Ao LRI BAF e fh i A 4 B2
B nt s\ o =512 5 B i it

Optimizing Array Index Computation with Indirect

Addressing of the AGU in a DSP

SRR L

Jfﬂ %’?I% H 73? Jfg'l

LHCTME IR | F R A 4 B2
A g B (e) B 513 B Bt
Optimizing Array Index Computation with Indirect

Addressing of the AGU in a DSP

Moyod o imoik - Student : Chun-Yi Chen

1 Uk H 4 = £ L Advisor : Dr. Jean, Jyh-Juin Shann

B Gdid « #
B Mgl ATCE X
FROA o=
A Thesis

Submitted to Deépartment of
Computer Science and Information Engineering
College of Electrical Engineering and Computer Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master
In
Computer Science and Information Engineering
June 2004
Hsinchu, Taiwan, Republic of China

ai‘.g\‘@] ,L_L_—: £ A A

il

BB e B] i a2

.

Ffra ot T2 a0zt 5 g it
FA - ﬁ%%ﬁ:ﬁﬁ%.ﬁi

3 &

d 30K S BorhBic B ASE 2 AP M R AR (BArR RRIE AT) <
FE RPN L S TR @ 3 A ol i 2 e RS

Il

37 AT A
BRGNP BT B et AL B N F
i A fdp £ “q‘u?' T St O LD Rl 2+ s R NN U T 32
TR

hAe P o AR AR S R IR e e B L) 4 J’ln\ﬁoﬁf‘r]gﬁitﬂ
2o hbH G B g en gy B REFWEIN IR 2 Bk B -
BRIRE B PR DR TR EIS E R o T - B AT R
%mﬁmﬂmW%’é@yxﬂmﬁﬁ’ﬁ”ﬁﬂbimﬁoﬁﬁémpiwmx
T FERSERT AP S T G R Tk o

|l

iii

Optimizing Array Index Computation with Indirect

Addressing of the AGU in a DSP

Student : Chun-Yi Chen Advisor : Jean, J.J Shann

Institute of Computer Science and Information Engineering

National Chiao-Tung University

Abstract

Since most DSP applications (video/audio processing) access a large amount of array
elements stored in memory, the address computation overhead of array elements has great
impact on performance and code size. Some DSPs are equipped with dedicated address
generation units (AGUs). The AGU enables fast address computation with few bits
encoded into an instruction, resulting in ‘code size- reduction as well as performance
improvement of programs.

In this thesis, we provide two approaches to solve the problem of clustering array
references in loops to fixed number of address registers and modify registers so that the
number of instructions needed for address computations in loops is minimized. One is
pruning method which can solve small-size problems to obtain optimal solutions. The
other is genetic algorithm which can solve large problems to obtain reasonable solutions
in an efficient way. Experimental results show that our approaches are indeed more

effective compared to previous work.

v

S

FARSA Ol EEF EL R A XF O RE - 2o ER R
E: Y ulé"—? & L3 Hhv o T ¥ nlg’«f il @__g; v Fé‘ F?'B%),E\,"&T;*\‘m"' Fé‘i El '_%v? Z?:t
FEBE D o d R PR a2 g FehHY {2 FreT o

PAOEMRREATEL—BEREL FFREE IR EL S F Ay

FRHVEH PN L SRR L3 AT A nflet o Rz 2HE L R E
MEE G B EV MRBEFE A R FERP o BAGFE T AEURT K

BSREHANTA BT P AT R 2 2R H AFA RN LGP] PR
U QU RTINS FREE e NI SaEUE S IR

ERCEL RIS E ﬁﬁflﬁv*\ S R B 0 F EBCA R AR o SRR o

Fi % -
2004. 8. 15

Table of contents

B R s iii
ADSETACT ..ottt ettt sttt be i 1\
o oS %
Table Of CONtENTSoiiiiiiiiiie e vi
LISt Of FIGUIES ..eeeeiiiieieiiee ettt e viil
LSt Of TabIES...ceeiiieiiieeee e e X
Chapter 1 INtroductioncceeevuieeiieerieecieeeieeetee e e 1
1.1 Research MOtivations.cocuieiiieiiieiieeie et 2

1.2 Research Objective and Proposed Approaches..........ccccccvevvienieeniieniiennnns 3

1.3 Organization of ThisS Thesisifa.eeriiiiiiiiieceees 3
Chapter 2 Backgrounds.and Related Workccccoovveviiiiiiniieninnen. 4
2.1 The Address Generation-Unitin DSP ... 4

2.2 Genetic AlOTTtRMS i ersiiie ittt e 5
2.2.1 Selection OPErators.......cceevereerierienieeienienieete ettt 6

2.2.2 CroSSOVET OPETALOTS ...uvveeeirieeeiieeniieenieeeriteeesireeesareeassaeesseeesssneessseeenns 7

2.2.3 Mutation OPETatorscceeverueeruerienieeieneenieete ettt seee e ennes 8

2.2.4 Termination Methodsccooieiiiriiniiiiiiieneeeee e 9

23 Previous WOTKScoouiiiiieiiee e 10
2.3.1 Local Array Reference Allocation (LARA)......c.ccovvviieviencieeniieniee 10

2.3.2 Global Array Reference Allocation (GARA).......cccovvieiiiniiinienne 15

2.3.3 Summary of Address Code Optimization with AGU.............ccc...... 16

Chapter 3 Proposed Methods..........ccceeeeeiiiiniiieeiieecee e 18
3.1 ODSEIVATION ...ttt ettt ettt ettt et e et et e seeenbeenees 18

3.2 Problem DesCriptionc.ceciiiiienieeiieie ettt 20

3.3 Problem TranSfOTINAtIONee e eeeeeeeeeeees 20

34 Approach 1: Brute Force with Pruning............ccoocooeiiiiiininiiiieeeee, 23
3.4.1 Time COMPIEXILY ..vevererieeiiieeiiieeiieeeieeeeieeeeteeesreeeereeeareeeareesreeees 28

3.5 Approach 2: Genetic Algorithm (GA) ..c..cooeviiviiiiiiinieiiecceece 29
3.5.1 Overview of GA....ccooiiiiiiiiiiiicc e 29

3.5.2 Chromosomal Representation...........coceevuereeneeieneenienieneenieeieneenne 30

3.5.3 Population Initialization............c.ccevueeviierieeiienieeie e 31

3.5.4 Crossover and Mutation Operation...........ceceeveevuereenienseeneenieeseeneene 32

3.5.5 Evaluation FUNCHONcccoinininiriiicicicccseeceteeecccse e 34

3.5.6 Parameters...ccc.ueeiiuiiiiiiiieiiiee ettt 36

3.5.7 Time COMPIEXILY ..voruvieiiieiieriieeiiereeeteerieeeereeteeereesaeeesaeeseeeesseeseeens 36

Chapter 4 Simulation and AnalysiScovvuieeriieiiiiniieieeeieeeee e, 37
4.1 Benchmark SUITE e ciceueeitet cfeni i B 37

4.2 Experimental RESUS emmremmss. .. detreeeveneeeiinicniecictcicceece e 38
4.2.1 Summary of Experimental Resultsccccooevveviiniiiinieniieieeee 43

