R31	2	7	17	36	2	2	
R79	3	10	29	76	3	3	
R94	4	11	36	80	4	4	
R41	5	26	34	31	6	6	
R42	6	15	24	47	7	8	
R60	7	6	19	96	5	7	
R20	8	29	53	53	10	14	
R1	9	36	1	2	8	5	1
R25	10	8	< 11	42	- 11	13	1.
R2	11	53	2	1	12	9	
R48	12	9	18	85	15	20	
R79	13	19	7	6	16	12	
R32	14	4	14	87	13	16	
R4	17	41	4	4	23	15	
R10	18	14	10	16	17	18	\mathbf{x}
R8 🚺	19	17	9	11	18	17	
R11	23	68	22	8	31	27	
R3	26	70	8	3	27	23	-
R13	29	1	5	12	9	10	0
R6	30	30	6	5	25	19	
R5	31	13	3	7	14	11	
R18	34	3	20	70	20	25	6
R33	39	5	15	55	19	22	
R9	40	83	25	9	47	38	
R22	51	84	35	10	62	53	
		-	1			55.5	1
			4		-		
				-			- N. C

圖 4.6 CL_{CO}、CL_{PM10}、CL_{PM2.5} 各路線指標值除以最大值

表 4.4 所列為 CLM_i 指標前十名路線之聯集,該組指標類似 CL 指標, 但採用各污染物的最大小時濃度值,表 4.5 為依指標值的排序。由表 4.4 可看出 CLM_{CO}、CL_{PM10}、CL_{PM2.5} 間的相關性較 CL 指標組低,這可能是因 為最大值屬較極端值,變異因而較平均值大,亦因而指標間的差異較明 顯。

由於 CL_i和 CLM_i指標組為污染濃度和該路段長度相乘,主要考量污染 濃度,唯各污染物的危害程度不盡相同,無法單以各污染物的濃度值作比 較,故有必要探討可供比較不同污染物的基準。

48

表 4.4 CLM_i指標之污染物值

Route	$\text{CLM}_{\text{CO}}(10^{10})$	$\text{CLM}_{\text{NO}}(10^9)$	$\text{CLM}_{\text{NO2}}(10^9)$	$CLM_{O3}(10^8)$	$CLM_{PM10}(10^{9})$	$CLM_{PM25}(10^{9})$
R5	4.313	26.213	2.473	2.706	8.605	7.096
R9	4.503	2.720	0.524	2.229	2.596	1.009
R6	5.079	7.913	1.025	2.808	4.049	2.168
R3	7.448	5.015	0.887	3.522	3.565	0.981
R33	10.016	50.514	4.249	1.288	11.950	10.834
R4	11.834	12.145	1.412	3.256	4.637	2.299
R11	13.638	5.792	0.768	2.357	4.422	2.773
R13	14.952	74.172	6.229	2.283	17.716	16.047
R2	14.956	8.351	1.306	5.021	5.477	2.168
R10	18.515	33.792	2.989	1.995	9.351	7.759
R7	22.149	19.396	1.923	2.554	6.994	4.892
R1	22.769	14.691	1.808	4.972	6.574	3.315
R18	25.007	60.244	5.012	0.989	14.142	12.615
R32	36.081	35.379	3.020	0.942	10.004	8.594
R20	36.277	12.735	1.174	1.162	10.272	9.219
R41	37.475	11.154	1.090	1.374	11.453	10.219
R48	39.753	36.544	3.095	1.017	10.273	8.943
R25	41.888	41.649	3.568	1.383	11.890	10.134
R60	45.069	30.815	2.611	0.821	13.057	12.022
R94	54.594	21.743	1.882	0.881	15.934	14.821
R42	57.820	24.885	2.166	1.287	14.387	12.941
R79	59.948	23.380	2.017	0.946	16.358	15.118
R31	65.658	26.019	2.299	1.447	19.794	18.293
R28	67.415	30.510	2.669	1.441	20.623	18.973
單位:1	m μ g/m ³ °	X	18	896		
						2
	100					
		2				
		~ 4 1				

49

表 4.5 CLMi 指標之污染物排序

Route	CLM _{CO}	CLM _{NO}	CLM _{NO2}	CLM _{O3}	CLM _{PM10}	CLM _{PM25}	
R28	1	9	8	31	1	1	
R31	2	12	11	30	2	2	
R79	3	15	15	74	4	4	
R42	4	14	13	42	6	6	
R94	5	16	19	83	5	5	
R60	6	8	9	90	8	8	
R25	7	4	4	34	10	11	
R48	8	5	5	63	12	13	
R41	9	45	44	35	11	10	
R20	10	40	42	48	13	12	
R32	11	6	6	75	14	14	1
R18	15	2	2	68	7	7	
R1	19	33	21	2	20	38	
R7	21	23	16	7	18	23	16
R10	23	7	7	13	15	15	
R2	30	58	35	1	30	57	
R13	31	1	1	9	3	3	
R11	33	71	65	8	37	44	
R4	37	41	32	4	35	53	
R33	44	3	3	41	9	9	
R	53	75	54	3	52	78	
R6	63	60	48	5	42	58	
R9	70	87	77	10	68	76	
R5	72	10	10	6	16	16	

為建立可綜合考量不同污染物的指標,本研究因而以各污染物的 REL_A值為基準,以污染濃度值除以 REL_A為污染物當量,並作為指標值。 再依所得的 CLR_i 以及 CLRM_i 相加,進而得到綜合指標 CLR 和 CLRM。

REL_A(OEEHA,2008)為會對人體健康產生危害之最小濃度,不同污染物依其危害程度而有不同的 REL_A,因此 REL_A適合作為為基準,故本研究以所模擬的各污染物濃度除以其 REL_A,並以1做為基準,小於1表示尚未對人體造成顯著危害,而值愈高則代表危害性愈大。觀察表 4.2 路線 R2

之 CL_{CO} 、 CL_{NO2} 和 CL_{O3} 以及表 4.6 路線 R2 之 CLR_{CO} 、 CLR_{NO2} 和 CLR_{O3} , 發現 CL_{CO} 之污染濃度值大於 CL_{NO2} 和 CL_{O3} ,但若考量 REL_A 後可以發現, CLR_{CO} 之污染當量值較 CL_{NO2} 和 CL_{O3} 小;再看表 4.2 路線 R2 之 CL_{NO2} 和 CL_{O3} , CL_{NO2} 污染濃度大於 CL_{O3} ,但考量 REL_A 後,如表 4.5 所列, CL_{NO2} 之污染當量值小於 CL_{O3} 。

由於採用各污染物的 REL_A, CLR_i和 CLRM_i 以為污染當量值為指標, 使得不同污染物可以放在同樣基準來比較。因此可將 CLR_i 及 CLRM_i 加總 分別建立綜合性指標 CLR 及 CLRM,以供比較不同路線所產生污染物的 潛在影響。

表 4.6 CLR 各污染物指標值

Route	$CLR_{CO}(10^5)$	$\text{CLR}_{\text{NO2}}(10^5)$	$CLR_{O3}(10^{5})$	
R1	3.440	6.161	7.282	
R2	2.953	5.826	7.530	
R28	8.885	3.359	1.925	
R31	8.309	3.245	1.925	
R4	2.264	4.683	4.553	
R3	1.900	4.103	5.370	
R79	7.145	2.395	1.231	
R94	7.0 <mark>5</mark> 4	2.280	1.175	
R7	2.715	4.104	3.653	
R5	1.588	4.763	3.565	
R41	5.458	2.297	2.002	
R42	5.093	2.605	1.681	
R60	4.534	2.982	0.849	
R20	4.322	1.986	1.591	
R25	3.207	3.412	1.726	
R48	2.780	3.041	1.131	
R10	2.216	3.569	2.727	
R8	2.149	3.768	2.956	X
R11	2.028	2.859	3.427	
R13	1.707	4.180	2.943	
R6	1.630	4.140	4.012	
R9	1.277	2.526	3.402	G /
R22	1.055	2.293	3.105	
留位·n				
7-11-11				
			Statistics of the	

表 4.7 CLR 指標之污染物排序

Route	CLR _{CO}	CLR _{NO2}	CLR _{O3}	
R1	9	1	2	
R2	11	2	1	
R28	1	13	37	
R31	2	17	36	
R4	17	4	4	
R3	26	8	3	
R79	3	29	76	
R94	4	36	80	
R7	13	7	6	
R5	31	3	7	
R41	5	34	31	
R42	6	24	47	
R60	7	19	96	
R20	8	53	53	
R25	10	11	42	
R48	12	18	85	
R10	18	10	16	
R8	19	9	11	
R11	23	22	8	
R13	29	5	12	
R6	30	6	5	
R9	40	25	9	1896
R22	51	35	10	1000

表 4.8 CLRM_i 各污染物指標值

Route	$\text{CLRM}_{\text{CO}}(10^6)$	$\text{CLRM}_{\text{NO2}}(10^6)$	$CLRM_{O3}(10^{6})$				
R28	29.311	5.678	0.800				
R31	28.547	4.892	0.804				
R79	26.064	4.293	0.525				
R42	25.139	4.607	0.715				
R94	23.737	4.004	0.489				
R60	19.595	5.556	0.456				
R25	18.212	7.592	0.769				
R48	17.284	6.586	0.565				
R41	1 <mark>6.29</mark> 3	2.319	0.763				
R20	15.773	2.498	0.646				
R32	15.688	6.425	0.523				
R18	10.872	10.664	0.550				
R1	9.899	3.847	2.762				
R7	9.630	4.092	1.419				
R10	8.050	6.360	1.108				
R2	6.502	2.780	2.789				
R13	6.501	13.253	1.268				
R11	5.930	1.634	1.309				
R4	5.145	3.005	1.809				
R33	4.355	9.040	0.715				
R3	3.238	1.888	1.956				
R60	2.208	2.181	1.560	5			
R9	1.958	1.115	1.238				
R5	1.875	5.261	1.503				
單位:m。							

表 4.9 CLRM_i指標值排序

Route	CLRM _{CO}	CLRM _{NO2}	CLRM _{O3}
A28	1	8	31
A31	2	11	30
A79	3	15	74
A42	4	13	42
A94	5	19	83
A60	6	9	90
A25	7	4	34
A48	8	5	63
A41	9	44	35
A20	10	42	48
A32	11	6	75
A18	15	2	68
A1	19	21	2
A7	21	16	7
A10	23	7	13
A2	-30	35	-1
A13	31	1	9
A11	33	65	8
A4	37	32	4
A33	44	3	41
A3	53	54	3
A6	63	48	5
A9	70	77	10
A5	72	10	6

本研究將污染物除上 REL 當量後再將各污染物當量相加得到結果為 綜合性指標 CLR 和 CLRM。表 4.10 所列為 CLR 及 CLR_i前十名之聯集, 表 4.11 則為各指標的排序;表 4.12 與表 4.13 為 CLRM 與 CLRM_i的類似 結果。

觀察表 4.11,路線 R79 雖然在 CLR_{CO}指標的排序是第三,但 CLR_{NO2} 和 CLR_{O3}排序都在中後段,而 CLR 總排名卻是在第七。由表 4.10 看出這 是因為 CLR_{CO}的污染物當量較高。而路線 R6 則是相反的狀況,雖然 CLR- NO2和 CLRO3排序都頗高,但 CLRCO之污染當量相對較低,使得排序降低; 路線 R1 雖然並非在所有 CLRi子指標排序皆在第一,但於綜合指標 CLR 之排序則為第一,表示同時綜合考量不同污染物的影響時,結果會不相 同。

若比較綜合指標 CLR 和 CLRM,可以發現兩者之排序上的差異頗明顯。 例如路線 R1 在 CLR 排序為第一,但在 CLRM 卻排到第十七。這顯示採用 最大值與平均值的結果差異有時會頗大;路線 R28 和 R31,無論是在 CLR 或 CLRM,其排名都位於前五名;路線 R79 和 R94 則皆在前十。推測這可 能是因為路線 R1 之街道結構以及車流狀況可能雖然時平均濃度較高,但 不會明顯持續累積而提高最大濃度;而 R28 等路線則可能是公車所經路段 道路較為封閉且狹窄,而車流量也較多的狀況,故平均濃度與最大濃度的 趨勢相近。

若比較 CLR 和 CLRM 之整體排序,可以發現相關性不高。可能是因為 CLRM 顯現的是最大可能產生之危害,屬於較少出現之極端值;而 CLR 是各路線平均濃度,故除了一些路線以外,兩者之間的趨勢並無顯著相關 性。

