

國 立 交 通 大 學

資訊工程系

碩 士 論 文

在數位訊號處理器中利用記憶位址產生器之

間接位址模式作陣列索引計算最佳化

Optimizing Array Index Computation with Indirect

Addressing of the AGU in a DSP

研 究 生：陳 俊 一

指導教授：單 智 君 博士

中 華 民 國 九 十 三 年 八 月

 i

在數位訊號處理器中利用記憶位址產生器之

間接位址模式作陣列索引計算最佳化

Optimizing Array Index Computation with Indirect

Addressing of the AGU in a DSP

研 究 生：陳 俊 一 Student：Chun-Yi Chen

指導教授：單 智 君 博士 Advisor：Dr. Jean, Jyh-Juin Shann

國 立 交 通 大 學
資 訊 工 程 學 系

碩 士 論 文

A Thesis
Submitted to Department of

Computer Science and Information Engineering
College of Electrical Engineering and Computer Science

National Chiao Tung University
in Partial Fulfillment of the Requirements

for the Degree of
Master

In
Computer Science and Information Engineering

June 2004
Hsinchu, Taiwan, Republic of China

中華民國 九十三 年 八 月

 ii

在數位訊號處理器中利用記憶位址產生器之

間接位址模式作陣列索引計算最佳化

學生：陳俊一 指導教授：單智君 博士

國立交通大學資訊工程學系碩士班

摘要

由於大多數的數位訊號處理之相關應用程式（例如影像處理、音訊處理）大量

存取記憶體內的陣列資料，使得計算這些陣列位址所造成的負擔對於程式執行效能

與程式碼大小有很大的影響。有些數位訊號處理器配有記憶位址產生器，只需少量

的位元數編碼在指令中就可以快速計算位址，不但減少程式碼的大小，也可加速程

式執行速度，
在本論文中，我們提供兩個方法來解決如何將迴圈內陣列參考分配給固定數量

之位址暫存器與修改暫存器，使得迴圈內計算位址之指令數最少的問題。其中一種

為刪除法，此方法針對較小的問題可以找到最佳解。另一個方法為基因演算法，對

於那些較大的問題，透過有效率的步驟，可以找到合適的解。與過去的研究相較之

下，實驗結果顯示我們的方法確實有較好的效果。

 iii

Optimizing Array Index Computation with Indirect

Addressing of the AGU in a DSP

Student：Chun-Yi Chen Advisor：Jean, J.J Shann

Institute of Computer Science and Information Engineering
National Chiao-Tung University

Abstract

Since most DSP applications (video/audio processing) access a large amount of array

elements stored in memory, the address computation overhead of array elements has great

impact on performance and code size. Some DSPs are equipped with dedicated address

generation units (AGUs). The AGU enables fast address computation with few bits

encoded into an instruction, resulting in code size reduction as well as performance

improvement of programs.

In this thesis, we provide two approaches to solve the problem of clustering array

references in loops to fixed number of address registers and modify registers so that the

number of instructions needed for address computations in loops is minimized. One is

pruning method which can solve small-size problems to obtain optimal solutions. The

other is genetic algorithm which can solve large problems to obtain reasonable solutions

in an efficient way. Experimental results show that our approaches are indeed more

effective compared to previous work.

 iv

誌謝

首先感謝我的指導老師 單智君教授，在老師的諄諄教誨、辛勤指導與勉勵下，

我得以順利完成此論文，並且順利通過畢業口試。同時感謝我的口試委員 鍾崇斌教

授以及謝萬雲 教授，由於他們的指導與建議，讓這篇論文更加完整和確實。

此外，感謝實驗室的學長—鄭哲聖學長、喬偉豪學長和林漢君學長，每次都不

厭其煩地跟我討論許多問題，給予我莫大的幫助。也感謝實驗室全體學長姐、同學

以及學弟們，真的很高興可以認識你們大家。因為你們，讓我的研究生活充滿了歡

樂。

最後感謝我的家人，謝謝你們在背後全心全意地支持我，讓我在這研究的路上

走得更順利，進而能無後顧之憂的學習，讓我追求自己的理想。

謹向所有支持我、勉勵我的師長與親友，奉上最誠摯的祝福，謝謝你們。

陳俊一

2004. 8. 15

 v

 Table of contents

摘要... iii

Abstract ..iv

誌謝...v

Table of contents ..vi

List of Figures ... viii

List of Tables...x

Chapter 1 Introduction ...1

1.1 Research Motivations.. 2

1.2 Research Objective and Proposed Approaches... 3

1.3 Organization of This Thesis .. 3

Chapter 2 Backgrounds and Related Work ..4

2.1 The Address Generation Unit in DSP ... 4

2.2 Genetic Algorithms ... 5

2.2.1 Selection Operators.. 6

2.2.2 Crossover Operators .. 7

2.2.3 Mutation Operators .. 8

2.2.4 Termination Methods ... 9

2.3 Previous Works ... 10

2.3.1 Local Array Reference Allocation (LARA)....................................... 10

2.3.2 Global Array Reference Allocation (GARA)..................................... 15

2.3.3 Summary of Address Code Optimization with AGU......................... 16

Chapter 3 Proposed Methods ...18

3.1 Observation ... 18

3.2 Problem Description ... 20
 vi

3.3 Problem Transformation ... 20

3.4 Approach 1: Brute Force with Pruning... 23

3.4.1 Time Complexity ... 28

3.5 Approach 2: Genetic Algorithm (GA) .. 29

3.5.1 Overview of GA... 29

3.5.2 Chromosomal Representation.. 30

3.5.3 Population Initialization... 31

3.5.4 Crossover and Mutation Operation.. 32

3.5.5 Evaluation Function... 34

3.5.6 Parameters.. 36

3.5.7 Time complexity .. 36

Chapter 4 Simulation and Analysis..37

4.1 Benchmark Suite... 37

4.2 Experimental Results .. 38

4.2.1 Summary of Experimental Results .. 43

Chapter 5 Conclusion and Future Works ...44

References...45

 vii

List of Figures

Figure 1-1 Execution time overhead and memory overhead 1

Figure 2-1 AGU Block Diagram... 4

Figure 2-2 Top-level description of a genetic algorithm... 6

Figure 2-3 Array references and the distance graph ... 11

Figure 2-4 Extended distance graph ... 12

Figure 2-5 CFG fragment after Ø-insertion and reference analysis 16

Figure 3-1 Modified distance graph.. 21

Figure 3-2 Modified extended distance graph (MEDG)....................................... 22

Figure 3-3 (a) A source program (b) MEDG .. 23

Figure 3-4 Two cases when considering node 2 ... 24

Figure 3-5 Two cases when considering node 3 of case 1 in Figure 3-4 24

Figure 3-6 Two cases when considering node 4 of case 1 in Figure 3-5 25

Figure 3-7 All combination of above example ... 26

Figure 3-8 Flow chart of our GA .. 30

Figure 3-9 (a) a source program (b) MEDG (c) chromosome representation 31

Figure 3-10 An example of initial population... 32

Figure 3-11 One-point crossover operation .. 33

Figure 3-12 Bit mutation operation... 33

Figure 3-13 An example of calculating a chromosome of evaluation function.... 35

Figure 4-1 Addressing costs of 1 AR and l MRs for small programs 39

Figure 4-2 Addressing costs of 2 ARs and l MRs for small programs 40

Figure 4-3 Addressing costs of 3 ARs and l MRs for small programs 40

Figure 4-4 Addressing costs of 4 ARs and l MRs for small programs 40

Figure 4-5 Addressing costs of 1 ARs and l MRs for all programs 41

 viii

Figure 4-6 Addressing costs of 2 ARs and l MRs for all programs 41

Figure 4-7 Addressing costs of 3 ARs and l MRs for all programs 42

Figure 4-8 Addressing costs of 4 ARs and l MRs for all programs 42

 ix

List of Tables

Table 2-1 Comparison of related work and our problem...................................... 17

Table 4-1 Stencil Micro-Benchmarks Suite .. 38

Table 4-2 Addressing costs reduction for small programs.................................... 41

Table 4-3 Addressing costs reduction for all programs... 42

 x

Chapter 1 Introduction

More and more DSP system designs are based on software running on programmable

processors rather than on dedicated hardware [1]. This trend towards software-based

implementation is due to the fact, that software provides higher flexibility and better

opportunities for reuse than hardware.