Chapter 5 Conclusion and Future Worksccccvvieiiiiiniiieeniieeee. 44
REEIENCES...cuiiiiiiiiiiieec e 45

vii

List of Figures

Figure 1-1 Execution time overhead and memory overhead...........cccccoceeruienenne 1
Figure 2-1 AGU Block Diagram.......c..ccceevuerieiiiniiiniiiieniiecieneeieeeseeceee e 4
Figure 2-2 Top-level description of a genetic algorithm............ccccceevinieninnnnnnne. 6
Figure 2-3 Array references and the distance graphccooceeviiiiiininniienene 11
Figure 2-4 Extended distance graphcccceevveeciienieeieeniecieeieee e 12
Figure 2-5 CFG fragment after @-insertion and reference analysisc...c........ 16
Figure 3-1 Modified distance graph...........cccceevveeiiieniieiieniecieeeeeeee e 21
Figure 3-2 Modified extended distance graph (MEDQG)........cccccceviiniriinicnenne. 22
Figure 3-3 (a) A source program (b) MEDGcccceevviiiiiniiieniieiieeeeee e 23
Figure 3-4 Two cases when considering node 2ccccocevienievienienennicneenneenne. 24
Figure 3-5 Two cases when considering node 3 of case 1 in Figure 3-4.............. 24
Figure 3-6 Two cases-when considering node 4 of case 1 in Figure 3-5.............. 25
Figure 3-7 All combination-of abeve-exampleccceevveeeiierieeciieniecieeieee 26
Figure 3-8 Flow chart of out GA LIl o 30

Figure 3-9 (a) a source program (b) MEDG (c¢) chromosome representation 31

Figure 3-10 An example of initial population............ccoeceeviiniiiniiiniienieecee 32
Figure 3-11 One-point CroSSOVEr OPETAtIONeeveerereeveerireereenieeereeneeesreeseens 33
Figure 3-12 Bit mutation OPeration..........ceeecueerieriuieniieeieeiie et 33

Figure 3-13 An example of calculating a chromosome of evaluation function.... 35

Figure 4-1 Addressing costs of 1 AR and | MRs for small programs................... 39
Figure 4-2 Addressing costs of 2 ARs and | MRs for small programs 40
Figure 4-3 Addressing costs of 3 ARs and | MRs for small programs 40
Figure 4-4 Addressing costs of 4 ARs and | MRs for small programs 40
Figure 4-5 Addressing costs of 1 ARs and | MRs for all programs....................... 41

viii

Figure 4-6 Addressing costs of 2 ARs and | MRs for all programs
Figure 4-7 Addressing costs of 3 ARs and | MRs for all programs

Figure 4-8 Addressing costs of 4 ARs and | MRs for all programs

X

List of Tables

Table 2-1 Comparison of related work and our problem...........ccceceveecenienennnn. 17
Table 4-1 Stencil Micro-Benchmarks Suite............ccccoeviiiiiiniiiiiiiiiiieccee 38
Table 4-2 Addressing costs reduction for small programs............cccceevvvervrenneenne. 41
Table 4-3 Addressing costs reduction for all programs...........ccccceeviieiieniienienne. 42

Chapter 1 Introduction

More and more DSP system designs are based on software running on programmable
processors rather than on dedicated hardware [1]. This trend towards software-based
implementation is due to the fact, that software provides higher flexibility and better
opportunities for reuse than hardware.

Today, however, software development for DSPs frequently is a bottleneck in the
system design process. Figure 1-1 shows that many of the currently available C compilers
for DSPs cause a significant overhead in code size and performance as compared to
hand-written assembly code [2]. This is also confirmed by numerous software developers
and recent empirical studies from academiaand ipdustry. Such an overhead can hardly be
tolerated in presence of real.,t?;rﬂlé' COP%tr,alntS '-‘-%md limited program memory size.
Therefore, nearly all time-cfi-f;cal Eapp'ﬁéé&on‘s ai?re implemented by hand. As a

consequence, efficient code gen:e:'r?ti,d‘n*"'teéﬁr'l-i;ciues for DSPs have received high attention

o ne

during the last years [3].

-] | | | I | I

Analog

Devices 2101
MMotorada j
=0l B executon time
' memory

TTCA] J
. A < _ . -
0 100 200 300 400 s00 &00 700 overhead [%o]

Figure 1-1 Execution time overhead and memory overhead

The overhead of compiler-generated code is mainly due to the special architectural
features of DSPs, to which classical code optimization techniques can hardly be applied.
This includes the presence of special-purpose registers, special addressing modes, certain
machine idioms (MAC-operation) and instruction-level parallelism. In order to make the
use of high-level language compilers feasible for more DSP applications, new
DSP-specific code optimization techniques are required, which take into account the
detailed processor architecture. High compilation speed, which may be an important
constraint for GPP-(general purpose-processor) compilers, is not necessarily an issue for
DSP compilers. Instead, many compiler users are willing to trade higher compilation
times against better code quality. This allows to explore the use of code optimization

algorithms of a comparatively high computational complexity.

1.1 Research Motivations

Since most DSP applications, like.audio/video processing, access a large amount of
array elements stored in memory, the“address computation overhead of array elements
has great impact on code size and performance. In order to reduce this kind of overhead,
some DSPs (e.g., TI TMS320C25, the Motorola 56k, and the Analog Devices
ADSP-210x) are equipped with dedicated address generation units (AGUs), which can
offer specialized addressing modes. A typical example is the auto-increment (decrement)
mode, in which an address register (AR) is incremented (decremented) by 1 or by an
immediate value stored in a modify register (MR), after the memory operation is finished
(We will refer to auto-increment/decrement by 1 and auto-increment/decrement by MR as
auto-inc/dec and auto-modify respectively). As a consequence, effective utilization of
AGUs allows for more compact machine code and therefore increases potential

parallelism.

Previous researches, which reduce address computation instructions for array data in
loops, focus on auto-inc/dec operation but do not fully exploit auto-modify operation. For
our observation, using auto-modify operation properly can reduce address computation

instructions further in loops, especially for multi-dimensional array.

1.2 Research Objective and Proposed Approaches

Our research objective is to minimize address computation overhead for array
references in loops under given fixed number of address registers and modify registers.
We will formulate the problem and provide two approaches to solve it. One is brute force
with pruning when a small amount of array reference pattern is given. The other is

genetic algorithm which gives a reasonable solution for this problem.

1.3 Organization of This Thesis

The rest of this thesis is organized as follows: Chapter 2 introduces the background
of address generation units in DSPs, genetic algorithms, and discusses previous relative
researches on addressing optimization for array data in loops with indirect addressing
modes. In chapter 3, we describe two approaches to solve this problem in detail. The
simulation environment and simulation results are presented in chapter 4. Finally, we

summarize the conclusion and future work in chapter 5.

Chapter 2 Backgrounds and Related Work

In this chapter, we give an overview of address generation unit in digital signal
processing. Then, we will introduce the genetic algorithms. Finally, previous work related

to the problem of assigning address registers to array references is presented.

2.1 The Address Generation Unit in DSP

Address code optimization is mainly used in C compilers for digital signal processors
(DSPs), which require extremely high code quality and hence sophisticated code
optimization techniques. Emphasis is on effective utilization of the address generation
units (AGUs) commonly found in DSPs. Such an AGU generally comprises a file of
address registers (ARs) as well as a file.of modify registers (MRs). ARs store memory
addresses (or pointers), while MRs store frequently required address modify values. The

AGU architecture is sketched in-Figure 2=1t

immediate constant

address | modify
registers registers
(ARs) . (MRs)
effective
address |

Figure 2-1 AGU Block Diagram

When an address register is used to point to a memory location, the addressing mode
is called “address register indirect”. The term indirect is used because the register
contents are not the operand itself, but rather the address of the operand. These
addressing modes specify that an operand is in memory and specify the effective address
of that operand. Four general address register indirect modes are in the following.

® Auto-increment By 1 — The address of the operand is in an address register.
After the operand address is used, it is incremented by 1 and stored in the same
address register.