CL_i和 CLM_i指標組主要考量只單一污染物的平均或最大濃度值;CLR 和 CLRM 則是依據 REL 所計算的污染物當量表且同時考量多污染物的綜 合指標值,除非某地區單一污染物的影響特別顯著且作為污染管制重點時, 則可考量以單一污染物的指標為篩選基準,否則以綜合指標較能同時考量 不同污染物。

56

表 4.10 CLR 值及 CLR_i

Route	$CLR(10^5)$	$\text{CLR}_{\text{CO}}(10^5)$	$\text{CLR}_{\text{NO2}}(10^5)$	$\text{CLR}_{\text{aveO3}}(10^5)$				
R1	16.882	3.440	6.161	7.282				
R2	16.308	2.953	5.826	7.530				
R28	14.168	8.885	3.359	1.925				
R31	13.479	8.309	3.245	1.925				
R4	11.501	2.264	4.683	4.553				
R3	11.374	1.900	4.103	5.370				
R79	10.771	7.145	2.395	1.231				
R94	10.509	7.054	2.280	1.175				
R79	10.472	2.715	4.104	3.653				
R5	9.916	1.588	4.763	3.565				
R41	9.379	5.458	2.297	2.002				
R42	9.379	5.093	2.605	1.681	0			
R60	8.365	4.534	2.982	0.849				
R20	7.899	4.322	1.986	1.591	6			
R25	8.345	3.207	3.412	1.726				
R48 📗	6.951	2.780	3.041	1.131				
R10	8.512	2.216	3.569	2.727				
R8	8.874	2.149	3.768	2.956				
R11	8.314	2.028	2.859	3.427				
R13	8.831	1.707	4.180	2.943				
R6	9.783	1.630	4.140	4.012				
R9	7.206	1.277	2.526	3.402				
R22	6.453	1.055	2.293	3.105				
單位: m。								
表 4.11 CLR 及 CLR_i 排序

Route	CLR	CLR _{CO}	CLR _{NO2}	CLR _{O3}	
R1	1	9	1	2	
R2	2	11	2	1	
R28	3	1	13	37	
R31	4	2	17	36	
R4	5	17	4	4	
R3	6	26	8	3	
R79	7	3	29	76	
R94	8	4	36	80	
R7	9	13	7	6	
R5	10	31	3	7	
R41	12	5	34	31	
R42	13	6	24	47	
R60	17	7	19	96	
R20	21	8	53	53	$2 \wedge 6$
R25	19	10	11	42	
R48	25	12	18	85	
R10	16	18	10	16	
R8	14	19	9	11	
R11	20	23	22	8	
R13	15	29	5	12	
R6	11	30	6	5	
R9	23	40	25	9	206
R22	27	51	35	10	
	1				
					-
		4	411	-	

表 4.12 CLRM 及 CLRM_i

Route	CLRM	$\text{CLRM}_{\text{CO}}(10^6)$	$\text{CLRM}_{\text{NO2}}(10^6)$	$CLRM_{O3}(10^{6})$			
R28	35.790	29.311	5.678	0.800			
R31	34.243	28.547	4.892	0.804			
R79	30.882	26.064	4.293	0.525			
R42	30.462	25.139	4.607	0.715			
R94	28.229	23.737	4.004	0.489			
R25	26.573	18.212	7.592	0.769			
R60	25.607	19.595	5.556	0.456			
R48	24.435	17.284	6.586	0.565			
R32	22.636	15.688	6.425	0.523			
R18	22.086	10.872	10.664	0.550			
R13	21.022	6.501	13.253	1.268			
R41	19.376	16.293	2.319	0.763			
R20	18.916	15.773	2.498	0.646	k		
R1	16.508	9.899	3.847	2.762			
R10	15.518	8.050	6.360	1.108			
R7	15.141	9.630	4.092	1.419			
R33	14.110	4.355	9.040	0.715			
R2	12.071	6.502	2.780	2.789			
R4	9.959	5.145	3.005	1.809			
R11	8.873	5.930	1.634	1.309	The second secon		
R5 🥑	8.639	1.875	5.261	1.503			
R3	7.082	3.238	1.888	1.956			
R6	5.949	2.208	2.181	1.560	1		
R9	4.311	1.958	1.115	1.238			
單位:m。							

表 4.13 CLRM 及 CLRM_i 排序

Route	CLRM	CLRM _{CO}	CLRM _{NO2}	CLRM _{O3}
R28	1	1	8	31
R31	2	2	11	30
R79	3	3	15	74
R42	4	4	13	42
R94	5	5	19	83
R25	6	7	4	34
R60	7	6	9	90
R48	8	8	5	63
R32	9	11	6	75
R18	10	15	2	68
R13	11	31	1	9
R41	12	9	44	-35
R20	13	10	42	48
R1	17	19	21	- 2
R10	19	23	7	13
R7	20	21	16	7
R33	23	44	3	41
R2	27	30	35	1
R4	33	37	32	4
R11	35	33	65	8
R5	37	72	10	6
R3	48	53	54	1 3
R6				
	52	63	48	5

由於 REL_A 並未考量 PM,因此本研究另將 CL_i和 CLM_i除上國內空氣 品質標準建立新的綜合指標,而其中之 PM₁₀ 由於沒有小時平均值標準, 故採用 3.6.1 節所估算之虛擬的小時平均值標準,其餘污染物用小時平均 值為基準。所建立之新綜合指標為 ISS_{PM10} 以及 ISSM_{PM10}。 表 4.14 和表 4.16 列為 CLS_{PM10} 以及 CLSM_{PM10} 之指標值,表 4.15 和表 4.17 列為 CLS_{PM10} 以及 CLSM_{PM10} 之指標值排序結果。由表 4.15 和表 4.17 顯示若以空氣品質標準為基準時,則依據均值和極大值所得的排序趨勢類 似。

將 CLS_{PM10}和 CO 及 PM₁₀子指標做相關性分析,會發相關係數分別為 0.97 及 0.98,但若看指標值則會發現綜合指標值受到 CO 子指標值之影響 較大。CLSM_{PM10}也有類似的情況,因此若要選擇單一子指標做為評估依 據則可以使用 CO 子指標。

表	4.1	4	CI	_SPN	410	指	標	值
---	-----	---	----	------	-----	---	---	---

	and a second sec
Route	$CLS_{PM10}(10^{5})$
R28	73.064
R31	68.716
R79	57.890
R94	57.005
R41	45.588
R42	43.488
R60	40.291
R1	40.126
R20	36.381
R2	36.259
留位·m	

表 4.15	CLSP	u10指標	值排序
· · · · · · · · · · · · · · · · · · ·			

Route	CLS _{PM10}
R28	1
R31	2
R79	3
R94	4
R41	5
R42	6
R60	7
R1	8
R20	9
R2	10

表 4.16 CLSM_{PM10} 指標值

R28	237.934
R31	230.218
R79	204.590
R94	189.611
R42	193.674
R60	158.522
R25	149.264
R13	106.020
R48	137.803
R41	131.630

R48	137.803	
R41	131.630	
單位:m	1 •	
表 4.17	7 CLSM _{PM10} 指標值排序	
Route	CLSM _{PM10}	
R28		
R31 🦲		
R79 💻	3	
R94	4	
R42	5	
R60 📁	6	
R25		
R13	8	1896
R48	9	
R41	10	

4.5.2 基於風險

基於污染濃度之指標組主要考量濃度與所影響的道路長度。但由於都 市中人口分布不平均,因而在相同污染濃度狀況下,於人口密集處和相對 人口密度較小之郊區所造成之風險亦不相同,故為降低都市中移污對人的 危害性,於評估補助優先性時有必要進一步考量人口之分布狀況。本研究 因而發展 ISi、ISMi、ISR、ISRM 四個同時考量不同路段之人口的指標組。

IS_i、ISM_i、ISR、ISRM 則是依據 Bennett et al. (2006)所建議之方法, 主要考量該路段受影響人口的總吸入污染量,藉由此吸入量來評估基於人 口之風險。由於本研究計算人口之方式分為以建築物面對道路寬度和高度 估算此棟建築物之人數,以及依照住址點之方式估算人口兩種方式。因此 IS_i、ISM_i、ISR、ISRM 四指標組再細分為依道路寬度和高度估算影響人數 的 IS^w_i、ISM^w_i、ISR^w、ISRM^w,和依住址點估算的 IS^a_i、ISM^a_i、ISR^a、ISRM^a, 以下一一討論所得結果。

表 4.18 及 4.120 分別為依照平均值及最大小時濃度所計算 IS^w_i 及 ISM^w_i指標值前十名之聯集,表 4.19 及表 4.21 則為指標值排序。比較表 4.19 和表 4.21,可以發現 IS^w_{CO}、IS^w_{PM10}、IS^w_{PM2.5} 以及 ISM^w_{CO}、ISM^w_{PM10}、 ISM^w_{PM2.5} 間相關性頗高,若只看前五名,則可以發現排序相同。顯示若同 時考量 CO、PM₁₀、PM_{2.5},則無論是以平均值或最大值評估,前四名路線 相同。

若再比較NO、NO₂、O₃污染物,則會發現皆沒有明顯的關係或趨勢。 顯示此種方式雖然可以顯示出各路線於同污染物危害性之強弱,但若跨污 染物時則無法分辨出先後次序。故本研究以REL_A將IS^wi、ISM^wi指標轉換 成污染物當量,再累加產生綜合性指標ISR^w、ISRM^w,以利於進行綜合性 評估。

m

表 4.18 IS^wi 各污染物指標值

Route	$IS^{W}_{CO}(10^{9})$	$IS_{NO}^{W}(10^{6})$	$IS^{w}_{NO2}(10^{7})$	$IS^{w}_{O3}(10^{7})$	$IS^{w}_{PM10}(10^{7})$	$IS^{w}_{PM25}(10^{8})$
R28	60.267	1993.463	46.213	9.613	164.863	16.676
R31	50.359	1764.744	36.599	6.066	140.105	14.016
R79	48.079	1571.363	32.503	5.369	129.215	12.903
R94	47.939	1553.371	32.257	5.548	128.897	12.878
R41	36.615	1019.864	28.391	7.758	98.401	10.088
R7	23.194	1657.991	58.405	14.919	87.464	9.774
R25	23.107	1860.287	48.249	7.961	80.633	8.550
R48	22.420	2110.511	49.649	5.329	87.230	9.102
R32	19.541	2157.920	53.352	5.630	84.045	8.930
R6	10.447	1095.985	55.231	16.215	61.190	7.497
R4	17.434	937.808	79.927	27.382	72.880	9.575
R2	13.802	379.731	51.919	25.048	51.536	6.888
R1	16.160	582.164	63.514	28.032	59.815	7.986
R11	18.356	484.849	52.562	23.839	63.333	7.983
R9	9.236	230.465	37.123	18.696	37.131	5.005
R20	29.553	913.785	25.589	6.855	79.574	8.162
R60	28.809	1736.061	36.253	3.074	94.059	9.488
R42	25.778	1052.305	27.731	6.314	76.026	7.828
R17	19.288	1553.470	45.681	9.932	75.052	8.161
R80	19.138	1751.375	39.689	3.896	76.220	7.897
R8	13.599	1395.840	47.296	10.239	65.096	7.354
R15	8.425	796.022	42.295	11.663	45.720	5.611
R3	6.772	185.916	30.578	15.122	27.081	3.766
R40	4.946	207.721	23.762	11.608	21.792	2.974
單位:	IS ^w i 為 pers	on-µg/hr。				3
	21	X	18	896		
			(
		4	The second			
		~ .				
				1 mar		

表 4.19 IS^wi 指標值排序

Route	IS ^w _{CO}	IS ^w _{NO}	IS ^w _{NO2}	IS ^w _{O3}	IS ^w _{PM10}	IS ^w _{PM25}	
R28	1	3	11	18	1	1	
R31	2	5	18	55	2	2	
R79	3	9	26	74	3	3	
R94	4	11	27	70	4	4	
R41	5	25	37	35	5	5	
R7	9	8	3	8	7	6	
R25	10	4	9	29	10	11	
R48	11	2	8	75	8	9	
R32	13		5	64	9	10	
R6	31	22	4	6	19	18	
R4	17	29	1	2	15	5 7	
R2	22	66	7	3	26	21	
R1	18	54	2	1	20	14	
R11	16	56	6	4	18	15	
R9	35	75	17	5	41	34	
R20	6	30	49	39	11	12	
R60	7	7	22	95	6	8	
R42	8	23	38	47	13	17	
R17	14	10	12	16	14	13	
R80	15	6	14	88	12	16	
R8	23	13	10	13	17	19	
R15	37	38	13	9	30	27	
R3	49	81	31	7	60	51	
R40	64	77	58	10	71	66	

