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摘要 

隨著科技的進步，想要得到高解析度及複雜的三維影像資料是不困難

的。然而，我們每次都要處理這麼大量的資料其實是滿浪費資源的。

因此，拓樸結構在分析物體上是不可或缺的。首先，我們會先介紹

Reeb graph 的方法，Reeb graph 是一種對函數的拓樸結構，如果能

找到一個適當的函數來描述物體，那 Reeb graph 算是對物體的一個

拓樸結構的表現。接著我們會介紹 skeleton 的方法，這是一種我們

可以最直觀想像的提取方法。而最後我們會對於數學拓樸上找到一個

好的基底來描述一個物體結構。利用基底的剪開來實現 Poincaré

-Klein-Koebe Uniformization Theorem。 
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Abstract 

With the recent advances in mesh acquisition device, polygonal mesh 

with high resolution and complex structure can be easily to get.  

Topological structure and is crucial for analyzing the shape of complex 

mesh model.  We introduce Reeb graph first.  Reeb graph is the 

topological structure of the function.  The Reeb graph can be regarded 

as a topological structure if there exists a suitable function defined on 

mesh.  Second, we will introduce the skeleton, which is the most 

intuitively for us to realize the topological structure of a shape.  Finally 

we want to show the basis of the shape in topology, the homotopy basis 

and the homology basis.  In the end, we compare this method and show 

our experiment.  
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Chapter 1

Introduction

With the developing of computer technology rapidly, the speed of the data processing

is much faster than last century. In this improvement, people want to show the objects

of the real world on the computer, that is the 3D image. We also want to play computer

games in 3D vision, which can supply object rotating, zooming in and zooming out. In

industry, we can check the process yield of the products, for example microchip and copies

of historical relics. In biomedicine, we check a human bone, gene,and chromosome to know

whether the human is heathy or not. In addition, with the conformal geometry developing,

we can make 3D movies in incredible time. To reach these goals, we have developed two

techniques. In the 3D scanner technology maturation phase, constructing 3D models

becomes more convenient. The second one is that we can get and share amount of data

very easy because of the high speed of the internet. Besides, in order to supporting the

model process, there are many softwares appearing, Maya, Zbrush, AutoCAD, and so on.

However, the whole data of three model is very huge that we may hard to storage, classify,

and application in some computation complexity. We want to find some representations

which can stand for complicated models which have topological structure without using

amazing data.

There are many ways to extract the topological structure the the 3D model of the ob-

ject. The Reeb graph is a compact shape descriptors, preserving topological information

by level set of a function which is defined on the shape. Similarly, finding Topological

Skeleton can also emphasize topological properties of the shape, especially the length,
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width, and connectivity. It also plays an important role to the role of animation. Those

can only describe one of the Homotopy Basis, which is called Tunnel Loop we may

give a clear definition later. Each genus may generate two different loops to be the element

of a basis of the shape. We want to find a good basis of the shape to cut that can change

from origin shape into a topological disk. In Chapter 2, we start to introduce how to find

topological structure of the shape from reeb graph which is the topological description

of the Morse Function. In Chapter 3, we want to show how to shrink a shape to a

skeleton. In chapter 4, we explain why we need to introduce the basis of a shape, the we

show how to find it. In the end we give a brief conclusion for whole paper.
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Chapter 2

Reeb graph

The Reeb graph [11] is a 1D graph structure for representing the topology of a

function. Once we can define a suitable function on the object surface, the reeg graph of

the surface function can be regarded as the topological structure of the object. In this

chapter, we review the definition of reeb graph, and discuss the methods to extract the

topological structure from the 3D object using reeb graph.

The reeb graph is the topology of a function. By its definition, the function should

satisfy the morse function [18]. The morse function comes from the Morse theory [18]

which studies the relationship of the different shape in a space and the relation between

the critical points, which is defined as follows:

Definition. Let M be a 2-mainfold with or without boundary. A smooth map f : M 7→ R

is called a morse function defined by following conditions:

1. All critical points of f are non-degenerate and lie in the interior of M.

2. All critical points of f restricted to the boundary of M are non-degenerate.

3. f(x) 6= f(y) for all critical points x 6= y of f and its restriction to the boundary.

We now define the reeb graph as the topological structure of the morse function.

Definition (Reeb graph). Let f : S → R be a real value function on a compact manifold

S. The Reeb graph of f is the quotient space of f in M × R by the equivalence relation,

(X1, f(X1)) ∼ (X2, f(X2)) if and only if f(X1) = f(X2),
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where X1 and X2 are the point of the shape. This means X1 and X2 are classified

into the same node point if the satisfied the following two conditions: 1. X1 and X2 belong

to the same interval under the classified of the function f , 2. X1 and X2 are connected

each other in the corresponding interval.