Today, however, software development for DSPs frequently is a bottleneck in the

system design process. Figure 1-1 shows that many of the currently available C compilers

for DSPs cause a significant overhead in code size and performance as compared to

hand-written assembly code [2]. This is also confirmed by numerous software developers

and recent empirical studies from academia and industry. Such an overhead can hardly be

tolerated in presence of real-time constraints and limited program memory size.

Therefore, nearly all time-critical applications are implemented by hand. As a

consequence, efficient code generation techniques for DSPs have received high attention

during the last years [3].

Figure 1-1 Execution time overhead and memory overhead

 1

The overhead of compiler-generated code is mainly due to the special architectural

features of DSPs, to which classical code optimization techniques can hardly be applied.

This includes the presence of special-purpose registers, special addressing modes, certain

machine idioms (MAC-operation) and instruction-level parallelism. In order to make the

use of high-level language compilers feasible for more DSP applications, new

DSP-specific code optimization techniques are required, which take into account the

detailed processor architecture. High compilation speed, which may be an important

constraint for GPP-(general purpose-processor) compilers, is not necessarily an issue for

DSP compilers. Instead, many compiler users are willing to trade higher compilation

times against better code quality. This allows to explore the use of code optimization

algorithms of a comparatively high computational complexity.

1.1 Research Motivations

Since most DSP applications, like audio/video processing, access a large amount of

array elements stored in memory, the address computation overhead of array elements

has great impact on code size and performance. In order to reduce this kind of overhead,

some DSPs (e.g., TI TMS320C25, the Motorola 56k, and the Analog Devices

ADSP-210x) are equipped with dedicated address generation units (AGUs), which can

offer specialized addressing modes. A typical example is the auto-increment (decrement)

mode, in which an address register (AR) is incremented (decremented) by 1 or by an

immediate value stored in a modify register (MR), after the memory operation is finished

(We will refer to auto-increment/decrement by 1 and auto-increment/decrement by MR as

auto-inc/dec and auto-modify respectively). As a consequence, effective utilization of

AGUs allows for more compact machine code and therefore increases potential

parallelism.

 2

Previous researches, which reduce address computation instructions for array data in

loops, focus on auto-inc/dec operation but do not fully exploit auto-modify operation. For

our observation, using auto-modify operation properly can reduce address computation

instructions further in loops, especially for multi-dimensional array.

1.2 Research Objective and Proposed Approaches

Our research objective is to minimize address computation overhead for array

references in loops under given fixed number of address registers and modify registers.

We will formulate the problem and provide two approaches to solve it. One is brute force

with pruning when a small amount of array reference pattern is given. The other is

genetic algorithm which gives a reasonable solution for this problem.

1.3 Organization of This Thesis

The rest of this thesis is organized as follows. Chapter 2 introduces the background

of address generation units in DSPs, genetic algorithms, and discusses previous relative

researches on addressing optimization for array data in loops with indirect addressing

modes. In chapter 3, we describe two approaches to solve this problem in detail. The

simulation environment and simulation results are presented in chapter 4. Finally, we

summarize the conclusion and future work in chapter 5.

 3

Chapter 2 Backgrounds and Related Work

In this chapter, we give an overview of address generation unit in digital signal

processing. Then, we will introduce the genetic algorithms. Finally, previous work related

to the problem of assigning address registers to array references is presented.

2.1 The Address Generation Unit in DSP

Address code optimization is mainly used in C compilers for digital signal processors

(DSPs), which require extremely high code quality and hence sophisticated code

optimization techniques. Emphasis is on effective utilization of the address generation

units (AGUs) commonly found in DSPs. Such an AGU generally comprises a file of

address registers (ARs) as well as a file of modify registers (MRs). ARs store memory

addresses (or pointers), while MRs store frequently required address modify values. The

AGU architecture is sketched in Figure 2-1.

MUXMUX

1

immediate constant

address
registers
(ARs)

modify
registers
(MRs)

MUXMUX

R0R0
R1R1
R2R2
R3R3

N0N0
N1N1
N2N2
N3N3

MEMMEM

+/−effective
address

MUXMUX

1

immediate constant

address
registers
(ARs)

modify
registers
(MRs)

MUXMUX

R0R0
R1R1
R2R2
R3R3

N0N0
N1N1
N2N2
N3N3

MEMMEM

+/−effective
address

Figure 2-1 AGU Block Diagram

 4

When an address register is used to point to a memory location, the addressing mode

is called “address register indirect”. The term indirect is used because the register

contents are not the operand itself, but rather the address of the operand. These

addressing modes specify that an operand is in memory and specify the effective address

of that operand. Four general address register indirect modes are in the following.

 Auto-increment By 1 – The address of the operand is in an address register.

After the operand address is used, it is incremented by 1 and stored in the same

address register.

 Auto-decrement By 1 – The address of the operand is in an address register.

After the operand address is used, it is decremented by 1 and stored in the same

address register.

 Auto-increment By Offset Nn – The address of the operand is in an address

register. After the operand address is used, it is incremented by the contents of a

modify register and stored in the same address register. The contents of the

modify register are unchanged.

 Auto-decrement By Offset Nn – The address of the operand is in an address

register. After the operand address is used, it is decremented by the contents of

a modify register and stored in the same address register. The contents of the

modify register are unchanged.

2.2 Genetic Algorithms

Genetic algorithms are general-purpose search algorithms based upon the principles

of evolution observed in nature. The algorithms can be applied to a wide variety of

optimization problems such as scheduling, computer games, stock market trading,

medical, adaptive control, transportation, the traveling salesmen problem, etc.

 5

The solution to a problem is called a chromosome. A chromosome is made up of a

collection of genes which are simply the parameters to be optimized. A genetic algorithm

creates an initial population (a collection of chromosomes), evaluates this population, and

then evolves the population through multiple generations (using the genetic operators

discussed below) in the search for a good solution for the problem at hand. Figure 2-2

contains a top-level description of the genetic algorithm [4] [5].

The Genetic Algorithm

1. Initialize a population of chromosomes.

2. Evaluate each chromosome in the population.

3. Create new chromosomes by mating current chromosomes; apply mutation

and recombination as the parent chromosomes mate.

4. Delete members of the population to make room for the new chromosomes.

5. Evaluate the new chromosomes and insert them into the population.

6. If time is up, stop and return the best chromosome; if not, go to 3.

Figure 2-2 Top-level description of a genetic algorithm

2.2.1 Selection Operators

Selection is a genetic operator that chooses a chromosome from the current

generation’s population for inclusion in the next generation’s population. Previous work

include the following types of selection：

 Roulette – A selection operator in which the chance of a chromosome getting

selected is proportional to its fitness (or rank). This is where the concept of

survival of the fittest comes into play.

 Tournament – A selection operator which uses roulette selection N times to

produce a tournament subset of chromosomes. The best chromosome in this
 6

subset is then chosen as the selected chromosome. This method of selection

applies addition selective pressure over plain roulette selection.

 Top Percent – A selection operator which randomly selects a chromosome from

the top N percent of the population as specified by the user.

 Best – A selection operator which selects the best chromosome (as determined

by fitness). If there are two or more chromosomes with the same best fitness,

one of them is chosen randomly.

 Random – A selection operator which randomly selects a chromosome from the

population.

2.2.2 Crossover Operators

Crossover is a genetic operator that combines (mates) two chromosomes (parents) to

produce a new chromosome (offspring). The idea behind crossover is that the new

chromosome may be better than both of the parents if it takes the best characteristics

from each of the parents. Crossover occurs during evolution according to a user-definable

crossover probability. Previous work includes the following types of crossover.

