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Effect of breaking bulk-Inversion symmetry on the quantum
spin Hall physics of CdTe/HgTe/CdTe structures

Student: Yi-Shiuan Lin Advisor: Prof. Chon-Saar Chu

Department of Electrophysics

National Chiao-Tung University

Abstract

In this thesis, we consider the effects of the Dresselhaus spin orbital interaction (DSOTI),
a form of breaking inversion symmetry, on the.topological physics of a well known topo-
logical structure, namely, the CdTe/HgTe/CdTe quantum well. Related system such as
a quantum channel formed out ‘of the above quantum well is also considered. Instead
of using model 2D Hamiltonian, ‘and quasi-1D Hamiltonian, for the quantum well and
quantum channel, respectively, we have calculated these Hamiltonians from the 3D Kane
model. This includes our introduction of the DSOI at the 3D Kane model. Our finding is
that the DSOI does not destroy the topological physics (the edge states) but has caused
intricate effect on the edge states. This is most evident in the case of a quantum channel,
when the edge state, under the effect of the DSOI, is caused to exhibit an edge-switching
behavior. Furthermore, in the presence of a potential barrier, the transmission exhibits
Fano-type characteristics that can be fine-tuned by the barrier height. There is also a
feature of forcing the edge-switching to occur in the immediate vicinity of the transmis-
sion region. A detail Fano-type process analysis has been performed to confirm the above

finding.
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Chapter 1

Introduction

The quantum spin Hall effect (QSHE) has been theoretically predicted and experimentally
observed in a HgCdTe/HgTe/HgCdTe quantum well system.[1-2] The band structure of
the HgCdTe is normal and the band. structure of the HgTe is inverted. Changing the
width d of the HgTe layer will change-the two, dimension (2D) electronic structure of the
quantum well between normal and inverted region. Specifically, the eigenenergy of the
conduction and heavy hole bands-at ithe I' points exhibit an energy crossing at a critical
well width d. (d. = 6.3nm[1]). The 2D band structure is topologically non-trivial in the
d > d. region.

In the topologically non-trivial region, the system supports edge states which is helical,
namely, the spin polarization is connected with its propagation direction. Furthermore,
time reversal symmetry requires that edge states at the same sample edge exist in a pair:
consisting of opposite propagation directions. This is the so called quantum spin Hall
effect. These edge states are robust against weak non-magnetic impurities or potential
profile.[3] As such, the edge states are expected to have high (almost perfect) transmission
through a potential barrier. Even though the gapless spectra of the edge states, in a
quantum channel, could open up a gap due to edge state wave function overlapping|4],
the back scattering of the edge states remain small as long as the energy of interest is far
away from the small energy gap. Here the quantum channel is formed out of the quantum
well. Recently, transport characteristics through such a quantum channel in the presence
of a potential barrier was studied.[5] They speculate that that transport dip structures

are orginated from Fano-type resonance. No analysis has been performed to support this
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speculation.

On the other hand, the fact that bulk inversion asymmetry (BIA) exists, where
the Dresselhaus spin orbital interaction (DSOI) comes into play, has not been seriously
considered.[6] An earlier study along this line claimed that BIA effects has no significant
bearing on the electronic property of the system.[7] However, the DSOI term do cause
mixing in the conduction and heavy hole bands, removing the energy crossing at the I
point.[8] Would this level anti-crossing destroy the QSHE completely? Or, if the QSHE
is to survive, how would the electronic states adjust to maintain the topological nature of
the system? We feel that this issue has far from being fully explored.

Still there are a number of recent works that have included DSOT into their effective 2D
Hamiltonian for the exploration of the quantum transport of the system.[9-11] Disorder
in a quantum channel is found to back scatter the edge states if the impurity is strong
enough and the channel is narrow enough, or if bulk states exist at the Fermi energy.|[9]
Furthermore, back scattering of the edge states can occur in a quantum channel that has
abrupt change in the channel width even though there is no impurity.[10] On the other
hand, the DSOI is found to provide ascheme monitoring the transmission or reflection
of an incoming edge state by the monitering 0g the Fermi energy.[11] This is due to the
interplay of the DSOI and the finite channel width effect, causing the spin of the edge
state to precess and the simultaneous switching of its location from one sample edge to
the other. This work has not included bulk states of the channel into their consideration.
A major focus of our work is to study inticate processes made possible by the presence of
both bulk and edge states in a quantum channel.

In this thesis, we perform a careful and detail calculation, both numerically and semi-
analytically, on the effects of the DSOI on the effective 2D Hamiltonian in a CdTe/HgTe/CdTe
quantum well system, the electronic states in the corresponding semi-infinite system or
quantum channel, and the transport characteristic through a potential barrier in the
quantum channel. Furthermore, we have discussed in depth on the topological nature (in
terms of topological number) of the edge states; and we have explicitly demonstrated the
Fano-type mechanism that leads to the transport spectra in the transmission. Our finding
is that the DSOI provides us a handle to tune the Fano-spectra. We also demonstrate

that by fine tuning the potential barrier in the vicinity of a Fano-spectra, we can switch
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the transmitted edge state from one edge to the other of the quantum channel. This
scheme of invoking the Fano-physics is more sensitive and less restrictive upon the struc-
ture requirement than that proposed in ref[11]. This noval feature could find application
in furture spintronic devices.

This thesis contains 7 chapters, including this Introduction chapter. In chapter 2,
we show our result of the the effective 2D Hamiltonian for the quantum well with DSOI
which we have derived from a 3D Kane model. The detail of the derivation is presented
in Appendix A. In chapter 3, we solve for the edge states in the semi-infinite 2D system is
formed out by the quantum well. Our methods of approach include both semi-analytical
and numerical methods. In chapter 4, we explore the topological origin of the edge state
in sight of topological quantities such as Chern number, winding number and the spin
Chern number. In chapter 5, we derive Hamiltonian for a quantum channel that is formed
out of the quantem well system. The electronic states for the quantum channel is obtained
and discussed. In chapter 6, we consider the transport through the quantum channel that
consists of the a potnetial barrier.©Both full numerical and semi-analytical approaches
are used to obtain and to analyze the transprot. characteristics. Dip structures in the
transmission are found and are shown te-originate from Fano physics. This Fano-type
process is made possible by the coexistance of edge state and bulk like resonance state
in the barrier region. Finally, we present a summery of our work (a majonity of it is in

chapters 5 and 6), and a suggestion to possible future work.



