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在數位訊號處理器中利用記憶位址產生器之 

間接位址模式作陣列索引計算最佳化 

 
學生：陳俊一      指導教授：單智君 博士 

國立交通大學資訊工程學系碩士班 

 

摘要 
 

由於大多數的數位訊號處理之相關應用程式（例如影像處理、音訊處理）大量

存取記憶體內的陣列資料，使得計算這些陣列位址所造成的負擔對於程式執行效能

與程式碼大小有很大的影響。有些數位訊號處理器配有記憶位址產生器，只需少量

的位元數編碼在指令中就可以快速計算位址，不但減少程式碼的大小，也可加速程

式執行速度， 
在本論文中，我們提供兩個方法來解決如何將迴圈內陣列參考分配給固定數量

之位址暫存器與修改暫存器，使得迴圈內計算位址之指令數最少的問題。其中一種

為刪除法，此方法針對較小的問題可以找到最佳解。另一個方法為基因演算法，對

於那些較大的問題，透過有效率的步驟，可以找到合適的解。與過去的研究相較之

下，實驗結果顯示我們的方法確實有較好的效果。 
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Abstract 
 

Since most DSP applications (video/audio processing) access a large amount of array 

elements stored in memory, the address computation overhead of array elements has great 

impact on performance and code size. Some DSPs are equipped with dedicated address 

generation units (AGUs). The AGU enables fast address computation with few bits 

encoded into an instruction, resulting in code size reduction as well as performance 

improvement of programs. 

In this thesis, we provide two approaches to solve the problem of clustering array 

references in loops to fixed number of address registers and modify registers so that the 

number of instructions needed for address computations in loops is minimized. One is 

pruning method which can solve small-size problems to obtain optimal solutions. The 

other is genetic algorithm which can solve large problems to obtain reasonable solutions 

in an efficient way. Experimental results show that our approaches are indeed more 

effective compared to previous work. 
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Chapter 1  Introduction 

More and more DSP system designs are based on software running on programmable 

processors rather than on dedicated hardware [1]. This trend towards software-based 

implementation is due to the fact, that software provides higher flexibility and better 

opportunities for reuse than hardware. 

Today, however, software development for DSPs frequently is a bottleneck in the 

system design process. Figure 1-1 shows that many of the currently available C compilers 

for DSPs cause a significant overhead in code size and performance as compared to 

hand-written assembly code [2]. This is also confirmed by numerous software developers 

and recent empirical studies from academia and industry. Such an overhead can hardly be 

tolerated in presence of real-time constraints and limited program memory size. 

Therefore, nearly all time-critical applications are implemented by hand. As a 

consequence, efficient code generation techniques for DSPs have received high attention 

during the last years [3]. 

 
Figure 1-1 Execution time overhead and memory overhead 
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The overhead of compiler-generated code is mainly due to the special architectural 

features of DSPs, to which classical code optimization techniques can hardly be applied. 

This includes the presence of special-purpose registers, special addressing modes, certain 

machine idioms (MAC-operation) and instruction-level parallelism. In order to make the 

use of high-level language compilers feasible for more DSP applications, new 

DSP-specific code optimization techniques are required, which take into account the 

detailed processor architecture. High compilation speed, which may be an important 

constraint for GPP-(general purpose-processor) compilers, is not necessarily an issue for 

DSP compilers. Instead, many compiler users are willing to trade higher compilation 

times against better code quality. This allows to explore the use of code optimization 

algorithms of a comparatively high computational complexity. 

 

1.1  Research Motivations 

Since most DSP applications, like audio/video processing, access a large amount of 

array elements stored in memory, the address computation overhead of array elements 

has great impact on code size and performance. In order to reduce this kind of overhead, 

some DSPs (e.g., TI TMS320C25, the Motorola 56k, and the Analog Devices 

ADSP-210x) are equipped with dedicated address generation units (AGUs), which can 

offer specialized addressing modes. A typical example is the auto-increment (decrement) 

mode, in which an address register (AR) is incremented (decremented) by 1 or by an 

immediate value stored in a modify register (MR), after the memory operation is finished 

(We will refer to auto-increment/decrement by 1 and auto-increment/decrement by MR as 

auto-inc/dec and auto-modify respectively). As a consequence, effective utilization of 

AGUs allows for more compact machine code and therefore increases potential 

parallelism.  
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Previous researches, which reduce address computation instructions for array data in 

loops, focus on auto-inc/dec operation but do not fully exploit auto-modify operation. For 

our observation, using auto-modify operation properly can reduce address computation 

instructions further in loops, especially for multi-dimensional array. 

 

1.2  Research Objective and Proposed Approaches 

Our research objective is to minimize address computation overhead for array 

references in loops under given fixed number of address registers and modify registers. 

We will formulate the problem and provide two approaches to solve it. One is brute force 

with pruning when a small amount of array reference pattern is given. The other is 

genetic algorithm which gives a reasonable solution for this problem. 

 

1.3  Organization of This Thesis 

The rest of this thesis is organized as follows. Chapter 2 introduces the background 

of address generation units in DSPs, genetic algorithms, and discusses previous relative 

researches on addressing optimization for array data in loops with indirect addressing 

modes. In chapter 3, we describe two approaches to solve this problem in detail. The 

simulation environment and simulation results are presented in chapter 4. Finally, we 

summarize the conclusion and future work in chapter 5. 
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Chapter 2  Backgrounds and Related Work 

In this chapter, we give an overview of address generation unit in digital signal 

processing. Then, we will introduce the genetic algorithms. Finally, previous work related 

to the problem of assigning address registers to array references is presented. 

 

2.1  The Address Generation Unit in DSP 

Address code optimization is mainly used in C compilers for digital signal processors 

(DSPs), which require extremely high code quality and hence sophisticated code 

optimization techniques. Emphasis is on effective utilization of the address generation 

units (AGUs) commonly found in DSPs. Such an AGU generally comprises a file of 

address registers (ARs) as well as a file of modify registers (MRs). ARs store memory 

addresses (or pointers), while MRs store frequently required address modify values. The 

AGU architecture is sketched in Figure 2-1. 
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Figure 2-1 AGU Block Diagram 

 4



When an address register is used to point to a memory location, the addressing mode 

is called “address register indirect”. The term indirect is used because the register 

contents are not the operand itself, but rather the address of the operand. These 

addressing modes specify that an operand is in memory and specify the effective address 

of that operand. Four general address register indirect modes are in the following. 

 Auto-increment By 1 – The address of the operand is in an address register. 