表 4.20 ISM^wi 各污染物指標值

Route	$\text{ISM}^{W}_{CO}(10^9)$	$\text{ISM}^{W}_{NO}(10^7)$	$\text{ISM}^{W}_{NO2}(10^8)$	$ISM_{O3}^{W}(10^{8})$	$ISM^{w}_{PM10}(10^{8})$	$ISM^{w}_{PM25}(10^{8})$		
R28	1958.093	8064.364	71.026	4.116	587.049	540.595		
R31	1734.052	7004.160	60.471	2.736	517.912	485.516		
R79	1683.951	6397.747	55.113	2.484	468.728	436.322		
R94	1601.630	6260.201	54.125	2.485	466.075	434.796		
R25	1583.918	15255.877	128.906	3.743	427.215	368.341		
R48	1246.682	12752.977	107.515	2.924	359.676	320.081		
R89	1179.645	9274.772	78.953	2.695	260.020	218.265		
R7	956.015	9130.219	82.832	6.120	287.006	225.939		
R32	1160.168	11267.920	96.425	3.048	319.133	273.374		
R1	462.877	3509.585	42.317	10.755	142.400	66.933		
R4	340.148	3789.852	45.398	11.256	151.985	70.301		
R2	327.592	1907.689	27.660	9.371	121.546	57.798		
R9	137.809	824.900	16.110	6.856	80.844	31.703		
R18	553.808	11004.939	91.776	1.949	260.693	230.052		
R42	1303.310	5688.070	49.353	2.730	321.272	289.025		
R60	1260.124	8182.914	68.955	1.842	355.174	329.047		
R20	1137.413	4281.851	38.240	2.873	308.886	279.023		
R41	1102.780	3225.717	30.404	3.136	330.646	301.267		
R80	851.631	9244.810	78.518	2.040	260.147	226.895		
R17	814.010	8656.433	76.307	4.135	258.348	212.723		
R11	513.832	2050.202	28.291	9.177	173.610	109.318		
R8	495.485	6540.630	59.451	4.387	201.660	166.474		
R15	178.046	2207.165	25.254	4.910	93.367	57.674		
R6	147.397	2791.049	31.984	6.697	119.351	75.891		
R3	105.638	702.538	13.321	5.548	55.011	14.277		
R40	88.393	1187.821	15.364	4.256	59.785	29.021		
單位: ISM ^w _i 為 person- µg/hr。								

表 4.21 ISM^wi 指標值排序

R281914R3121445R7931962R9442061R255119R488241R3210337R71457R18244R129332R436281R237533R961685R4262446R6071088R899649P8015783	Route	ISRM ^w _{CO}	ISRM ^w _{NO2}	ISRM ^w _{O3}	
R31 2 14 45 R79 3 19 62 R94 4 20 61 R25 5 1 19 R48 8 2 41 R32 10 3 37 R7 14 5 7 R18 24 4 85 R11 26 50 4 R1 29 33 2 R4 36 28 1 R2 37 53 3 R9 61 68 5 R42 6 24 46 R60 7 10 88 R89 9 6 49 P80 15 7 83	R28	1	9	14	
R7931962 $R94$ 42061 $R25$ 5119 $R48$ 8241 $R32$ 10337 $R7$ 1457 $R18$ 244 $R1$ 2933 $R4$ 3628 $R1$ 2933 $R4$ 3628 $R42$ 624 $R42$ 6 $R42$ 7 $R89$ 9 6 $R89$ 9 $R80$ $R80$	R31	2	14	45	
R9442061R255119R488241R3210337R71457R1824485R1126504R129332R436281R237533R961685R4262446R6071088R899649P8015783	R79	3	19	62	
R255119R488241R3210337R71457R1824485R1126504R129332R436281R237533R961685R4262446R6071088R899649P8015783	R94	4	20	61	
R48 8 2 41 R32 10 3 37 R7 14 5 7 R18 24 4 85 R11 26 50 4 R1 29 33 2 R4 36 28 1 R2 37 53 3 R9 61 68 5 R42 6 24 46 R60 7 10 88 R89 9 6 49 P80 15 7 83	R25	5	1	19	
R32 10 3 37 R7 14 5 7 R18 24 4 85 R11 26 50 4 R1 29 33 2 R4 36 28 1 R2 37 53 3 R9 61 68 5 R42 6 24 46 R60 7 10 88 R89 9 6 49 P80 15 7 83	R48	8	2	41	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R32	10	3	37	
R18 24 4 85 R11 26 50 4 R1 29 33 2 R4 36 28 1 R2 37 53 3 R9 61 68 5 R42 6 24 46 R60 7 10 88 R89 9 6 49 P80 15 7 83	R7	14	5	7	
R11 26 50 4 R1 29 33 2 R4 36 28 1 R2 37 53 3 R9 61 68 5 R42 6 24 46 R60 7 10 88 R89 9 6 49 P80 15 7 83	R18	2 <mark>4</mark>	4	85	
R1 29 33 2 R4 36 28 1 R2 37 53 3 R9 61 68 5 R42 6 24 46 R60 7 10 88 R89 9 6 49 P80 15 7 83	R11	26	50	4	
R4 36 28 1 R2 37 53 3 R9 61 68 5 R42 6 24 46 R60 7 10 88 R89 9 6 49 P80 15 7 83	R1	29	33	2	
R2 37 53 3 R9 61 68 5 R42 6 24 46 R60 7 10 88 R89 9 6 49 P80 15 7 83	R4	36	28	1	
R9 61 68 5 R42 6 24 46 R60 7 10 88 R89 9 6 49 P80 15 7 83	R2	37	53	3	
R42 6 24 46 R60 7 10 88 R89 9 6 49 P80 15 7 83	R9	61	68	5	
R60 7 10 88 R89 9 6 49 P80 15 7 83	R42	6	24	46	
R89 9 6 49 P80 15 7 83	R60	7	10	88	
P \$0 15 7 83	R89	9	6	49	
K80 13 7 83	R80	15	7	83	
R17 18 8 13	R17	18	8	13	
R8 27 16 10	R8	27	16	10	
R15 54 62 9	R15	54	62	9	
R6 58 42 6 9 9 6	R6	58	42	6	896
R3 70 72 8	R3	70	72	8	
R40 74 70 11	R40	74	70	11	

表 4.22 及表 4.24 分別為 IS^{w}_{i} 及 ISM^{w}_{i} 除上 REL_{A} 後之指標 ISR^{w}_{i} 及 ISRM^w_i指標值,表 4.23 及 4.25 則為指標值排序。ISR^w_i指標依據污染濃度 平均值;而 ISRM^w_i之則依據最大濃度值。依表 4.23 所列,路線 R28 之 ISR^{w}_{CO} 排序為第一、 ISR^{w}_{NO2} 為第十一、 ISR^{w}_{O3} 第十三;路線 R4 之 ISR^{w}_{CO} . 排序為第十七、 ISR^{w}_{NO2} 為第一、 ISR^{w}_{O3} 第二;路線 R1 之 ISR^{w}_{CO} 排序為 第十八、 ISR^{w}_{NO2} 為第二、 ISR^{w}_{O3} 第一。此種結果顯示一路線依各污染物濃 度的排序不一,不同污染物之趨勢未必相同。因此,若要考慮一路線之補 助優先性,宜同時考量不同之污染物,故本研究因而將 IS^wi 及 ISM^wi 加總 產生能同時考量多污染物的綜合指標 ISR^w和 ISRM^w,用以評估各路線的 優先順序。

表 4.22 ISR^wi 各污染物指標值

Route	$\text{ISR}^{\text{w}}_{\text{CO}}(10^5)$	ISR ^w _{NO2} (105)	$ISR^{W}_{O3(10)}^{5}$
R28	26.203	9.832	5.341
R31	21.895	7.787	3.370
R79	20.904	6.915	2.983
R94	20.843	6.863	3.082
R41	15.919	6.041	4.310
R7	10.084	12.426	8.288
R32	8.496	11.352	3.128
R11	7.981	11.184	13.244
R4	7.580	17.006	15.212
R1	7.026	13.514	15.573
R2	6.001	11.047	13.915
R6	4.542	11.751	9.008
R9	4.016	7.899	10.387
R20	12.849	5.444	3.808
R60	12.525	7.713	1.708
R42	11.208	5.900	3.508
R25	10.047	10.266	4.423
R48	9.748	10.564	2.961
R8	5.912	10.063	5.689
R15	3.663	8.999	6.480
R3	2.944	6.506	8.401
R40	2.151	5.056	6.449
田 (十・	NU 24 11 ~/	ar	and the second s

單位: ISR^wi 為 µ g/hr

表 4.23 ISR^wi 指標值排序

Route	ISR ^w _{CO}	ISR ^w _{NO2}	ISR ^w _{O3}	
R28	1	11	18	
R31	2	18	55	
R79	3	26	74	
R94	4	27	70	
R41	5	37	35	
R7	9	3	8	
R32	13	5	64	
R11	16	6	4	
R4	17	1	2	
R1	18	2	1	
R2	22	7	3	
R6	31	4	6	
R9	35	17	5	
R20	6	49	39	FCANE
R60	7	22	95	
R42	8	38	47	
R25	10	9	29	
R48	11	8	75	
R8	23	10	13	
R15	37	13	9	
R3	49	31	7	
R40	64	58	10	1896
	2			

表 4.24 ISRM^wi各污染物指標值

Route	$\text{ISRM}^{\text{w}}_{\text{CO}}(10^5)$	$\text{ISRM}^{W}_{NO2}(10^5)$	$\text{ISRM}^{W}_{O3}(10^{5})$				
R28	851.345	151.118	22.866				
R31	753.936	128.662	15.200				
R79	732.153	117.262	13.801				
R94	696.361	115.160	13.805				
R25	688.660	274.269	20.796				
R48	542.036	228.755	16.243				
R32	504.421	205.160	16.933				
R7	415.6 <mark>5</mark> 9	176.238	34.002				
R18	24 <mark>0.786</mark>	195.268	10.826	1			
R11	223.405	60.194	50.984				
R1	201.251	90.037	59.751				
R4	147.890	96.592	62.531				
R2	142.431	58.851	52.058				
R9	59.917	34.276	38.090				
R42	566.656	105.006	15.168				
R60	547.880	146.713	10.234				
R89	512.889	167.985	14.974				
R80	370.275	167.059	11.334	Ň			
R17	353.918	162.356	22.971	V			
R8	215.428	126.492	24.371				
R15	77.412	53.733	27.279				
R6	64.085	68.050	37.205				
R3	45.930	28.343	30.824				
R40	38.432	32.689	23.647				
單位: ISRM ^w _i 為 µ g/hr							

表 4.25 ISRM^wi指標值排序

Route	ISRM ^w _{CO}	ISRM ^w _{NO2}	ISRM ^w _{O3}	
R28	1	9	14	
R31	2	14	45	
R79	3	19	62	
R94	4	20	61	
R25	5	1	19	
R48	8	2	41	
R32	10	3	37	
R7	14	5	7,	
R18	24	4	85	1
R11	26	50	4	
R1	29	33	2	
R4	36	28	1	
R2	37	53	3	
R9	61	68	5	
R42	6	24	46	
R60	7	10	88	
R89	9	6	49	
R80	15	7	83	
R17	18	8	13	
R8	27	16	10	
R15	54	62	9	
R6	58	42	1 9 9 6	
R3	70	72	8	
R40	74	70	11	

表 4.26 及表 4.28 所列分別為 ISR^w與 ISR^w;指標值及 ISRM^w與 ISRM^w; 指標值,表 4.27 和表 4.29 分別為 ISR^w與 ISR^w;指標值排序及 ISRM^w與 ISRM^w;指標值排序。比較表 4.26 和表 4.22 可以發現, ISR^w指標值和 ISR^w; 指標值和路線長度、班次沒有明顯相關,而依表 4.28 和表 4.24 所列結果 亦可以得到相同結論,街道結構、車流、以及人口分布等因子亦會影響污 染物的流佈。