Chapter 2

From basic band formulation to

effective 2D Hamiltonian

In this chapter, we show the effective 2D Hamiltonian of the CdTe/HgTe/CdTe quantum
well system with DSOI. And, we alsoshow how DSOI removes the energy-crossing of the
conduction and beavy hole bands in the quantum-well.

The lattice structures of HgTe-and CdTe are zinc blende structure so they do not have
center of inversion.[6] It makes those materials be BIA. This symmetry broken makes a
spin orbital interaction well known as DSOI. Kane Hamiltonian describes the 3D bulk
electronic structure of the HgTe and CdTe (with DSOI) so we use it to start our analysis
on the quantum well. How the DSOI comes in the 3D Kane Hamiltonian and the detail
derivation of the effective 2D Hamiltonian are presented in Appendix A.

In the resent study[1], the non-trivial edge bands is observed in the energy gap between
the conduction and heavy hole bands of the quantum well. We do the derivation presented
in Appendix A to obtain the effective 2D 4 x 4 Hamiltonian which describes the bands
structure at the energy range of the conduction and heavy hole bands. In the set of basis

(|E1,+), |[H1,+), |[E1,—), |H1,—)), the effective Hamiltonian H.yy is of the form:

—M + BE*> Ak, 0 )
) Ak_ M — Bk? 5 0
H.py = Dk™ + . (2.1)
0 o —M + BE? Ak_
) 0 Ak, M — BE?



CHAPTER 2. FROM BASIC BAND FORMULATION TO EFFECTIVE 2D
HAMILTONIAN

Table 2.1: The band structure parameter of Hss

M(meV) B(meV/nm?) D(meV/nm?) A(meV/nm) §(meV)

ours 4.83 753 578 376 1.68
S.C. Zhang][1] 6.86 169 5.14 346
Markus Konig]7] 10 686 512 364 1.6

@ This band parameter is for d = 7Tnm.
¥ TIn ref[1], they didn’t include the DSOI so there are no § terms.

The value of the band parameters in H.ss is showed at Table 2.1. The from of the
effective Hamiltonian is as the same as the other’s result.[7] (By applying an unitary
transformation, we can obtain the same effective Hamiltonian as their result.) Our value
of parameters A, B, D and § are similar to theirs result. Only the value of M is much
different. The difference is because they:replace the CdTe layers by the HgCdTe layers.
The band parameters of the bulk.material aren’t-equal so that we have a different set of
band parameters. The topological properties of the two set of band parameters are the
same. We will show it in chpater-3.

The DSOI only adds the ¢ terms into the effective Hamiltonian. The other terms are
independent of the DSOI. The 6 terms are constant and couple the conduction (E1) and
the heavy hole (H1) band. The value of § isn’t zero in this system so the crossing of

eigenenergy at the I' point is removed. The energy spectrum becomes anti-crossing.



Chapter 3

Edge-state at an open boundary

In this chapter, we calculate the energy dispersion of edge bands in the corresponded
semi-infinite system showed in Fig.3.1. The condition of the edge state existence both
with DSOI and without DSOI is derived::'We also discuss the transmission property of
the edge states with DSOI.

The gapless edge state exists-in the system described by H.s; (equation (2.1)) with
A= MB — (B§/A)* > 0 and | B} > |DJ. (In the system without DSOI, the condition is
A=MB>0,A#0and |B| > |D|’) The gapless property of the edge states is due to
time reversal symmetry. For semi-infinity boundary, there are only two edge bands in the
system whether we include DSOI or not. Time reversal symmetry makes system have a
two level degeneracy at I" point. This energy degeneracy makes the edge bands be crossing.
Therefore, the edge bands are gapless and the system is topologically non-trivial if A > 0.
On the other hand, the DSOI only makes some systems that are topologically non-tirival
without DSOI become topologically trivial. The DSOI does effect the topological phase
of the 2D electronic system.

In the end of this chapter, we derive the form of effective 1D Hamiltonian consists of
edge branches by time reversal symmetry and the form of the edge states. The edge band
gap is zero and the pseudo-spin is only dependent on the £ linear terms. Those properties
are due to time reversal symmetry. The form of edge states make the k2 terms be zero so
the edge band aren’t scattered by non-magnetic potential or impurities. Only magnetic

impurities or field scatter the edge bands so DSOI doesn’t weak the edge bands.
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N

Figure 3.1: It shows the structure of a open boundary system. The wave function is zero
when y < 0 and y = oo.

3.1 Edge-state branch

In this section, we analytically solve the edge branches without DSOI for semi-infinity
boundary. (Here we assume we can tune all parameter in H. s so that we can see what is
condition that edge state exists.) We consider the effective Hamiltonian H,.sr with 6 =0
(equation (2.1)),

hy 0

Hepp = . (3.1)
0

~M+D.k* Ak,
Ak_, M+ D_k?

h, =

Where D = D+ B. The spin up part is decoupled to the spin down part. We can divide
H_.s¢ into two 2 x 2 Hamiltonian hy and A_.
The open boundary is along x-direction so the k, is the quantum number of the wave

function. The wave function is of the form:

U (z,y) = ™) Cetvavg. (3.2)
J
Where £ is the pesudo-spin of W. To form an edge state, we need at least two different
decay kys. When A is zero, the E1 and H1 subband are decoupled. We can’t find two of
k, for each band so the value of A must be non-zero.

We assume that W is edge state like form which consists of two of k,. For given k,
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and energy E, k7 is of the form:

k= — k2. (3.3)

Where a = ED + ’%2 — MB, 3=+/a>—-D,D_E.E_and EL = E + M. According to
the form of h,, there are only four k,s. Two k,s are minus times of the others. To form
an edge state, we need two different kys whose decay directions are the same. So only
when all k,s are complex, the edge state exists in this system.

Form the Schrodinger eqaution, we have two ways to define the pesudo-spin £ corre-

sponding to k, .

& =N, ( E_ — 258 Ak, +7iky,] ) . (3.4)
€)' = N, (Afk, - 7iky,] By -2 ). (3.5)

At the edge, y = 0, the wave function msut be zero. It means that the pseudo-spins of

two k,s must be parallel. From the definition of k;, §r=¢ and & = ¢, we obtain

26 1 T A%k,
k k,_ = = —i : 3.6
v+, DiD_ky i —ky - "EB—MD (36)
From the equation (3.6) and & = &, we have
3 , ks EB— MD
— (2BE —2DM + A = :
D_ ( + ) EB — MD + A2D,D_k, 0 (3.7)

If 3 is zero, there are only two kinds of k,, so 8 must be non-zero. For 2BE—2DM + A? =
0, its energy dispersion is not gapless. Here we focus upon the gapless edge bands so we
drop this solution.