After the operand address is used, it is incremented by 1 and stored in the same 

address register. 

 Auto-decrement By 1 – The address of the operand is in an address register. 

After the operand address is used, it is decremented by 1 and stored in the same 

address register. 

 Auto-increment By Offset Nn – The address of the operand is in an address 

register. After the operand address is used, it is incremented by the contents of a 

modify register and stored in the same address register. The contents of the 

modify register are unchanged. 

 Auto-decrement By Offset Nn – The address of the operand is in an address 

register. After the operand address is used, it is decremented by the contents of 

a modify register and stored in the same address register. The contents of the 

modify register are unchanged. 

 

2.2  Genetic Algorithms 

Genetic algorithms are general-purpose search algorithms based upon the principles 

of evolution observed in nature. The algorithms can be applied to a wide variety of 

optimization problems such as scheduling, computer games, stock market trading, 

medical, adaptive control, transportation, the traveling salesmen problem, etc. 
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The solution to a problem is called a chromosome. A chromosome is made up of a 

collection of genes which are simply the parameters to be optimized. A genetic algorithm 

creates an initial population (a collection of chromosomes), evaluates this population, and 

then evolves the population through multiple generations (using the genetic operators 

discussed below) in the search for a good solution for the problem at hand. Figure 2-2 

contains a top-level description of the genetic algorithm [4] [5]. 

 

 

 

 

 

 

 

 

 

The Genetic Algorithm 

1. Initialize a population of chromosomes. 

2. Evaluate each chromosome in the population. 

3. Create new chromosomes by mating current chromosomes; apply mutation 

and recombination as the parent chromosomes mate. 

4. Delete members of the population to make room for the new chromosomes.

5. Evaluate the new chromosomes and insert them into the population. 

6. If time is up, stop and return the best chromosome; if not, go to 3. 

Figure 2-2 Top-level description of a genetic algorithm 

 

2.2.1  Selection Operators 

Selection is a genetic operator that chooses a chromosome from the current 

generation’s population for inclusion in the next generation’s population. Previous work 

include the following types of selection： 

 Roulette – A selection operator in which the chance of a chromosome getting 

selected is proportional to its fitness (or rank). This is where the concept of 

survival of the fittest comes into play. 

 Tournament – A selection operator which uses roulette selection N times to 

produce a tournament subset of chromosomes. The best chromosome in this 
 6



subset is then chosen as the selected chromosome. This method of selection 

applies addition selective pressure over plain roulette selection. 

 Top Percent – A selection operator which randomly selects a chromosome from 

the top N percent of the population as specified by the user. 

 Best – A selection operator which selects the best chromosome (as determined 

by fitness). If there are two or more chromosomes with the same best fitness, 

one of them is chosen randomly. 

 Random – A selection operator which randomly selects a chromosome from the 

population. 

 

2.2.2  Crossover Operators 

Crossover is a genetic operator that combines (mates) two chromosomes (parents) to 

produce a new chromosome (offspring). The idea behind crossover is that the new 

chromosome may be better than both of the parents if it takes the best characteristics 

from each of the parents. Crossover occurs during evolution according to a user-definable 

crossover probability. Previous work includes the following types of crossover. 

 One Point – A crossover operator that randomly selects a crossover point within 

a chromosome then interchanges the two parent chromosomes at this point to 

produce two new offspring. 

 Two Point – A crossover operator that randomly selects two crossover points 

within a chromosome then interchanges the two parent chromosomes between 

these points to produce two new offspring. 

 Uniform – A crossover operator decides which parent will contribute each of 

the gene values in the offspring chromosomes. 
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2.2.3  Mutation Operators 

Mutation is a genetic operator that alters one ore more gene values in a chromosome 

from its initial state. It is an important part of the genetic search to prevent the population 

from stagnating at any local optima. Previous work include the following types of 

mutation. 

 Flip Bit – A mutation operator that simply inverts the value of the chosen gene 

(0 goes to 1 and 1 goes to 0). This mutation operator can only be used for binary 

genes.  

 Boundary – A mutation operator that replaces the value of the chosen gene with 

either the upper or lower bound for that gene (chosen randomly). This mutation 

operator can only be used for integer and float genes. 

 Non-Uniform – A mutation operator that increases the probability that the 

amount of the mutation will be close to 0 as the generation number increases. 

This mutation operator keeps the population from stagnating in the early stages 

of the evolution then allows the genetic algorithm to fine tune the solution in the 

later stages of evolution. This mutation operator can only be used for integer 

and float genes. 

 Uniform – A mutation operator that replaces the value of the chosen gene with 

a uniform random value selected between the user-specified upper and lower 

bounds for that gene. This mutation operator can only be used for integer and 

float genes. 

 Gaussian – A mutation operator that adds a unit Gaussian distributed random 

value to the chosen gene. The new gene value is clipped if it falls outside of the 

user-specified lower or upper bounds for that gene. This mutation operator can 

only be used for integer and float genes. 
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2.2.4  Termination Methods 

Termination is the criterion by which the genetic algorithm decides whether to 

continue searching or stop the search. Each of the enabled termination criterion is 

checked after each generation to see if it is time to stop. Previous work include the 

following types of termination. 

 Generation Number – A termination method that stops the evolution when the 

user-specified max number of evolutions have been run. This termination 

method is always active. 

 Evolution Time – A termination method that stops the evolution when the 

elapsed evolution time exceeds the user-specified max evolution time. 

 Fitness Threshold – A termination method that stops the evolution when the 

best fitness in the current population becomes less/greater than the 

user-specified fitness threshold and the objective is set to minimize/maximize 

the fitness. 

 Fitness Convergence – A termination method that stops the evolution when the 

fitness is deemed as converged. Two filters of different lengths are used to 

smooth the best fitness across the generations. When the smoothed best fitness 

from the long filter is less than a user-specified percentage away from the 

smoothed best fitness from the short filter, the fitness is deemed as converged 

and the evolution terminates. 

 Population Convergence – A termination method that stops the evolution when 

the population is deemed as converged. The population is deemed as converged 

when the average fitness across the current population is less than a 

user-specified percentage away from the best fitness of the current population. 

 Gene Convergence – A termination method that stops the evolution when a 

user-specified percentage of the genes that make up a chromosome are deemed 
 9



as converged. A gene is deemed as converged when the average value of that 

gene across all of the chromosomes in the current population is less than a 

user-specified percentage away from the maximum gene value across the 

chromosomes. 