To extract Reeb graph from a continuous surface, the function value for all the

surface points should be evaluated. By classifying all the surface points with the same

value of the function, we can get the quotient space from the origin space. The Reeb

graph is then constructed by connecting the element of the quotient space related to the

original shape.

Since there exist different morse functions for the same surface, the Reeb graphs

extracted from the functions may not be the same. In this way we have to find a good

morse function to classified the shape. Shinagawa and Kunii used the height function on

the object surface to extract the Reeb graph [12]. The height function h(x, y, z) = z may

be intuitively to express a shape. A level set is the primage of each height. We want to

observe the level set changed when the image value of the height function h, especially we

encounter the critical points. There may be four possible results occur at a critical point:

1. The minimum point which all the point around it is higher than it.

2. The first kind of saddle point which will separate the level set into two part after

the constant value increasing.

3. The second kind of saddle point which will combine two part into one part after the

constant value increasing.

4. The maximum point which all the point around it is lower than it.

After we connect these critical points, we can describe the shape. Moreover, the number

of loops in the reeb graph is equal to the surface genus. Now we describ how to construct

the reeb graph. The construction of Reeb graph in the work of Shinagawa and Kunii [12]

is based on the classification of iso-contours of the function. The process starts by locating

the surface point having the global minimum of function, which is denoted as the critical

point. Then, trace the iso-contour by increasing the iso-value of the function. Once the
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Figure 2.1: Four possible result for critical point

topology of the iso-contour is changed, a critical point is inserted at the position and

decide the type of critical point it is. This process is performed until the global maximum

of the function is reached. Fig. 2.2 illustrates the process of finding the reeb graph of

the donus surface by dunking it in the coffee. We begin from no donut in the coffee.

The first critical point is the minimum point at the bottom. Before we pass the second

critical point, we found that the topology of part which have dunk in the coffee from a

point expands to a topological disk. After passing the second one, we found that portion

from a topology disk changing into a cylinder. We also observe that during from a critical

point to next critical point, the topology of the object may not change. After passing the

third critical point, the portion changed from a cylinder into a punctured torus, which is

a 2-mainfold with boundary of genus 2. If we dunked all the donut, that is passing the

maximum point, the topology will be a torus in the end.

The height function may be useful when modeling a 3D shape from cross section

like CT image. However, the height function is not suitable to identify a shape because

it may change the result when transforming such as rotation. In order to handle these

problems, Lazarus[5] proposed geodesic distance from a source point for a function, where

the geodesic distance is the shortest distance on the surface from point to point. Geodesic
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Figure 2.2: Process of construct the reeb graph of torus.

distance may avoid result changing by rotation and some small perturbation. However,

to identify a shape, the source point need to be determined automatically and stable. A

small change of the shape may not determined the same source point, this is a difficult

problem but need to solved which we wish to construct a stable Reeb graph. Hilaga

et al. [8] extended the geodesic distance function from a source point to the average

geodesic distance function. In the average geodesic distance function, the function value

for a surface point is defined by the average of geodesic distances from this point to all

the surface points as in Eq. 2.1.

µ(v) =

∫
p∈s

g(v, p)dS, (2.1)

where g(v, p) is the geodesic distance on surface S.

Because of this function has no source point, it will be more stable. But the function

µ(v) is not invariant to scale of the object. So the function changed into a normalize

version,

µn(v) =
µ(v)−minp∈Sµ(p)

maxp∈Sµ(p)

This function is very useful for as object deformation, because of the geodesic distance

is not change a lot on the surface. Besides, we observed that the value of µn(v) is small
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when the point is close to the central of the object, otherwise, when the point is far from

the center, µn(v) is large. So this function, the normalized integral of geodesic distance

continuous function is suitable for topological matching.