We obtain the form of the energy dispersion:

D 1
E=M— —\/A?2(B? — D?)k,. :
=+ /A (B2 = DY) (38)

Where p = +1. The k,, A, B, D and M, are real and k, must be well defined (equation
(3.3)). Therefore, the edge state exists if the amplitude of B is larger than D. If |B| < |D|,
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E(meY)
o

-s/_\

_8 1 1 1 1 1 1 1 1 1 1 L
-0.01 -0.008 -0.006 -0.004 -0.002 0O 0002 0.004 0.006 0.008 0.01
kx(1/nm)

Figure 3.2: It shows the eigenenergy of edge state for H.sy with d = 7nm. The black
line is the bulk band. The red solid line is spin-up edge band and the red dash line is
spin-down edge band. The blue circle is numerical result for spin-up edge band and blue
plus sign is numerical result for spin-dewn'edge band.

the global energy band gap will be closed.” There are at least two of pure real &, for given
energy and k,, so no eigenstate has_two different decay ky,s. But two decay kys is the
condition for existence of edge states. So, only if |B| > |D|, the edge states may exist.

From equations (3.6), (3.8) and definition of o and 3, we find out that k, is of the

form:
A% 42
ky, = —iTp + 2vp : (3.9)
2,/A?(B? — D?)
— A? _ 8 . )
Let A = sz\/m and A\ = Wvrorom it The wave function is of the form:
U (z,y) = N (k) e*7eM (e — e™V) & (3.10)

&= \/% ( VB=D —rsgn(A)vVB+D ) . (3.11)

The e*Y — e~ part can be sin or sinh function so this part doesn’t make the wave function
decay. Only the e part makes the wave function be an edge state. The wave function
U must be zero at y = 0o so p must be —7. (For ¥ (y = —00) =0, p=7.)

A is always real if |B| > |D|. A may be pure imaginary or pure imaginary. If \ is

real, the amplitude of A and A will determine the existence of edge states. Only when
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A2 < A?, the wave function will be 0 at y = co. (If A is imaginary, A? is also smaller than

A?.) Form the definition of A and A, we have

M
A2 =\ < —. 12
<% (3.12)

If MB < 0, there is no edge state solution. So far, we only assume that the value of A
is non-zero. It is the difference between ref[4] and our result. Our result shows that if
A#0, MB >0 and |B| > |D|, the edge state exists for this Hamiltonian. (Our result is
similar to ref[14].)

For H.ts with d = Tnm, we have M B > 0 so we can find gapless edge bands. In Fig.
3.2, we show the analytical and numerical result of the edge branches. Because the two

results are the same, our analtyical result works.

3.2 Edge-state branch in the presence of DSOI

In this section, we numerically calculate the energy dispersion of edge state with DSOI.
And we also prove the edge bands are gapless.

We consider the effective Hamiltonian H.f¢ (equation (2.1)),

H.r = Dk hi 00s 3.13
eff = Dk; + o : (3.13)
o, h_

—M + BE? Ak,
Ak_. M — Bk?

h, =

Because the root of k, is difficult to analytically solve, we numerically solve eigenenergy
of edge bands. The open boundary is along x-direction so k, is the quantum number of

the wave function. The wave function is of the form:

U (z,y) = e=* Z éjeiky*jyéj. (3.14)

J

Where € is a 4 x 1 column vector.

10
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The Schrodinger equation is
Heff (kz, l{?yJ)eikszriky’jyéj - Eeikzx+iky7jyéj . (3 15)

Where E is the eigenenergy. To compute the k, for given E and k,, we define H|,, Hj
and H) as the following forms.
N (ky) o, —Ao, O i D + Bo, 0

o = H = .
do, N (k) 0 Ao, 0 D + Bo,

Where N(k,) = —FE — Mo, + Aok, + (D + Bo,)k? and o; is Pauli matrix. We rewrite

the Schrodinger equation in this form:
Hcl)é‘i‘ H{(kyé) = _kyHé(kyg)- (3.16)

Combining equation (3.16) and (k&) = ky,{(£), we have

~a

1 0 0
&=k (3.17)
0 —H) H) H;
Where &'t = ( &t k;@ ) In this form, we can get the value of £, and the corresponded
eigenvector by the numerical diagonalization.

Because ¢ is a 4 x 1 column vector, we need at least four decay kys to match the
boundary condition at the edge. However there are only 8 ks for given k, and E. (See
equation (3.17).) The edge state only exists at the energy range that all k,s are complex.
We can only seek the edge states at the energy range where no bulk state with given k,.

At energy range where all ks are complex, we can find a wave function ¥ that consists

of four complex ks and satisfies ¥(y = 0o) = 0. At y = 0, we derive an equation that

determines the eigenenergy of the edge states:
> Cig=o. (3.18)
J

The eigenenergy is showed at Fig. 3.3.

11
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E(meY)
o

Figure 3.3: It shows the eigenenergy of edge state for H.sy with d = 7nm. The black line
is the bulk bands with DSOI. The red lines are edge bands without DSOI. The blue circle
is numerical result for edge band with DSOI.

From the numerical result, wé find out that there only two edge bands in the system.
The edge bands touch the conduction and heavy hole bulk bands. If the edge band gap
is zero, the edge bands are still gapless with DSOI.

Let ¥’ be one of the edge states with k, = 0. The time reversed state O’ is also an
edge state with k, = 0. The W' and OV’ are different states. (The form of time reversal
operator is listed in Appendix D.)

W] v — / —Vy (2, )" Ws(2, )" + oz, y)" Vy(r,y)" drdy =0, (3.19)
U (2,y) Vs (2, y)" — Wa(a,y) Wiz, y)"
The Hamiltonian is time reversal invariant so both U’ and ©U’ are the eigenstates of the
system. At I' point, there is a two level degeneracy protected by time reversal symmetry.
In the global bulk energy gap, we only find two edge bands so those edge bands are
gapless.

12
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3.3 Analytic analysis for k=0 edge state

In this section, we first try to obtain the condition that edge bands exist for the effective
Hamiltonian with DSOI. In the end of this section, we discuss the transport property of
the edge bands with DSOI.