 One Point – A crossover operator that randomly selects a crossover point within

a chromosome then interchanges the two parent chromosomes at this point to

produce two new offspring.

 Two Point – A crossover operator that randomly selects two crossover points

within a chromosome then interchanges the two parent chromosomes between

these points to produce two new offspring.

 Uniform – A crossover operator decides which parent will contribute each of

the gene values in the offspring chromosomes.

 7

2.2.3 Mutation Operators

Mutation is a genetic operator that alters one ore more gene values in a chromosome

from its initial state. It is an important part of the genetic search to prevent the population

from stagnating at any local optima. Previous work include the following types of

mutation.

 Flip Bit – A mutation operator that simply inverts the value of the chosen gene

(0 goes to 1 and 1 goes to 0). This mutation operator can only be used for binary

genes.

 Boundary – A mutation operator that replaces the value of the chosen gene with

either the upper or lower bound for that gene (chosen randomly). This mutation

operator can only be used for integer and float genes.

 Non-Uniform – A mutation operator that increases the probability that the

amount of the mutation will be close to 0 as the generation number increases.

This mutation operator keeps the population from stagnating in the early stages

of the evolution then allows the genetic algorithm to fine tune the solution in the

later stages of evolution. This mutation operator can only be used for integer

and float genes.

 Uniform – A mutation operator that replaces the value of the chosen gene with

a uniform random value selected between the user-specified upper and lower

bounds for that gene. This mutation operator can only be used for integer and

float genes.

 Gaussian – A mutation operator that adds a unit Gaussian distributed random

value to the chosen gene. The new gene value is clipped if it falls outside of the

user-specified lower or upper bounds for that gene. This mutation operator can

only be used for integer and float genes.

 8

2.2.4 Termination Methods

Termination is the criterion by which the genetic algorithm decides whether to

continue searching or stop the search. Each of the enabled termination criterion is

checked after each generation to see if it is time to stop. Previous work include the

following types of termination.

 Generation Number – A termination method that stops the evolution when the

user-specified max number of evolutions have been run. This termination

method is always active.

 Evolution Time – A termination method that stops the evolution when the

elapsed evolution time exceeds the user-specified max evolution time.

 Fitness Threshold – A termination method that stops the evolution when the

best fitness in the current population becomes less/greater than the

user-specified fitness threshold and the objective is set to minimize/maximize

the fitness.

 Fitness Convergence – A termination method that stops the evolution when the

fitness is deemed as converged. Two filters of different lengths are used to

smooth the best fitness across the generations. When the smoothed best fitness

from the long filter is less than a user-specified percentage away from the

smoothed best fitness from the short filter, the fitness is deemed as converged

and the evolution terminates.

 Population Convergence – A termination method that stops the evolution when

the population is deemed as converged. The population is deemed as converged

when the average fitness across the current population is less than a

user-specified percentage away from the best fitness of the current population.

 Gene Convergence – A termination method that stops the evolution when a

user-specified percentage of the genes that make up a chromosome are deemed
 9

as converged. A gene is deemed as converged when the average value of that

gene across all of the chromosomes in the current population is less than a

user-specified percentage away from the maximum gene value across the

chromosomes.

2.3 Previous Works

There are different ways of utilizing indirect addressing of AGU. One of the most

popular is to perform offset assignment for local scalar variables in a C program

[6][7][8]. These approaches are based on permutation of variables within available

sections of memory. Hence, these techniques can not be directly applied to arrays because

generally array elements are arranged in memory in order. Another important branch in

address code optimization is address register assignment. Such techniques are used to

assign address registers to access data for which the memory layout has been already

defined. It can be directly applied to access array elements inside program loops, or to

reduce the number of update instructions resulting from using offset assignment.

2.3.1 Local Array Reference Allocation (LARA)

The goal of LARA is to allocate an address register to each array reference in a basic

block, by dividing them into live ranges (a live range is a set of array references that

share the same address register) and assigning an address register to each range.

Therefore, the final number of ranges should not exceed the total number of address

registers of the processor. Moreover, the number of instructions required to redirect

registers through references should be minimum. LARA has been studied before in

[9][10][11][12]. These are efficient graph-based solutions, when references are restricted

to basic block boundaries. In particular, Basu et al. [12] is a very efficient solution to

 10

LARA.

In the example of Figure 2-3, array references, inside the loop on the left, are

modelled as a distance graph (on the right). The distance graph G = (V, E) is a directed

acyclic graph (DAG) with V = . The edge set E contains all edges { naa ,...,1 } ()ji aae ,=

with . An edge nji ≤<≤1 ()ji aae ,= is present in E, if using the same AR for both

 and allows for generating the address for from the address for with a

zero-cost address computation.

ia ja ja ia

a_4
A[i-1]

a_5
A[i-2]

a_6
A[i+5]

a_3
A[i+4]

a_2
A[i-1]

a_1
A[i+2]

a_7
A[i]

a_4
A[i-1]

a_5
A[i-2]

a_6
A[i+5]

a_3
A[i+4]

a_2
A[i-1]

a_1
A[i+2]

a_7
A[i]

dist

grap

V =′

follo

if th

for (i = 2; i <= N; i++)
{ /* a_1 */ A[i+2]
/* a_2 */ A[i-1]

 /* a_3 */ A[i+4]
 /* a_4 */ A[i-1]
 /* a_5 */ A[i-2]
 /* a_6 */ A[i+5]
 /* a_7 */ A[i]
}
Figure 2-3 Ar

In order to consider zero-co

ance graph is modelled. Fi

h model of Figure 2-3. Th

, where each}{ naaV ′′∪ ,...,1

wing loop iteration, and E

e reference and cania ja

ray references and the distance graph

st address computation between iterations, an extended

gure 2-4 includes inter-iteration distances in the distance

e extended distance graph is a DAG with

 node

(EVG ′′=′ ,)

Vai ∉′ represents the array reference in the ia

(){ }njiaaE ij ≤≤≤′∪=′ 1|, . An edge ()ij aa ′, is in E ′ ,

 be implemented at zero cost using the same AR.

 11

a’_3a’_2a’_1 a’_4

Thus, obtaining a z

in a loop with a minim

in the extended distanc

such that if a path kP

NP-complete [13], the A

One can compute

path-based heuristic.

1. Given a dist

(EVG ′)′=′ ,

edge Ee ′∈ .

2. Let be thia

is no node

(ki aaP = ,...,
1

stop, because

3. Allocate a n

{
m1 kki aaa ,...,,
a’_5
A[i-1]

a’_6
A[i+6]

a’_7
A[i+1]

A[i+5]A[i]A[i+3] A[i]

a_4
A[i-1]

a_5
A[i-2]

a_6
A[i+5]

a_3
A[i+4]

a_2
A[i-1]

a_1
A[i+2]

a_7
A[i]

Figure 2-4 Extended distance graph

ero overhead solution for address computation of array references

um number of ARs is equivalent to covering all nodes

e graph by a minimum number of node-disjoint paths ,

starts in node it must end in node

{ }naa ,...,1

KPP ,...,1

ia ia′ . Since this problem is

R allocation problem is (most likely) of exponential complexity.

a (potentially suboptimal) solution efficiently by the following

ance graph G = (V, E), construct the extended distance graph

with V = { } { }nn aaaa ′′∪ ,...,,..., 11 , and assign a unit weight to each

e source node in { } Vaa n ′⊂,...,1 with minimum index, i.e., there

 with ja () Eaa ij ′∈, and ij < . Compute the longest path

)ik aa ′,,
m

 in G′ between and aia i′ . If P does not exist then

 no zero-cost solution is possible.

ew AR for the array references represented by the nodes

} in path P. Remove these nodes as well as the nodes

 12

{ }
mkki aaa ′′′ ,...,,

1
 from G′ , and remove all their incident edges.

4. If is not empty goto step 2, else stop and return the number r of allocated

registers.