However, even we defined a good function to description, it is not useful if we can

not use it on mesh. Valerio[16] proposed a new algorithm which can compute the reeb

graph of even non-manifold surface. Let a simplicial mesh K with a piecewise linear

function F. First, we do not give an order to input the mesh except, the two vertices

of edge must appear before the edge, all edges and vertices of corresponding triangle

must appear before the triangle. Now we begin to construct the Reeb graph by adding

the mesh. Valerio give the following data structure. As the following figure we see, we

construct the node on Reeb graph by corresponding vertex as we see Figure 2.3(a). We

also construct the arc in Reeb graph when we add edge into the mesh, each arc stores

a list of pointer to edges which are intersect between the interval in the corresponding

arc. For each edge we store the highest arc which has stored this edge. To construct the

reeb graph easily we give an extra information. As we see in Figure 2.3(a) e4 not only

stores the highest arc a0 but also stores an extra number which presents link times of e4

from a0. The algorithm begin from the empty Reeb Graph. First we add a new vertex,

edge, or triangle. For each vertex we use CreatNode to generate a new node in the Reeb

Graph. Then we call CreatArc to generate the arc in Reeb graph. Storing edges which

is intersection with the corresponding interval. Then After all three vertices and edges

are added, calling MergePath to connected the new contour and update all the arcs and

edges as we see from Figure 2.3(c) to (d). Finally we removed the edge which need two

links from it beginning to the end, as we shown in Figure 2.3(e), e4 is removed.

In this algorithm we don’t need to find the critical point at first. Besides it also has

a concept of the persistent homology we may explain later. However, to construct a Reeb

graph on the surface we need to give a morse function which is not easy to find, and we

may not to realize how does it works for most function intuitively. So, the next chapter

we want to introduce another topological structure expression that is usually to be used,

a the graph of medial axis, we also called a skeleton in usual.
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Algorithm 1 Reeb Greph

Input: a Mesh K

for all element in K do

if element is a vertex v then

CreatNode(v)

else if element is a edge then

CreatArc(vi,vj)

else

MergePaths(ei,ej,ek)

end if

Update the list of arcs and edges.

if the number of link in ei is up to two then

RemoveEdge(ei)

end if

end for
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Figure 2.3: Data structure of Reeb graph. [16]
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Chapter 3

Skeleton

The most intuitive way to describe the topological structure of an object is by looking

at its skeleton. The skeleton of the object is an 1D structure that represents the object’s

shape and the topological characteristics. In this chapter, we review the skeletonization

methods that extract the 1D curved-skeleton from the 3D closed surface. The curve-

skeleton is ill-defined, therefore there exists lots of algorithms in the literature proposed

with different definitions. It is hard to decide which method we want to choose for our

requirement and which algorithm support properties. For example, virtual navigation for

medical is strict to require on the center. Curve-skeletons are closely related to the medial

axis. The medial axis of the shape is a set of curves which all point on these curves gave

more than one closet point on the boundary of the shape. There is another concept of

medial axis, Harry Blum[3] defined a medial axis when we defined the shape as the dry

grass, set on fire at all points on the boundary until the fire front meet and quench each

other. The set of quench points are called medial axis. The skeleton is defined as the

locus of the points of maximal inscribed ball,

Definition (skeleton). Let S ⊂ R3 be a 3D shape. B(r, x) is a open ball consists of the

radius r and the center x ∈ S, which is B(r, x) = y ∈ R3, d(x, y) < r, where d(x, y) is the

distance between x and y.

However, Even though medial axis and skeleton are closely related, they are not

exactly the same[1]. The difference between the medial axis and the skeleton arise on

10



the limited case, the end of the ellipse in [1] for example, the end points only belong to

skeleton.

In this paper we categorize many of the existing methods into two classes: volumetric

and geometric.

Most existing curve-skeleton methods come from a volumetric discrete representa-

tion in 3D space, which can be either the voxelized representation or a distance field

function. For voxelized representation, thinning methods attempt to produce a curve-

skeleton by iteratively remove voxels from boundary until the thinness is obtain. All

thinning algorithms rely on the concept of sample point which is a shape point that can

be removed without change the topology of the shape. The advantage of thinning methods

is they can only check their neighbor to decided whether the sample point can be removed

or not. This may make the algorithm be much more efficient. Distance field methods is

defined the smallest distance from each interior point of 3D shape to the boundary of the

shape,

Definition (Distance field). D(x) = min(d(x, y)), where d is some distance metric be-

tween x in shape and y in boundary of shape.

The ridges of the field correspond to voxel are locally centered in the shape. Con-

necting this candidate for constructing an approximate medial surface. There are another

field methods to use, for example repulsive forces[9], for every point in the shape do

F (p) =
∑

b∈boundary Fbp, where Fbp =
−→
bp

d(bp)
, d is distance between b and p and

−→
bp is the

vector from b to p. Thus, every point in the shape has a corresponding vector, as the

Figure 3.1. This method determined the potential value at interior points by considering

the whole boundary and then is less than sensitive to noise.