The effective 4 x 4 Hamiltonian H, ¢ with k, = 0 is of this form(equation (2.1)):

hy(k,) 60,
Heps (0, ky) = o) oo : (3.20)
do,  h_(ky)

-M+ B k:; iTAk,

h.(ky) = Dk, + _
—itAk, M — BEK?

The eigenenergy of edge state is at the energy range where all £, is complex. Only when
|B| > |D|, all the k,s are complex at the energy band gap. For case A = 0, we can
divide the H s into two 2 x 2 Hamiltonian. For each 2 x 2 Hamiltonian, we can find
four complex kys and two of different &,s have the same decay direction. However, the
pseudo-spins of those two k,s aren’t the same: The wave function can’t be zero at y = 0
so there is no edge state solution. Therefore; A must be non-zero and |B| > |D|.

We define a new set of basis ((|E,+) —i|E,—))/V2, (|[H1,+) +i|H1,—))/V2,
(|E,+) —i|E,=))/V2, (JH1,+)+i|H1,—))/v/2). In this representation, the effective
4 x 4 Hamiltonian will becomes block diagonal form.

Heopp (0, k) = ho (k)0 . (3.21)
77)# (k) = Dk; N —M + Bk} i (Aky + o)
—i(Ak, + pd) M — Bk

In this representation, there are some k, dependent terms at the off-block diagonal part.
The f[ef ¢ is block diagonal form only if k, = 0. The following analysis only works with
k., = 0.

13
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From numerical result, we obtain the eigenenergy and the form of the edge states:

E=M

Wl

(3.22a)

v,

N, (e”éiily n eik5,29> 3 (3.22b)

= \/% ( VB—D —sgn(A)vVB+D ) : (3.22¢)

Here we have found a pair of k, and a pair of corresponded pseudo-spins that are parallel
to each other. The wave function, \ifﬂ, are zero at y = 0. Next step, we try to find the
condition that both kys decay at the same direction, y-direction. (The set of equation
(3.22) also works when the edge states aren’t the real state of the system.)

Taking equation (3.22a), (3.22b) and (3.22¢) into equation (3.21), we have

2 .
VB? = D? (M - Bkg]"),= —isgn (A) B (A} — ud) (3.23)
From equation (3.23), k, is of the form
SONWER S SUNMETLY (3.24)
| BT \"A T 2| ‘

Where b = v/ B2 — D? and v = pusgn (A). The edge state doesn’t exist when one of k, is

ks =

real or the imaginary parts of ;s aren’t both positive. For the form of k,, one of k, will
be real only if A = 0. The region at where the k, is real is the boundary between the
regions at where k,s have opposite sign of imaginary part. There is no other condition
makes the imaginary part of k, change sign. (If the imaginary part of wave vector can’t
be zero, the sign of the imaginary part is unchanged for whole parameter space.) Let
|A| << 1 and s = —1, we have

B~ g
kyNZ

(3.25)

= =1 =
|22 MA | T 2B22

Al A 6[ A}

Where k = 4/ 2—22 + |%‘2. We obtain that the edge state exist when A > 0.
According to the form of A, the DSOI only makes some systems that are topologically
non-tirival without DSOI become topologically trivial. (It doesn’t change the topological

14
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phase of the topological trivial region.) There is still a clear boundary between topolog-
ically trivial and non-trivial in the topological phase diagram. The DSOI just shifts the
boundary of the topological phase.

Finally, we want to discuss the transmission property of edge bands in the semi-infinite

system. We compose an effective 1D Hamiltonian H®%¢ consisting of the edge bands.

2 3
H9" =" " hinlojk,. (3.26)

i=0 j=0
Where h; and n; are parameter and op is 2 X 2 identity matrix. We set the basis vector
as the edge states with k, = 0. The edge subbands are time reversal pair so the time
reversal operator is of the form:0© = io, K. The time reversal property of k vector operator
is Okl = (—1)'k20. The 1D Hamiltonian H®¥° is time reversal invariant so we have

[He49¢ O] = 0. Therefore, time reversal symmetry leads the following condition.

By the symmetry argument, we dérive the general form of He49¢.

3
He%9 = ho + (Z njaj) hik, + hok?2. (3.28)
j=1
The direction of pseudo-spin is independent of k.. The back scattering induced by pseudo-
spin changing is suppressed. Though the pseudo-spin doesn’t change, the propagation
direction may change by k.. However, the form of the basis vector makes hs zero whether
we include DSOI or not. The scattering process with edge band only is weak. The edge
state is robust against a normal impurity and a small potential. (In contrast, we doesn’t
imply that edge state is robust to large potential. A large potential that makes bulk bands
and edge bands coupled may scatter the edge state.)

15



Chapter 4

Topological origin of the edge states

In this chapter, we try to obtain the topological number by chern number, winding number
and spin chern number method. The chen number in this chapter is the Berry’s phase of
a energy band.

In chern number consideration, we;can’t tell the topological phase changing. The
chern number is always zero for the eigenvectors of the effective Hamiltonian with DSOI.
The form of the eigenvectors makes. this result so the chern number of the eigenvector we
maintained above is zero even if § = 0.7.0n the other hand, we can obtain the non-trivial
topological number by another kind of eigenvectors for the effective Hamiltonian without
DSOI. The two kinds of eigenfunction both characterize the system, effective Hamiltonian
with 6 = 0. The chern number of the different kinds of eigenvectors aren’t the same so
the chern number isn’t invariant under guage transformation.

In winding number consideration, we can obtain the condition of the topological phase
changing that we obtained in chapter 3. But it only works for 2 x 2 Hamiltonian and we
must drop the small wave vector region of the 2D k space to obtain this result.

In spin chern number consideration, we can obtain the topological non-trivial condi-
tion which we obtained at chapter 3. However, the phase diagram is dependent on the
generator that generates the eigenvectors to calculate the spin chern number. It means

that we need a proper way to obtain the generator.

16
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4.1 Chern number consideration

The definition of Berry’s curvature is of the form[18]:

By (1) =% (3 ()] 74l (1) = (53 () [0 (3))- (a0

This is the Berry’s curvature of state j represented by vector of parameters R. Substitut-
ing k vector and eigenvectors of the system with DSOI for R and state J, we obtain the
Berry’s curvature of the system with DSOI. The chern number is equal to integrate the
Berry’s curvature for whole k space.