 

2.3  Previous Works 

There are different ways of utilizing indirect addressing of AGU. One of the most 

popular is to perform offset assignment for local scalar variables in a C program 

[6][7][8]. These approaches are based on permutation of variables within available 

sections of memory. Hence, these techniques can not be directly applied to arrays because 

generally array elements are arranged in memory in order. Another important branch in 

address code optimization is address register assignment. Such techniques are used to 

assign address registers to access data for which the memory layout has been already 

defined. It can be directly applied to access array elements inside program loops, or to 

reduce the number of update instructions resulting from using offset assignment. 

 

2.3.1  Local Array Reference Allocation (LARA) 

The goal of LARA is to allocate an address register to each array reference in a basic 

block, by dividing them into live ranges (a live range is a set of array references that 

share the same address register) and assigning an address register to each range. 

Therefore, the final number of ranges should not exceed the total number of address 

registers of the processor. Moreover, the number of instructions required to redirect 

registers through references should be minimum. LARA has been studied before in 

[9][10][11][12]. These are efficient graph-based solutions, when references are restricted 

to basic block boundaries. In particular, Basu et al. [12] is a very efficient solution to 
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LARA.  

In the example of Figure 2-3, array references, inside the loop on the left, are 

modelled as a distance graph (on the right). The distance graph G = (V, E) is a directed 

acyclic graph (DAG) with V = . The edge set E contains all edges { naa ,...,1 } ( )ji aae ,=  

with . An edge nji ≤<≤1 ( )ji aae ,=  is present in E, if using the same AR for both 

 and  allows for generating the address for  from the address for  with a 

zero-cost address computation. 

ia ja ja ia

 

  

a_4
A[i-1]

a_5
A[i-2]

a_6
A[i+5]

a_3
A[i+4]

a_2
A[i-1]

a_1
A[i+2]

a_7
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if th
       

 

 

 

 

 

for (i = 2; i <= N; i++) 
{ /* a_1 */  A[i+2]  
/* a_2 */  A[i-1]  

 /* a_3 */ A[i+4] 
 /* a_4 */ A[i-1] 
 /* a_5 */ A[i-2] 
 /* a_6 */ A[i+5] 
 /* a_7 */ A[i]   
} 
Figure 2-3 Ar

 

In order to consider zero-co

ance graph is modelled. Fi

h model of Figure 2-3. Th

, where each}{ naaV ′′∪ ,...,1

wing loop iteration, and E

e reference  and  cania ja

 

 

 

ray references and the distance graph 

st address computation between iterations, an extended 

gure 2-4 includes inter-iteration distances in the distance 

e extended distance graph is a DAG  with 

 node 

( EVG ′′=′ , )

Vai ∉′  represents the array reference  in the ia

( ){ }njiaaE ij ≤≤≤′∪=′ 1|, . An edge ( )ij aa ′,  is in E ′ , 

 be implemented at zero cost using the same AR.  
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Figure 2-4 Extended distance graph 

ero overhead solution for address computation of array references 

um number of ARs is equivalent to covering all nodes  

e graph by a minimum number of node-disjoint paths , 

starts in node  it must end in node 

{ }naa ,...,1

KPP ,...,1

ia ia′ . Since this problem is 

R allocation problem is (most likely) of exponential complexity. 

a (potentially suboptimal) solution efficiently by the following 

ance graph G = (V, E), construct the extended distance graph 

with V = { } { }nn aaaa ′′∪ ,...,,..., 11 , and assign a unit weight to each 

 

e source node in { } Vaa n ′⊂,...,1  with minimum index, i.e., there 

 with ja ( ) Eaa ij ′∈,  and ij < . Compute the longest path 

)ik aa ′,,
m

 in G′  between  and aia i′ . If P does not exist then 

 no zero-cost solution is possible. 

ew AR for the array references represented by the nodes 

}  in path P. Remove these nodes as well as the nodes 
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{ }
mkki aaa ′′′ ,...,,

1
 from G′ , and remove all their incident edges. 

4. If  is not empty goto step 2, else stop and return the number r of allocated 

registers. 

G′

 

Below we show a longest path solution to the example problem. This solution results 

in four registers addressing the following references. 

R1 :  

R2 :  

R3 :  

R4 :  

11,aa ′

2,742 ,, aaaa ′

363 ,, aaa ′

55 ,aa ′

 

Thus the references would be 

 
 
 
 
 
 
 

reg

ava

mer
 R1 = &A[4]  /* initialize R1 with &A[2+2] */ 

 

 

 

 

 

 

 

 

R2 = &A[1]  /* initialize R2 with &A[2-1] */ 
R3 = &A[6]  /* initialize R3 with &A[2+4] */ 
R4 = &A[0]  /* initialize R4 with &A[2+2] */ 
for (i = 2; i <= N; i++) 
{ /* a_1 */     *R1 ++      /* access A[i+2] */

/* a_2 */     *R2         /* access A[i-1] */
/* a_3 */     *R3 ++      /* access A[i+4] */
/* a_4 */     *R2 ++      /* access A[i-1] */
/* a_5 */     *R4 ++      /* access A[i-2] */
/* a_6 */     *R3         /* access A[i+5] */
/* a_7 */     *R2         /* access A[i]  */

} 
 

The longest path algorithm provides a tight upper bound on the number of address 

isters required. If the number of required address registers exceeds the number of 

ilable address registers, then the accesses allocated to some of the registers can be 

ged with others in a way that minimizes the incremental cost. The cost of merging 
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two ranges R and S (cost (R, S)) is measured by the number of update instructions 

required to access all array references in the resulting range. The process of merging is 

iteratively performed till the number of address registers required equals the number of 

available registers. The pseudo-code for the MERGE algorithm is shown below. 

 

(1) procedure MERGE (R, nars) 

(2) while |R| > nars do 

(3) mincost  +∞ 

(4) for each range R∈R do 

(5)    for each range S∈R, S ≠ R do 

(6)       if cost (R, S) < mincost then 

(7)         mincost  cost (R, S) 

(8)         minpair  {R, S} 

(9) R  (R – minpair)  (R  S) ∪

 

On applying the path merging approach to the longest path solution, shown earlier, 

subjected to the constraint of three available address registers, we obtain the following 

solution with one inserted address-modifying instruction. Here, the accesses by registers 

R1 and R2 has been merged. The costs stem from transitions from references  to  

in register R2. 