G′

Below we show a longest path solution to the example problem. This solution results

in four registers addressing the following references.

R1 :

R2 :

R3 :

R4 :

11,aa ′

2,742 ,, aaaa ′

363 ,, aaa ′

55 ,aa ′

Thus the references would be

reg

ava

mer
 R1 = &A[4] /* initialize R1 with &A[2+2] */

R2 = &A[1] /* initialize R2 with &A[2-1] */
R3 = &A[6] /* initialize R3 with &A[2+4] */
R4 = &A[0] /* initialize R4 with &A[2+2] */
for (i = 2; i <= N; i++)
{ /* a_1 */ *R1 ++ /* access A[i+2] */

/* a_2 */ *R2 /* access A[i-1] */
/* a_3 */ *R3 ++ /* access A[i+4] */
/* a_4 */ *R2 ++ /* access A[i-1] */
/* a_5 */ *R4 ++ /* access A[i-2] */
/* a_6 */ *R3 /* access A[i+5] */
/* a_7 */ *R2 /* access A[i] */

}

The longest path algorithm provides a tight upper bound on the number of address

isters required. If the number of required address registers exceeds the number of

ilable address registers, then the accesses allocated to some of the registers can be

ged with others in a way that minimizes the incremental cost. The cost of merging

 13

two ranges R and S (cost (R, S)) is measured by the number of update instructions

required to access all array references in the resulting range. The process of merging is

iteratively performed till the number of address registers required equals the number of

available registers. The pseudo-code for the MERGE algorithm is shown below.

(1) procedure MERGE (R, nars)

(2) while |R| > nars do

(3) mincost +∞

(4) for each range R∈R do

(5) for each range S∈R, S ≠ R do

(6) if cost (R, S) < mincost then

(7) mincost cost (R, S)

(8) minpair {R, S}

(9) R (R – minpair) (R S) ∪

On applying the path merging approach to the longest path solution, shown earlier,

subjected to the constraint of three available address registers, we obtain the following

solution with one inserted address-modifying instruction. Here, the accesses by registers

R1 and R2 has been merged. The costs stem from transitions from references to

in register R2.

R1 :

R2 :

5a 7a

11,aa ′

2,7542 ,,, aaaaa ′

R3 :

363 ,, aaa ′

The address register allocation technique shown in the beginning of this section is a

polynomial-time procedure. It utilizes two algorithms, the FIND_TUB (find tight upper

bound) algorithm to compute the minimum number of registers and the MERGE
 14

algorithm of combining the paths. The first algorithm is of complexity ()|||| 2 EVO ⋅ ,

where V and E denote respectively the vertex and edge sets of the extended distance

graph. The Path-Merge-Cost procedure of MERGE is of linear complexity in the

number n of array accesses, while the invocation of this procedure by MERGE is

bounded by ()2nO . Hence, the worst case complexity of MERGE is ()3nO . Since

()nOV = , the total runtime is dominated by FIND_MIN and is in ()4nO . In practice

this means, that the computation time is in within the range of CPU milliseconds on a

SparcStation-10.

2.3.2 Global Array Reference Allocation (GARA)

The problem of assigning address registers to array references, across basic blocks, is

known as Global Array Reference Allocation (GARA). It has been studied before in

[14][15] finding solutions for the allocation of address registers for a whole procedure.

Consider, for example, the CFG fragment shown in Figure 2-5, after Ø-equations are

inserted into blocks B1, B3 and B6. The UD and DU sets for all basic blocks that perform

array references are shown in Figure 2-5. We assume here that the program begins (ends)

before (after) block B1 (B6). Notice that, if Ø-equations had not been inserted, the

instructions associated to reference a[i + 1] in B2 would be reached (across one loop

iteration) by two references, that is, UD2 = {a[i + 1], a[i + 2]}. In this case, it would not

be possible to determine, at compile time, which of these two references reach a[i + 1],

and hence if auto-increment mode could be used by their instructions to point to a[i + 1].

After Ø-equations are inserted, the ud-chain at B2 becomes UD2 = {w1}, only one

reference reaches a[i + 1], and thus the decision can made once the value for w1 is

computed.

 15

2.3.3 Su

There

Assignme

further by

Table 2-1

approache

AR optim

Figure 2-5 CFG fragment after Ø-insertion and reference analysis

mmary of Address Code Optimization with AGU

 are mainly two ways of utilizing auto-increment addressing modes: Offset

nt and Address Register Assignment. All of them reduce addressing costs

 assignment of multiply required modify values to MRs in a post-pass phase.

 shows comparison of related work and our problem. We will propose two

s to LARA with MR Optimization which consider modify register when doing

ization. The methodology will describe more detailed in next chapter.

 16

Table 2-1 Comparison of related work and our problem

 Year Problem Domain MR Optimization

Leupers [6] 1996 Offset Assignment

Basu [12] 1999 AR Assignment: LARA

Araujo [15] 2002 AR Assignment: GARA

After AR optimization

Our problem AR Assignment: LARA Consider MR when AR optimization

 17

Chapter 3 Proposed Methods

In this chapter, we give an observation of benefit of considering modify register

when doing AR optimization. Then problem description and problem transformation

based on Basu’s graph are presented. Finally, we propose two methods to solve this

problem in detail.

3.1 Observation

Consider the following array references with respect to some array A.

for (i = 2; i <= N; i++)
{ /* a_1 */ A[i-6]
/* a_2 */ A[i-5]

 /* a_3 */ A[i]
 /* a_4 */ A[i+2]
 /* a_5 */ A[i+5]
 /* a_6 */ A[i+6]
 /* a_7 */ A[i+1]
}

If two ARs are available, Basu’s approach to find minimum addressing costs would

be in the following processes.

1. Estimate the upper bound of the number of ARs required to ensure all address

computation of array elements can be handle by auto-inc/dec.

2. If the number of registers obtained exceeds the given constraint on the set of

available registers, adopt MERGE algorithm.

 18

The result of the example needs three addressing costs.

 R1 = &A[0]
 R2 = &A[6]
 for (i = 6; i <= N; i++)
 { /* a_1 */ *R1 ++
 /* a_2 */ *R1
 R1 += 10
 /* a_3 */ *R2
 R2 += 2
 /* a_4 */ *R2 --
 /* a_5 */ *R1 ++
 /* a_6 */ *R1
 R1 += 11
 /* a_7 */ *R2
 }

Now if two MRs are available, we intuitively consider the usage of multiple modify

registers that store frequently modify values for AR updates. The final result of the

example needs one addressing cost.

 R1 = &A[0]
 R2 = &A[6]
 N1 = 10
 N2 = 2
 for (i = 6; i <= N; i++)
 { /* a_1 */ *R1 ++
 /* a_2 */ *R1 += N1
 /* a_3 */ *R2 += N2
 /* a_4 */ *R2 --
 /* a_5 */ *R1 ++
 /* a_6 */ *R1
 R1 += 11
 /* a_7 */ *R2
 }

However, this is not the best solution when two ARs and two MRs are given. If we

 19

know which values should be stored in MRs, some edges can be added in Basu’s

extended distance graph so that there may be an opportunity to find fewer path cover of

the extended distance graph. The best result of above example need zero addressing cost.

R1 = &A[0]
R2 = &A[8]
N1 = 5
N2 = 6
for (i = 6; i <= N; i++)
{ /* a_1 */ *R1 ++
 /* a_2 */ *R1 += N1
 /* a_3 */ *R1 += N1
 /* a_4 */ *R2 ++
 /* a_5 */ *R1 ++
 /* a_6 */ *R1 -= N1
 /* a_7 */ *R1 -= N2
}

3.2 Problem Description

The problem of addressing code optimization with AGU can now be stated as

follows:

Given: a set of address registers { }kirR i ≤≤= 1| , a set of modify registers

, and array reference pattern { limM i ≤≤= 1| } { }niaA i ≤≤= 1| , where each is an

ordered pair denoting the index of an array referred at control step .