The effective 4 x 4 Hamiltonian H. ;¢ (equation (2.1)) is

H. . = Di2 hi 000 4.2
eff = Dk; + o : (4.2)
o, h_

=M+ BE? Ak,
Ak M — BE?

h, =

The eigenenergy E,, and eigenvector.of H.;z-are (See Appendix E.)

By = DK 4+ p\/ (M = BR2)? + (Ak + o), (4.3)
1 . ,
=75 (o (ke ag' (k) pof (k) paf” (kye ), (4.4)

where o/ (k) = N, (Ak + pd), o (k) = N, (k) (E,, — Dk* + M — Bk?) and N, (k) =
(@) + (o]

The Berry’s curvature of the ¢,, is always zero even if § = 0. It is because the spin
up and spin down parts of the eigenvector are equal weighting. The Berry’s curvatures
from the spin up and spin down parts for a given k are totally canceled.

Actually, the Berry’s curvature is only zero for non-zero k and diverges at I' point. It
is because there is a two level degeneracy protected by time reversal symmetry. From an
another formula of Berry’s curvature, this degeneracy makes the Berry’s curvature diverge

at I' point.

B —Im Z (m|VH|n) x (n| VH |m) ' (4.5)

17
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Where E; is the eigenenergy of the wave function.

Obtaining the chern number in this case is similar to calculate the total electric flux
on a plane from an electric charge that is on that plane. The electric flux is zero except
of the location of the charge and is undefined at the location of the charge. If we want to
calculate the flux from the charge, we need to shift that charge slightly out of the plane.
It is similar to add some terms that remove the time reversal protected degeneracy at I’
point in this case.

We have tried to compute the chern number by adding some term breaking time
reversal symmetry. Taking those terms very small, we can obtain the chern number that
decribes the original system. However, the chern number is only dependent on the terms
we adding. We can’t calculate the chern number in this way so we can’t tell the topological
phase change by the chern number consideration.

On the other hand, we have two set of eigenvectors which are the eigenatates of the
effective Hamiltonian without DSOL”We have another set of the eigenvectors ¢,, that are

this form:

~ -\ 1 Xp+

o <k) CV2EEFIM =B | o (460)
o 1 0

& (k) = V2 G+ oM —BR)) \ «, (4.6b)

Where ¢ = \/A2k2 + (M — Bk2)2, X;“ = ( Ake % pe + M — BE? ) and g indicates
the spin. The Berry’s curvature of ¢,, is not zero for all k. The corresponded chern
number is of ther form:

Gy = 5= Isgn (M) + sgn (B)]. (47)

But, the chern number of ¢, is always zero. This form of wave function also describes the
right state, even if DSOI disappears, because the Hamiltonian is invariant under gauge
transformation. We obtain two very different chern numbers from two different set of
eigenvectors that are all eigenfunctions of the same effective Hamiltonian. It shows the
chern number depends on the wave function form we choosing. The chern number isn’t

invariant under gauge transformation so it may not be a good topological number. (The

18
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Chern number for the Chern class is the summation of chern number for all occupied

bands.[15] The Chern number is invariant under gauge transformation.)

4.2 Winding number consideration

Consider a 2 x 2 Hamiltonian h as this form:

The chern number is also determined by the winding number of ¢ (E) [15]

C =1 [ b0 Y 1n(@),00d),, (04, (4.9

Imn

If we have a 2 x 2 Hamiltonian characterizing the system, we can derive the chern number
from the winding number of this-Hamiltonian.
From the form of the eigenveetor of Hezs,we have the unitary transformation V' that
can transform the H.s (equation (2.1)).to the block diagonal form.
3 , he 0
Hepp=VH V' = - : (4.10)
0 h_
—M + Bk?*  (Ak + ud) e

h, = DE* + . : (4.11)
(Ak 4+ pd)e ™ M — Bk?

The iL# describes the same eigenenergy and eigenvector as H.;s so we can obtain the
topological number by }Nzu.
For h,, g" <E> is of the form:

5" (E) = ([Ak + 116] cos ¢, — [Ak + pd) sin ¢, — M + BE?) . (4.12)

19
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The corresponded chern number C), is

1 [M - BE2|™

C,=—= 4.13
e, w19

Where B, = /(Ak + u8)* + (M — Bk2)%.

If we integral whole k space, the chern number is always not an integer.
1| B M
= |l—=4+ == 4.14
b2 LB| ! ¢M2+52} )
For ;1 = —sgn (JA), we can find the special k, = |d/A| where B%MEBICQ = 0. If we
©w k=K',

only integral between £/ and k = oo, the chern number is zero for A (: MB — [B§/ A]Q) <
0 and the chern number is £1 for A > 0. It is the same result that we obtained in the
Chapter 3.

It seems that we can exactly find the topological number by this method. However we
may need to choose the range of-integration. Here we must drop the contribution of the
region k < §/A. The H.;r works for small &-so the winding number mainly depends on
the the region where H.¢; can’t characterize: In addition, we can only calculate the chern
number for a 2 x 2 Hamiltonian. The winding number can’t be a topological number for

general systems.

4.3 Spin chern number consideration

The Berry’s curvature in presence of DSOI is zero for k£ # 0 and diverge at I' point. We
can’t defined a proper topological number from the chern number of the eigenvector of
H.¢¢ (equation (2.1)). To obtain the topological number, we need a way to redefined the
eigenvector. The new set of vector must be smooth and unique at the whole k space.

In recent years, a new definition of topological number that is called spin chern number

has been established.[16][17] The spin chern number is the chern number of the vector ¢'.
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Where ¢’ is the linear superposition of the valence bands of the system.
valence band

o= Y,  Cig. (4.15)
j

¢} is the eigenvector of a spin operator S with eigenvalue m/. If the direct bulk energy
gap and spin gap Am = m; — my are both non-zero, we have a well defined spin chern
number.

Consider a spin operator 1,[17] is of the form:

I 0
L= " . (4.16)
0 _[2><2

For H.;; without DSOI, we can distinguish the spin up and the spin down by .. There-
fore, we use I, to calculate the spin chern mumber of H.;; with DSOL.

To derive ¢, we project I, onto the-eigenstates of H.;; and drop the conduction bands.