R1 :  

R2 : 

5a 7a

11,aa ′

2,7542 ,,, aaaaa ′  

R3 :  

  

363 ,, aaa ′

The address register allocation technique shown in the beginning of this section is a 

polynomial-time procedure. It utilizes two algorithms, the FIND_TUB (find tight upper 

bound) algorithm to compute the minimum number of registers and the MERGE 
 14



algorithm of combining the paths. The first algorithm is of complexity ( )|||| 2 EVO ⋅ , 

where V and E denote respectively the vertex and edge sets of the extended distance 

graph. The Path-Merge-Cost procedure of MERGE is of linear complexity in the 

number n of array accesses, while the invocation of this procedure by MERGE is 

bounded by ( )2nO . Hence, the worst case complexity of MERGE is ( )3nO . Since 

( )nOV = , the total runtime is dominated by FIND_MIN and is in ( )4nO . In practice 

this means, that the computation time is in within the range of CPU milliseconds on a 

SparcStation-10. 

 

2.3.2  Global Array Reference Allocation (GARA) 

The problem of assigning address registers to array references, across basic blocks, is 

known as Global Array Reference Allocation (GARA). It has been studied before in 

[14][15] finding solutions for the allocation of address registers for a whole procedure. 

Consider, for example, the CFG fragment shown in Figure 2-5, after Ø-equations are 

inserted into blocks B1, B3 and B6. The UD and DU sets for all basic blocks that perform 

array references are shown in Figure 2-5. We assume here that the program begins (ends) 

before (after) block B1 (B6). Notice that, if Ø-equations had not been inserted, the 

instructions associated to reference a[i + 1] in B2 would be reached (across one loop 

iteration) by two references, that is, UD2 = {a[i + 1], a[i + 2]}. In this case, it would not 

be possible to determine, at compile time, which of these two references reach a[i + 1], 

and hence if auto-increment mode could be used by their instructions to point to a[i + 1]. 

After Ø-equations are inserted, the ud-chain at B2 becomes UD2 = {w1}, only one 

reference reaches a[i + 1], and thus the decision can made once the value for w1 is 

computed. 
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Figure 2-5 CFG fragment after Ø-insertion and reference analysis 

mmary of Address Code Optimization with AGU 

 are mainly two ways of utilizing auto-increment addressing modes: Offset 

nt and Address Register Assignment. All of them reduce addressing costs 

 assignment of multiply required modify values to MRs in a post-pass phase. 

 shows comparison of related work and our problem. We will propose two 

s to LARA with MR Optimization which consider modify register when doing 

ization. The methodology will describe more detailed in next chapter. 
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Table 2-1 Comparison of related work and our problem 

 Year Problem Domain MR Optimization 

Leupers [6] 1996 Offset Assignment 

Basu [12] 1999 AR Assignment: LARA 

Araujo [15] 2002 AR Assignment: GARA 

After AR optimization 

Our problem  AR Assignment: LARA Consider MR when AR optimization 
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Chapter 3  Proposed Methods 

In this chapter, we give an observation of benefit of considering modify register 

when doing AR optimization. Then problem description and problem transformation 

based on Basu’s graph are presented. Finally, we propose two methods to solve this 

problem in detail. 

 

3.1  Observation 

Consider the following array references with respect to some array A. 

for (i = 2; i <= N; i++) 
{ /* a_1 */  A[i-6]   
/* a_2 */  A[i-5]  

 /* a_3 */ A[i] 
 /* a_4 */ A[i+2] 
 /* a_5 */ A[i+5] 
 /* a_6 */ A[i+6] 
 /* a_7 */ A[i+1]   
} 

 

If two ARs are available, Basu’s approach to find minimum addressing costs would 

be in the following processes. 

1. Estimate the upper bound of the number of ARs required to ensure all address 

computation of array elements can be handle by auto-inc/dec. 

2. If the number of registers obtained exceeds the given constraint on the set of 

available registers, adopt MERGE algorithm. 
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The result of the example needs three addressing costs. 

 R1 = &A[0] 
 R2 = &A[6] 
 for (i = 6; i <= N; i++) 
 { /* a_1 */     *R1 ++ 
  /* a_2 */     *R1 
      R1 += 10 
  /* a_3 */     *R2 
      R2 += 2 
  /* a_4 */     *R2 -- 
  /* a_5 */     *R1 ++ 
  /* a_6 */     *R1 
      R1 += 11 
  /* a_7 */     *R2 
 } 

 

Now if two MRs are available, we intuitively consider the usage of multiple modify 

registers that store frequently modify values for AR updates. The final result of the 

example needs one addressing cost. 

 R1 = &A[0] 
 R2 = &A[6] 
 N1 = 10 
 N2 = 2 
 for (i = 6; i <= N; i++) 
 { /* a_1 */     *R1 ++ 
  /* a_2 */     *R1 += N1 
  /* a_3 */     *R2 += N2 
  /* a_4 */     *R2 -- 
  /* a_5 */     *R1 ++ 
  /* a_6 */     *R1 
     R1 += 11 
  /* a_7 */     *R2 
 } 

 

However, this is not the best solution when two ARs and two MRs are given. If we 
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know which values should be stored in MRs, some edges can be added in Basu’s 

extended distance graph so that there may be an opportunity to find fewer path cover of 

the extended distance graph. The best result of above example need zero addressing cost. 

R1 = &A[0] 
R2 = &A[8] 
N1 = 5 
N2 = 6 
for (i = 6; i <= N; i++) 
{ /* a_1 */     *R1 ++ 
 /* a_2 */     *R1 += N1 
 /* a_3 */     *R1 += N1 
 /* a_4 */     *R2 ++ 
 /* a_5 */     *R1 ++ 
 /* a_6 */     *R1 -= N1 
 /* a_7 */     *R1 -= N2 
} 

 

3.2  Problem Description 

The problem of addressing code optimization with AGU can now be stated as 

follows:  

Given: a set of address registers { }kirR i ≤≤= 1| , a set of modify registers 

, and array reference pattern { limM i ≤≤= 1| } { }niaA i ≤≤= 1| , where each  is an 

ordered pair   denoting the index of an array referred at control step .  