Required: an allocation of all elements of A to the elements of R such that the addressing

costs in a loop which can not be handled by auto-inc/dec and l auto-modify is minimized.

ia

()ii csof , , iof ics

3.3 Problem Transformation

We first model our distance graph. The modified distance graph G = (V, E, d) is a

directed acyclic graph (DAG) with V = { }naa ,...,1 . The edge set E contains all edges

 20

()ji aae ,= with and the nji ≤<≤1 ()ji aad ,= denotes . Figure 3-1

shows the modified distance graph for our above example loop. Edges don’t represent

auto-inc/dec any more. On the contrary, values on the edges (excluding 0 and 1) represent

the candidate to be assigned to modify registers.

|| ij ofof −

In order to co

extended distance

distances in the m

distance graph is

 representsVai ∉′

(){ aaEE ij ′∪=′ 1|,

()ji aad ,= denote

the edges represent

a_1
A[i-6]

a_2
A[i-5]

a_5
A[i+5]

a_3
A[i]

a_6
A[i+6]

a_4
A[i+2]

a_7
A[i+1]

a_1
A[i-6]

a_2
A[i-5]

a_5
A[i+5]

a_3
A[i]

a_6
A[i+6]

a_4
A[i+2]

a_7
A[i+1]

Figure 3-1 Modified distance graph

nsider zero-cost address computation between iterations, a modify

 graph (MEDG) is modeled. Figure 3-2 includes inter-iteration

odified distance graph model of Figure 3-1. The modified extended

a DAG ()dEVG ,, ′′=′ with { }naaVV ′′∪=′ ,...,1 , where each node

 the array reference in the following loop iteration, and ia

}nji ≤≤≤ (some edges are ignored in Figure 3-2 for clarity).

s and || ij ofof − ()', ij aad = denotes ji ofstepof −+ . Values on

 the candidate to be assigned to modify registers.

 21

a’_1 a’_2 a’_3 a’_4a’_1 a’_2 a’_3 a’_4

Here, acc

problem trans

 a va

 k di

once

 D(P

 coun

we r

 cost

defi

cost

a_1
A[i-6]

a_2
A[i-5]

a_5
A[i+5]

a_3
A[i]

a_6
A[i+6]

a_4
A[i+2]

a_7
A[i+1]

A[i-5] A[i-4] A[i+1] A[i+3]

a’_5
A[i+6]

a’_6
A[i+7]

a’_7
A[i+2]

a_1
A[i-6]

a_2
A[i-5]

a_5
A[i+5]

a_3
A[i]

a_6
A[i+6]

a_4
A[i+2]

a_7
A[i+1]

A[i-5] A[i-4] A[i+1] A[i+3]

a’_5
A[i+6]

a’_6
A[i+7]

a’_7
A[i+2]

Figure 3-2 Modified extended distance graph (MEDG)

ording to MEDG, we define some key terms below for easily describing our

formation:

lid path P: a path starts in node and then end in node ia ia′

sjoint valid paths : these k paths cover all nodes exactly

.

kPP ,...,1 { naa ,...,1 }

): a set of differences in these k paths kP,...,1

td(): number of difference d in these k paths. If is explicit,

efer it as count(d).

kPP ,...,1 kPP ,...,1

l(): consider the usage of l MRs, the addressing costs in a loop is

ned as

kPP ,...,1

l() = maximum count(d) kPP ,...,1 ∑∑ −−−
=

lcountcountdcount
D

i
i)0()1()(

||

1

 22

For example, according to Figure 3-2, P1 = {1, 3, 6,1′}, P2 = {2, 4, 2 }, and P′ 3 = {5,

7, } are three disjoint valid paths. D(P5′ 1, P2, P3) = {4, 5, 6, 7, 11}. count(4), count(5),

count(6), count(7), and count(11) are 1, 1, 3, 1, and 1 respectively. If l is two, then

cost2(P1, P2, P3) = maximum count(d) ∑∑ −−−
=

2)0()1()(
5

1

countcountdcount
i

i

= [count(4) + count(5) + count(6) + count(7) + count(11)]

−−−)0()1(countcount [∑2 maximum count(d)]

= [1 + 1 + 3 + 1 + 1] – 0 – 0 – [3 + 1]

= 3

Thus, the problem of obtaining a minimum number of addressing costs in a loop if k

ARs and l MRs are given is equivalent to finding k disjoint valid paths in the

MEDG such that cost

kPP ,...,1

l() is minimal. kPP ,...,1

3.4 Approach 1: Brute Force with Pruning

We iteratively search all combinations of in the MEDG and prune some

cases which are far away from optimal solution to decrease computation time. For

example, Figure 3-3(a) is a source program and Figure 3-3(b) is its MEDG.

kPP ,...,1

a’_3
A[i+5]

a’_2
A[i+2]

a’_1
A[i-1]

a’_4
A[i+2]

a_4
A[i+1]

a_3
A[i+4]

a_2
A[i+1]

a_1
A[i-2]

a’_3
A[i+5]

a’_2
A[i+2]

a’_1
A[i-1]

a’_4
A[i+2]

a_4
A[i+1]

a_3
A[i+4]

a_2
A[i+1]

a_1
A[i-2]

for (i = 2; i <= N; i++)
{ /* a_1 */ A[i-2]
 /* a_2 */ A[i+1]
 /* a_3 */ A[i+4]
 /* a_4 */ A[i+1]
}

(a) (b)

Figure 3-3 (a) A source program (b) MEDG
 23

If two ARs and ay reference pattern

into

fter a node is added in a path, we compute its corresponding costl). If the

cost

Figure 3-5 Two cases when considering node 3 of case 1 in Figure 3-4

P1 = {1, 3}
P2 = {2}

P1 = {1}
P2 = {2, 3}

Case 1 Case 2

one MR are available, our goal is to divide arr

 two paths such that cost1(P1, P2) is minimum. Initially, we set P1 = {1}, and an upper

bound UB = 1 which is cost1(P1, P2) where (P1, P2) is obtained from Basu’s approach.

Then, we consider array references from node 2 one by one. Each node can be put in

either existing paths or, if the number of existing paths is less than k, we can create a new

path to put the node in. Figure 3-4 shows there are two cases when we consider node 2.

Figure 3-4 Two cases when considering node 2

A (kPP ,...,1

 is greater than or equal to current upper bound, we prune further search and consider

other cases. Otherwise, if the cost is less than current upper bound, we continue the next

node. For example, cost1(P1, P2) of case 1 in Figure 3-4 is zero. We can continue the node

3 because the cost is less than current upper bound. So, there are also two cases when we

consider node 3 like Figure 3-5. Of course, we can not create a new path for node 3

because there are only two ARs available.

P1 = {1} P1 = {1, 2}

Case 2

P2 = {2}

Case 1

 24

If all nodes are settled in k paths, we put ia′ to the tail of each path, where is the

head of its corresponding path. Then, if cost1 P ,.1 ss than current upper bound,

we update the current upper bound. When all cases are considered, we output the upper

bound as the final result. For example, cost1(P1, P2) of case 1 in Figure 3-5 is zero. So,

there are also two cases when we consider node 4. Figure 3-6 shows two cases when all

nodes are considered, and 1 1 2 1 1 2

one respectively

re 3-5

 depth first s display all combination of

above example in Figure 3-7. Although this is a time-consuming approach, some sub-tree

can be pruned when traversing because of the upper bound. This may save much runtime

in most cases.

ia

(kP..,) is le

cost (P , P) of case 1 and cost (P , P) of case 2 are two and

. So, it is not necessary to update the current upper bound.

Figure 3-6 Two cases when considering node 4 of case 1 in Figu

P1 = {1, 3, 4,1′}
P2 = {2, 2′ }

P1 = {1, 3,1′}
P2 = {2, 4, 2′ }

Case 1 Case 2

It is like traversing a tree using earch if we

 25

Figure 3-7 All combination of above example

After knowing the concept of pruning method, we give a pseudo algorithm described

below showing how to traverse this tree and finally obtain an optimal solution.