1 G (7)) o e

The eigenvector of I’ is of the form:

ot = 5 (son [(oor (O)] - ()] o (£)) 4+

The value of direct spin gap Am/ is 2 ‘<<p,+ (E w__ <E>>‘

o (E) >) . (4.18)

The spin gap is zero if p_ <k> and ¢__ k) are orthogonal. If the p_ . (E) and
O__ (2) are different spin state of 1, they are orthogonal. Therefore, the spin gap is

[N —

zero if the vector g <k>(equati0n (4.12)) is equal to —g <k> at k. The two vectors
are anti-parallel only when the z component of g" (E) is zero and k < |0/ A] so the spin
chern number is undefined when M B > 0 and M B — B%§?/A? < 0. At the well defined

region, the spin chern number C, is

C, = —g [sign (B) + sign (M)]. (4.19)
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The Fig. 4.1 shows the topological phase diagram. The topological non-trivial region is
equal to what we proved in chapter 3.

We have proved the spin chern number can describe the topological property of system.
However, there is still a problem because we find out that the topological phase diagram
is dependent of the generator.

We use the operator J, to obtain spin chern number. The J, is of the form:

10 0 0
1103 0 o0
J, == (4.20)
2100 -1 o0
00 0 -3

For H.¢; without DSOI, we can also distinguish the spin up and the spin down by J..
The basis vector of H,.yy is the eigenveetoriof.J.. J, is also a reasonable operator for spin
chern number. We numerically calculate the topological phase diagram of .J, showed in
Fig. 4.2.

With different spin operator, the undefined region is not the same. The undefined
region of one operator may be the topologically non-trivial region of another. It needs
to know how to find the proper spin operator that indicate all topologically non-trivial

region.
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Figure 4.1: It shows the topological phase diagram with I,. The x axis is 6/A and the y

axis is M/B. The red line is M B — B?6*/A%* = 0. The black region is undefined. The
blue region is topological trivial. The green region is topological non-trivial.
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Figure 4.2: Tt shows the topological phase diagram with J,. The x axis is 6/A and the

y axis is M/B. The red line is M B — B?6*/A% = 0. The black region is undefined. The
blue region is topological trivial. The green region is topological non-trivial.
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Chapter 5

Edge-state branch in a quantum bar

In section 5.1, we derive the effective 1D Hamiltonian of the width W quantum bar
(quantum channel). We find out that the effective 1D Hamiltonian has a symmetry that
we call pseudo-parity. Because the operator; y, the transverse direction, mixes the states
with different pseudo-parity, it only simplifies the system in some cases. In chapter 6, we
consider a system without y-dependent potential. Therefore, we use the pseudo-parity to
simplifiy the calculations.

In section 5.2, we discuss the property of the edge states and the edge channels. Where
the edge channels are the eigenstates of the 1D Hamiltonian with specific wave vector.
The edge states are the linear combination of the edge channels. The DSOI terms mix
spin so the edge channels isn’t a pure spin state. The edge channels are localized at the
two edges so the magnetic impurity near any edges of the sample will effect all of edge
channels.

On the other hand, by the edge injection, we can generate an edge state that is a
pure spin state and localized at an edge of the sample Where the edge state is linear
superposition of the edge channels that have the same energy and propagation direction.
The location of the edge state is determined by the relative phase between the edge
channels. The finite size effect[4] and DSOI make relative phase vary in x, the longitudinal
direction. The location of the edge state will change when it is propagating. The spin
polarization of the edge state changes with the location so the spin polarization will

automatically precess.
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CHAPTER 5. EDGE-STATE BRANCH IN A QUANTUM BAR

5.1 Effective Hamiltonian

In this section, we derive the effective 1D Hamiltonian of the quantum bar. Then, we
define the pseudo-parity operator and prove that it is a symmetry of the effective 1D
Hamiltonian.

We consider a quantum bar showed in Fig. 5.1. The boundary is along x-direction.
The wave function ® is zero when y > W /2 or y < —W /2. Where W is the width of the
quantum bar. We derive an effective 1D Hamiltonian Hyy to describe the band structrue
with this boundary condition. We seperate H.ss (equation (2.1)) into two parts, Hy and
H'. H, contains all k, dependent terms and M. H' contains the § and all k, dependent

terms. We use Hj to derive the basis vectors of Hyy.

y
L W
X
Figure 5.1: It shows the structure of a quantum bar system. We set the origin of y-axis
at the middle of the bar. The wave funetion‘is zero when y < —W/2 and y > W/2.

In the set of basis (|E1,+), |[H1,+), |E1,—), |H1,—)) , Hy is of the form:

Dk, — (M — BE})o, — Akyo, 0
0 Dk} — (M — BE})o. + Akyo,

Hy (5.1)
|E1,+) and |H1,+) subbands are decoupled to |E'1l, —) and |H1,—) subbands. |E1,+)
and |H1,+) subbands are coupled by Ak, terms and form |S; i,+) and |A; ¢, £) sub-
bands. The E1 component of |S; i, +) subbands is even function. The E1 component of
|A; i,+) subbands is odd function.

For H,;; with d = Tnm, the value of MB and A (A = MB — (B§/A)?) is positive.
There are four edge subbands in the system. The higher two subband is |S; i, +) subbands
and the others are |A; i,4) subbands. In addition, the lowest conduction bulk subbands
are |A; i,£) subbands and the highest valence bulk subbands are |S; i,4) subbands.
(For the case M B < 0, the lowest conduction bulk subbands are |S; 4,+) subbands and
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CHAPTER 5. EDGE-STATE BRANCH IN A QUANTUM BAR

the highest valence bulk subbands are |A; i, £) subbands.) The basis vectoers are of the

form:

(S5 4+ = ((S; i O1x2 ), (s &= = (012 (S; i]o, ),

<A; Z,‘H :( <A, Z| 01><2 )><A; ia_’ :< 01><2 <Aa Z|O-Z )

Where |S; i) is the pseudo-spin of |S; i,+) and |A; i) is the pseudo-spin of |4; i,+).
(The detail definition of basis is listed in Appendix F.)

We define the set of basis vector (|S; i,+), |A; i,+), |S; ¢,—), |4; i,—)). In this set
of basis vector, the effective Hamiltonian Hyy is defined as this form:

[Hy, (ka)l;; = (il (Ho + H') ) = Eidy; + (i H'|) - (5.2)

ij
Where |7) is the ith basis vector. The H"is of the form:

. ) BE2o, + Ak,a, o,
H' = Dk? + . (5.3)
do, Bk’c, + Ak,0,
The o, doesn’t couple E'1 and H1 component so it does not couple |S; i, +) and |A; i, £)
subbands. The o, couples E'1 and H1 component so it only couples |S; i, £) and |A; i, £)
subbands. (The same kind of subbands aren’t coupled by the o.)
The analytical form of Hyy is
E' + B'k? + Ak, &

Hy (k) = . (5.4)
—y E'+ Bk — Ak,

Where E’ contain the eigenenergy of all basis vectors.