若比較 ISR^w和 ISR^w;排序,如圖 4.7 所示,會發現歧異度頗顯著,再觀

察表 4.27 ISR^w指標前五名路線中,路線 R4、R1 和 R11 之 ISR^w_{co} 以及路 線 R28 與 R31 之 ISR^w_{N02}和 ISR^w_{O3}排序皆不再前五名中;而前十名之路線 中,路線 R2 之 ISR^w_{co} 以及路線 R79、R94、R41 之 ISR^w_{N02}和 ISR^w_{O3}排序 亦不在前十名中;而路線 R6 之 ISR^w_{N02}、路線 R32 之 ISR^w_{N02}、路線 R9 之 ISR^w_{O3} 雖都各別於 ISR^w_{N02}和 ISR^w_{O3}指標之前五名中,但綜合指標 ISR^w 卻落在十名之外; ISRM^w和 ISRM^w_i亦都顯示類似之結果。因此若只選擇 某單一子指標作為排序依據,會因該子指標排序低而落選,但可能其餘子 指標排序頗高;因而建議採用綜合指標 ISR^w或 ISRM^w作為排序依據,可 同時考量多個污染物的影響。

由表 4.27 和表 4.29 可以發現,雖然無論是以 ISR^w或 ISRM^w考量,路線 R28 都排首位,路線 R31 在 ISR^w指標排序為第四,ISRM^w指標排序為 第三;但若再比較 ISR^w和 ISRM^w之前十名路線,則會發現共同於前十名 之路線為 R28、R31、R79;而在 ISR^w指標排序第二之路線 R4,於 ISRM^w 指標之排序為第七十二。此結果顯示,考量平均值之指標 ISR^w和考量最大 值之指標 ISRM^w間,趨勢並不相近。

Im

表 4.26 ISR^w和 ISR^wi指標值

R28 R4 R1 R31 R11 R2 R79 R7 R94 R41 R6 R25	41.376 39.798 36.113 33.052 32.408 30.963 30.802 30.799 30.788 26.270 25.301 24.735 23.623	26.203 7.580 7.026 21.895 7.981 6.001 20.904 10.084 20.843 15.919 4.542 10.047	9.832 17.006 13.514 7.787 11.184 11.047 6.915 12.426 6.863 6.041 11.751 10.266	5.341 15.212 15.573 3.370 13.244 13.915 2.983 8.288 3.082 4.310 9.008			
R4 R1 R31 R11 R2 R79 R7 R94 R41 R6 R25	39.798 36.113 33.052 32.408 30.963 30.802 30.799 30.788 26.270 25.301 24.735 23.623	7.580 7.026 21.895 7.981 6.001 20.904 10.084 20.843 15.919 4.542 10.047	17.006 13.514 7.787 11.184 11.047 6.915 12.426 6.863 6.041 11.751 10.266	15.212 15.573 3.370 13.244 13.915 2.983 8.288 3.082 4.310 9.008			
R1 R31 R11 R2 R79 R7 R94 R41 R6 R25	36.113 33.052 32.408 30.963 30.802 30.799 30.788 26.270 25.301 24.735 23.623	7.026 21.895 7.981 6.001 20.904 10.084 20.843 15.919 4.542 10.047	13.514 7.787 11.184 11.047 6.915 12.426 6.863 6.041 11.751 10.266	15.573 3.370 13.244 13.915 2.983 8.288 3.082 4.310 9.008			
R31 R11 R2 R79 R7 R94 R41 R6 R25	33.052 32.408 30.963 30.802 30.799 30.788 26.270 25.301 24.735 23.623	21.895 7.981 6.001 20.904 10.084 20.843 15.919 4.542 10.047	7.787 11.184 11.047 6.915 12.426 6.863 6.041 11.751 10.266	3.370 13.244 13.915 2.983 8.288 3.082 4.310 9.008			
R11 R2 R79 R7 R94 R41 R6 R25	32.408 30.963 30.802 30.799 30.788 26.270 25.301 24.735 23.623	7.981 6.001 20.904 10.084 20.843 15.919 4.542 10.047	11.184 11.047 6.915 12.426 6.863 6.041 11.751 10.266	13.244 13.915 2.983 8.288 3.082 4.310 9.008			
R2 R79 R7 R94 R41 R6 R25	30.963 30.802 30.799 30.788 26.270 25.301 24.735 23.623	6.001 20.904 10.084 20.843 15.919 4.542 10.047	11.047 6.915 12.426 6.863 6.041 11.751 10.266	13.915 2.983 8.288 3.082 4.310 9.008	1.		
 R79 R7 R94 R41 R6 R25 	30.802 30.799 30.788 26.270 25.301 24.735 23.623	20.904 10.084 20.843 15.919 4.542 10.047	6.915 12.426 6.863 6.041 11.751 10.266	2.983 8.288 3.082 4.310 9.008	1.		
R7 R94 R41 R6 R25	30.799 30.788 26.270 25.301 24.735 23.623	10.084 20.843 15.919 4.542 10.047	12.426 6.863 6.041 11.751 10.266	8.288 3.082 4.310 9.008			
R94 R41 R6 R25	30.788 26.270 25.301 24.735 23.623	20.843 15.919 4.542 10.047	6.863 6.041 11.751 10.266	3.082 4.310 9.008			
R41 R6 R25	26.270 25.301 24.735 23.623	15.919 4.542 10.047	6.041 11.751 10.266	4.310 9.008			
R6 R25	25.301 24.735 23.623	4.542 10.047	11.751 10.266	9.008	7.		
R25	24.735 23.623	10.047	10.266				
	23.623			4.423			
R17		8.386	9.719	5.518			
R48	23.272	9.748	10.564	2.961			
R32	22.975	8.496	11.352	3.128			
R9 💧	22.301	4.016	7.899	10.387			
R20	22.102	12.849	5.444	3.808			
R60	21.947	12.525	7.713	1.708			
R8	21.664	5.912	10.063	5.689	-8		
R89	20.929	9.708	7.985	3.235	0		
R42	20.616	11.208	5.900	3.508			
R15	19.141	3.663	8.999	6.480			
R80	18.930	8.321	8.444	2.164			
R3	17.852	2.944	6.506	8.401			
R40	13.655	2.151	5.056	6.449			
R18	11.136	2.956	5.692	2.488			
單位: ISRM ^w _i 為 m ³ /hr							

表 4.27 ISR^w和 ISR^wi指標值排序

R28111118R421712R131821R31421855R1151664R262273R79732674R78938R94942770R411053735R6113146R251210929R1713141216R481411875R321513564R91635175R201764939R601872295R819231013R8920121559R422183847R152237139R8023151488R32449317R4041645810R1864484584	Route	ISR^{w}	ISR ^w _{CO}	ISR ^w _{NO2}	ISR ^w _{O3}
R421712R131821R31421855R1151664R262273R79732674R78938R94942770R411053735R6113146R251210929R1713141216R481411875R321513564R91635175R401872295R819231013R8920121559R422183847R152237139R8023151488R32449317R4041645810R1864484584	R28	1	1	11	18
R131821R31421855R1151664R262273R79732674R78938R94942770R411053735R6113146R251210929R1713141216R481411875R321513564R91635175R401872295R819231013R8920121559R422183847R152237139R8023151488R32449317R4041645810R1864484584	R4	2	17	1	2
R31421855R1151664R262273R79732674R78938R94942770R411053735R6113146R251210929R1713141216R481411875R321513564R91635175R201764939R601872295R819231013R8920121559R422183847R152237139R8023151488R32449317R4041645810R1864484584	R1	3	18	2	1
R1151664R262273R79732674R78938R94942770R411053735R6113146R251210929R1713141216R481411875R321513564R91635175R201764939R601872295R819231013R8920121559R422183847R152237139R8023151488R32449317R4041645810R1864484584	R31	4	2	18	55
R2 6 22 7 3 R79 7 3 26 74 R7 8 9 3 8 R94 9 4 27 70 R41 10 5 37 35 R6 11 31 4 6 R25 12 10 9 29 R17 13 14 12 16 R48 14 11 8 75 R32 15 13 5 64 R9 16 35 17 5 R20 17 6 49 39 R60 18 7 22 95 R8 19 23 10 13 R89 20 12 15 59 R42 21 8 38 47 R15 22 37 13 9 R80 23 15 14 88 R3 24 49 31	R11	5	16	6	4
R79732674 $R7$ 8938 $R94$ 942770 $R41$ 1053735 $R6$ 113146 $R25$ 1210929 $R17$ 13141216 $R48$ 1411875 $R32$ 1513564 $R9$ 1635175 $R20$ 1764939 $R60$ 1872295 $R8$ 19231013 $R89$ 20121559 $R42$ 2183847 $R15$ 2237139 $R80$ 23151488 $R3$ 2449317 $R40$ 41645810 $R18$ 64484584	R2	6	22	7	3
R78938R94942770R411053735R6113146R251210929R1713141216R481411875R321513564R91635175R201764939R601872295R819231013R8920121559R422183847R152237139R8023151488R32449317R4041645810R1864484584	R79	7	3	26	74
R94942770R411053735R6113146R251210929R1713141216R481411875R321513564R91635175R201764939R601872295R819231013R8920121559R422183847R152237139R8023151488R32449317R4041645810R1864484584	R7	8	9	3	8
R411053735R6113146R251210929R1713141216R481411875R321513564R91635175R201764939R601872295R819231013R8920121559R422183847R152237139R8023151488R32449317R4041645810R1864484584	R94	9	4	27	70
R6113146R251210929R1713141216R481411875R321513564R91635175R201764939R601872295R819231013R8920121559R422183847R152237139R8023151488R32449317R4041645810R1864484584	R41	10	5	37	35
R25 12 10 9 29 R17 13 14 12 16 R48 14 11 8 75 R32 15 13 5 64 R9 16 35 17 5 R20 17 6 49 39 R60 18 7 22 95 R8 19 23 10 13 R89 20 12 15 59 R42 21 8 38 47 R15 22 37 13 9 R80 23 15 14 88 R3 24 49 31 7 R40 41 64 58 10 R18 64 48 45 84	R6	11	31	4	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R25	12	10	9	29
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	R17	13	14	12	16
R321513564R91635175R201764939R601872295R819231013R8920121559R422183847R152237139R8023151488R32449317R4041645810R1864484584	R48	14	11	8	75
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R32	15	13	5	64
R20 17 6 49 39 R60 18 7 22 95 R8 19 23 10 13 R89 20 12 15 59 R42 21 8 38 47 R15 22 37 13 9 R80 23 15 14 88 R3 24 49 31 7 R40 41 64 58 10 R18 64 48 45 84	R9	16	35	17	5
R60 18 7 22 95 R8 19 23 10 13 R89 20 12 15 59 R42 21 8 38 47 R15 22 37 13 9 R80 23 15 14 88 R3 24 49 31 7 R40 41 64 58 10 R18 64 48 45 84	R20	17	6	49	39
R8 19 23 10 13 R89 20 12 15 59 R42 21 8 38 47 R15 22 37 13 9 R80 23 15 14 88 R3 24 49 31 7 R40 41 64 58 10 R18 64 48 45 84	R60	18	7	22	95
R89 20 12 15 59 R42 21 8 38 47 R15 22 37 13 9 R80 23 15 14 88 R3 24 49 31 7 R40 41 64 58 10 R18 64 48 45 84	R8	19	23	10	13
R42 21 8 38 47 R15 22 37 13 9 R80 23 15 14 88 R3 24 49 31 7 R40 41 64 58 10 R18 64 48 45 84	R89	20	12	15	59
R15 22 37 13 9 R80 23 15 14 88 R3 24 49 31 7 R40 41 64 58 10 R18 64 48 45 84	R42	21	8	38	47
R80 23 15 14 88 R3 24 49 31 7 R40 41 64 58 10 R18 64 48 45 84	R15	22	37	13	9
R3 24 49 31 7 R40 41 64 58 10 R18 64 48 45 84	R80	23	15	14	88
R40 41 64 58 10 R18 64 48 45 84	R3	24	49	31	7
R18 61 18 15 81	R40	41	64	58	10
K10 04 40 43 04	R18	64	48	45	84