P1 = {1}

P1 = {1}
P2 = {2}

P1 = {1, 2}

P1 = {1, 3}
P2 = {2}

P1 = {1}
P2 = {2, 3}

P1 = {1, 3, 4,1 } ′

P2 = {2, 2 } ′

P1 = {1, 3,1 } ′

P2 = {2, 4, 2 } ′

P1 = {1, 4,1 } ′

P2 = {2, 3, 2 } ′

P1 = {1,1 } ′

P2 = {2, 3, 4, 2 } ′

P1 = {1, 2, 3}

P1 = {1, 2}
P2 = {3}

P1 = {1, 2, 3, 4,1 }′

P1 = {1, 2, 3,1 } ′

P2 = {4, 4 } ′

P1 = {1, 2, 4,1 } ′
P2 = {3,3 } ′

node 1 node 2 node 3 node 4

P1 = {1, 2,1 } ′
P2 = {3, 4,3 } ′

 26

1. //INPUT: k ARs, l MRs, and array reference pattern { }niaA i ≤≤= 1|

2. //OUTPUT: costl() kPP ,...,1

3. Build MEDG according to A

4. Initial UB to costl(), where is obtained from Basu’s approach. kPP ,...,1 kPP ,...,1

5. Initial P1 = { }, P1a i = {Ø} for ki ≤≤2

6. call DFS(2)

7. output UB

The algorithm receives k ARs, l MRs, and array reference pattern as input, and builds

MEDG in line 3. Line 4 and 5 initiate UB for pruning and is put in P1a 1. DFS function

is to create and traverse this tree, and the parameter 2 means we begin to consider .

After line 6 is done, we get UB as an optimal solution. Now we present the algorithm

DFS, which is a recursive call.

2a

1. DFS(i) {

2. Either tail to any one of existing paths or, if existing paths is less than k,

create a new path of which is the head.

ia

ia

3. for each case { kPP ,...,1

4. if (i == n) {

5. add to each P where is the head of P ja′ ja

6. if (costl() < UB) update UB to costkPP ,...,1 l() kPP ,...,1

7. }

8. else if (costl() < UB) DFS(i + 1) kPP ,...,1

9. }

10. }

 27

Line 2 in DFS algorithm indicates there are at most k cases when we put to

. Line 4-7 means if all nodes are considered, we add

ia

kPP ,...,1 ja′ to each P where is

the head of P and update UB according to cost

ja

l(). Line 8 is the main idea of

pruning method: only cost

kPP ,...,1

l() < UB is possible to approach optimal solution and it

is necessary to consider .

kPP ,...,1

1+ia

3.4.1 Time Complexity

The time complexity of trying every combination of is kPP ,...,1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
!k

kO
n

, where n is

number of array references and k is number of ARs (We can consider this problem as

computing combinations of putting n different balls into k identical baskets. These

baskets can be either full or empty, but the sum of balls in these baskets is n). Then the

time complexity of computing costl() is kPP ,...,1 ()EEO log , because we have to sort the

differences in and the number of these differences are not more than the

number of edges in MEDG. Since

kPP ,...,1

()2nOE = , the total time complexity of worst case is

(⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ 22 log
!

nn
k
kO

n

) . Although pruning method can reduce computation time, there is a

limit if n is large. Therefore, in the next section we will propose genetic algorithm which

can solve problems with large n in a short time.

 28

3.5 Approach 2: Genetic Algorithm (GA)

Genetic Algorithm (GA) is an adaptive heuristic search algorithm premised on the

evolutionary ideas of natural selection and genetic. The basic concept of GAs is designed

to simulate processes in natural system necessary for evolution, specifically those that

follow the principles first laid down by Charles Darwin of survival of the fittest. As such

they represent an intelligent exploitation of a random search within a defined search

space to solve a problem.

3.5.1 Overview of GA

We choose GA for solving LARA problem mainly due to some reasons: First, this

problem is very complicated and no polynomial time algorithm can solve it. Second, if

enough computation time is invested, GA approximates a global optimum much more

likely than heuristics which are trapped in a local optimum. Third, this problem has a

straightforward encoding as a GA, and the complexity of computing the fitness of a

chromosome is also bounded in polynomial time.

We choose steady-state genetic algorithm that uses overlapping populations. In this

variation, we initialize a population with certain number of chromosomes (m

chromosomes for example). Then, two chromosomes in the population are selected to

produce another m offsprings. In order to maintain m chromosomes in the population, we

replace worse members in original population with new offsprings. Figure 3-8 illustrates

the flow chart of our GA.

 29

Initialize population randomly

Select chromosome randomly for mating

Apply crossover and mutation as the parent mate

Delete members of the population to make room for the new chromosome

Evaluate the new chromosome and insert them into the population

N
Are stopping criteria satisfied?

Y

Finish

Figure 3-8 Flow chart of our GA

Throughout the rest of this section, we will use the terms “solution,” “individual,”

and “chromosome” interchangeably to refer to either costl() where is a

certain combination in searching space or its representation in the GA.

kPP ,...,1 kPP ,...,1

3.5.2 Chromosomal Representation

The basic idea of encoding as a chromosome is to determine the most important

values to be stored in MRs. If we choose these values properly, it will reduce many

addressing costs. Therefore, the length of a chromosome is the total number of different

difference (excluding 0 and 1) in MEDG and each gene in a chromosome corresponds to

a difference respectively and it is either ‘0’ or ‘1’. For example, Figure 3-9(c) shows there

are five genes in a chromosome because total number of different difference in Figure

 30

3-9(b) is five (They are 3, 6, 2, 5, and 4). Thus, gene 1 may correspond to 3, gene 2 may

correspond to 6, gene 3 may correspond to 2, gene 4 may correspond to 5 and gene 5 may

correspond to 4.

a’_3
A[i+5]

a’_2
A[i+2]

a’_1
A[i-1]

a’_4
A[i+2]

a_4
A[i+1]

a_3
A[i+4]

a_2
A[i+1]

a_1
A[i-2]

a’_3
A[i+5]

a’_2
A[i+2]

a’_1
A[i-1]

a’_4
A[i+2]

a_4
A[i+1]

a_3
A[i+4]

a_2
A[i+1]

a_1
A[i-2]

for (i = 2; i <= N; i++)
{ /* a_1 */ A[i-2]
 /* a_2 */ A[i+1]
 /* a_3 */ A[i+4]
 /* a_4 */ A[i+1]
}

(a) (b)

3 6 2 5 4

Figure 3-9 (a) a source program (b) MEDG (c) chromosome representation

3.5.3 Population Initialization

If k ARs and l MRs are available, we initialize a population with m chromosome.

Each chromosome contains l ‘1’s and other genes in chromosome are ‘0’. This constraint

may speed up computation time of convergence (we will discuss this later). Figure 3-10 is

an example that if two ARs and two MRs are available, two ‘1’s exist in each

chromosome.

Chromosome

gene 1 gene 5

(c)

 31

Chromosome 1 00101Chromosome 1 00101

...

Chromosome m 01010Chromosome m 01010

Initial population

Figure 3-10 An example of initial population

3.5.4 Crossover and Mutation Operation

roduce offspring from two selected

parents in the population and apply bit m

ossover operation

igure 3-11(a)), we randomly specify a point on

n operation

osomes has probability to flip bit from ‘0’ to ‘1’

We apply one-point crossover operation to p

utation operation to each individual of the

offspring.

One-point cr

 After two parents are selected (F

these two chromosomes (Figure 3-11(b)). Then we interchange their tail from the

point and produce two new offsprings (Figure 3-11(c)).

Bit mutatio

 Each gene of produced chrom

or from ‘1’ to ‘0’. Figure 3-12 shows an example that gene 3 and gene 5 are mutated

within a chromosome.