E' = Z (B [S; ) (S5 il + B |A; i) (4; 4]). (5.5)

7

Where E? is the eigenenergy of the |S; ) subband and E# is the eigenenergy of the |A; i)
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d=7nm, W=300nm

I\

1 1 1 1 L 1 ]
0.1 008 -0.06 -0.04 -0.02 0 002 004 006 008 01
k{1/nm)

Figure 5.2: It shows the band structure of Hy for W = 300nm with § = 0.

subband. The other terms are of the«form:.

B’=D+BZ(IS; i) (S; ila. |85 1) 4S5 Il +1A4; 1) (4; il o |45 5) (45 4]).  (5.6)

A= AZ(& il og [A; J) (|ST)(AsdL+14A45 5) (S; 1]). (5.7)
o = —5Z<S; ilioy, |A; 7) (1S7) (A; j] = |A; 4) (S i]). (5.8)

The band structure of Hy, is showed in Fig. 5.2 and Fig. 5.3.
The effective Hamiltonian Hy, has a symmetry we call pseudo-parity. The pseudo-

parity operator 7, is of the form:

Ty = : (5.9)

Where n, = > (|5; i) (S; i| — |4; i) (A; i|). We have [E',n,| =0, [B',n,] =0, n,A'n, =

(3
—A" and n,0'n, = —¢'. According to those equations above, we have [m,, Hy| = 0.

The Hy and m, have simultaneous eigenvectors so we can obtain a more simple form of
effective 1D Hamiltonian by projecting H.¢; onto the eigenvectors of .

We define a new set of basis vector(|S’; i, +), |A’; i, +), |S'; i, —), |A’; i,—)). Where
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d=7nm, W=300nm

s 5r
@
£
w
D_
5k
/ Y
-
10t 1 1 /l'/ml N 1 K
01 008 -006 -0.04 -0.02 0 002 004 006 008 01
k{1/nm)

Figure 5.3: It shows the band structure of Hy for W = 300nm. The blue solid line is
i = 1 subbands. The red dash line is ;4 = —1 subbands.

15 i) = (IS5 4,4) + plS; 4, ) /V20and 45 i p) = (|4 i +) — uld; 4,-))/V2.
|S"; i, 1) and |A'; 4, ) are eigenvectors of m, with the eigenvalue p. In this represen-

tation, the effective Hamiltonian “Hyy is of the form:

Hy (k) = : (5.10)
0 WY (ky)
Where h’ZV (ky) = E + Bk2 + Ak, + pd. Here p also indicates the quantum number of
pseudo-parity. The other terms are of the forms:
B =" (BS|Si) (S + B A (A (5.11)
B=D+BY (18;i) (S;i0.]S;5) (S5 4] + |A54) (A5d] 02 | A; ) (A5 ). (5.12)
ij

A=AY (Silon| A5 ) (188) (A5 | + | A5 ) (53] (5.13)

ij
6=0) (Siilio, |A;j) (IS'50) (A 5] = A 4) (S"54). (5.14)

ij

According to the definition of the basis vector (|.S’; i, ), |A’; 4, 1)) and time reversal
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CHAPTER 5. EDGE-STATE BRANCH IN A QUANTUM BAR

operater (See Appendix D), we derive the time reversed state of basis vector.

©S" i, ) = —p|Ss i, —p) . (5.15a)
O A i, p) = p|A i, —p) (5.15b)

The time reversal operator in this representantion is of the form:
0
0= K. (5.16)

Where 71, = (|S"; @) (S"; i| = [A’; i) (A5 4]). The time reversed states of [S"; i,+) and
|A"; i, 4) are Z\S’; i,—) and |A’; i, —). The eigenstates of h’Y and 'Y are time reversal
pair. It seems that the eignstates of b’ f aren’t coupled with the eigenstates of h'" by
the normal impurity or potential. But, the operator y can couple the basis vectors with

different pseudo-parity symmetry..According to the symmetry of the basis vector, we can

obtain the form of operator y.

/

Y = : (5.17)
y 0
Where v = > (S; i|y|A4; j) (|57 i) (A5 4]+ |A"; 5) (S’; i]). In this set of basis vector,

ij
the 7, is of the form :

Tp = . (5.18)
0 —1
The operator y doesn’t commute with 7, so the potential in terms of odd power of operator

y can mix the states with different pseudo-parity.

5.2 Wave function for bulk like and edge like states

In this section, we discuss property of the edge channels and the edge states in the quantum
bar. Where the edge channels are the eigenstates of the effective 1D Hamiltonian. The
edge state is the superposition of the edge channels with the same energy and propagation
direction.

For Hy without DSOI, the solution of edge channels with certain k, can be of the
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@ spin up @ spin down
Figure 5.4: It shows the edge states with certain £, and spin in absence of DSOI.

form that contains only one spin (Fig. 5.4). At the lower edge, y = —W/2, the spin up
state is left going and the spin down state is right going. At the upper edge, y = W/2,
the spin of the right and left going state is opposite to the edge states at the lower edge.
The edge channels aren’t robust against the magnetic impurity. However the magnetic
impurity near the upper edge hardly scatters the edge channels at the lower edge. The
edge channel only scattered by the impurities;at the same edge.

For Hy, with DSOI, the DSOI and finite size effect couple the two edge channels that
are the eigenstates of Hy, without DSOLand have the same propagation direction. Those
two edge channels are mixed together to form two edge channelss @Dedge with the same p
but different p (Fig. 5.5 and Fig. 5.6). Where p is the quantum number of pseudo-parity
and p is the propagation direction (p = + is right going.). The edge channel has specific
wave vector kzzge but it can’t be the form that contains only one spin component. And it
is localized at both two edges so the magnetic impurity near any edges scatters the edge
channels. The DSOI terms makes the edge channel become weaker to magnetic impurity.

If we inject charge current at an edge of the sample, we predict that we can generate
an edge state q)edge which is at the edge. The q)edge is the linear combination of the @Dedge

with same p and energy.

e (3, y) = [wedge (2, y) + €200 (z, y)}

\/_
_ % kSl |:fed96( ) + ’A/(x)ff‘i,ge(y)] . (5.19)

Where f¢%¢(y) is the column vector part of ¢%9¢(z, y) and A'(z) = Af+ (l{:ii,ge — /{:_egfe> .