表 4.28 ISRM ^w 和 ISRM ^w i	指標值
--	-----

Route	$\text{ISRM}^{\text{w}}(10^5)$	$\text{ISRM}^{\text{w}}_{\text{CO}}(10^5)$	$\text{ISRM}^{\text{W}}_{\text{NO2}}(10^5)$	$\text{ISRM}^{W}_{O3}(10^{5})$				
R28	1025.33	851.34	151.12	22.87				
R25	983.73	688.66	274.27	20.80				
R31	897.80	753.94	128.66	15.20				
R79	863.22	732.15	117.26	13.80				
R94	825.33	696.36	115.16	13.81				
R48	787.03	542.04	228.76	16.24				
R32	726.51	504.42	205.16	16.93				
R60	704.83	547.88	146.71	10.23				
R89	695.85	512.89	167.98	14.97				
R42	686.83	566.66	105.01	15.17				
R7	625.90	415.66	176.24	34.00				
R20	591.85	494.53	81.36	15.96	4			
R41	561.58	479.47	64.69	17.42				
R80	548.67	370.27	167.06	11.33				
R17	539.24	353.92	162.36	22.97				
R18	446.88	240.79	195.27	10.83				
R8	366.29	215.43	126.49	24.37				
R1	351.04	201.25	90.04	59.75				
R11	334.58	223.41	60.19	50.98				
R4	307.01	147.89	96.59	62.53				
R2	253.34	142.43	58.85	52.06				
R6	169.34	64.09	68.05	37.20				
R15	158.42	77.41	53.73	27.28				
R9	132.28	59.92	34.28	38.09	-			
R3	105.10	45.93	28.34	30.82				
R40	94.77	38.43	32.69	23.65				
平位: ISRM ^w _i 為 m ³ /hr								

Route	ISRM ^w	ISRM ^w _{CO}	ISRM ^w _{NO2}	ISRM ^w _{O3}			
R28	1	1	9	14			
R25	2	5	1	19			
R31	3	2	14	45			
R79	4	3	19	62			
R94	5	4	20	61			
R48	6	8	2	41			
R32	7	10	3	37			
R60	8	7	10	88			
R89	9	9	6	49			
R42	10	6	24	46			
R7	11	14	5	7			
R20	12	11	35	42			
R41	14	12	43	31			
R80	15	15	7	83			
R17	16	18	8	13			
R18	19	24	4	85			
R8	26	27	16	10			
R1	27	29	33	2	8 =		
R11	28	26	50	4			
R4	30	36	28	1			
R2	35	37	53	3			
R6	51	58	42	6	ac IS		
R15	56	54	62	9	30		
R9	63	61	68	5			
R3	69	70	72	8			
R40	72	74	70	11			

表 4.29 ISRM^w和 ISRM^wi指標值排序

表4.30及表4.32分別是以空氣品質標準為依據之ISS^wPM10及ISSM^wPM10</sub> 綜合指標值,表4.31及4.33分別是以空氣品質標準為依據之ISS^wPM10及 ISSM^wPM10綜合指標值排序。由表4.31和表4.33可以發現前四名路線一致, 顯示此四條路線以均值評估之綜合指標和以極大值評估之綜合指標趨勢 同。

而雖然將 ISS^wPM10 分別對 CO 以及 PM10 子指標做相關性分析可以發現 相關係數分別為 0.98 和 0.99,但 CO 子指標值則是影響綜合排序的主要因 素,且因為 CO 之主要排放源為移污,因此可以選擇 CO 作為單一污染物 排序之依據。

表 4.30 ISS^wPM10 指標值

Route	$ISS^{W}_{PM10}(10^{6})$
R28	214.931
R31	179.069
R79	168.869
R94	168.444
R41	130.905
R60	109.813
R20	106.521
R7	103.423
R42	96.240
R25	96.046

單位:m³/hr。

表 4.31 ISS	WPM10指標	值排序

Route	ISS ^w _{PM10}	
R28	1	
R31	2	
R79	3	
R94	4	
R41	5	1996
R60	6	N 1030
R20	7	
R7	8	
R42	9	
R25	10	

Ulun .

表 4.32 ISSM^wPM10 指標值

Route	$\text{ISSM}^{W}_{PM10}(10^{6})$	
R28	686.003	
R31	606.012	
R79	577.133	
R25	555.626	
R94	555.568	
R48	445.812	
R60	439.125	
R42	435.668	
R32	409.444	
R89	392.250	
Route	ISSM ^w _{PM10}	
R28		
R31	2	
R79	3	
R25	4	
R94	5	
R48	6	
R60	7	
R42	8	
R32	9	
R79 R25 R94 R48 R60 R42	3 4 5 6 7 8	1896

以下將討論依據住址點所估算影響人口之指標組 IS^a_i、ISM^a_i、ISR^a_i、 ISRM^a_i、ISR^a、ISMR^a。表 4.34 和表 4.36 所列分別為 IS^a_i與 ISM^a_i各污染物 指標值,表 4.35 和表 4.37 所列分別為 IS^a_i與 ISM^a_i指標值排序。由表 4.35 可看出 IS^a_{CO}、IS^a_{PM10}及 IS^a_{PM2.5}的前五名排序相近,表 4.37 亦可看出相似 結果。但若比較不同污染物種,則會發現排序的一致性不高,依據不同污 染物會得到不一樣的排序。故本研究以 ISR^a_i、ISRM^a_i計算綜合性指標 ISR^a、 表 4.34 IS^ai 各污染物指標值

Route	$IS^{a}_{CO}(10^{9})$	$IS^{a}_{NO}(10^{6})$	$IS^{a}_{NO2}(10^{7})$	$IS^{a}_{O3}(10^{7})$	$IS^{a}_{PM10}(10^{7})$	$IS^{a}_{PM25}(10^{8})$
R31	48.670	1597.484	27.119	3.274	130.325	12.786
R28	44.631	1251.808	22.629	3.460	115.429	11.376
R94	36.697	1028.095	18.640	2.979	94.836	9.350
R79	36.617	1018.061	18.294	2.928	94.298	9.290
R42	29.344	958.555	16.620	2.531	77.631	7.602
R14	11.668	976.646	25.488	2.377	40.815	4.299
R7	11.029	710.930	25.708	5.750	36.306	4.041
R2	9.947	309.498	34.211	14.699	36.253	4.691
R1	8.646	315.265	32.036	14.041	31.214	4.114
R3	6.197	217.970	23.182	9.734	22.764	2.994
R11	5.198	180.485	18.444	8.410	17.924	2.369
R5	3.507	381.199	21.646	7.106	22.631	2.847
R32	13.623	1123.937	22.034	1.026	41.196	4.125
R41	29.016	795.921	14.196	2.125	74.702	7.351
R20	15.751	546.718	13.702	2.963	42.832	4.353
R60	14.597	799.251	18.209	2.224	45.244	4.603
R48	11.750	877.690	22.426	3.024	39.105	4.089
R6	3.955	258.965	15.607	5.377	16.706	2.080
R19	3.516	314.445	15.169	4.990	17.697	2.144
R23	3.050	104.706	13.036	6.302	12.040	1.635
R4	2.691	98.991	12.383	5.145	11.109	1.506
單位:1	【SRM ^w i 為 /	µg/hr∘				

表 4.35 IS^ai指標值排序

Route	IS ^a _{CO}	IS ^a _{NO}	IS ^a _{NO2}	IS ^a O3	IS ^a _{PM10}	IS ^a _{PM25}	
R31	1	1	3	24	1	1	
R28	2	2	7	23	2	2	
R94	3	4	11	28	3	3	
R79	4	5	13	32	4	4	
R42	5	7	18	39	5	5	
R14	11	6	5	42	10	10	
R7	12	11	4	7	12	14	
R2	13	39	1	1	13	7	
R1	16	37	2	2	14	12	1
R3	23	49	6	3	24	15	
R11	29	58	12	4	37	27	
R5	44	33	10	5	25	18	
R32	9	3	9	79	9	11	
R41	6	10	26	53	6	6	
R20	7	20	29	30	8	9	
R60	8	9	14	47	7	8	
R48	10	8	8	26	11	13	
R6	41	46	22	8	40	34	
R19	43	38	23	10	38	31	
R23	50	72	31	6	47	43	
R4	56	73	32	9	55	44	
	-				18	39(5 / 2
	1	11					

表 4.36 ISM^ai 各污染物指標值

Route	$ISM^{a}_{CO}(10^{9})$	$ISM^{a}_{NO}(10^{7})$	$\mathrm{ISM}^{\mathrm{a}}_{\mathrm{NO2}}(10^8)$	$ISM^{a}_{O3}(10^{8})$	$ISM^{a}_{PM10}(10^{8})$	$ISM^{a}_{PM25}(10^{8})$
R31	1765.533	6788.610	57.113	1.576	514.677	489.471
R42	1423.511	5080.015	42.444	1.175	351.471	328.835
R28	1401.156	4113.410	35.425	1.527	403.487	383.130
R79	1206.422	3504.026	30.099	1.266	335.519	317.487
R94	1163.604	3475.181	29.909	1.277	335.032	317.913
R48	737.521	5879.086	49.686	1.589	162.387	140.361
R14	676.251	5374.168	45.604	1.496	143.309	124.956
R1	324.899	2494.895	27.270	5.374	83.946	43.393
R2	292.609	1982.986	23.456	5.689	87.480	49.666
R11	211.009	1422.067	15.739	3.153	49.915	24.744
R3	152.679	1095.002	14.017	3.707	47.497	19.164
R5	33.057	1884.114	18.990	2.953	68.999	51.411
R32	1082.629	8071.302	66.748	0.700	215.689	187.356
R41	913.965	2580.481	22.203	0.934	263.782	250.987
R76	670.684	3849.206	32.534	1.050	105.875	87.142
R60	648.166	4384.708	37.138	1.152	182.973	167.500
R20	623.850	2622.745	22.823	1.341	163.621	149.431
R25	572.426	4362.189	36.951	1.259	120.227	102.596
R7	522.094	3871.819	34.678	2.531	121.470	98.636
R30	459.295	4795.270	40.359	1.072	129.080	113.583
R6	111.417	1215.765	12.741	2.160	46.171	30.092
R19	105.463	1975.878	18.502	2.082	63.279	50.807
R23	82.186	595.313	7.818	2.327	31.500	14.941
R4	41.076	359.807	5.567	1.998	22.460	9.212
單位:	μg/hr •			896		

表 4.37 ISM^ai指標值排序

Route	ISM ^a _{CO}	ISM ^a _{NO}	ISM ^a _{NO2}	ISM ^a _{O3}	ISM ^a _{PM10}	ISM ^a _{PM25}	
R31	1	2	2	16	1	1	
R42	2	5	5	34	3	3	
R28	3	9	9	18	2	2	
R79	4	15	15	31	4	5	
R94	5	16	16	30	5	4	
R48	8	3	3	15	10	10	
R14	9	4	4	20	11	11	
R1	23	26	17	2	20	41	
R2	26	38	21	1	19	38	
R11	34	46	41	4	42	58	
R3	47	57	46	3	46	63	E
R5	70	40	37	5	30	35	
R32	6		1	65	7	7	
R41	- 1	24	26	53	6	6	
R76	10	12	11	47	15	16	1 horas
R60	11	7	7	36	- 8	8	
R20	12	22	24	27	9	9	
R25	13	8	8	33	14	13	
R7	14	11	10	6	13	14	
R30	15	6	6	42	12	12	
R6	53	52	49	8	47	4 9	
R19	56	39	39	9	2 36	37	
R23	62	72	65	7	58	72	
R4	69	76	72	10	69	77	

表 4.38 及表 4.40 所列分別為 IS^a_i及 ISM^a_i除上 REL_A後之指標 ISR^a_i及 ISRM^a_i指標值,表 4.39 及 4.41 則為指標值排序。由表 4.39 及 41 可看出不 同污染之排序結果相差很多,如路線 R31 之 ISRM^a_{CO}排序為第一,但 ISRM^a_{O3}則是第十六;路線 R28 之 ISR^a_{CO}排序為第一,但 ISR^a_{O3}則是第十 六。此結果顯示依據不同污染物的排序將不同,故本研究進一步依據 ISR^a_i 及 ISRM^a_i加總產生綜合指標 ISR^a和 ISRM^a,以綜合指標評估各路線之補 助優先性。

表 4.38 ISR^ai 各污染物指標值

Route	$ISR^{a}_{CO}(10^{5})$	$\text{ISR}^{a}_{\text{NO2}}(10^{5})$	$ISR^{a}_{O3}(10^{5})$	
R31	21.161	5.770	1.819	
R28	19.405	4.815	1.922	
R94	15.955	3.966	1.655	
R79	15.920	3.892	1.627	
R42	12.758	3.536	1.406	
R7	4.795	5.470	3.195	
R2	4.325	7.279	8.166	
R1	3.759	6.816	7.801	
R3	2.695	4.932	5.408	
R11	2.260	3.924	4.672	
R14	5.073	5.423	1.320	
R5	1.525	4.606	3.948	
R41	12.616	3.021	1.181	
R20	6.848	2.915	1.646	
R60	6.347	3.874	1.235	
R32	5.923	4.688	0.570	
R48 💧	5.109	4.771	1.680	
R6	1.719	3.321	2.987	
R19	1.529	3.228	2.772	
R23	1.326	2.774	3.501	
R4	1.170	2.635	2.858	
單位:]	ISR ^w _i 為 m ³ /hr		189	5