® Auto-decrement By 1 — The address of the operand is in an address register.
After the operand address is used, it is decremented by 1 and stored in the same
address register.

® Auto-increment By Offset Nn — The address of the operand is in an address
register. After the operand address is - used, it is incremented by the contents of a
modify register and stored.in-the-same address register. The contents of the
modify register are unchanged.

® Auto-decrement By Offset Nn — The address of the operand is in an address
register. After the operand address is used, it is decremented by the contents of
a modify register and stored in the same address register. The contents of the

modify register are unchanged.

2.2 Genetic Algorithms

Genetic algorithms are general-purpose search algorithms based upon the principles
of evolution observed in nature. The algorithms can be applied to a wide variety of
optimization problems such as scheduling, computer games, stock market trading,

medical, adaptive control, transportation, the traveling salesmen problem, etc.

The solution to a problem is called a chromosome. A chromosome is made up of a
collection of genes which are simply the parameters to be optimized. A genetic algorithm
creates an initial population (a collection of chromosomes), evaluates this population, and
then evolves the population through multiple generations (using the genetic operators
discussed below) in the search for a good solution for the problem at hand. Figure 2-2

contains a top-level description of the genetic algorithm [4] [5].

The Genetic Algorithm
1. Initialize a population of chromosomes.
2. Evaluate each chromosome in the population.
3. Create new chromosomes by mating current chromosomes; apply mutation
and recombination as the parent chromosomes mate.
4. Delete members of the population to make room for the new chromosomes.
5. Evaluate the new chromosomes and insert them into the population.

6. Iftime is up, stop and return the best chromosome; if not, go to 3.

Figure 2-2 Top-level description of a genetic algorithm

2.2.1 Selection Operators
Selection is a genetic operator that chooses a chromosome from the current
generation’s population for inclusion in the next generation’s population. Previous work
include the following types of selection :
® Roulette — A selection operator in which the chance of a chromosome getting
selected is proportional to its fitness (or rank). This is where the concept of
survival of the fittest comes into play.
® Tournament — A selection operator which uses roulette selection N times to

produce a tournament subset of chromosomes. The best chromosome in this

6

subset is then chosen as the selected chromosome. This method of selection
applies addition selective pressure over plain roulette selection.

Top Percent — A selection operator which randomly selects a chromosome from
the top N percent of the population as specified by the user.

Best — A selection operator which selects the best chromosome (as determined
by fitness). If there are two or more chromosomes with the same best fitness,
one of them is chosen randomly.

Random — A selection operator which randomly selects a chromosome from the

population.

2.2.2 Crossover Operators

Crossover is a genetic operatot-that combines.(mates) two chromosomes (parents) to

produce a new chromosome (offspring). The idea- behind crossover is that the new

chromosome may be better than both of-the-parents if it takes the best characteristics

from each of the parents. Crossover«oceurs during evolution according to a user-definable

crossover probability. Previous work includes the following types of crossover.

One Point — A crossover operator that randomly selects a crossover point within
a chromosome then interchanges the two parent chromosomes at this point to
produce two new offspring.

Two Point — A crossover operator that randomly selects two crossover points
within a chromosome then interchanges the two parent chromosomes between
these points to produce two new offspring.

Uniform — A crossover operator decides which parent will contribute each of

the gene values in the offspring chromosomes.

2.2.3 Mutation Operators

Mutation is a genetic operator that alters one ore more gene values in a chromosome

from its initial state. It is an important part of the genetic search to prevent the population

from stagnating at any local optima. Previous work include the following types of

mutation.

Flip Bit — A mutation operator that simply inverts the value of the chosen gene
(0 goes to 1 and 1 goes to 0). This mutation operator can only be used for binary
genes.

Boundary — A mutation operator that replaces the value of the chosen gene with
either the upper or lower bound for that gene (chosen randomly). This mutation
operator can only be used for integer and float genes.

Non-Uniform — A mutation operator that increases the probability that the
amount of the mutation will be close to,0 as the generation number increases.
This mutation operator keeps‘the population from stagnating in the early stages
of the evolution then allows the genetic algorithm to fine tune the solution in the
later stages of evolution. This mutation operator can only be used for integer
and float genes.

Uniform — A mutation operator that replaces the value of the chosen gene with
a uniform random value selected between the user-specified upper and lower
bounds for that gene. This mutation operator can only be used for integer and
float genes.

Gaussian — A mutation operator that adds a unit Gaussian distributed random
value to the chosen gene. The new gene value is clipped if it falls outside of the
user-specified lower or upper bounds for that gene. This mutation operator can

only be used for integer and float genes.

2.2.4 Termination Methods

Termination is the criterion by which the genetic algorithm decides whether to

continue searching or stop the search. Each of the enabled termination criterion is

checked after each generation to see if it is time to stop. Previous work include the

following types of termination.

Generation Number — A termination method that stops the evolution when the
user-specified max number of evolutions have been run. This termination
method is always active.

Evolution Time — A termination method that stops the evolution when the
elapsed evolution time exceeds the user-specified max evolution time.

Fitness Threshold — A termination method that stops the evolution when the
best fitness in the current population becomes less/greater than the
user-specified fitness threshold and.the objective is set to minimize/maximize
the fitness.

Fitness Convergence — A‘termination method that stops the evolution when the
fitness is deemed as converged. Two filters of different lengths are used to
smooth the best fitness across the generations. When the smoothed best fitness
from the long filter is less than a user-specified percentage away from the
smoothed best fitness from the short filter, the fitness is deemed as converged
and the evolution terminates.

Population Convergence — A termination method that stops the evolution when
the population is deemed as converged. The population is deemed as converged
when the average fitness across the current population is less than a
user-specified percentage away from the best fitness of the current population.
Gene Convergence — A termination method that stops the evolution when a

user-specified percentage of the genes that make up a chromosome are deemed

9

as converged. A gene is deemed as converged when the average value of that
gene across all of the chromosomes in the current population is less than a
user-specified percentage away from the maximum gene value across the

chromosomes.

2.3 Previous Works

There are different ways of utilizing indirect addressing of AGU. One of the most
popular is to perform offset assignment for local scalar variables in a C program
[6][7][8]. These approaches are based on permutation of variables within available
sections of memory. Hence, these techniques can not be directly applied to arrays because
generally array elements are arranged in,memory in order. Another important branch in
address code optimization is address register assignment. Such techniques are used to
assign address registers to access"data for‘which the memory layout has been already
defined. It can be directly applied to access-array elements inside program loops, or to

reduce the number of update instructions resulting from using offset assignment.

2.3.1 Local Array Reference Allocation (LARA)

The goal of LARA is to allocate an address register to each array reference in a basic
block, by dividing them into live ranges (a live range is a set of array references that
share the same address register) and assigning an address register to each range.
Therefore, the final number of ranges should not exceed the total number of address
registers of the processor. Moreover, the number of instructions required to redirect
registers through references should be minimum. LARA has been studied before in
[9][10][11][12]. These are efficient graph-based solutions, when references are restricted

to basic block boundaries. In particular, Basu et al. [12] is a very efficient solution to

10

LARA.
In the example of Figure 2-3, array references, inside the loop on the left, are

modelled as a distance graph (on the right). The distance graph G = (V, E) is a directed

acyclic graph (DAG) with V = {al,...,an}. The edge set E contains all edges €= (ai,a j)
with 1<i< j<n. An edge e= (ai,aj) is present in E, if using the same AR for both

a; and a; allows for generating the address for a; from the address for a; with a

zero-cost address computation.

for (1=2;1<=N; it++)

{/*a 1* A[i+2]
/*a 2% Ali-1] @ @
/*a 3% Ali+4]
/*a 4% Ali-1] ¥

[

/%a 5% Ali-2]

/%a 6% A[i+5] @
[

fa 7% A[i

Figure 2-3 Array references and the distance graph

In order to consider zero-cost address computation between iterations, an extended

distance graph is modelled. Figure 2-4 includes inter-iteration distances in the distance
graph model of Figure 2-3. The extended distance graph is a DAG G’=(V',E’) with

V'=V u{al,...,a,}, where each node a/ ¢V represents the array reference a, in the

following loop iteration, and E'=E U {(a. a.')| 1<i<j< n}. An edge (a. a.') isinE’,

I IR

if the reference @; and a; can be implemented at zero cost using the same AR.