However, these previous methods require the volumetric mesh, but most of data of

shapes provide only the surface data. So, we need to construct the volume data, and

that may be unstable. A disadvantage of the medial axis is that it is sensitive to small

change as Figure 3.2 Besides, most of methods need to compare relationship between

whole boundary and the interior points that may cost expensive. In order to most shapes

only provide the surface mesh, geometry methods can work on only polygon mesh or point
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Figure 3.1: Repulsive force field of a 3D chess piece.[9]

Figure 3.2: Sensitive of the medial axis

set directly. A common approach methods come from the key concept of the Voronoï

diagram [15]. Reeb graph can also use for constructing the skeleton for 3D model with

many different surface function for example geodesic function as we introduced before.

Harmonic function can also use for reeb graph [2], proposed by Aujay, embedded the

skeleton into the geometry with appropriate refinement, solving the Laplacian equation[2].

There are some methods extracting skeletons directly on surface. Au[10] pro-

posed a effect method instead of using volume data. Given a mesh G = (V,E), where

V = [vT1 , v
T
2 , v

T
3 , · · · , vTn ] are the vertex position. Our goal is to find S = (N,B), where

N = [NT
1 , N

T
2 , N

T
3 , · · · , NT

m] are the node position and edges B. Au approached with geom-

etry contraction process that iterative smoothly and collapse the mesh geometry without

any voxelization process. The main idea is to iterative smoothly and contract the surface

of the shape into an zero-volume mesh without change topology structure of the shape.

This problem is like a simple energy minimization problem with constrained Laplacian

smoothing. In this way, the energy function consists of two terms, the first term is to
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contract geometry and the second one is to attract energy to preserve the origin topo-

logical structure of the shape. To convert the zero-volume mesh into a curve-skeleton,

we perform a connectivity surgery process. We collapse the edge without alters topology.

This method has following advantages, maintain the topological structure because of the

process without disconnected the origin mesh, works directly on the surface making the

method efficient, and because of using iterative smoothly operator, the method can handle

the noise naturally.

Next we want to show the detail of the method. We move the vertices along their

approximate curvature normal direction by applying Laplacian smoothing iteratively. The

formulation is to solve a sparse linear system. Let L be the n-by n curvature-flow Laplace

operator with elements,

Lij =


ωij = cotαij + cot βij, if (i, j) ∈ E∑

(i,k)∈E −ωik if i = j

0 others

(3.1)

and let V ′ be smoothly contracted along the normal directions by solving LV ′ = 0.

Because we want to preserve the geometry structure, we constrain all the vertices to

theirs current position with the different weight. To balance the contract constrain and

attraction constrain of geometry we may design the different weight. Therefore, we solve

the following system for the vertex position,

WLL

WH

V ′ =
 0

WHV

 (3.2)

where WL and WH are the diagonal weighting metrics of contraction and attraction

constraints. Solving system Eq. 3.2 ones does not make the model into a 1D shape. We

need to iterate several times with proper weight. However, using the same weight is too

slow to collapsing. Therefore, to increasing the collapsing speed we gain the contraction

weight WL for every iteration and change the attraction weight WH,i by the degree of
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local area change for each vertex i. The iterative process as follow,

1. Solve

Wt
LL

Wt
H

V t+1 =

 0

Wt
HV

t

 to update V

2. Update Wt+1
L = sLWt

L and Wt+1
H,i = W0

H,i

√
A0

i /A
t
i where At

i is the one-ring area.

and sL is a power to gain the collapse speed.

3. Construct the new Laplacian operator Lt+1 by the new vertex position V t+1.

Au.[10] use W0
L = 10−3

√
A where A is the average area of the surface and W0

H = 1.0 for

the initial setting. they experiment that when sL = 2.0 the models are usually iterated

less than 10 times with the threshold.

We now contract mesh with zero-volume which looks like a 1D skeleton. However,

it is still the original mesh. So next we need to simplify the contracted mesh into a 1D

graph to get a curve-skeleton. To achieve this goal, we remove collapsed face from the

degenerate mesh by applying a series of connectivity surgery operation. We remove each

face without change the topology of the model.

The curve-skeleton is useful and popular to research, especially the geometry part.

It can show how the object change, that is very useful to animation. However, some

researchers want to find the circles directly on the surface of a shape that the circles can

not be shrink in to a point in topology, which is called non trivial. Curve-skeleton and

reeb graph can only find one kind of the circles. The next chapter we will find another.
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Chapter 4

Homotopy basis

In the previous two chapters, we introduced how to description a topological struc-

ture of the shape. But many applications of 3D models need to cut the model into a

topological disk. Especially studying Poincaré-Klein-Koebe Uniformization The-

orem. However, Reeb graph and skeleton can only provide one part of cuts, which is

called tunnel loop. To find the others, handle loops, we need to find homotopy basis. A

homotopy basis includes information about the shape of topological space intuitively. In

this paper, we only need to find the first dimension homotopy basis, handle loops and

tunnel loops which can generate the shape.