 32

Figure 3-11 One-point crossover operation

Figure 3-12 Bit mutation operation

ain the number of ‘1’ within a chromosome initially. However,

after applying crossover and m

Notice that we constr

utation operation, the number of ‘1’ may not equal to l. We

will discuss this situation later.

Parent 1: 0 1 1 0 0
(a)

Parent 2: 0 1 0 1 0

Parent 1: 0 1 1 0 0

Parent 2: 0 1 0 1 0

one point

(b)

0 1 1 1 0 Child 1:
(c)

Child 2: 0 1 0 0 0

Before mutating 0 1 1 1 0

After mutating 0 1 0 1 1

 33

3.5.5 Evaluation Function

The genetic algorithm uses an objective function to determine how 'fit' each

chromosome is for survival. We evaluate the fitness of a chromosome according to the

following steps:

1. Some edges in the MEDG are removed if the genes corresponding to difference

of the edges indicate ‘0’.

2. Apply Basu’s heuristic to obtain k paths kPP ,...,1

3. Evaluation function of the chromosome = costl() kPP ,...,1

In our design, smaller the fitness of the chromosome is, higher score it has. That is, it

is more possible to stay in the population. Take Figure 3-9 for example. Two ARs and two

MRs are available and we want to calculate the fitness of the chromosome in Figure

3-13(a). According to the chromosome, we remove edges in Figure 3-9(b), which

differences are 3 and 2 because genes corresponding to 3 and 2 in the chromosome are ‘0’

(see Figure 3-13(b)). Then we apply Basu’s approach: Figure 3-13(c) shows two ARs are

needed in phase 1 and MERGE algorithm is not necessary to applied because we have

exactly two ARs available. So, the paths are P1 = {a1, a3, 1a′ } and P2 = {a2, a4, 2a′ }.

Finally, the fitness of the chromosome is cost2(P1, P2) or zero.

This is a good way to encode and decode a chromosome because edges should be

kept in the graph tend to “evolve” genes to 1 and those should removed tend to evolve to

0. These differences on the edges are addressing costs but only l MRs can handle them.

Therefore, we constrain the number of ‘1’ within a chromosome at the beginning of the

population. However, in the process of crossover and mutation operation, we permit the

number of ‘1’ within a chromosome being unequal to l. This may also peed up

computation time of convergence. For example, there are three ‘1’s within the

chromosome in Figure 3-13(a) and gene 5 does not influence the fitness of the
 34

chromosome — whether it is ‘0’ or ‘1’. However, leaving the gene 5 to ‘1’ may have a

good effect on next generation. In fact, from our experiment, we get better solution if we

constrain the number of ‘1’ within a chromosome at the beginning of the initial

population and allow it to be unequal in the process of crossover and mutation operation.

(a)
3 6 2 5 4

Figure 3-13 An example of calculating a chromosome of evaluation function

Chromosome 0 1 0 1 1

(b)
a’_3

A[i+5]
a’_2

A[i+2]
a’_1

A[i-1]
a’_4

A[i+2]

a_4
A[i+1]

a_3
A[i+4]

a_2
A[i+1]

a_1
A[i-2]

(c)
a’_3

A[i+5]
a’_2

A[i+2]
a’_1

A[i-1]
a’_4

A[i+2]

a_4
A[i+1]

a_3
A[i+4]

a_2
A[i+1]

a_1
A[i-2]

 35

3.5.6 Parameters

We select the following parameters:

Population size: 30 individuals

Mutation probability per gene: 1/n, where n is number of array references

Replacement rate: 2/3 of the population size

Termination condition: 2000 generations or conservative 500 generations without a

fitness improvement

3.5.7 Time complexity

The time complexity of evaluating a chromosome is

where is

FIND-MIN algorithm to find a case of and

is to compute

cost

)log(224 nnnO + 4n

kPP ,...,1
22 lognn

l(). Because is smaller than , the time complexity of evaluating

a chromosome is dominated by . If there are m chromosomes in a population and

L generations are produced, the total time complexity is .

kPP ,...,1
22 lognn 4n

)(4nO

)(4nmLO ⋅⋅

 36

Chapter 4 Simulation and Analysis

In this chapter, we introduce the benchmark programs. Then we compare the

addressing costs in loops of GA and pruning method to Basu’s approach when ARs and

MRs are given different numbers. Finally, we give a summary of experimental results.

4.1 Benchmark Suite

In order to evaluate the efficiency of using the AGU, we introduce the stencil

Micro-Benchmark Suite. Stencil codes continue to play an important role in scientific

computations as well as the fields of image processing and geometric modeling. Each

program contains a loop kernel with a sequence of accessing the same array references.

They are taken from three sources. All the integer stencils can be found in a book on

image processing [16]. The floating point stencils come from the domain of partial

differential equations [17] and the NAS MG Parallel Benchmark [18][19]. These kernels

are listed in Table 4-1. The type is given by the first letter of the benchmark name: “D”

for floating point and “I” for integer codes. The 2D stencil kernels are run over a 1000 by

1000 array of floating point or integer values; the 3D stencil kernels over a 100 by 100

array.

 37

Table 4-1 Stencil Micro-Benchmarks Suite

Benchmark # of array references Usage

DISO3X3 9 Biharmonic operator
DROW3X3 9 Partial derivatives
INOISE1 9 Partial derivatives
IPREWITT 12 Biharmonic operator
ISOBEL 12 NAS MG Benchmark
IYOKOI 12 Partial derivatives
DLILBIHARM 13 NAS MG Benchmark
DRPRJ3(3D) 19 Gradient edge detection
DRESID(3D) 21 Line detection
IMORPH 21 Mathematical morphology
IROBINSON 24 Gradient edge detection
DBIGBIHARM 25 Noise cleaning
DISO5X5 25 Noise cleaning
INOISE2 25 Noise cleaning
ILINEDET 48 Edge detection
INOISE3 49 Gradient edge detection
IWIDELINEDET 72 Edge detection
IBIGLAPLACE 97 Wide line detection
INEVATIA 141 Connectivity number
IZEROCROSS 211 Edge detection

4.2 Experimental Results

Three approaches are implemented in C++ and tested on desktop computer with an

Intel Pentium 4 2.4GHz processor and 1.0GB RAM, running under Linux 2.4.22. For

each program in Stencil Micro-Benchmarks Suite, we run the GA 10 times to examine the

algorithm’s performance.

Under a variety of ARs and MRs, our experiment is divided into two parts. One is

comparison of addressing costs between Basu’s approach, GA and pruning method for

small programs which number of array references are smaller than 49. This is because

 38

pruning method can not find the optimal solution in one day for those programs which

number of array references are greater than 49. The other is comparison of addressing

costs between Basu’s approach and GA for all programs.

In each figure of the simulation results, the X-axis is a fixed number of ARs and

different number of MRs. The Y-axis is the total addressing costs for small programs

which number of array references is smaller than 49, or for all programs. Each

configuration of AR and MR has three bars, indicating three (two) approaches: Basu, GA

and Pruning (only for small programs).

From these figures we can see that GA and Pruning perform better than Basu’s

approach except for Figure 4-1 and Figure 4-5. This is because the only solution for one

AR given to access n array references is P1 = { 11 ,,..., aaa n ′ }. Therefore, these three

approaches have same addressing costs for small (all) programs. Table 4-2 and Table 4-3

show the reduction rate of addressing costs based on Basu’s approach. We can see that

under fixed number of ARs, our approaches can perform better than Basu’s when given

more MRs.