11

Figure 2-4 Extended distance graph

Thus, obtaining a zero overhead solution for address computation of array references

in a loop with a minimum number of ARs is equivalent to covering all nodes {al yeery@ }

9 Ay

in the extended distance graph by‘a minimum number of node-disjoint paths P,,...,P,,

such that if a path P, starts in‘node &; it must end in node a;. Since this problem is

NP-complete [13], the AR allocation jproblem.is(most likely) of exponential complexity.

One can compute a (potentially suboptimal) solution efficiently by the following

path-based heuristic.

1.

Given a distance graph G = (V, E), construct the extended distance graph
G'=(V"E') withV= {a,...a,}u{a,..,a’}, and assign a unit weight to each
edge ecE’.

Let a, be the source node in {a,,...,a,}cV' with minimum index, i.e., there

is no node a; with (a. a-)e E’ and j<i. Compute the longest path

IR

’
i

P:(ai,akl,...,akm,a) in G’ between a, and a . If P does not exist then

stop, because no zero-cost solution is possible.
Allocate a new AR for the array references represented by the nodes

{ai,akl,...,akm} in path P. Remove these nodes as well as the nodes

12

{a{ , al’(l ,...,a{(m } from G’, and remove all their incident edges.

4. If G’ is not empty goto step 2, else stop and return the number r of allocated

registers.

Below we show a longest path solution to the example problem. This solution results
in four registers addressing the following references.
R1: a,a
R2: a,,a,,a,a)
R3: a,,a,,a;

!

R4: a,a;

Thus the references would be

R1=&A[4] /* initialize Rl with &A[2+2] */
R2 = &A[1] /* initialize R2 with &A[2-1] */
R3 =&A[6] /* initialize R3 with"&A[2:+4] */
R4 = &A[0] /* initialize R4.with &A[2+2]#/
for (i=2;1<=N;i++)

{ /*a 1% *R1 ++ /* access A[i+2] */
/*a 2%/ *R2 /* access A[i-1] */
/*a 3%/ *R3 ++ /* access A[i+4] */
/*a 4%/ *R2 ++ /* access A[i-1] */
/*a 5%/ *R4 ++ /* access A[1-2] */
/*a 6%/ *R3 /* access A[i+5] */
/*a 7% *R2 /* access A[i] */

§

The longest path algorithm provides a tight upper bound on the number of address
registers required. If the number of required address registers exceeds the number of
available address registers, then the accesses allocated to some of the registers can be
merged with others in a way that minimizes the incremental cost. The cost of merging

13

two ranges R and S (cost, (R, S)) is measured by the number of update instructions
required to access all array references in the resulting range. The process of merging is
iteratively performed till the number of address registers required equals the number of

available registers. The pseudo-code for the MERGE algorithm is shown below.

(1) procedure MERGE (R, nars)

(2) while |R| > nars do

(3) mincost € +oo

4) for each range Re R do

(5 for each range Se R, S#R do
(6) if cost (R, S) < mincost then
(7) mincest € cost_ (R;.S)
(8) minpair € {R, S}

9) R € (R— minpair) &R, S)

On applying the path merging approach to the longest path solution, shown earlier,
subjected to the constraint of three available address registers, we obtain the following
solution with one inserted address-modifying instruction. Here, the accesses by registers
R1 and R2 has been merged. The costs stem from transitions from references a, to a,
in register R2.

R1: a,a
R2: a,,a,,a;,a,a,

!

R3: a,,a,,a;
The address register allocation technique shown in the beginning of this section is a

polynomial-time procedure. It utilizes two algorithms, the FIND_TUB (find tight upper

bound) algorithm to compute the minimum number of registers and the MERGE

14

algorithm of combining the paths. The first algorithm is of complexity O(|V = |),
where V and E denote respectively the vertex and edge sets of the extended distance
graph. The Path-Merge-Cost procedure of MERGE is of linear complexity in the
number N of array accesses, while the invocation of this procedure by MERGE is

bounded by O(nz). Hence, the worst case complexity of MERGE is O(n3). Since

[\/| =O(n), the total runtime is dominated by FIND_MIN and is in O(n“). In practice

this means, that the computation time is in within the range of CPU milliseconds on a

SparcStation-10.

2.3.2 Global Array Reference Allocation (GARA)

The problem of assigning address registers to array references, across basic blocks, is
known as Global Array Reference Allocation. (GARA). It has been studied before in
[14]{15] finding solutions for the ‘allocation of address registers for a whole procedure.
Consider, for example, the CFG fragment-shown in Figure 2-5, after J-equations are
inserted into blocks Bj, B; and Bs. The'UD and DU sets for all basic blocks that perform
array references are shown in Figure 2-5. We assume here that the program begins (ends)
before (after) block B; (Bg). Notice that, if -equations had not been inserted, the
instructions associated to reference a[i + 1] in B, would be reached (across one loop
iteration) by two references, that is, UD,= {a[i + 1], a[i + 2]}. In this case, it would not
be possible to determine, at compile time, which of these two references reach afi + 1],
and hence if auto-increment mode could be used by their instructions to point to a[i + 1].
After @-equations are inserted, the ud-chain at B; becomes UD, = {w;}, only one
reference reaches afi + 1], and thus the decision can made once the value for w; is

computed.

15

_ UD1={w3}
»| wl=¢(.)| Bl
’///, DUl={a(i+1l],w2}

UD2={W1}} ali+1] | go
DU2= (w2} ali+2]

. UD3={a[i+2],wl}
w2=¢(.)| B3
DU3={a[i+1l],a[i+2]}

UD4={w2} UD5={w2}
ali+1] B4 ali+2] B5
DUQ:{WB} v DUS:{WB}

. UD6={al[i+1l],al[i+2]}
w3=¢(.)| B6
DU6={wl}

Figure 2-5 CFG fragment after 0-insertion and reference analysis

2.3.3 Summary of Address Code Optimization with AGU

There are mainly two ways of utilizing auto-increment addressing modes: Offset
Assignment and Address Register “Assignment. All of them reduce addressing costs
further by assignment of multiply required modify values to MRs in a post-pass phase.
Table 2-1 shows comparison of related work and our problem. We will propose two
approaches to LARA with MR Optimization which consider modify register when doing

AR optimization. The methodology will describe more detailed in next chapter.

16

Table 2-1 Comparison of related work and our problem

Year | Problem Domain MR Optimization
Leupers [6] 1996 | Offset Assignment
Basu [12] 1999 | AR Assignment: LARA | After AR optimization
Araujo [15] 2002 | AR Assignment: GARA
Our problem AR Assignment: LARA | Consider MR when AR optimization

17

Chapter 3 Proposed Methods

In this chapter, we give an observation of benefit of considering modify register
when doing AR optimization. Then problem description and problem transformation
based on Basu’s graph are presented. Finally, we propose two methods to solve this

problem in detail.