First, we need to give some definition. A loop is a continuous map at a base point

x L : [0, 1]→ M such that L(0) = L(1) = x. In other word, a loop on a surface means a

curve on a surface and the start point and the end point are the same one. And we say

two loops are homotopy equivalent if one loop can be elastically changing to the others

continuously. We give a precise definition for homotopy on mathematic:

Definition (Homotopy). Two loops L and L′ through the same base point are homotopic if

there exist a continuous map h : [0, 1]× [0, 1]→M such that h(0, t) = L(t), h(1, t) = L′(t)

and h(s, 0) = h(s, 1) = x ∀s, t ∈ [0, 1].

There are three kinds of loop on the surface. The first one may separate the surface

into two part after we cut this loop. The second kind the contractible loop. We say a

loop is contractible if it can be homotopic to a constant loop, in other word the loop
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may shrink into a point. We are interested in the third kind of loops, non-contractible

and non-separate loop. The fundamental group is a group which may quotient all the

contractible loop as trivial.

Definition (Fundamental group π1(M,x)). The set of homotopy equivalence classes of

loops at x forms a group and the identity of this group is the contractible loops. We form

π1(M,x) under concatention:

1. Let L and L′ be two loops, L · L′ := L(2t) if t < 1
2

else L′(2t− 1)

2. L−1(t) = L(1− t)

3. Identity:I(t) = x

Definition (Homotopy basis). There are 2g loops generate π1(M,x) called a homotopy

basis.

As the following figure we see, a system of loops is a homotopy basis but not vice

versa. What we want is a system of loops, which the surface can be changed into a

topological disk by removed it.

Figure 4.1: A homotopy basis but not a system of loops

Definition (greedy homotopy basis[7]). We define l1, l2, · · · , l2g be the greedy homotopy

basis if M\(l1 ∪ l2 ∪ · · · li) is connected for each i

Our goal is to find cuts that may change our object into the topology disk. A dual

graph of a given planar graph G is a graph G′ which a vertex in G′ is corresponding to
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a face in G. A edge between 2 face in G′ is corresponding to each edge in G. A face in

G′ is correspond to the vertex in G. The ”Dual” means this property is symmetric, in

other word if G′ is a Gual mesh of G, so is G. We collect some edges in a dual graph

into a set with no loop and all connected, we find the corresponding set in G is the face

which is connected. In topology, this set in G is just a topology disk. Our strategy is to

find connected faces as big as possible on the surface. In the way, we may use minimum

spanning tree. A spanning tree of a graph is connected all the vertex together without

generating any loop. A spanning tree of a graph may not be unique. So, we can also

assign each edge a weight for the collected order. A minimum spanning tree is a spanning

tree with the weight choosing that the whole weight is less than any other spanning tree.

We also call it minimum weight spanning tree.

We combine these two knowledge and give a algorithm to find homotopy basis, first we

find the spanning tree T on graph G which is embedding in the surface for shortest paths

from a base point we choose. Then we find a maximum spanning tree T ′ on the dual mesh

G′. Collecting all the rest edges in T ′ into a set C∗. The set C which dual edge of the

edges in C is in C ′. We get the greedy homotopy basis from generating the loops when

we add the edge in C into the tree T . We give a brief algorithm to show how to do it,

Algorithm 2 Computing homotopy basis

Input: a graph G

Compute a minimum spanning tree T of the graph G

Find the dual graph G′ of G

Compute a maximim spanning tree T ′ of the dual graph G′

C = e | e′ /∈ T ′

For each eij = [vivj] we find a unique path γi from base point to vi and a unique path

γj from base point to vj on T

We get a loop lij = γi[vivj]γj

Find all loops until we finish using the whole edges in C.

All loops are independent and form a homotopy basis of G.

Erickson and Har-Peled [6]have shown that compute the actual shortest cut graph
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is np-hard. So most of posterity who is also study the cut gragh may research how to

make the algorithm fast with the same basic idea. Until 2008, Tamal K. Dey proposed a

novel concept to find a homology basis instead of homotopy basis, which may not use a

base point so it can find some global small loops.

4.1 Persistent Homology

In the final of this paragraph we want to introduce a method which is a differ-

ent application to simplicial complex from persistent topology. This method provides

mathematical guarantee on finding handle and tunnel loops.

Definition (Simplex). A k-simplex is a convex hull with k + 1 vertice.