 For small programs

0

50

100

150

200

1AR1MR 1AR2MR 1AR3MR 1AR4MR

A
dd

re
ss

in
g

C
os

ts

Basu

GA

Pruning

Figure 4-1 Addressing costs of 1 AR and l MRs for small programs

 39

0

20

40

60

80

100

120

140

160

2AR1MR 2AR2MR 2AR3MR 2AR4MR

A
dd

re
ss

in
g

C
os

ts

Basu

GA

Pruning

Figure 4-2 Addressing costs of 2 ARs and l MRs for small programs

0

20

40

60

80

100

120

3AR1MR 3AR2MR 3AR3MR 3AR4MR

A
dd

re
ss

in
g

C
os

ts

Basu

GA

Pruning

Figure 4-3 Addressing costs of 3 ARs and l MRs for small programs
0

10

20

30

40

50

60

70

80

4AR1MR 4AR2MR 4AR3MR 4AR4MR

A
dd

re
ss

in
g

C
os

ts

Basu

GA

Pruning

Figure 4-4 Addressing costs of 4 ARs and l MRs for small programs

 40

Table 4-2 Addressing costs reduction for small programs

GA Pruning GA Pruning GA Pruning GA Pruning

1 MR 2 MRs 3 MRs 4 MRs

2 ARs 30% 33% 44% 48% 58% 59% 67% 72%

3 ARs 35% 41% 51% 58% 63% 67% 74% 82%

4 ARs 30% 39% 47% 62% 72% 83% 85% 91%

 For all programs

0

100

200

300

400

500

600

1AR1MR 1AR2MR 1AR3MR 1AR4MR

A
dd

re
ss

in
g

C
os

ts

Basu

GA

Figure 4-5 Addressing costs of 1 ARs and l MRs for all programs

0

100

200

300

400

500

2AR1MR 2AR2MR 2AR3MR 2AR4MR

A
dd

re
ss

in
g

C
os

ts

Basu

GA

Figure 4-6 Addressing costs of 2 ARs and l MRs for all programs

 41

0

100

200

300

400

500

3AR1MR 3AR2MR 3AR3MR 3AR4MR

A
dd

re
ss

in
g

C
os

ts

Basu

GA

Figure 4-7 Addressing costs of 3 ARs and l MRs for all programs

0

100

200

300

400

4AR1MR 4AR2MR 4AR3MR 4AR4MR

A
dd

re
ss

in
g

C
os

ts

Basu

GA

Figure 4-8 Addressing costs of 4 ARs and l MRs for all programs

Table 4-3 Addressing costs reduction for all programs

GA

1 MR 2 MRs 3 MRs 4 MRs

2 ARs 26% 33% 39% 43%

3 ARs 32% 41% 49% 56%

4 ARs 29% 37% 49% 56%

 42

4.2.1 Summary of Experimental Results

For small programs, GA reduces 55% addressing costs in average compared to

Basu’s approach while pruning method reduces 61%. Therefore, comparing its results to

the optimal solutions, GA performs very well with an average overhead of less than 6%.

Besides, GA runs less than five minutes for each program (including large programs). For

all programs, GA reduces 41% addressing costs in average compared to Basu’s approach.

 43

Chapter 5 Conclusion and Future Works

In this thesis, we have proposed approaches for optimizing array index computation

targeted to the DSP processors with auto-increment (decrement) by 1 and auto-modify

features under register constraints. If program size is small, we can apply pruning method

to find optimal solution while program size is large, we apply GA to obtain a reasonable

solution.

Experimental results show that our approaches are indeed very effective in

comparison with Basu’s method. Unlike previous research which emphasizes the usage of

auto-increment (decrement) by 1, our results show that a good decision of clustering

array references into ARs makes addressing costs minimized.

There are still some researches could be further studied. First, a more precise method

to evaluate program performance improvement is required. We will try to integrate our

optimizations into DSP compilers and analyze the execution cycles. Second, we will

consider basic blocks. Not much work has been done toward finding solutions for the

allocation of address registers across basic blocks. Finally, there are some special indirect

addressing modes in certain DSPs. More techniques are required to exploit.

 44

References

[1]. P. Paulin, M. Cornero, C. Liem, et al. “Trends in Embedded Systems Technology”, in:
M.G. Sami, G. De Micheli (eds.): Hardware/Software Codesign, Kluwer Academic
Publishers, 1996

[2]. V. Zivojnovic, J.M. Velarde, C. Schläger, H. Meyr, “DSPStone – A DSP-oriented
Benchmarking Methodology”, Int. Conf. on Signal Processing Applications and
Technology (ICSPAT), 1994

[3]. P. Marwedel, G. Goossens (eds.), “Code Generation for Embedded Processors”,

Kluwer Academic Publishers, 1995

[4]. L. Davis, “Hand book of Genetic Algorithms”, Van Nostrand Reinhold, 1991

[5]. Genetic Server and Genetic Library. 2001. The NeuroDimension company.

http://www.nd.com/genetic/

[6]. R. Leupers and P. Marwedel, “Algorithm for address assignment in DSP code

generation”, in Proc. Int. Conf. Computer-Aided Design, pp.109-112, 1996.

[7]. S. Atri, J, Ramanujam, M. Kandemir, ”Improving Offset Assignment for Embedded

Processors”, Languages and Compiler for High-Performance Computing, S. Midkiff
et al. (eds.), Lecture Notes in Computer Science, Springer, 2001.

[8]. Rainer Leupers, “Offset Assignment Showdown：Evaluation of DSP Address Code

Optimization Algorithms”, Institute for Integrated Signal Processing System (ISS),

2003.

[9]. G. Araujo, A. Sudarsanam, S. Malik, “Instruction Set Design and Optimizations for

Address Computation in DSP Architectures”, 9th Int. Symp. On System Synthesis
(ISSS), 1996

[10]. R. Leupers, A. Basu, and P. Marwedel, “Optimized Array Index Computation in DSP

Programs”, Proc. Asia and South Pacific Design Automation Conference, February

 45

http://www.nd.com/genetic/

1998

[11]. G. Araujo, S. Malik, “Register Allocation for Indirect Addressing in Loops”, 1998

[12]. Basu, A., Leupers, R., and Marwedel, P. 1999. “Array index allocation under

register constraints in DSP programs”. In proceedings of the International
Conference on VLSI Design. IEEE Press, Los Alamitos, CA.

[13]. N. Robertson, P.D. Seymour, “An outline of Disjoint Path Algorithms”, pp. 267-292

in: B. Korte, L. Lovasz, H.J. prömel, A. Schrijver (eds.): Paths, Flows, and VLSI
Layout, Springer-Verlag, 1990

[14]. M. Cintra, G. Araujo, “Array Reference Allocation Using SSA-Form and Live Range

Growth”, LCTES, 2000
[15]. G. Araujo, G. Ottoni, “Global Array Reference Allocation”, ACM Transactions on

Design Automation of Electronic Systems, Vol. 7, No. 2, April 2002

[16]. R. M. Haralick and L. G. Shapiro, “Computer and Robot Vision”, Addison-Wesley,

1992

[17]. M. Abramowitz and I. A. Stegun, “Handbook of mathematical functions, with

formulas, graphs, and matheatical tables”, Dover Publications, 1973

[18]. D. Bailey, E. Barszca, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, S.

Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan,
and S. Weeratunga. The NAS parallel benchmarks (94). Technical report, RNR
Technical Report RNR-94-007, March 1994

[19]. D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo, and M. Yarrow. The

NAS parallel benchmarks 2.0. Technical report, NAS Report NAS-95-020,
December 1995

 46

	Introduction
	Research Motivations
	Research Objective and Proposed Approaches
	Organization of This Thesis

	Backgrounds and Related Work
	The Address Generation Unit in DSP
	Genetic Algorithms
	Selection Operators
	Crossover Operators
	Mutation Operators
	Termination Methods

	Previous Works
	Local Array Reference Allocation (LARA)
	Global Array Reference Allocation (GARA)
	Summary of Address Code Optimization with AGU

	Proposed Methods
	Observation
	Problem Description
	Problem Transformation
	Approach 1: Brute Force with Pruning
	Time Complexity

	Approach 2: Genetic Algorithm (GA)
	Overview of GA
	Chromosomal Representation
	Population Initialization
	Crossover and Mutation Operation
	Evaluation Function
	Parameters
	Time complexity

	Simulation and Analysis
	Benchmark Suite
	Experimental Results
	Summary of Experimental Results

	Conclusion and Future Works
	References