3.1 Observation

Consider the following array references with respect to some array A.
for (1=2;1<=N; it+)
{/*a 1* Ali-6]

/*a 2%/ Ali-5]

/*a 3%/ Ali]

/*a 4% Ali+2]

[
/ca 5% A[i+5]
/£a 6% A[it6]
fca 7% Afitl]
}

If two ARs are available, Basu’s approach to find minimum addressing costs would
be in the following processes.
1. Estimate the upper bound of the number of ARs required to ensure all address
computation of array elements can be handle by auto-inc/dec.
2. If the number of registers obtained exceeds the given constraint on the set of

available registers, adopt MERGE algorithm.

18

The result of the example needs three addressing costs.

R1 = &A[0]
R2 = &A[6]
for (1= 6;1<=N; it++)
{/*a 1%/ *R1 ++
/*a 2%/ *R1
R1+=10
/*a 3% *R2
R2 +=2
/*a 4%/ *R2 --
/*a 5% *R1 ++
/*a 6% *R1
R1+=11
/*a 7% *R2
}

Now if two MRs are available, we intuitively consider the usage of multiple modify
registers that store frequently -modify values for AR updates. The final result of the

example needs one addressing cost.

RI = &A[0]
R2 = &A[6]
N1=10
N2=2

for (1= 6;1<=N; i++)

{/*a 1%/ *R1 ++
/*a 2% *R1+= NI
/*a 3% *R2 +=N2
/*a 4%/ *R2 --
/*a 5% *R1 ++
/*a 6% *R1

R1+=11

/*a 7% *R2

}

However, this is not the best solution when two ARs and two MRs are given. If we

19

know which values should be stored in MRs, some edges can be added in Basu’s
extended distance graph so that there may be an opportunity to find fewer path cover of

the extended distance graph. The best result of above example need zero addressing cost.

R1 = &A[0]
R2 = &A[8]
NI=5
N2 =6

for (i=6;1<=N; i++)

{/*a 1%/ *R1 ++
/*a 2% *R1 +=NI1
/*a 3% *R1 +=NI1
/*a 4%/ *R2 ++
/*a 5% *R1 ++
/*a 6% *R1-=NI1
/*a 7% *R1 -=N2

3.2 Problem Description

The problem of addressing code.optimization with AGU can now be stated as
follows:
Given: a set of address registers R= {ri [1<i< k} , a set of modify registers
M ={m, |1<i<I}, and array reference pattern A={a, |1<i<n}, where each a, is an
ordered pair (Ofi ,CS,), of, denoting the index of an array referred at control step Cs;.
Required: an allocation of all elements of A to the elements of R such that the addressing

costs in a loop which can not be handled by auto-inc/dec and | auto-modify is minimized.

3.3 Problem Transformation

We first model our distance graph. The modified distance graph G = (V, E, d) is a

directed acyclic graph (DAG) with V = {al,...,an}. The edge set E contains all edges

20

e:(a. a.) with 1<i<j<n and the d:(a. a.) denotes |of; —of; | . Figure 3-1

i 127
shows the modified distance graph for our above example loop. Edges don’t represent

auto-inc/dec any more. On the contrary, values on the edges (excluding 0 and 1) represent

the candidate to be assigned to modify registers.

Figure 3-1 Modified distance graph

In order to consider zero-cost address-computation between iterations, a modify
extended distance graph (MEDG) is modeled. Figure 3-2 includes inter-iteration
distances in the modified distance graph model of Figure 3-1. The modified extended
distance graph is a DAG G'=(V’,E',d) with V' =V u{al’,...,a;}, where each node

a' ¢V represents the array reference a, in the following loop iteration, and

E'= Eu{(aj,ai')USiS] Sn} (some edges are ignored in Figure 3-2 for clarity).

dz(ai,aj) denotes |of, —of, | and dz(aj,ai') denotes |of; +step—of;|. Values on

the edges represent the candidate to be assigned to modify registers.

21

@

iO

......) @

.......... :

Figure 3-2 Modifiéd extended distance graph (MEDG)

Here, according to MEDG, we define.some key terms below for easily describing our
problem transformation:

!

® avalid path P: a path starts in node @, and then end in node a|

® Kk disjoint valid paths P,,...,P, : these k paths cover all nodes {al ,...,an} exactly
once.

® D(PR,...,R,): aset of differences in these K paths

® county(P,...,R,): number of difference d in these k paths. If P,,...,R, is explicit,
we refer it as count(d).

® cost(P,...,R,): consider the usage of | MRs, the addressing costs in a loop is

defined as

D)
costi(P,.....R)= D count(d,)—count(l) - count(0) — » I maximum count(d)

i=1

22

For example, according to Figure 3-2, P1= {1, 3, 6,1'}, P,= {2, 4,2" }, and P3= {5,
7,5"} are three disjoint valid paths. D(Py, P2, P3) = {4, 5, 6, 7, 11}. count(4), count(5),

count(6), count(7), and count(11) are 1, 1, 3, 1, and 1 respectively. If | is two, then

5
costy(P1, P2, P3) = D count(d;) —count(l) —count(0) - > 2 maximum count(d)

i=1

= [count(4) + count(5) + count(6) + count(7) + count(11)]

—count(1) — count(0) —[> 2 maximum count(d)]

=[1+1+3+1+1]-0-0-[3+1]
=3
Thus, the problem of obtaining a minimum number of addressing costs in a loop if k
ARs and | MRs are given is equivalent to finding k disjoint valid paths B,,...,P, in the

MEDG such that costi(R,,..., P,) is minimal.

3.4 Approach 1: Brute Force with Pruning
We iteratively search all combinations of 'P,....,P, in the MEDG and prune some

cases which are far away from optimal solution to decrease computation time. For

example, Figure 3-3(a) is a source program and Figure 3-3(b) is its MEDG.

for (i=2; i <= N; i++) A Fan ARy SRl
LA 3 A2 S 3 Ali+5] ¢ L Ali+2] ¢
{ Fal* Ali-2] e R & R
/*a 2% Aflitl]
/*a 3% Alit+4]

/fa 4% A[it+]]

(a) (b)

Figure 3-3 (a) A source program (b) MEDG
23

If two ARs and one MR are available, our goal is to divide array reference pattern
into two paths such that cost;(P1, P2) is minimum. Initially, we set P; = {1}, and an upper
bound UB = 1 which is cost;(P;, P2) where (P, P2) is obtained from Basu’s approach.
Then, we consider array references from node 2 one by one. Each node can be put in
either existing paths or, if the number of existing paths is less than k, we can create a new

path to put the node in. Figure 3-4 shows there are two cases when we consider node 2.

Pl =LY

P,= {2}
Case 1 Case 2

Figure 3-4 Two casés when considering node 2

After a node is added in a path, we compute its corresponding costi(P,,...,P,). If the
cost is greater than or equal to current upper bound, we prune further search and consider
other cases. Otherwise, if the cost is less than current upper bound, we continue the next
node. For example, costi(P1, P2) of case 1 in Figure 3-4 is zero. We can continue the node
3 because the cost is less than current upper bound. So, there are also two cases when we
consider node 3 like Figure 3-5. Of course, we can not create a new path for node 3

because there are only two ARs available.

Po={1,3) . Pi={1}

Po= {2} P, ={2,3}
Case 1 Case 2

Figure 3-5 Two cases when considering node 3 of case 1 in Figure 3-4

24

If all nodes are settled in K paths, we put a/ to the tail of each path, where a; is the
head of its corresponding path. Then, if costy(P,,...,P,) is less than current upper bound,
we update the current upper bound. When all cases are considered, we output the upper
bound as the final result. For example, cost;(P1, P2) of case 1 in Figure 3-5 is zero. So,
there are also two cases when we consider node 4. Figure 3-6 shows two cases when all
nodes are considered, and costy(P;1, P2) of case 1 and cost;(P1, P2) of case 2 are two and

one respectively. So, it is not necessary to update the current upper bound.