A 0-simplex is a vertex, a 1-simplex is a line, a 2-simplex is a triangle, and a 3-

simplex is a tetrahedron.

Definition (Simplicial complex). A simplicial complex is a topological space which is

a union of simplices, in other word we glued some simplices together form a simplicial

complex.

Definition (Chain). In a simplcial complex K, a p-Chain means the sum of some p-

simplices in K, denote
∑

i aiσi, where σi is a p-simplex in K and ai belongs to Z/2Z in

our paper.

Definition (boundary operator). A boundary operator is a homomorphism, ∂p:Cp →

Cp−1 such that

∂p[v0, v1, v2, · · · , vp] =
∑
i

[v0, · · · , v̇i, · · · , vp].

where v̇i means vi is dropped.

Property. ∂p−1∂pCp = 0

For example, as Figure 1 shows, f1 = [v1, v2, v3] is a triangle. We do the boundary

operator on it,

∂f1 = [v2, v3] + [v1, v3] + [v1, v2] = e1 + e2 + e3.
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The boundary of a triangle is the sum of three line segments. We just do boundary

operator again,

∂∂f1 = ∂(e1 + e2 + e3) = ∂[v2, v3] + [v1, v3] + [v1, v2] = v2 + v3 + v1 + v3 + v1 + v2 = 0

Figure 4.2: Example for boundary operator

Definition (Cycle). A p-Chain Cp is called a p-Cycle when ∂Cp = 0

∂f1 is a cycle for the above example.

Definition (Boundary). A p-chain Cp is called a p-Boundary if there exist a (p+1)-chain

Dp+1 such that ∂Dp+1 = Cp.

It is easy to see that all the boundaries are cycles from the property we mentioned

before. We collect all the p-cycles into a set, denoted Zp, is the kernel of the p-boundary

operator, that is Zp = Ker∂p. We also collect all the p-cycles into a set, denoted Bp, is

the image of the p+ 1-boundary operator, that is Bp = Img∂p+1. Therefore Bp ⊆ Zp.

Definition (Homology Group). The p-dimension homology group is defined as the quo-

tient group,

Hp =
Zp

Bp

In this section, Hp is a vector space with a basis. The dimension of Hp is the number

of elements in a basis, and it is also the pth Betti’s number βp. We are interested in the

first homology group H1, and a 1-cycle we may called intuitively a loop.

Now we can give a definition for handle loop and tunnel loop. Let K be a closed surface
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in R3. M separate R3 in to two parts: (I) for inside and O for outside, all of them include

M.

Definition (Tunnel loop). A loop which is a boundary in O but not a boundary in I called

a Tunnel loop. In other words, Tunnel loop is trivial in H1(O) and nontrivial in H1(I)

Definition (Handle loop). A loop which is a boundary in I but not a boundary in O called

a Handle loop. In other words, Handle loop is trivial in H1(I) and nontrivial in H1(O)

By definition, we found that no loop can be both a handle loop and a tunnel loop.

However a loop may neither be handle loop nor tunnel loop. For example, the loop shown

as figure. Cutting this loop as a boundary may not expand to a disk. The result will be

as a band rotating twice and connecting two sides together. This is not desirable in our

goal. This method is based on a pairing of simplices which is a key concept in persistent

Figure 4.3: The loop is neither handle nor tunnel.

homology[13]. We construct simplicial complex K by a nested sequence of complex called

filtration,

φ ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kn = K.

We give a inclusion map f : Ki−1 ↪→ Ki defined by f(x) = x. Then a map between the

homology groups induced by inclusion map is f∗ : Hp(Ki−1) → Hp(Ki). The persistent

homology studies how homology groups change over the following filtration,

0→ Hp(K1)→ Hp(K2) · · · → Hp(Kn) = Hp(K).

Now we must give every simplex a signal, which is either a positive simplex or a negative

simplex. We assume Ki − Ki−1 = σi, where σi is a simplex. This means we add one

simplex each time in the filtration. A simplex is called a positive p-simplex by creating
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a non-boundary p-cycle after adding it. The other is killing of an existing (p − 1)-cycle

called a negative p-simplex.

4.2 Implementation

We give an example to elaborate the above classification. The simplicial complex

will be constructed by following order: when adding a new p-simplex, all simplices be-

longs to the (p − 1)-chain which is the boundary of this p-simplex being added in the

past. As the Figure 4.4 you can see, we add all vertices from K1 to K4. Because a vertex

is a non-boundary cycle obviously by definition, so all the vertices are positive simplices.