表 4.39 ISR^ai 物指標值排序

Route	ISR ^a _{CO}	ISR ^a _{NO2}	ISR ^a _{O3}	
R31	1	3	24	
R28	2	7	23	
R94	3	11	28	
R79	4	13	32	
R42	5	18	39	
R7	12	4	7	
R2	13	1	1	
R1	16	2	2	
R3	23	6	3	
R11	29	12	4	
R14	11	5	42	
R5	44	10	5	
R41	6	26	53	
R20	7	29	30	
R60	8	14	47	
R32	9	9	79	
R48	10	8	26	
R6	41	22	8	
R19	43	23	10	
R23	50	31	6	
R4	56	32	9	
				1896
				189

表 4.40 ISRM^ai 各污染物指標值

Route	$\text{ISRM}^{\text{a}}_{\text{CO}}(10^5)$	$\text{ISRM}^{a}_{\text{NO2}}(10^5)$	$ISRM^{a}_{O3}(10^{5})$
R31	76.762	121.516	8.754
R42	61.892	90.306	6.529
R28	60.920	75.372	8.481
R79	52.453	64.040	7.036
R94	50.591	63.637	7.092
R32	47.071	142.017	3.887
R48	32.066	105.715	8.825
R14	29.402	97.029	8.310
R1	14.126	58.021	29.855
R2	12.722	49.906	31.604
R11	9.174	33.487	17.515
R3	6.638	29.824	20.597
R5	1.437	40.404	16.407
R41	39.738	47.240	5.191
R76	29.160	69.222	5.832
R60	28.181	79.017	6.401
R25	24.888	78.620	6.994
R7	22.700	73.783	14.061
R30	19.969	85.871	5.955
R6	4.844	27.110	12.002
R19	4.585	39.366	11.564
R23	3.573	16.635	12.930
R4	1.786	11.845	11.098
單位:1	n ³ /hr。		

Route	ISRM ^a _{CO}	ISRM ^a _{NO2}	ISRM ^a _{O3}	Rcode
R31	1	2	16	10842
R42	2	5	34	10735
R28	3	9	18	10932
R79	4	15	31	16122
R94	5	16	30	10162
R32	6	1	65	10443
R48	8	3	15	10792
R14	9	4	20	15546
R1	23	17	2	10861
R2	26	21	1	15353
R11	34	41	4	11246
R3	47	46	3	10252
R5	70	37	5	15312
R41	2/7	26	53	11841
R76	10	11	47	11833
R60	11	7	36	15561
R25	13	8	33	10752
R7	14	10	6	11212
R30	15	6	42	10847
R6	53	49	8	11152
R19	56	39	9	15112
R23	62	65	7	11881
D4	(0)	70	10	16111

表 4.41 ISRM^ai 各污染物指標值排序

表 4.42 及表 4.44 所列分別為 ISR^a與 ISR^a;指標值及 ISRM^a與 ISRM^a; 指標值,表 4.43 和表 4.45 分別為 ISR^a與 ISR^a;指標值排序及 ISRM^a與 ISRM^a;指標值排序。其中路線 R31 之 ISR^a指標排序為第一,R4 之 ISR^a指 標排序為第 31,但 R31 之路線總長度約為 R4 之一半,顯示綜合指標 ISR 不只受到路線總長度之影響,亦受到街道結構、車流、以及人口分布影響。

由表 4.43 和表 4.45 可以發現,各子指標間之排序差異亦頗大,因此若要同時考量各污染物種,則以綜合指標 ISR^a和 ISRM^a較佳。

表 4.42 ISR^a及 ISR^ai指標值

Route	$ISR^{a}(10^{5})$	$ISR^{a}_{CO}(10^{5})$	$\text{ISR}^{\text{a}}_{\text{NO2}}(10^5)$	$ISR^{a}_{O3}(10^{5})$	
R31	28.750	21.161	5.770	1.819	
R28	26.142	19.405	4.815	1.922	
R94	21.576	15.955	3.966	1.655	
R79	21.439	15.920	3.892	1.627	
R2	19.770	4.325	7.279	8.166	
R1	18.376	3.759	6.816	7.801	
R42	17.700	12.758	3.536	1.406	
R41	16.817	12.616	3.021	1.181	
R7	13.460	4.795	5.470	3.195	
R3	13.035	2.695	4.932	5.408	
R14	11.817	5.073	5.423	1.320	١.
R48	11.560	5.109	4.771	1.680	0
R60	11.456	6.347	3.874	1.235	
R20	11.409	6.848	2.915	1.646	
R32	11.181	5.923	4.688	0.570	
R11	10.856	2.260	3.924	4.672	
R5 📕	10.078	1.525	4.606	3.948	-
R6	8.027	1.719	3.321	2.987	1
R23	7.601	1.326	2.774	3.501	K
R19	7.528	1.529	3.228	2.772	J
A4	6.663	1.170	2.635	2.858	

單位: ISR^wi 為 m³/hr

896

表 4.43 ISR^a及 ISR^ai指標值排序

R31 R28 R94 R79 R2 R1 R42 R41 R7 R3 R14 R48	1 2 3 4 5 6 7 8 9 10 11 12	1 2 3 4 13 16 5 6 12 23 11	3 7 11 13 1 2 18 26 4 6 5	24 23 28 32 1 2 39 53 7 3	
R28 R94 R79 R2 R1 R42 R41 R7 R3 R14 R48	2 3 4 5 6 7 8 9 10 11 11 12	2 3 4 13 16 5 6 12 23 11	7 11 13 1 2 18 26 4 6 5	23 28 32 1 2 39 53 7 3	
R94 R79 R2 R1 R42 R41 R7 R3 R14 R48	3 4 5 6 7 8 9 10 11 11 12	3 4 13 16 5 6 12 23 11	11 13 1 2 18 26 4 6 5	28 32 1 2 39 53 7 3	
R79 R2 R1 R42 R41 R7 R3 R14 R48	4 5 6 7 8 9 10 11 12	4 13 16 5 6 12 23 11	13 1 2 18 26 4 6 5	32 1 2 39 53 7 3	
R2 R1 R42 R41 R7 R3 R14 R48	5 6 7 8 9 10 11 12	13 16 5 6 12 23 11	1 2 18 26 4 6 5	1 2 39 53 7 3	11.
R1 R42 R41 R7 R3 R3 R14 R48 R48	6 7 8 9 10 11 12	16 5 6 12 23 11	2 18 26 4 6 5	2 39 53 7 3	1.
R42 R41 R7 R3 R14 R48	7 8 9 10 11 12	5 6 12 23 11	18 26 4 6	39 53 7 3	
R41 R7 R3 R14 R48	8 9 10 11 12	6 12 23 11	26	53 7 3	
R7 R3 R14 R48	9 10 11 12	12 23 11	4	7 3	
R3 R14 R48	10 11 12	23 11	6	3	
R14 R48	11 12	11	5		
R48	12	10	5	42	
		10	8	26	
R60	13	8	14	47	
R20	14	7	29	30	
R32	15	9	9	79	
R11	16	29	12	4	
R5	17	44	10	5	
R6	22	41	22	8	
R23	24	50	31	6	
R19	25	43	23	10	
A4	31	56	32	9	
			5	1	896

表 4.44 ISRM^a及 ISRM^ai指標值

Route	$\text{ISRM}^{\text{a}}(10^5)$	$\text{ISRM}^{\text{a}}_{\text{CO}}(10^5)$	$\text{ISRM}^{\text{a}}_{\text{NO2}}(10^5)$	$ISRM^{a}_{O3}(10^{5})$	
A31	897.893	767.623	121.516	8.754	
A42	715.753	618.918	90.306	6.529	
A28	693.051	609.198	75.372	8.481	
A32	616.612	470.708	142.017	3.887	
A79	595.607	524.531	64.040	7.036	
A94	576.644	505.915	63.637	7.092	
A41	449.807	397.376	47.240	5.191	
A48	435.202	320.661	105.715	8.825	
A14	399.362	294.022	97.029	8.310	
A60	367.229	281.811	79.017	6.401	
A76	366.655	291.602	69.222	5.832	
A25	334.494	248.881	78.620	6.994	
A20	327.250	271.239	48.559	7.452	
A7	314.842	226.997	73.783	14.061	
A30	291.519	199.693	85.871	5.955	100
A1	229.137	141.260	58.021	29.855	
A2	208.731	127.221	49.906	31.604	
A11	142.745	91.743	33.487	17.515	
A3	116.803	66.382	29.824	20.597	
A19	96.784	45.853	39.366	11.564	
A6	87.554	48.442	27.110	12.002	
A5	71.183	14.373	40.404	16.407	
A23	65.298	35.733	16.635	12.930	
A4	40.802	17.859	11.845	11.098	
單位:]	SRM ^w i 為 m	³ /hr °		1111	

Route	$\text{ISRM}^{\!$	ISRM ^a _{CO}	ISRM ^a _{NO2}	ISRM ^a _{O3}
A31	1	1	2	16
A42	2	2	5	34
A28	3	3	9	18
A32	4	6	1	65
A79	5	4	15	31
A94	6	5	16	30
A41	7	7	26	53
A48	8	8	3	15
A14	9	9	4	20
A60	10	11	7	36
A76	11	10	11	47
A25	12	13	8	33
A20	13	12	24	27
A7	14	14	10	6
A30	15	15	6	42
A1	22	23	17	2
A2	24	26	21	1
A11	32	34	41	4
A3	42	47	46	3
A19	47	56	39	9
A6	52	53	49	8
A5	58	70	37	1 . 5
A23	61	62	65	7
A4	69	69	72	10

表 4.45 ISRM^a及 ISRM^ai指標值排序

表 4.46 及 4.48 為 ISS^a PM10 及 ISSM^a PM10 指標值,表 4.47 及 4.49 為 ISS^a PM10 及 ISSM^a PM10 指標值排序。而雖然 CO 和 PM10 子指標和綜合指標 之相關性均為 0.99,但因為 CO 為主導綜合指標排序結果之子指標,因此 本研究建議可以使用 CO 指標作為之排序依據。

表 4.46 ISS^aPM10 指標值

Route	ISS ^a _{PM10}	
R31	1	
R28	2	
R94	3	
R79	4	
R42	5	
R41	6	
R20	7	
R60	8	
R32	9	
R2	10	

	SI	ET.	
表 4.47	YISS ^a PM10 指	標值排序	SAE
Route	ISS ^a _{PM10}		
R31	1		
R28	2		
R94	3		
R79	4		
R42	5		
R41	6		996 /S
R20	7		030
R60	8		
R32	9		
R2	10		

表 4.48 ISSM^aPM10 指標值排序

Route	$ISSM^{a}_{PM10}(10^{6})$
R30	611.672
R45	481.913
R41	472.832
R79	411.172
R94	400.303
R31	350.976
R40	314.312
R48	245.211
R60	226.399
R14	223.147

單位:m³/hr。

衣 4.49 ISSIVI PM10 和 ISSIVI PM2.5 拍信值	非月
---------------------------------------	----

Route	ISSM ^a _{PM10}	
R30	- 1	
R45	2	
R41	3	
R79	4	1000
R94	5	\ 1896 //
R31	6	
R40	7	
R48	8	
R60	9	
R14	10	

本研究建立了基於濃度之指標組 CL_i、CLM_i、CLR_i、CLRM_i、CLR、 CLRM,以及基於風險之指標組 IS^w_i、ISM^w_i、ISR^w、ISRM^w、IS^a_i、ISM^a_i、 ISR^a、ISRM^a。前者主要考量平均與最大污染濃度及道路長度,而後者進 一步考量對影響人口吸入污染物總量的影響,由於影響人口無現成資料且 不太容易估算,故本研究採用依照建築物面對道路寬度和高度及住址點二
種方式估算,雖然二種影響人口的估算結果有差異,但在排序上類似。

4.6 路線優先性評估

本研究建立了基於污染濃度以及基於風險之指標組,由於所考量之 因子不同,故依不同指標評估的路線補助優先序不同,故有需要再進一步 進行篩選出適當的指標供排出路線優先序。