P,={1,3,4,1'} P,={1,3,1'}

P,={2,2"} P,=1{2,4,2"}
Case 1 Case 2

Figure 3-6 Two cases when considering node 4 of case 1 in Figure 3-5

It is like traversing a tree using depth first search if we display all combination of
above example in Figure 3-7. Although this is a time-consuming approach, some sub-tree
can be pruned when traversing because of the upper bound. This may save much runtime

in most cases.

25

node 1 node 2 node 3 node 4

P;=1{1,3,4,1"}
P, = (2,2
P.={1,3} 2= 122}
P, = {2
? { } Pl:{19391’}
P,=1{2,4,2"}
P1= {1}
P2 = {2}
Pl:{1:471,}
P,={2,3,2
P.= {1} 2 A :
P2:{2>3} P]_:{l 1,}
P,=1{2,3,4,2"}
P1= {1}
Pl:{152535451’}
P1={19293}
P1:{1:2:3:1,}
P,=1{4,4"}
Pl:{lvz}
P,=1{1,2,4,1"}
P, = (3,3
P1={1,2} B
P,= {3
2~ B Pi={1,2,1}
P,=1{3,4,3"}

Figure 3-7 All combination of above example

After knowing the concept of pruning method, we give a pseudo algorithm described

below showing how to traverse this tree and finally obtain an optimal solution.

26

//INPUT: k ARs, | MRs, and array reference pattern A= {a, |1<i<n}
//OUTPUT: costy(R,,...,R,)

Build MEDG according to A

Initial UB to cost(R,,...,P,), where P,,...,P, is obtained from Basu’s approach.
Initial Py = {a, }, Pi= {0} for 2<i<k

call DFS(2)

output UB

The algorithm receives k ARs, | MRs, and array reference pattern as input, and builds

MEDG in line 3. Line 4 and 5 initiate UB for pruning and a, is put in P;. DFS function

is to create and traverse this tree, and the parameter 2 means we begin to consider a, .

After line 6 is done, we get UB as an optimal solution. Now we present the algorithm

DFS, which is a recursive call.

DFS(i) {
Either tail a, to any one of existing paths or, if existing paths is less than k,
create a new path of which a, is the head.
for each case PB,....B, {
if i==n) {
add a) toeach P where a; is the head of P
if (costy(P,,...,P,) <UB) update UB to cost|(P,...,P,)

}
else if (costi(P,,...,R,) <UB) DFS(i + 1)

27

Line 2 in DFS algorithm indicates there are at most k cases when we put a, to
P.,...,P, . Line 4-7 means if all nodes are considered, we add a} to each P where a j 18

the head of P and update UB according to cost(PR,...,P,). Line 8 is the main idea of
pruning method: only costi(P,,..., P,) < UB is possible to approach optimal solution and it

is necessary to consider a,,.

3.4.1 Time Complexity

n
The time complexity of trying every combination of PB,,...,B, is O(%) , where n is
number of array references and k is number of ARs (We can consider this problem as
computing combinations of putting n different balls into k identical baskets. These

baskets can be either full or empty, but, the sum of balls in these baskets is n). Then the

time complexity of computing coOsti(P,,..., P) is OQE|10g|E), because we have to sort the

differences in P,,...,P, and the”number of these differences are not more than the

number of edges in MEDG. Since |E| = O(n2), the total time complexity of worst case is

O(%(nzlog nz)j. Although pruning method can reduce computation time, there is a

limit if n is large. Therefore, in the next section we will propose genetic algorithm which

can solve problems with large n in a short time.

28

3.5 Approach 2: Genetic Algorithm (GA)

Genetic Algorithm (GA) is an adaptive heuristic search algorithm premised on the
evolutionary ideas of natural selection and genetic. The basic concept of GAs is designed
to simulate processes in natural system necessary for evolution, specifically those that
follow the principles first laid down by Charles Darwin of survival of the fittest. As such
they represent an intelligent exploitation of a random search within a defined search

space to solve a problem.

3.5.1 Overview of GA

We choose GA for solving LARA problem mainly due to some reasons: First, this
problem is very complicated and no polynomial time algorithm can solve it. Second, if
enough computation time is invésted, GA approximates a global optimum much more
likely than heuristics which aré trapped in“a local optimum. Third, this problem has a
straightforward encoding as a GA, and the-complexity of computing the fitness of a
chromosome is also bounded in polynomial time.

We choose steady-state genetic algorithm that uses overlapping populations. In this
variation, we initialize a population with certain number of chromosomes (M
chromosomes for example). Then, two chromosomes in the population are selected to
produce another m offsprings. In order to maintain m chromosomes in the population, we
replace worse members in original population with new offsprings. Figure 3-8 illustrates

the flow chart of our GA.

29

Initialize population randomly

A\ 4

Select chromosome randomly for mating

Apply crossover and mutation as the parent mate

Delete members of the population to make room for the new chromosome

Evaluate the new chromosome and insert them into the population

Are stopping criteria satisfied?

Finish

Figure 3-8 Flow chart of our GA

99 CCy

Throughout the rest of this section, we will use the terms “solution,” “individual,”

and “chromosome” interchangeably to refer to either cost(P,,...,P,) where P,..,P isa

certain combination in searching space or its representation in the GA.

3.5.2 Chromosomal Representation

The basic idea of encoding as a chromosome is to determine the most important
values to be stored in MRs. If we choose these values properly, it will reduce many
addressing costs. Therefore, the length of a chromosome is the total number of different
difference (excluding 0 and 1) in MEDG and each gene in a chromosome corresponds to
a difference respectively and it is either ‘0’ or ‘1’. For example, Figure 3-9(c) shows there

are five genes in a chromosome because total number of different difference in Figure

30

3-9(b) is five (They are 3, 6, 2, 5, and 4). Thus, gene 1 may correspond to 3, gene 2 may
correspond to 6, gene 3 may correspond to 2, gene 4 may correspond to 5 and gene 5 may

correspond to 4.

for (i=2;1<=N;i++)
{ /*a l* Ali-2]
/*a 2% Alit+l]
/*a 3* Alit4]
/*a 4% Alit+1]

(a) (b)

Chromosome
gene 1 gene 5

(c)

Figure 3-9 (a) a source program (b) MEDG (c) chromosome representation

3.5.3 Population Initialization

If Kk ARs and | MRs are available, we initialize a population with m chromosome.
Each chromosome contains | “1’s and other genes in chromosome are ‘0’. This constraint
may speed up computation time of convergence (we will discuss this later). Figure 3-10 is
an example that if two ARs and two MRs are available, two ‘1’s exist in each
chromosome.

31

Initial population

Chromosome 1 |1[(0[1]0]0

Chromosomem |0 |1]0(1]0

Figure 3-10 An example of initial population

3.5.4 Crossover and Mutation Operation
We apply one-point crossover operation to produce offspring from two selected
parents in the population and apply!bit mutation operation to each individual of the

offspring.

One-point crossover operation
After two parents are selected (Figure 3-11(a)), we randomly specify a point on
these two chromosomes (Figure 3-11(b)). Then we interchange their tail from the

point and produce two new offsprings (Figure 3-11(c)).

Bit mutation operation
Each gene of produced chromosomes has probability to flip bit from ‘0’ to ‘1’
or from ‘1’ to ‘0’. Figure 3-12 shows an example that gene 3 and gene 5 are mutated

within a chromosome.