Next step, we add e1 to K4. Because ∂e1 = v1 + v4, adding e1 will change two cycles into

one cycle, in other word it kills a non-boundary cycle. We choose the youngest one cycle

v4, the latest creating one, to be killed. Thus e1 is a negative simplex. We add the edges

as a negative simplex until adding e4, adding will create a cycle e1 + e2 + e4, and it is also

a non-boundary cycle. So e4 is a positive simplex. We follow these rules to separate every

simplex. As we can see, adding a positive simplex will increase the dimension of H(K),

otherwise adding a negative we get the opposite effect.

By the persistent homology theory, a negative p-simplex is paired with a positive (p− 1)-

simplex. For example e1 is paired with v4 as we mentioned. This is the key concept in

persistent homology, each pair tells the time of a non-boundary cycle birth and what time

it was killed in the filtration. This concept is also used in Reeb graph in the past section.

We construct the reeb graph by paired the critical point which will express the start and

end.

Now we want to introduce how we pair the simplicial complex in detail. First we need

to decision the simplex is positive or negative. If the simplex is negative, then we need to

pair a positive simplex with it. By the persistence homology theory we pair the youngest

one,which is appear the latest in the same homology group and unpaired. Let sigma is

a new p-simplex we add in the filtration. We do the boundary operation on it and get a

chain c = ∂σ. Assume d is the youngest simplex in the chain, check whether it is paired
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Figure 4.4: Example for classification

or not. If d is paired withσ′, update c = c + ∂σ′. This step will cancel some simplices

because we module 2 in this paper. Updating the youngest simplex d and checking again

and again until the chain c is empty or the simplex d is unpaired. This while-loop is

the most important procedure during we are finding the loops we want. After breaking

while-loop, if c is empty that means there exist a d simplex that is unpaired, the σ is

negative simplex paired with d. Otherwise, σ is a positive simplex when c is empty. We

may also observe that the paired edge is the youngest edge in the corresponding loop

which is killed.. During the while-loop, we find a face that every time we update the

chain c is also a cycle which is expand from the first one, ∂σ. These cycles are homology

equivalent. This is also helpful for us to find a good loop in geometrically.
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Algorithm 3 Pair(σ)

Input: a p-simplex σ

A chain c = ∂σ

d is the youngest positive (p− 1)-simplex in c

while d is paired or c is non-empty do

Let c′ be the cycle which is killed and paired with d

c = c+ c′ module 2

Update the youngest positive (p− 1)-simplex d

end while

if c is non-empty then

σ is a negative p-simplex paired with d

else

σ is a positive p-simplex

end if

We have introduced the pair algorithm. Now we describe an algorithm for finding

handle loop and tunnel loop on an arbitrary closed surface. First step we have to describe

how to find them topological guarantee. We assume the input surface is presented with a

simplicial complex K. This means we can have the whole simplicial complex to represent

both inside space I and outside space O. What we need in those is only up to 2-simplex

of the space. Assume I and O are given, we add all simplex on surface M from vertices

to faces into the filtration. Then doing pair on this filtration. Since the dimension of

H1(M) is 2g, the algorithm will generate 2g unpaired positive edges. Here we know if

the youngest edge belong to each loop on M is not one of unpaired edges. Then it is a

boundary cycle. In other words, If we have a loop which youngest edges is unpaired edge

on M, it means the loop is not a boundary cycle in M. A non-boundary cycle in M may

also not a non-boundary cycle in I or in O, or neither. The next thing we need to do

is determining which loop is a boundary in I and which is in O. After finishing pair on

M, we add inside space I into the filtration up to 2-simplex. Then continue to pair with

filtration until the unpaired edges on M is paired. Since rank of H1(I) is g, we will pair g
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unpaired edges in the filtration. That means we killed g loops according to each unpaired

edge. Those loops is a boundary in I, but not boundary in O. By definition these are

called Handle loop. Now we add outside space O into the filtration and do the same way

to find the other g loops. Those are non-boundary in I, but boundary in O, which are

called Tunnel loop. Because we observe the unpaired edge is generated from M, then it is

the youngest edge in the corresponding loop when we paired the inside space and outside

space. So we can guarantee that all the edges in each loop are lying on M. Collecting

these loops to be a basis of H1(M).

Algorithm 4 Handle and Tunnel loops

Input: M is a complex in K

Output: Handle loops and Tunnel loops

For each simplex σ in M, Pair(σ)

UE is the set of unpair edges.

For each simplex σ in I, Pair(σ)

if d is the unpaired edge in UE and paired with the σ then

Output the first loop consists with all edges lying on the M during the while-loop

as the handle loop.