Required: an allocation of all elements of A to the elements of R such that the addressing 

costs in a loop which can not be handled by auto-inc/dec and l auto-modify is minimized. 

ia

( )ii csof , , iof ics

 

3.3  Problem Transformation 

We first model our distance graph. The modified distance graph G = (V, E, d) is a 

directed acyclic graph (DAG) with V = { }naa ,...,1 . The edge set E contains all edges 
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( )ji aae ,=  with  and the nji ≤<≤1 ( )ji aad ,=  denotes . Figure 3-1 

shows the modified distance graph for our above example loop. Edges don’t represent 

auto-inc/dec any more. On the contrary, values on the edges (excluding 0 and 1) represent 

the candidate to be assigned to modify registers. 

|| ij ofof −

 

 

 

 

 

 

 

 

In order to co

extended distance

distances in the m

distance graph is 

 representsVai ∉′

( ){ aaEE ij ′∪=′ 1|,

( )ji aad ,=  denote

the edges represent

 

 

 

 

a_1
A[i-6]

a_2
A[i-5]

a_5
A[i+5]

a_3
A[i]

a_6
A[i+6]

a_4
A[i+2]

a_7
A[i+1]

a_1
A[i-6]

a_2
A[i-5]

a_5
A[i+5]

a_3
A[i]

a_6
A[i+6]

a_4
A[i+2]

a_7
A[i+1]

 

Figure 3-1 Modified distance graph 

nsider zero-cost address computation between iterations, a modify 

 graph (MEDG) is modeled. Figure 3-2 includes inter-iteration 

odified distance graph model of Figure 3-1. The modified extended 

a DAG ( )dEVG ,, ′′=′  with { }naaVV ′′∪=′ ,...,1 , where each node 

 the array reference  in the following loop iteration, and ia

}nji ≤≤≤  (some edges are ignored in Figure 3-2 for clarity). 

s  and || ij ofof − ( )', ij aad =  denotes ji ofstepof −+ . Values on 

 the candidate to be assigned to modify registers. 
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a_1
A[i-6]

a_2
A[i-5]

a_5
A[i+5]

a_3
A[i]

a_6
A[i+6]

a_4
A[i+2]

a_7
A[i+1]

A[i-5] A[i-4] A[i+1] A[i+3]

a’_5
A[i+6]

a’_6
A[i+7]

a’_7
A[i+2]

a_1
A[i-6]

a_2
A[i-5]

a_5
A[i+5]

a_3
A[i]

a_6
A[i+6]

a_4
A[i+2]

a_7
A[i+1]

A[i-5] A[i-4] A[i+1] A[i+3]

a’_5
A[i+6]

a’_6
A[i+7]

a’_7
A[i+2]

 

Figure 3-2 Modified extended distance graph (MEDG) 

ording to MEDG, we define some key terms below for easily describing our 

formation: 

lid path P: a path starts in node  and then end in node  ia ia′

sjoint valid paths : these k paths cover all nodes  exactly 

. 

kPP ,...,1 { naa ,...,1 }

): a set of differences in these k paths kP,...,1

td( ): number of difference d in these k paths. If  is explicit, 

efer it as count(d). 

kPP ,...,1 kPP ,...,1

l( ): consider the usage of l MRs, the addressing costs in a loop is 

ned as 

kPP ,...,1

l( ) = maximum count(d) kPP ,...,1 ∑∑ −−−
=

lcountcountdcount
D

i
i )0()1()(

||

1
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For example, according to Figure 3-2, P1 = {1, 3, 6,1′}, P2 = {2, 4, 2 }, and P′ 3 = {5, 

7, } are three disjoint valid paths. D(P5′ 1, P2, P3) = {4, 5, 6, 7, 11}. count(4), count(5), 

count(6), count(7), and count(11) are 1, 1, 3, 1, and 1 respectively. If l is two, then  

cost2(P1, P2, P3) = maximum count(d) ∑∑ −−−
=

2)0()1()(
5

1

countcountdcount
i

i

= [count(4) + count(5) + count(6) + count(7) + count(11)] 

−−− )0()1( countcount [∑2 maximum count(d)] 

= [1 + 1 + 3 + 1 + 1] – 0 – 0 – [3 + 1] 

= 3 

Thus, the problem of obtaining a minimum number of addressing costs in a loop if k 

ARs and l MRs are given is equivalent to finding k disjoint valid paths  in the 

MEDG such that cost

kPP ,...,1

l( ) is minimal. kPP ,...,1

 

3.4  Approach 1: Brute Force with Pruning 

We iteratively search all combinations of  in the MEDG and prune some 

cases which are far away from optimal solution to decrease computation time. For 

example, Figure 3-3(a) is a source program and Figure 3-3(b) is its MEDG. 

kPP ,...,1

a’_3
A[i+5]

a’_2
A[i+2]

a’_1
A[i-1]

a’_4
A[i+2]

a_4
A[i+1]

a_3
A[i+4]

a_2
A[i+1]

a_1
A[i-2]

a’_3
A[i+5]

a’_2
A[i+2]

a’_1
A[i-1]

a’_4
A[i+2]

a_4
A[i+1]

a_3
A[i+4]

a_2
A[i+1]

a_1
A[i-2]

 

for (i = 2; i <= N; i++) 
{  /* a_1 */   A[i-2]  
   /* a_2 */   A[i+1]  
   /* a_3 */   A[i+4] 
   /* a_4 */   A[i+1] 
} 

(a) (b) 
 

Figure 3-3 (a) A source program (b) MEDG 
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If two ARs and ay reference pattern 

into

 

fter a node is added in a path, we compute its corresponding costl ). If the 

cost

 

Figure 3-5 Two cases when considering node 3 of case 1 in Figure 3-4 

P1 = {1, 3}
P2 = {2} 

P1 = {1} 
P2 = {2, 3}

Case 1 Case 2 

one MR are available, our goal is to divide arr

 two paths such that cost1(P1, P2) is minimum. Initially, we set P1 = {1}, and an upper 

bound UB = 1 which is cost1(P1, P2) where (P1, P2) is obtained from Basu’s approach. 

Then, we consider array references from node 2 one by one. Each node can be put in 

either existing paths or, if the number of existing paths is less than k, we can create a new 

path to put the node in. Figure 3-4 shows there are two cases when we consider node 2.  

 

Figure 3-4 Two cases when considering node 2 

A ( kPP ,...,1

 is greater than or equal to current upper bound, we prune further search and consider 

other cases. Otherwise, if the cost is less than current upper bound, we continue the next 

node. For example, cost1(P1, P2) of case 1 in Figure 3-4 is zero. We can continue the node 

3 because the cost is less than current upper bound. So, there are also two cases when we 

consider node 3 like Figure 3-5. Of course, we can not create a new path for node 3 

because there are only two ARs available. 