32

Parent 1: 0 1 1 0 0

(@)
Parent 2: 0 1 0 1 0
| one point
Parent 1: 0 1 1 i 0 0
(b) 5
Parent 2: 0 1 0 ! 1 0
Child 1: 0 1 1 1 0
()
Child=2: 0 1 0 0 0

Figure 3-11 One-point crossover operation

Before mutating 0|1 1 1 0

After mutating 0| 110 | 1 [1

Figure 3-12 Bit mutation operation

Notice that we constrain the number of ‘1’ within a chromosome initially. However,
after applying crossover and mutation operation, the number of ‘1’ may not equal to |. We

will discuss this situation later.

33

3.5.5 Evaluation Function

The genetic algorithm uses an objective function to determine how 'fit' each
chromosome is for survival. We evaluate the fitness of a chromosome according to the
following steps:

1. Some edges in the MEDG are removed if the genes corresponding to difference

of the edges indicate ‘0.
2. Apply Basu’s heuristic to obtain k paths B,....,P,

3. Evaluation function of the chromosome = cost|(P,.,...,P,)

In our design, smaller the fitness of the chromosome is, higher score it has. That is, it
is more possible to stay in the population. Take Figure 3-9 for example. Two ARs and two
MRs are available and we want to calculate the.fitness of the chromosome in Figure
3-13(a). According to the chromosome, we remove edges in Figure 3-9(b), which
differences are 3 and 2 because genes corresponding to 3 and 2 in the chromosome are ‘0’
(see Figure 3-13(b)). Then we apply Basu’s approach: Figure 3-13(c) shows two ARs are
needed in phase 1 and MERGE algorithm is not necessary to applied because we have
exactly two ARs available. So, the paths are P1 = {a;, a3, @/} and P, = {ay, a4, @, }.
Finally, the fitness of the chromosome is costy(P1, P2) or zero.

This is a good way to encode and decode a chromosome because edges should be
kept in the graph tend to “evolve” genes to 1 and those should removed tend to evolve to
0. These differences on the edges are addressing costs but only | MRs can handle them.
Therefore, we constrain the number of ‘1’ within a chromosome at the beginning of the
population. However, in the process of crossover and mutation operation, we permit the
number of ‘1’ within a chromosome being unequal to |. This may also peed up
computation time of convergence. For example, there are three ‘1’s within the

chromosome in Figure 3-13(a) and gene 5 does not influence the fitness of the

34

chromosome — whether it is ‘0’ or ‘1’. However, leaving the gene 5 to ‘1’ may have a
good effect on next generation. In fact, from our experiment, we get better solution if we
constrain the number of ‘1’ within a chromosome at the beginning of the initial

population and allow it to be unequal in the process of crossover and mutation operation.

a
@) 3 6 2 5 4
Chromosome 0 1 0 1 1
& e, " .
:‘.' ay_l .-“' s,'. a1_2 '.‘: :‘“ a’_3 '.‘: :‘" a'_4 --“'
A A
(c)

Figure 3-13 An example of calculating a chromosome of evaluation function

35

3.5.6 Parameters
We select the following parameters:
Population size: 30 individuals
Mutation probability per gene: 1/n, where n is number of array references
Replacement rate: 2/3 of the population size
Termination condition: 2000 generations or conservative 500 generations without a

fitness improvement

3.5.7 Time complexity

The time complexity of evaluating a chromosome is O(n* +n”logn®*) where n* is

FIND-MIN algorithm to find a case of P,.,P, and n’logn® is to compute

costy(P....,P,). Because n’logn® is smallerthan n*, the time complexity of evaluating

a chromosome is dominated by= O(n*) . If there are m chromosomes in a population and

L generations are produced, the total time complexity is O(L-m-n*).

36

Chapter 4 Simulation and Analysis

In this chapter, we introduce the benchmark programs. Then we compare the
addressing costs in loops of GA and pruning method to Basu’s approach when ARs and

MRs are given different numbers. Finally, we give a summary of experimental results.

4.1 Benchmark Suite

In order to evaluate the efficiency of using the AGU, we introduce the stencil
Micro-Benchmark Suite. Stencil codes continue to play an important role in scientific
computations as well as the fields of image processing and geometric modeling. Each
program contains a loop kernel with a sequencerof accessing the same array references.
They are taken from three sources. All the integer stencils can be found in a book on
image processing [16]. The floating' point stencils come from the domain of partial
differential equations [17] and the’NAS MG Parallel Benchmark [18][19]. These kernels
are listed in Table 4-1. The type is given by the first letter of the benchmark name: “D”
for floating point and “I”” for integer codes. The 2D stencil kernels are run over a 1000 by
1000 array of floating point or integer values; the 3D stencil kernels over a 100 by 100

array.

37

Table 4-1 Stencil Micro-Benchmarks Suite

Benchmark | # of array references |Usage
DISO3X3 9 Biharmonic operator
DROW3X3 9 Partial derivatives
INOISEI 9 Partial derivatives
IPREWITT 12 Biharmonic operator
ISOBEL 12 NAS MG Benchmark
I[YOKOI 12 Partial derivatives
DLILBIHARM 13 NAS MG Benchmark
DRPRIJ3(3D) 19 Gradient edge detection
DRESID(3D) 21 Line detection
IMORPH 21 Mathematical morphology
IROBINSON 24 Gradient edge detection
DBIGBIHARM 25 Noise cleaning
DISO5X5 25 Noise cleaning
INOISE2 25 Noise cleaning
ILINEDET 48 Edge detection
INOISE3 49 Gradient edge detection
IWIDELINEDET 72 Edge detection
IBIGLAPLACE 97 Wide line detection
INEVATIA 141 Connectivity number
IZEROCROSS 211 Edge detection

4.2 Experimental Results

Three approaches are implemented in C++ and tested on desktop computer with an

Under a variety of ARs and MRs, our experiment is divided into two parts. One is

small programs which number of array references are smaller than 49. This is because

algorithm’s performance.

Intel Pentium 4 2.4GHz processor and 1.0GB RAM, running under Linux 2.4.22. For

each program in Stencil Micro-Benchmarks Suite, we run the GA 10 times to examine the

comparison of addressing costs between Basu’s approach, GA and pruning method for

38

pruning method can not find the optimal solution in one day for those programs which
number of array references are greater than 49. The other is comparison of addressing
costs between Basu’s approach and GA for all programs.

In each figure of the simulation results, the X-axis is a fixed number of ARs and
different number of MRs. The Y-axis is the total addressing costs for small programs
which number of array references is smaller than 49, or for all programs. Each
configuration of AR and MR has three bars, indicating three (two) approaches: Basu, GA
and Pruning (only for small programs).

From these figures we can see that GA and Pruning perform better than Basu’s
approach except for Figure 4-1 and Figure 4-5. This is because the only solution for one
AR given to access n array references is P; = {a,,...,a,,8, }. Therefore, these three
approaches have same addressing ¢osts for small (all) programs. Table 4-2 and Table 4-3
show the reduction rate of addressing costs based on Basu’s approach. We can see that
under fixed number of ARs, our approaches-can perform better than Basu’s when given

more MRs.