Delete d from UE

end if

For each simplex σ in O, Pair(σ)

if d is the unpaired edge in UE and paired with the σ then

Output the first loop consists with all edges lying on the M during the while-loop

as the tunnel loop.

Delete d from UE

end if

Now we can find the handle loops and tunnel loops and guarantee them to be

topological correct. But we can not guarantee them to be a good geometrically. Out

target is to find them as small as possible. Some methods may use the concept of universal
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covering space to find the shortest way from a point to corresponding point. This is the

same homotopy type of loops. However we need to find the shortest loops with homology

equivalent. In our algorithm, we have known that all loops are homology equivalent during

while-loop. We also known that the loops is expanding from one of the triangles. In this

way, we know the loop is longer than before during every time of the while-loop. So we

need to get the first time all edges in loop paired unpaired edge are on M. That will be

more close to the origin face, instead of the latest loop.

In 2009, Tamal[14] revisited this method, adding some rules to make the algorithm

faster. In the past we do not give an order for adding triangles on surface. Now we give

a new rule that is when we add a new triangle, it should be adjacent to the boundary of

the mesh we added from filtration so far. And another rule is the mesh must remains a

topological disk all the time. In our reading, this is just a concept of spanning tree on a

dual graph of the mesh, which we have introduced before.

To use this algorithm, there is a problem we encounter that is how can we construct

the outside mesh. Because in our knowledge, the outside may not bounded which we can

not construct the mesh infinity. We only can be easy to find handle loops. Therefore, we

add a concept that we may turn over the surface from inside to outside. Then, the outside

turn into inside, and inside become outside. Under this concept, we can find tunnel loops

as handle loops after we turn over the surface. However, we can not really to turn over

the surface in mesh on the computer. Because after we turned over the surface, the mesh

maintain the same one. The difference between the earlier and the later is the normal of

the triangle in mesh is opposite. Therefore the normal of the triangles turn from point to

inside into point to outside. And there is no bounded for normal direction and that why

we can not construct the outside space. To solve this problem we only need to construct a

box that can bounded the surface. Then the inside space after we add the box is changed

where it is between the surface and the box. Under this space we may find handle loops

which is the tunnel loops of the origin surface. The following figures are the samples.

Besides, we can have a tip which may let algorithm faster. We observe that Let t(σ)

denote the time stamp of the simplex adding into the filtration. Assume d is the youngest

edge in loop c, i.e. t(d) is the largest time stamp among all loop in c. Let u be the oldest
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unpaired edge. We observe that if t(d) < t(u) at while-loop, then the volume triangle is

positive. This may help us to save much time in add the volume triangles.

4.3 Result

We use Matlab2010 with I5 CPU and 4G RAM. We construct the volume mesh by

using Netgen software. The first one is torus which has 1608 vertices and 3212 faces. It

costs 26 seconds to find handle and tunnel loops. The second one is kitten which is also

one hole and has 610 vertices and 1220 faces and costs 17 seconds. The last one is three

tori which has 4524 vertices and 9506 faces and costs 120 seconds. We can easily to know

that homology basis is not restrict to a base point. So, it can find small loops as homology

group in global. However, the algorithm of persistence homology can only find the surface

which is closed and bound without boundary. On the other hand the algorithm of greedy

homotopy basis can be used on the surface with or without boundary even though we

know that find a shortest path of homotopy basis is np-hard[6]. In 2007, Xiaotain[17] used

the universal covering space to find the shortest path for homotopy basis which can find

the shortest point in local point. But finding a fastrst algorithm is still a challenge for us.

And let persistent homology work on the surface with boundary is another problem.
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(a) Tunnel loop of torus (b) Handle loop of torus

(c) Tunnel loop of kitten (d) Handle loop of kitten

(e) Handle and Tunnel loops of 3 tori

Figure 4.5: Tunnel loop and Handle loop
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Chapter 5

Conclusion

We have introduced the Reeb graph, skeleton, homotopy basis , and homology basis.

First two description usually be used to check the equivalence of topological structure

and topological matching. Reeb graph can be representation the topology of the function

which may express the object. However, it is not easy to construct the function to

describe a object. Skeleton is intuitively to show the activity of the object. But it is hard

to maintain the topology correct. The other two is useful for conformal mapping which

need to cut a surface into a topological disk. The homotopy basis can not only work on

compact manifold, also works on the manifold with boundary. However, the shortest loop

of homotopy basis is still np-hard. homology basis can only work on compact manifold

and so far the volume construct is required. But we can find a global shorter loops we

want. But even though they are not the same type, all of them can be used on the action

of the movie making, animation, and kinds of object moving.
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