本研究由於受限於可取得資料有限,所模擬的時段並不多,導致樣本 數並不太足夠,故雖然本研究同時評估最大值與平均值的差異,但本研究 建議採用以均值為依據之指標。

雖然基於污染濃度及道路長度之指標組可反映各路線沿線的污染程度,但此組指標並未考慮到人口之分佈。有的路線沿線人口少,所造成的 影響並不大,故本研究建議採用對影響人口吸入污染物總量之基於風險指 標組進行排序。

基於風險指標組方面,不考慮 REL_A之指標組雖可反應出受影響人口 之吸入污染物總量,但不易比較不同污染物間的差異及影響程度,而以 REL_A為基準可據以比較不同污染物,因此本研究建議以考量 REL_A之指標 評估之。

若只考量單一污染物可能不太周全,但不同污染物所得之排序結果不 盡相同,如路線R60、R20、R42雖於ISR^w_{CO}排序中為前十名,但因為ISR^w_{NO2}、 ISR^w_{O3}值不高使得綜合指標排序不在前十名內;路線R1、R2雖然因為 ISR^a_{CO}值不高使得於ISR^a_{CO}排序不再前十名中,但因為ISR^a_{NO2}、ISR^a_{O3} 值較高使得綜合排序往前移動。故本研究進一步建議依據REL_A之綜合指 標做為評估路線補助優先性之指標。在另一方面,台北市環保局之交通測 站五月份所監測之數值(101年)中,PSI指標污染物多為懸浮微粒;而由本 研究所計算出之指標結果可以發現CO及懸浮微粒子指標相關性頗高,為 0.94~0.96之間,且因為CO之主要來源移污,因此若要使用單一污染物作 為排序依據,則本研究建議可以考量採用懸浮微粒或 CO 子指標。

而因為 REL_A 無 PM₁₀相關標準,但因 PM₁₀是造成現今台灣空氣品質 不佳的主因之一,因此本研究建議使用依據空氣品質標準及其 PM₁₀虛擬 的小時平均值標準所建立之指標組。

因此,本研究建議使用之指標為 ISR 指標,其指標值前十名之聯集如 表 4.47 所列,排序為表 4.48。由於目前尚未找到方法驗證那一種方法所推 估的受影響人口較合理,故目前尚無法決定那一組指標較合適,因而併列 之。

表 4.47 ISS^wPM10 及 ISS^aPM10 指標值

表 4.48 ISR^w及 ISR^a指標值排序

Route	$ISS^{W}_{PM10}(10^{6})$	$ISS^{a}_{PM10}(10^{6})$
R28	214.931	153.128
R31	179.069	168.668
R79	168.869	
R94	168.444	125.947
R41	130.905	99.287
R60	109.813	55.143
R20	106.521	56.627
R7	103.423	46.554
R42	96.240	101.690
R25	96.046	35.492
R32	88.312	51.781
R2	71.776	49.377

0

89

-

-

第五章 結論與建議

本研究目的為發展出一套方法評估補助公車路線替換低污染公車之優 先性,所建立的方法主要依據 OSPM 模式模擬結果及一些指標決定公車路 線的補助優先順序。本研究以台北市為案例區,以所建立方法評估補助優 先序,以下總結本研究的成果與重要結論,並建議可能的研究方向供後續 研究參考。

5.1 結論

本研究主要研究成果含公車路線初選、以 OSPM 模擬沿線移污分佈、 路線移污潛勢指標及路線優先性評估等,以下就重點成果一一說明之。

- 1. 公車路線初選:由於案例區公車路線多,一一模擬與分析所有路線不太 有效率且時間及成本均較高,故為加快評估速度以及提高效率,故本 研究建立初選原則用以先行排除對影響較小之公車路線。初選原則首 先淘汰明顯經過人口較少的路線及班次較少或較短的觀光以及工業區 接駁車,依這二項原則共刪除觀光區接駁車共55條、工業區接駁車20 條。再依據日總行駛里程選出年行駛里程前一百名之公車路線進行後 續分析。雖然路線的車流量亦是一個可考量的篩選因子,唯因本研究 並沒有每一路段的實際車流,故未納入作為初選原則。
- 以 OSPM 模擬沿線移污分佈:為了評估公車路線補助之優先性,需要評 估各路線路段污染排放量,但由於實地測量各路口移污排放量的成本 頗高,因此本研究採用 OSPM 模式(Berkowicz et al., 1997)模擬之。首 先收集台北市 3D Google Earth 建築物圖層及公車站牌點(台北市交通 局,99年)和路網數值圖(交通部,97年),並撰寫程式取得道路向兩側 延伸 100m 內之建築物資料。以及依照 OSPM 模式所建議之長度以及

限制之建築物數目進行分段 車流量則依陳(94)之方法估算,及依許(96) 之方法計算車流密度,再以交通運研所(76年)提出之密度、速度關係 式得到車流速度,並由 TEDS7.0(中鼎,96年)得到排放係數資料,然 後進行 OSPM 模擬。由模擬結果得知街道中之污染濃度亦會受到街道 封閉程度的影響,且於車流量相似的條件下,雖然建築物高度增加時 會加深街谷並增加封閉性,不利於污染物的擴散,但若街道也同時變 寬,則會改善擴散。

3. 公車路線移污潛勢指標:本研究建立了污染濃度-長度及吸入總量二組 指標,且分別依據 OEEHA(2008)所公佈 REL_A建立綜合指標,唯 PM 並沒有 REL_A,因而亦依據空氣品質標準建立綜合指標,以下分別說明 之。

(1) 污染濃度-長度指標組

(a) 此指標可比較不同路線的污染程度,分別以時平均值和最大值 濃度為基準指標的排序間無明顯相關性;且不同污染物之子指 標排序相差頗多,本研究主要是為了評估公車路線的污染潛勢, 故以單一的最大值較不易評估整體性的污染潛勢,故本研究建 議採用平均值,唯只考量污染濃度未考量人口分佈,不太適合 本研究的需求,故有必要進一步改善指標。

(b) 由於不易直接以基於污染濃度的指標值評估不同污染物彼此 間危害性之強弱,因此本研究基於 REL_A 將各子指標值換成污 染當量後再作比較。如路線 R31 之 CL_{NO2} 雖指標值為 1.525(10⁸),小於 CL_{O3}之 3.465(10⁸),但因為是不同種類之污 染物故不易單憑濃度為主來評估;而依據除以 REL_A 的污染當 量後發現,CL_{NO2}之當量值為 3.245(10⁵)大於 CLR_{O3}之 1.925(10⁵),顯示對於路線 R1,其 O3之危害程度較 NO2小; 本研究亦採用空氣品質標準作為基準計算當量,唯不太成功。 此外,由於個別污染當量子指標間排序仍然相差頗多,且不宜 只考量單一指標子,本研究因而進一步發展綜合指標改善。

- (c) 綜合指標主要加總各污染當量子指標而建立,綜合指標可反映 出各子指標之綜合影響,依據路線R79的結果,其在CLR_{NO2} 和CLR₀₃指標排序低,但同時考量CLR_{co}後使得其綜合指標 當量值進入前十名,而路線R11則是相反的狀況,雖然CLR_{NO2} 指標值高,但考量綜合影響後就不在前十名中。
- (d) 基於RELA和基於空氣品質標準之指標組間排序相關性不高, 但因為基於RELA所建立之指標組沒有考量到PM10之影響性, 且因為PM10為造成目前台灣空氣品質不佳之主因之一,因此 本研究建議使用依據空氣品質標準及其PM10虛擬的小時平均 值標準所建立之指標組。

(2) 吸入總量指標組

(a) 由於前述指標組主要只考量污染濃度,未考量對沿線居民及活動人口的影響,故此組指標採用 Bennett et al. (2006)所說明之 Intake Fraction (IF)法計算影響人口的吸入總量,並據以計算指標值。影響人口則首先依建築物面對道路寬度和高度及住址點 二個方法估算沿線居住人口,並將工作人口以及學生通勤人口以該路線各分段站所屬分區之道路長度比例分配之。其中 PM₁₀與 CO 指標間的相關性頗高,但與其他各污染物間之相關性則較低,若採用單一污染物,可考量選擇 PSI 指標污染物 PM₁₀或是與其相關性較高的 CO 指標。唯因為不同污染物之 影響性不同,不易單以指標值比較,故本研究亦以 REL_A轉換成當量後評估之。

- (b) 在以 REL_A 為基準的當量型指標,無論是 ISR^w_i或 ISR^a_i來看, 並沒有單一污染子指標值於多數情況均大於其餘子指標的情 形,亦即難以用單一子指標做為優先性分析之依據,且各指標 排序結果歧異性頗高,故本研究進一步建立綜合指標。
- (c) 基於 REL_A之污染風險綜合指標主要反映出各子指標之綜合 影響。如ISR^w指標排序第二名之路線 R94,雖ISR^w_{NO2}和ISR^w_{O3} 指標值低,但因為同時考量 ISR^w_{CO}後使得綜合影響上升。
- 4. 路線優先性評估:由於評估時亦有必要考量人口,故本研究建議採用吸入風險組的指標;而為了可以同時考量不同污染物的綜合危害,因而本研究建議採用依據空氣品質標準及其PM10虛擬的小時平均值標準所建立之綜合指標。若擬只採用單一污染物作為排序指標,由台北市之交通測站所得之實測值中可發現PSI之指標污染物多為懸浮微粒,又因本研究所建立之指標中CO和懸浮微粒相關性頗高且CO之主要來源為移污,因此建議可採用懸浮微粒或是CO子指標作為排序依據。而基於空氣品質標準建立之綜合指標因為懸浮微粒標準選擇不佳,故暫不考量。此外,由於本研究尚未找到適當方法評估何種居住人口之計算方式較為合理,因此排序優先性則將ISR^w及ISR^a並列之。

100

5.2 建議

依據本研究的過程及經驗,提出下列建議,以供後續研究參考。

- 改善車流推估:由於有做車流量推估之路口佔全市路口之比重少,因而 可能造成推估出來的車流結果較不準確,宜建立更多的車流量監測資料, 減少誤差。
- 人口推估方式:由於本研究之居民及活動人口推估方式目前沒找到適當 的方法驗證其正確性,因此需要發展適當的方法評估之。
- 所建立的指標之其他用途:本研究所建立的指標,亦可用以評估比較 都市中不同道路的移污風險潛勢。

參考文獻

環保署空氣排放清冊 (99 年),

<u>http://air.epa.gov.tw/Public/download_one.aspx。</u>(accessed on 2012/6/24) 台北市交工處交通流量調查,(99年),

http://www.bote.taipei.gov.tw/MP_117031.html • (accessed on 2012/6/24)

中華民國交通部路網數值圖,(100年),

http://www.motc.gov.tw/mocwebGIP/wSite/lp?ctNode=550&CtUnit=94&BaseD

<u>SD=16&mp=1 · (accessed on 2012/6/24)</u>

台北市環保局交通測站調查,(99年), http://211.79.130.66/c_index/envir/air.htm。(accessed on 2012/6/24)

台北市主計處人口調查,(99年),

http://163.29.37.101/pxweb2007-tp/dialog/statfile9.asp . (accessed on

2012/6/24)

台北市商業處分區行業統計調查,(99年),

http://www.tcooc.taipei.gov.tw/MP 105011.html。(accessed on 2012/6/24) 中鼎公司移污排放量資料(TEDS7.1),(99年)。

交通部運輸研究所,(97年),交通部運輸研究所。

許義宏,(95年),「巨觀混合車流模型構建之研究」,碩士論文,國立成功

大學交通管理學系,台南。

陳彦佑,(95年),「應用偵測器推估公路車流量之研究」,碩士論文,國立

交通大學運輸工程研究所,新竹。

董思浩,(90年),「地理資訊系統於台中市移動污染源現況分析」,碩士論

文,國立中興大學環境工程研究所,台中。

蔡世澤,九十七年,「移動汙染空間性影響及風險評估」,碩士論文,

國立交通大學環境工程研究所,新竹。

- Bennett, D. H., McKone, T. E., Evans J. S., Nazaroff, W. W., Margni, M. D., Jolliet, O., and Smith, K. R. (1987). "Defining Intake Fraction." *Environmental Science and Technology*, 36, pp. 207-211.
- Benson, E. P. (1992). "A review of the development and application of the caline3 and 4 models." *Atmospheric Environment*, 268, pp. 379-390.
- Berkowicz, R., Ketzel, M., and Jensen, S. S. (2008). "Evaluation and application of OSPM for traffic pollutionassessment for a large number of street locations." *Environmental Modelling & Software*, 23, pp. 296-303.
- California Office of Environmental Health Hazard Assessment (OEHHA). (2008). All OEHHA Acute, 8-hour and Chronic Reference Exposure Levels as of December 2008. (<u>http://www.oehha.ca.gov/air/allrels.html</u>). (accessed on 2012/6/24)
- Carella, B. and Mudu, P. (2009). "Exposure to Air Pollution: An Intake Fraction Application in Turin Province." Archives of Environmental and Occupational Health, 64, pp. 156-163.
- Chan, L. Y. and Kwok, W. S. (2000). "Vertical dispersion of suspended particulates in urban area of Hong Kong." *Atmospheric Environment*, 34, pp. 4403-4412.
- Dockery, D.W., Arden Pope, C., Xu, X., Spengler, J.D., Ware, J.H., Fay, M.E., Ferris, B.G., and Speizer, F. (1993). "An association between air pollution and mortality in six U.S. cities." *New England Journal of Medicine*, 329, pp. 1753-1759.
- Gualtieri, G. (2010). "A Street Canyon Model Intercomparison in Florence, Italy." *Water Air Soil Pollutant*, 212, pp. 461-482.