P1 = {1} P1 = {1, 2}

Case 2 

P2 = {2} 

Case 1 
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If all nodes are settled in k paths, we put ia′  to the tail of each path, where  is the 

head of its corresponding path. Then, if cost1 P ,.1 ss than current upper bound, 

we update the current upper bound. When all cases are considered, we output the upper 

bound as the final result. For example, cost1(P1, P2) of case 1 in Figure 3-5 is zero. So, 

there are also two cases when we consider node 4. Figure 3-6 shows two cases when all 

nodes are considered, and 1 1 2 1 1 2

one respectively

re 3-5 

 

 depth first s  display all combination of 

above example in Figure 3-7. Although this is a time-consuming approach, some sub-tree 

can be pruned when traversing because of the upper bound. This may save much runtime 

in most cases.  

ia

( kP.., ) is le

cost (P , P ) of case 1 and cost (P , P ) of case 2 are two and 

. So, it is not necessary to update the current upper bound. 

 

Figure 3-6 Two cases when considering node 4 of case 1 in Figu

P1 = {1, 3, 4,1′}
P2 = {2, 2′ } 

P1 = {1, 3,1′} 
P2 = {2, 4, 2′ } 

Case 1 Case 2 

It is like traversing a tree using earch if we
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Figure 3-7 All combination of above example 

 

After knowing the concept of pruning method, we give a pseudo algorithm described 

below showing how to traverse this tree and finally obtain an optimal solution. 

 

 

P1 = {1} 

P1 = {1} 
P2 = {2} 

P1 = {1, 2}

P1 = {1, 3}
P2 = {2} 

P1 = {1} 
P2 = {2, 3}

P1 = {1, 3, 4,1 } ′

P2 = {2, 2 } ′

P1 = {1, 3,1 } ′

P2 = {2, 4, 2 } ′

P1 = {1, 4,1 } ′

P2 = {2, 3, 2 } ′

P1 = {1,1 } ′

P2 = {2, 3, 4, 2 } ′

P1 = {1, 2, 3}

P1 = {1, 2}
P2 = {3} 

P1 = {1, 2, 3, 4,1 }′

P1 = {1, 2, 3,1 } ′

P2 = {4, 4 } ′

P1 = {1, 2, 4,1 } ′
P2 = {3,3 } ′

node 1 node 2 node 3 node 4 

P1 = {1, 2,1 } ′
P2 = {3, 4,3 } ′
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1. //INPUT: k ARs, l MRs, and array reference pattern { }niaA i ≤≤= 1|  

2. //OUTPUT: costl( ) kPP ,...,1

3. Build MEDG according to A 

4. Initial UB to costl( ), where  is obtained from Basu’s approach. kPP ,...,1 kPP ,...,1

5. Initial P1 = { }, P1a i = {Ø} for ki ≤≤2  

6. call DFS(2) 

7. output UB 

 

The algorithm receives k ARs, l MRs, and array reference pattern as input, and builds 

MEDG in line 3. Line 4 and 5 initiate UB for pruning and  is put in P1a 1. DFS function 

is to create and traverse this tree, and the parameter 2 means we begin to consider . 

After line 6 is done, we get UB as an optimal solution. Now we present the algorithm 

DFS, which is a recursive call. 

2a

 

1. DFS(i) { 

2. Either tail  to any one of existing paths or, if existing paths is less than k, 

create a new path of which  is the head. 

ia

ia

3. for each case  { kPP ,...,1

4. if (i == n) { 

5. add  to each P where  is the head of P ja′ ja

6. if (costl( ) < UB) update UB to costkPP ,...,1 l( ) kPP ,...,1

7. } 

8. else if (costl( ) < UB) DFS(i + 1) kPP ,...,1

9. } 

10. } 
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Line 2 in DFS algorithm indicates there are at most k cases when we put  to 

. Line 4-7 means if all nodes are considered, we add 

ia

kPP ,...,1 ja′  to each P where  is 

the head of P and update UB according to cost

ja

l( ). Line 8 is the main idea of 

pruning method: only cost

kPP ,...,1

l( ) < UB is possible to approach optimal solution and it 

is necessary to consider . 

kPP ,...,1

1+ia

 

3.4.1  Time Complexity 

The time complexity of trying every combination of  is kPP ,...,1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
!k

kO
n

, where n is 

number of array references and k is number of ARs (We can consider this problem as 

computing combinations of putting n different balls into k identical baskets. These 

baskets can be either full or empty, but the sum of balls in these baskets is n). Then the 

time complexity of computing costl( ) is kPP ,...,1 ( )EEO log , because we have to sort the 

differences in  and the number of these differences are not more than the 

number of edges in MEDG. Since 

kPP ,...,1

( )2nOE = , the total time complexity of worst case is 

( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ 22 log
!

nn
k
kO

n

) . Although pruning method can reduce computation time, there is a 

limit if n is large. Therefore, in the next section we will propose genetic algorithm which 

can solve problems with large n in a short time. 

 

 

 

 

 

 
 28



3.5  Approach 2: Genetic Algorithm (GA) 

Genetic Algorithm (GA) is an adaptive heuristic search algorithm premised on the 

evolutionary ideas of natural selection and genetic. The basic concept of GAs is designed 

to simulate processes in natural system necessary for evolution, specifically those that 

follow the principles first laid down by Charles Darwin of survival of the fittest. As such 

they represent an intelligent exploitation of a random search within a defined search 

space to solve a problem. 

 

3.5.1  Overview of GA 

We choose GA for solving LARA problem mainly due to some reasons: First, this 

problem is very complicated and no polynomial time algorithm can solve it. Second, if 

enough computation time is invested, GA approximates a global optimum much more 

likely than heuristics which are trapped in a local optimum. Third, this problem has a 

straightforward encoding as a GA, and the complexity of computing the fitness of a 

chromosome is also bounded in polynomial time. 

We choose steady-state genetic algorithm that uses overlapping populations. In this 

variation, we initialize a population with certain number of chromosomes (m 

chromosomes for example). Then, two chromosomes in the population are selected to 

produce another m offsprings. In order to maintain m chromosomes in the population, we 

replace worse members in original population with new offsprings. Figure 3-8 illustrates 

the flow chart of our GA. 
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Initialize population randomly

Select chromosome randomly for mating

Apply crossover and mutation as the parent mate

Delete members of the population to make room for the new chromosome

Evaluate the new chromosome and insert them into the population

N 
Are stopping criteria satisfied?