® For small programs

200 8 Basu
£ 150 W GA
O O Pruning
=
Z 100
g
=2
< 50

0

1ARIMR 1AR2MR 1AR3MR 1AR4MR

Figure 4-1 Addressing costs of 1 AR and | MRs for small programs

39

160 O Basu
140 EGA

120 O Pruning
100

(o)
o

Addressing Costs
o0
o

NN
S S

o

2ARIMR 2AR2MR 2AR3MR 2AR4AMR

Figure 4-2 Addressing costs of 2 ARs and | MRs for small programs

120

100
2
S 80
jelt}
260
&
S 40
<C
20
0
3ARIMR 3AR2MR 3AR3MR 3ARAMR
e

Figure 4-3 Addressing costs of 3 ARs and | MRs for small programs

Addressing Costs

4ARIMR 4AR2MR 4AR3MR 4ARAMR

Figure 4-4 Addressing costs of 4 ARs and | MRs for small programs

40

Table 4-2 Addressing costs reduction for small programs

GA Pruning GA Pruning GA Pruning GA Pruning
1 MR 2 MRs 3 MRs 4 MRs
2 ARs 30% 33% 44% 48% 58% 59% 67% 72%
3 ARs 35% 41% 51% 58% 63% 67% 74% 82%
4 ARs 30% 39% 47% 62% 72% 83% 85% 91%
® For all programs
600
O Basu
500 I
2 HGA
& 400
X))
2300 [
2 20
100
0
1ARIMR 1AR2MR 1AR3MR 1AR4AMR

Figure 4-5 Addressing costs of 1 ARs and | MRs for all programs

Addressing Costs

500

400

300

200

100 |

O Basu

B GA

0

Figure 4-6 Addressing costs of 2 ARs and | MRs for all programs

2ARIMR

2AR2MR

2AR3MR

41

2AR4MR

500

O Basu
400 BGA
300

200

Addressing Costs

100

3ARIMR 3AR2MR 3AR3MR 3AR4MR

Figure 4-7 Addressing costs of 3 ARs and | MRs for all programs

400
300 B GA

200

Addressing Costs

100

4AR4MR

4ARIMR 4AR2MR 4AR3MR

Figure 4-8 Addressing and | MRs for all programs

Table 4-3 Addressing costs reduction for all programs

GA
IMR | 2MRs | 3MRs | 4 MRs
2 ARs 26% 33% 39% 43%
3 ARs 32% 41% 49% 56%
4 ARs 29% 37% 49% 56%

42

4.2.1 Summary of Experimental Results

For small programs, GA reduces 55% addressing costs in average compared to
Basu’s approach while pruning method reduces 61%. Therefore, comparing its results to
the optimal solutions, GA performs very well with an average overhead of less than 6%.
Besides, GA runs less than five minutes for each program (including large programs). For

all programs, GA reduces 41% addressing costs in average compared to Basu’s approach.

43

Chapter S Conclusion and Future Works

In this thesis, we have proposed approaches for optimizing array index computation
targeted to the DSP processors with auto-increment (decrement) by 1 and auto-modify
features under register constraints. If program size is small, we can apply pruning method
to find optimal solution while program size is large, we apply GA to obtain a reasonable
solution.

Experimental results show that our approaches are indeed very effective in
comparison with Basu’s method. Unlike previous research which emphasizes the usage of
auto-increment (decrement) by 1, our results show that a good decision of clustering
array references into ARs makes addressing costs minimized.

There are still some researches could be further'studied. First, a more precise method
to evaluate program performance improvement is required. We will try to integrate our
optimizations into DSP compilérs: and analyze the execution cycles. Second, we will
consider basic blocks. Not much work has been done toward finding solutions for the
allocation of address registers across basic blocks. Finally, there are some special indirect

addressing modes in certain DSPs. More techniques are required to exploit.

44

References

[1].

[9].

P. Paulin, M. Cornero, C. Liem, et al. “Trends in Embedded Systems Technology”, in:
M.G. Sami, G. De Micheli (eds.): Hardware/Software Codesign, Kluwer Academic
Publishers, 1996

. V. Zivojnovic, J.M. Velarde, C. Schliager, H. Meyr, “DSPStone — A DSP-oriented

Benchmarking Methodology”, Int. Conf. on Signal Processing Applications and
Technology (ICSPAT), 1994

. P. Marwedel, G. Goossens (eds.), “Code Generation for Embedded Processors”,

Kluwer Academic Publishers, 1995

. L. Davis, “Hand book of Genetic Algorithms”, Van Nostrand Reinhold, 1991

. Genetic Server and Genetic Library. 2001. The NeuroDimension company.

http://www.nd.com/genetic/

. R. Leupers and P. Marwedel, »“Algorithm for address assignment in DSP code

generation”, in Proc. Int. Conf. Computer-Aided Design, pp.109-112, 1996.

. S. Atri, J, Ramanujam, M. Kandemir, ”Improving Offset Assignment for Embedded

Processors”, Languages and Compiler for High-Performance Computing, S. Midkiff

et al. (eds.), Lecture Notes in Computer Science, Springer, 2001.

. Rainer Leupers, “Offset Assignment Showdown - Evaluation of DSP Address Code

Optimization Algorithms”, Institute for Integrated Signal Processing System (ISS),

2003.

G. Araujo, A. Sudarsanam, S. Malik, “Instruction Set Design and Optimizations for
Address Computation in DSP Architectures”, 9th Int. Symp. On System Synthesis
(ISSS), 1996

[10].R. Leupers, A. Basu, and P. Marwedel, “Optimized Array Index Computation in DSP

Programs”, Proc. Asia and South Pacific Design Automation Conference, February

45

http://www.nd.com/genetic/

1998

[11].G. Araujo, S. Malik, “Register Allocation for Indirect Addressing in Loops”, 1998

[12].Basu, A., Leupers, R., and Marwedel, P. 1999. “Array index allocation under
register constraints in DSP programs”. In proceedings of the International
Conference on VLSI Design. IEEE Press, Los Alamitos, CA.

[13].N. Robertson, P.D. Seymour, “An outline of Disjoint Path Algorithms”, pp. 267-292
in: B. Korte, L. Lovasz, H.J. prémel, A. Schrijver (eds.): Paths, Flows, and VLSI

Layout, Springer-Verlag, 1990

[14].M. Cintra, G. Araujo, “Array Reference Allocation Using SSA-Form and Live Range
Growth”, LCTES, 2000

[15].G. Araujo, G. Ottoni, “Global Array Reference Allocation”, ACM Transactions on
Design Automation of Electronic Systems, Vol. 7, No. 2, April 2002

[16].R. M. Haralick and L. G. Shapiro, “Computer. and Robot Vision”, Addison-Wesley,
1992

[17].M. Abramowitz and 1. A. Stegui;“Handbook of mathematical functions, with
formulas, graphs, and matheatical tables’; Dover Publications, 1973

[18].D. Bailey, E. Barszca, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, S.
Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan,
and S. Weeratunga. The NAS parallel benchmarks (94). Technical report, RNR
Technical Report RNR-94-007, March 1994

[19].D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo, and M. Yarrow. The

NAS parallel benchmarks 2.0. Technical report, NAS Report NAS-95-020,
December 1995

46

	Introduction
	Research Motivations
	Research Objective and Proposed Approaches
	Organization of This Thesis

	Backgrounds and Related Work
	The Address Generation Unit in DSP
	Genetic Algorithms
	Selection Operators
	Crossover Operators
	Mutation Operators
	Termination Methods

	Previous Works
	Local Array Reference Allocation (LARA)
	Global Array Reference Allocation (GARA)
	Summary of Address Code Optimization with AGU

	Proposed Methods
	Observation
	Problem Description
	Problem Transformation
	Approach 1: Brute Force with Pruning
	Time Complexity

	Approach 2: Genetic Algorithm (GA)
	Overview of GA
	Chromosomal Representation
	Population Initialization
	Crossover and Mutation Operation
	Evaluation Function
	Parameters
	Time complexity

	Simulation and Analysis
	Benchmark Suite
	Experimental Results
	Summary of Experimental Results

	Conclusion and Future Works
	References