- Huang, H., Akutsu, Y., Arai, M., and Tamura, M. (2000). "A two-dimensional air quality model in an urban street canyon:evaluation and sensitivity analysis." *Atmospheric Environment*, 34, pp. 689-698.
- Jones, S. G., Fisher, B. E. A., Flesca, N. G., and Sokhi, R. (2000). "The use of measurement programs and models to assess concentrations next to major roads in urban areas." *Environmental Monitoring and Assessment*, 64, pp. 531-547.
- Johnson, g. t. and Hunter, L. J. (1999). "Some insights into typical urban canyon airflows." *Atmospheric Environment*, 33, pp. 3991-3999.
- Jensen, S. S. (1998). "Mapping human exposure to traffic air pollution using GIS." *Journal of Hazardous Materials*, 61, pp. 385-392.
- Kalaiarasan, M., Balasubramanian, R., Cheong, K. W. D., and Tham, K. W. (2009). "Traffic-generated airborne particles in naturally ventilated multi-storey esidential buildings of Singapore: Vertical distribution and potential ealth risks." *Building and Environment*, 44, pp. 1493-1500.
- Kassomenos, P., Skouloudis, A. N., Lykoudis, S., and Flocas, H. A. (1999)."Air-quality indicators for uniform indexing of atmospheric pollution over large metropolitan areqas." *Atmospheric Environment*, 33, pp. 1861-1879.
- Kim, Y. and Guldmann, J. M. (2011). "Impact of traffic flows and wind directions on air pollution concentrations in Seoul, Korea." *Atmospheric Environment*, 45, pp. 2803-2810.
- Kastner-Klein, P. and Plate, E. J. (1999). "Wind-tunnel study of concentration fields in street canyons." *Atmospheric Environment*, 33, pp. 3973-3979.
- Kourtidis, K. A., Ziomas, I., Zerefos, C., Kosmidis, E., Symeonidis, P., and Christophilopoulos, E. (2002). "Benezene, toluene, ozone, *NO*₂ and *SO*₂

measurements in an urban street canyon in Thessaloniki, Greece."

Atmospheric Environment, 36, pp. 5355-5364.

- Kukkonen, J., Partanen, L., Karppinen, .A., Walden, J., Kartastenpaa, R.,
 Aarnio., Koskentalo, T., and Berkowicz, R. (2009). "Evaluation of the
 OSPM model combined with an urban background model against the data
 measured in 1997 in Runeberg Street Helsinki." *Atmospheric Environment*,
 37, pp. 1101-1112.
- Mukherjee, P., Viswanathan, S., and Choon, L. C. (2000). "Modeling Mobile source emissions in presence of stationary sources." *Journal of Hazardous Materials*, A76, pp. 23-37.

Molina, M. J. and Molina, L. T. (2004). "Megacities and atmospheric pollution."

Journal of the Air & Waste Management Association, 54, pp. 644-680.

- Majumdar, K. B. and Dutta, A. (2010). "Assessment of vehicular pollution in Kolkata, India, using CALINE 4 model." *Environmental Monitoring and Assessment*, 170, pp. 33-43.
- Nel, A. (2005). "Air pollution-related illness: biomolecular effects of particles." *Science*, 308, pp. 804-806.
- Olcese, L. E. and Toselli, B. M. (2002). "Some aspects of air pollution in Cordoba, Argentina." *Atmospheric Environment*, 36, pp. 299-306.
- Olcese, L. E. and Toselli, B. M. (1997). "Effects of Meteorology and Land use on Ambient Measurements of Primary Pollutants in Cordoba City, Argentina." *Meteorology Atmospheric Physical*, 62, pp. 241-248.
- Oran, R. L., (1980). "The role of subsidy policies in modernizing the structure of the bus transit industry." *Transportation*, 9, pp. 333-353.

- Offer, G. J., Contestabile, M., Howey, D. A., Clague, R., and Brandon, N. P. (2011). "Techno-economic and behavioural analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system in the UK." *Energy Policy*, 39, pp.1939-1950.
- Pope, C.A. and Dockery, D.W. (2006) "Health effects of fine particulate air pollution: lines that connect." *Journal of the Air & Waste Management Association*, 56, pp. 709-742.
- Quenol, H., Bridier, S., Frangi, J. P., Beltrando, G., and Rosny, G. (2006). " Space-time variability factors from air pollution inside Paris by CO measurement." *Erdkunde*, 60, pp. 40-50.
- Saldarriaga, C. A. and Vergara, C. (2009). "Who switches to hybrids? A study of a fuel conversion program in Colombia." *Transportation Research*, 43, pp. 572-579.
- Greco, S. I., Wilson, A. M., Hanna, S. R., and Levy, J. I. (2007). "Factors Influencing Mobile Source Particulate Matter Emissions-to-Exposure Relationships in the Boston Urban Area." *Environmental Science*, 41, pp. 7675-7682.
- Stieb, D. M., Burnett, R. T., Doiron, M., Brion, O., Shin, H. H., and Economou,
 V. (2008). "A new Multipollutant, No-Threshold Air Quality Health index
 Based on Short-Term Associations Observed in Daily Time-Series
 Analyses." *Air and waste Management*, 58, pp. 435-450.
- Theurer, W. (1999). "Typical building arrangements for urban as pollution modeling." *Atmospheric Environment*, 33, pp. 4057-4066.
- Taseiko, V. O., Mikhailuta, V. S., Pitt, A., Lezhenin, A. A., and Zakharov, Y.V. (2009). "Air pollution dispersion within urban street canyons."

Atmospheric Environment, 45, pp. 245-253.

- United State Environmental Protection Agency(USEPA). (2011). *IRIS Progress Report*, United State Environmental Protection Agency, Washington DC.
- Vahdani, B., Zandieh, M., and Moghadda, R. T. (2011). "Two novel FMCDM methods for alternative-fuel buses selection." *Applied Mathematical Modeling*, 35, pp.1396-1412.
- Wu, Y., Hao, J., Fu, L., Wang, Z., and Tang, U. (2002). "Vertical and horizontal profiles of airborne particulate matter near major roads in Macaom Chins." *Atmospheric Environment*, 36, pp. 4907-4918.
- Wall, G., Felstead, T., Richards, A., and Mcdonald, M. (2008) "Cleaner vehicle buses in Winchester." *Tranportation Policy*, 15, pp. 55-68.
- World Health Organization (WHO). (2004). Development of Environment and Health Indicators for European Union Countries: Results of a Pilot Study.
 World Health Organization, Germany.
- Wei, H. and Qin, Z. (2010). "Using the OSPM Model on Pollutant Dispersion in an Urban Street Canyon." *Advances in atmospheric sciences*, 27, pp. 621-628.
- Xie, X., Liu, C. H., and Leung, D. Y. C. (2007). "Impact of building facades and ground heating on wind flow and pollutant transport in street canyons." *Atmospheric Environment*, 41, pp. 9030–9049.
- Yamartino, R. and Wiegand, G. (1986). "Development and evaluation of simple models for the flow, turbulence and pollutant concentration fields within an urban street canyon." *Atmospheric Environment*, 20, pp. 2137– 2156.

Zoumakis, N. M. (1995). "A note on average vertical profiles of vehicular

pollutant concentrations in urban street canyons." *Atmospheric Environment*, 29, pp.3719-3725.

- Zhou, Y. and Levy, J., (2008). "The impact of urban street canyons on population exposure to traffic-related primary pollutants." *Atmospheric Environment*, 42, pp. 3087-3098.
- Ziv, A., Berkowicz, R., Genikhovich, E., Palmgren, F. and Yakovleva, E.
 (2002). "Analysis of this St. Petersburg traffic data using the OSPM model." *Water, Air, and Soil Pollution*, 2, pp. 297-310.

附錄 A 路線基本資料

路線代碼	Route order	Length per trip	Frequency	Length sum
R1	1	20795	200	4159000
R2	2	19292	213	4109196
R3	3	11750	250	2937500
R4	4	13364	218	2913352
R5	5	12333	210	2589930
R6	6	25316	100	2531600
R7	7	17422	136	2369392
R8	8	20740	99	2053260
R9	9	18174	107	1944618
R10	10	9372	207	1940004
R11	11	26572	70	1860040
R12	12	18425	99	1824075
R13	13	13443	135	1814805
R14	14	18150	95	1724250
R 15	15	16695	100	1669500
R 16	16	16626	99	1645974
R17	17	15344	99	1519056
R18	18	27113	56	1518328
R19	19	21545	70	1508150
R20	20	12042	125	1505250
R21	21	15140	99	1498860
R22	22	20239	74	1497686
R23	23	11858	120	1422960
R24	24	11830	120	1419600
R25	25	9023	157	1416611
R26	26	19611	72	1411992
R27	27	12383	114	1411662
R28	28	14120	99	1397880
R29	29	17852	77	1374604
R30	30	19503	68	1326204
R31	31	16509	79	1304211
R32	32	13084	99	1295316

R33	33	5978	216	1291248
R34	34	11972	105	1257060
R35	35	12342	99	1221858
R36	36	12337	99	1221363
R37	37	16040	76	1219040
R38	38	15564	78	1213992
R39	39	12261	99	1213839
R40	40	12232	99	1210968
R41	41	11669	102	1190238
R42	42	16423	72	1182456
R43	43	11654	99	1153746
R44	44	19772	58	1146776
R45	45	11553	99	1143747
R46	46	16020	71	1137420
R47	47	15106	75	1132950
R48	48	9615	117	1124955
R49	49	13435	83	1115105
R50	50	11127	99	1101573
R51	51	19394	56	1086064
R52	52	15435	70	1080450
R53	53	9220	117	1078740
R54	54	9081	114	1035234
R55	55	14352	72	1033344
R56	56	10368	99	1026432
R57	57	13112	78	1022736
R58	58	16994	60	1019640
R59	59	10252	99	1014948
R60	60	7834	129	1010586
R61	61	16531	61	1008391
R62	62	9860	102	1005720
R63	63	18091	55	995005
R64	64	12087	82	991134
R65	65	18335	54	990090
R66	66	7742	127	983234
R67	67	10830	90	974700
R68	68	17710	55	974050
R69	69	13474	72	970128

R70	70	9420	102	960840
R71	71	9614	99	951786
R72	72	9599	99	950301
R73	73	11814	80	945120
R74	74	12291	76	934116
R75	75	13959	66	921294
R76	76	9190	100	919000
R77	77	9217	99	912483
R78	78	13029	70	912030
R79	79	12650	72	910800
R80	80	7004	130	910520
R81	81	12303	74	910422
R82	82	17036	53	902908
R83	83	9120	99	902880
R84	84	9079	99	898821
R85	85	9174	95	871530
R86	86	8772	99	868428
R87	87	10844	80	867520
R88	88	8632	99	854568
R89	89	12281	68	835108
R90	90	11145	73	813585
R91	91	9965	76	757340
R92	92	10855	69	748995
R93	93	9296	76	706496
R94	94	12067	58	699886
R95	95	6992	100	699200
R96	96	8741	78	681798
R97	97	8448	80	675840
R98	98	8171	76	620996
R99	99	9286	65	603590
R100	100	5469	99	541431