Y 

Finish 
 

Figure 3-8 Flow chart of our GA 

 

Throughout the rest of this section, we will use the terms “solution,” “individual,” 

and “chromosome” interchangeably to refer to either costl( ) where  is a 

certain combination in searching space or its representation in the GA. 

kPP ,...,1 kPP ,...,1

 

3.5.2  Chromosomal Representation 

The basic idea of encoding as a chromosome is to determine the most important 

values to be stored in MRs. If we choose these values properly, it will reduce many 

addressing costs. Therefore, the length of a chromosome is the total number of different 

difference (excluding 0 and 1) in MEDG and each gene in a chromosome corresponds to 

a difference respectively and it is either ‘0’ or ‘1’. For example, Figure 3-9(c) shows there 

are five genes in a chromosome because total number of different difference in Figure 
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3-9(b) is five (They are 3, 6, 2, 5, and 4). Thus, gene 1 may correspond to 3, gene 2 may 

correspond to 6, gene 3 may correspond to 2, gene 4 may correspond to 5 and gene 5 may 

correspond to 4. 

a’_3
A[i+5]

a’_2
A[i+2]

a’_1
A[i-1]

a’_4
A[i+2]

a_4
A[i+1]

a_3
A[i+4]

a_2
A[i+1]

a_1
A[i-2]

a’_3
A[i+5]

a’_2
A[i+2]

a’_1
A[i-1]

a’_4
A[i+2]

a_4
A[i+1]

a_3
A[i+4]

a_2
A[i+1]

a_1
A[i-2]

 

for (i = 2; i <= N; i++) 
{  /* a_1 */   A[i-2]  
   /* a_2 */   A[i+1]  
   /* a_3 */   A[i+4] 
   /* a_4 */   A[i+1] 
} 

(a) (b) 

3 6 2 5 4 

 

Figure 3-9 (a) a source program (b) MEDG (c) chromosome representation 

 

3.5.3  Population Initialization 

If k ARs and l MRs are available, we initialize a population with m chromosome. 

Each chromosome contains l ‘1’s and other genes in chromosome are ‘0’. This constraint 

may speed up computation time of convergence (we will discuss this later). Figure 3-10 is 

an example that if two ARs and two MRs are available, two ‘1’s exist in each 

chromosome. 

Chromosome       

gene 1 gene 5 

(c) 
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Chromosome 1 00101Chromosome 1 00101

...

Chromosome m 01010Chromosome m 01010

Initial population

 
Figure 3-10 An example of initial population 

 

3.5.4  Crossover and Mutation Operation 

roduce offspring from two selected 

parents in the population and apply bit m

ossover operation 

igure 3-11(a)), we randomly specify a point on 

n operation 

osomes has probability to flip bit from ‘0’ to ‘1’ 

We apply one-point crossover operation to p

utation operation to each individual of the 

offspring.  

 

One-point cr

  After two parents are selected (F

these two chromosomes (Figure 3-11(b)). Then we interchange their tail from the 

point and produce two new offsprings (Figure 3-11(c)). 

 

Bit mutatio

  Each gene of produced chrom

or from ‘1’ to ‘0’. Figure 3-12 shows an example that gene 3 and gene 5 are mutated 

within a chromosome. 
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Figure 3-11 One-point crossover operation 

 

 
Figure 3-12 Bit mutation operation 

 

ain the number of ‘1’ within a chromosome initially. However, 

after applying crossover and m

Notice that we constr

utation operation, the number of ‘1’ may not equal to l. We 

will discuss this situation later. 

Parent 1: 0 1 1 0 0 
(a) 

Parent 2: 0 1 0 1 0 

Parent 1: 0 1 1 0 0 

Parent 2: 0 1 0 1 0 

one point 

(b) 

0 1 1 1 0 Child 1: 
(c) 

Child 2: 0 1 0 0 0 

Before mutating 0 1 1 1 0 

After mutating 0 1 0 1 1 
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3.5.5  Evaluation Function 

The genetic algorithm uses an objective function to determine how 'fit' each 

chromosome is for survival. We evaluate the fitness of a chromosome according to the 

following steps: 

1. Some edges in the MEDG are removed if the genes corresponding to difference 

of the edges indicate ‘0’. 

2. Apply Basu’s heuristic to obtain k paths  kPP ,...,1

3. Evaluation function of the chromosome = costl( ) kPP ,...,1

 

In our design, smaller the fitness of the chromosome is, higher score it has. That is, it 

is more possible to stay in the population. Take Figure 3-9 for example. Two ARs and two 

MRs are available and we want to calculate the fitness of the chromosome in Figure 

3-13(a). According to the chromosome, we remove edges in Figure 3-9(b), which 

differences are 3 and 2 because genes corresponding to 3 and 2 in the chromosome are ‘0’ 

(see Figure 3-13(b)). Then we apply Basu’s approach: Figure 3-13(c) shows two ARs are 

needed in phase 1 and MERGE algorithm is not necessary to applied because we have 

exactly two ARs available. So, the paths are P1 = {a1, a3, 1a′ } and P2 = {a2, a4, 2a′ }. 

Finally, the fitness of the chromosome is cost2(P1, P2) or zero. 

This is a good way to encode and decode a chromosome because edges should be 

kept in the graph tend to “evolve” genes to 1 and those should removed tend to evolve to 

0. These differences on the edges are addressing costs but only l MRs can handle them. 

Therefore, we constrain the number of ‘1’ within a chromosome at the beginning of the 

population. However, in the process of crossover and mutation operation, we permit the 

number of ‘1’ within a chromosome being unequal to l. This may also peed up 

computation time of convergence. For example, there are three ‘1’s within the 

chromosome in Figure 3-13(a) and gene 5 does not influence the fitness of the 
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chromosome — whether it is ‘0’ or ‘1’. However, leaving the gene 5 to ‘1’ may have a 

good effect on next generation. In fact, from our experiment, we get better solution if we 

constrain the number of ‘1’ within a chromosome at the beginning of the initial 

population and allow it to be unequal in the process of crossover and mutation operation. 

 

 

(a) 
3 6 2 5 4 

Figure 3-13 An example of calculating a chromosome of evaluation function 
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3.5.6  Parameters 

We select the following parameters: 

Population size: 30 individuals 

Mutation probability per gene: 1/n, where n is number of array references 

Replacement rate: 2/3 of the population size 

Termination condition: 2000 generations or conservative 500 generations without a  

fitness improvement 

 

3.5.7  Time complexity 

The time complexity of evaluating a chromosome is 
 
where  is 

FIND-MIN algorithm to find a case of  and 
 
is to compute 

cost

)log( 224 nnnO + 4n

kPP ,...,1
22 lognn

l( ). Because  is smaller than , the time complexity of evaluating 

a chromosome is dominated by . If there are m chromosomes in a population and 

L generations are produced, the total time complexity is . 

kPP ,...,1
22 lognn 4n

)( 4nO

)( 4nmLO ⋅⋅
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Chapter 4  Simulation and Analysis 

In this chapter, we introduce the benchmark programs. Then we compare the 

addressing costs in loops of GA and pruning method to Basu’s approach when ARs and 

MRs are given different numbers. Finally, we give a summary of experimental results. 

 

4.1  Benchmark Suite 

In order to evaluate the efficiency of using the AGU, we introduce the stencil 

Micro-Benchmark Suite. Stencil codes continue to play an important role in scientific 

computations as well as the fields of image processing and geometric modeling. Each 

program contains a loop kernel with a sequence of accessing the same array references. 

They are taken from three sources. All the integer stencils can be found in a book on 

image processing [16]. The floating point stencils come from the domain of partial 

differential equations [17] and the NAS MG Parallel Benchmark [18][19]. These kernels 

are listed in Table 4-1. The type is given by the first letter of the benchmark name: “D” 

for floating point and “I” for integer codes. The 2D stencil kernels are run over a 1000 by 

1000 array of floating point or integer values; the 3D stencil kernels over a 100 by 100 

array. 
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Table 4-1 Stencil Micro-Benchmarks Suite 

Benchmark # of array references Usage 

DISO3X3 9 Biharmonic operator 
DROW3X3 9 Partial derivatives 
INOISE1 9 Partial derivatives 
IPREWITT 12 Biharmonic operator 
ISOBEL 12 NAS MG Benchmark 
IYOKOI 12 Partial derivatives 
DLILBIHARM 13 NAS MG Benchmark 
DRPRJ3(3D) 19 Gradient edge detection 
DRESID(3D) 21 Line detection 
IMORPH 21 Mathematical morphology 
IROBINSON 24 Gradient edge detection 
DBIGBIHARM 25 Noise cleaning 
DISO5X5 25 Noise cleaning 
INOISE2 25 Noise cleaning 
ILINEDET 48 Edge detection 
INOISE3 49 Gradient edge detection 
IWIDELINEDET 72 Edge detection 
IBIGLAPLACE 97 Wide line detection 
INEVATIA 141 Connectivity number 
IZEROCROSS 211 Edge detection 

 

 

4.2  Experimental Results 

Three approaches are implemented in C++ and tested on desktop computer with an 

Intel Pentium 4 2.4GHz processor and 1.0GB RAM, running under Linux 2.4.22. For 

each program in Stencil Micro-Benchmarks Suite, we run the GA 10 times to examine the 

algorithm’s performance.  

Under a variety of ARs and MRs, our experiment is divided into two parts. One is 

comparison of addressing costs between Basu’s approach, GA and pruning method for 

small programs which number of array references are smaller than 49. This is because 
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pruning method can not find the optimal solution in one day for those programs which 

number of array references are greater than 49. The other is comparison of addressing 

costs between Basu’s approach and GA for all programs. 

In each figure of the simulation results, the X-axis is a fixed number of ARs and 

different number of MRs. The Y-axis is the total addressing costs for small programs 

which number of array references is smaller than 49, or for all programs. Each 

configuration of AR and MR has three bars, indicating three (two) approaches: Basu, GA 

and Pruning (only for small programs). 

From these figures we can see that GA and Pruning perform better than Basu’s 

approach except for Figure 4-1 and Figure 4-5. This is because the only solution for one 

AR given to access n array references is P1 = { 11 ,,..., aaa n ′ }. Therefore, these three 

approaches have same addressing costs for small (all) programs. Table 4-2 and Table 4-3 

show the reduction rate of addressing costs based on Basu’s approach. We can see that 

under fixed number of ARs, our approaches can perform better than Basu’s when given 

more MRs. 
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Figure 4-1 Addressing costs of 1 AR and l MRs for small programs 
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Figure 4-2 Addressing costs of 2 ARs and l MRs for small programs 
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Figure 4-3 Addressing costs of 3 ARs and l MRs for small programs 
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Figure 4-4 Addressing costs of 4 ARs and l MRs for small programs 
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Table 4-2 Addressing costs reduction for small programs 

GA Pruning GA Pruning GA Pruning GA Pruning 

1 MR 2 MRs 3 MRs 4 MRs 

2 ARs 30% 33% 44% 48% 58% 59% 67% 72% 

3 ARs 35% 41% 51% 58% 63% 67% 74% 82% 

4 ARs 30% 39% 47% 62% 72% 83% 85% 91% 

 

 For all programs 
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Figure 4-5 Addressing costs of 1 ARs and l MRs for all programs 
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Figure 4-6 Addressing costs of 2 ARs and l MRs for all programs 
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Figure 4-7 Addressing costs of 3 ARs and l MRs for all programs 
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Figure 4-8 Addressing costs of 4 ARs and l MRs for all programs 

 

 

Table 4-3 Addressing costs reduction for all programs 

GA  

1 MR 2 MRs 3 MRs 4 MRs 

2 ARs 26% 33% 39% 43% 

3 ARs 32% 41% 49% 56% 

4 ARs 29% 37% 49% 56% 
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4.2.1  Summary of Experimental Results 

For small programs, GA reduces 55% addressing costs in average compared to 

Basu’s approach while pruning method reduces 61%. Therefore, comparing its results to 

the optimal solutions, GA performs very well with an average overhead of less than 6%. 

Besides, GA runs less than five minutes for each program (including large programs). For 

all programs, GA reduces 41% addressing costs in average compared to Basu’s approach. 
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Chapter 5  Conclusion and Future Works 

In this thesis, we have proposed approaches for optimizing array index computation 

targeted to the DSP processors with auto-increment (decrement) by 1 and auto-modify 

features under register constraints. If program size is small, we can apply pruning method 

to find optimal solution while program size is large, we apply GA to obtain a reasonable 

solution. 

Experimental results show that our approaches are indeed very effective in 

comparison with Basu’s method. Unlike previous research which emphasizes the usage of 

auto-increment (decrement) by 1, our results show that a good decision of clustering 

array references into ARs makes addressing costs minimized. 

There are still some researches could be further studied. First, a more precise method 

to evaluate program performance improvement is required. We will try to integrate our 

optimizations into DSP compilers and analyze the execution cycles. Second, we will 

consider basic blocks. Not much work has been done toward finding solutions for the 

allocation of address registers across basic blocks. Finally, there are some special indirect 

addressing modes in certain DSPs. More techniques are required to exploit. 
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