The location of the edge state depends on the phase difference A’. We choose the guage
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Figure 5.5: It shows the edge states with certain k, in the presence of DSOL.

that spin up part of fﬁgge is the same sign such that the edge state is at one of the sample
edges if A'(z) =0 or A'(z) = 7.

In the system without DSOI, the kfjﬁe is equal to each other. The A’ is constant so
the location of the edge state doesn’t change. On the other hand, the DSOI and finite size
effect make kfj)ge different. The A’ becomes a function of x and the edge state isn’t always
localized at one edge. (Fig. 5.8 and Fig.-5:9) When the edge state propagates, the location
of the edge state is from a edge of the quantum-bar to the other. After propagating a
length L. we call edge-switching length, the edge state will becomes localized at the other
edge. (The value of L. can be larger than 100um. At that case, the edge state performs
like the edge channel without DSOI.) The spin polarization of the edge state depends
on the location and the propagation direction of the edge state. Therefore, the spin
polarization of the edge state will automatically changes. (This property is also showed
in ref[11].)

For the bulk like states, the DSOI makes the bulk states with certain k, isn’t a pure
spin state too (Fig. 5.7). We also can define a set of bulk state that is a pure spin state
initially. The spin of those state also varies like edge state we showed in Fig. 5.9. In

contrast, the density of the bulk states are localized at the middle of the ribbon.
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W=300nm, kx=0.01{1/nm)

2 1 1
-150 -100 -50 0 50 100 150
y(nm)

Figure 5.6: It shows the column vector part of the two edge states of Hy with W = 300nm.
The solid line is the y = +1 state with DSOI and the dash line is the state without DSOI.
Those two state are the upper edge bands and their & value is 0.01nm~!. The blue line
is |[E1,4) component. The red lineis [H1,4) component. The black line is |E1, —)
component. The green line is |H I, —)-component.

W=300nm, kx=0.01{1/nm)
0.08 T T T
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-0.02
0.04 F
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e p—
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Figure 5.7: It shows the column vector part of the two bulk states of Hy with W = 300nm.
The solid line is the y = +1 state with DSOI and the dash line is the state without DSOI.
Those two state are the lowest conduction subbands and their k value is 0.01nm~!. The
blue line is |E1,+) component. The red line is |H1,+) component. The black line is
|E1,—) component. The green line is |H1, —) component.
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Density
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Figure 5.8: It shows the density of edge states @fge with W = 300nm, Ay = —1 and
E = 6.4meV. (Note: the dimension of y-axis'is different to x-axis)

Spin Polarization
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Figure 5.9: It shows the spin polarizationf edge states q)idge with W = 300nm, A}
and £ = 6.4meV. (Note: the dimension of y-axis is different to x-axis)
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Chapter 6

Quantum transport in a quantum

bar

In this chapter, we fully numerically and semi-analytically calculate the transport of the
edge channels and edge states in a quantum bar consisting of a potential barrier. Where
the edge channels are the eigenstates of the effective 1D Hamiltonian. The edge state is
the superposition of the edge channels with the same energy and propagation direction.

First, we discuss the transmission structure through a square potential in the quantum
bar without DSOI. The edge band gap is not zero in a quantum bar because of finite size
effect.[4] We show that the edge channels are back scattered by a potential at the energy
range near the energy gap. The pseudo-spin of the edge channel at that energy range
becomes energy dependent so the reflection is not zero. Though the non-zero edge band
gap makes the edge channels scattered by the potential, the edge channel still totally
transmits at the energy range not near the energy gap.

On the other hand, we show the transmission dips at the energy range not near the
edge band gap is due to the Fano resonance. The edge channel forms the continuum
spectrum and the resonance bulk channel forms the discrete state (quasi-bound state).
Because the life time of the quasi-bound state are very long (the quasi-bound state is very
well), we need to change the representation channel to calculate the Fano factor and life
time of quasi-bound state. For the system without DSOI, the Fano factors are unique

and the edge channels are totally back scattered at the dip energy.
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Finally, we discuss the transmission structure through a square potential in the pres-
ence of DSOI. The edge channels are more robust against a potential because the edge
energy gap is smaller to the no DSOI case. The edge energy gap reduction is mainly due
to the coupling between edge and bulk subbands. On the other hand, the transmission
dips at the energy range not near the edge band gap are still characterized by the Fano
resonance. The Fano factors now depend on the potential energy (or the length of the
potential). The edge channels aren’t totally back scattered at the dip energy. The ad-
ditional phase from the Fano resonance is dependent on the pseudo-parity. We can use
this to change the spin polarization and the location of the edge state. The length of the
potential barrier can be much shorter than the edge-switching length L. so we can change

the spin without a very long (large) device.

6.1 The transport property of the effective 1D sys-
tem

In this section, we first derive the formulas of the transmission spectrum, full numerical
result and multiple scattering result, of the quantum bar consists of a potential barrier.
Second, we calculate the transport of the quantum bar without DSOI. We will point out
which dip structrues in the transport are originated from Fano physics. Finally, we discuss
the reflection of edge channels at the energy near the edge band gap

The L nm long square potential V' is of the form: (It is also showed in Fig.6.1.)

U() O<z<L
Vix)= for . (6.1)
0 otherwise
Where U is the potential energy. The potential V' commutes with 7, so the effective 1D

Hamiltonian can be a block-diagonalized form even if we include DSOI terms.

First we study the quantum transport of the system without DSOI. The effective 1D
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x=0 | | x=L

Figure 6.1: It is the structure of a quantum channel system we want to study. An uniform
potential Uy is imposed at the red area between x = 0 and = = L.

Hamiltonian Hy, (equation (5.4)) is of the form.

Hy = Ry (k) 0 . (6.2)
0 Y (k)
Where h};v = E'+nA'k, + B'k? and the 5 indicates the spin of eigenstates. The operator
E', A" and B’ are defined in equations (5.5)-(5.8).- The spin up and spin down parts are
decoupled so we can compute thescattering state only with the spin up part. According to
equation (3.17), we can calculate the eigenstate of b for given energy E by diagonalizing
this matrix h.
oo\ 0 1

ho(E) = . (6.3)
0 —B _E+FE A

Then we obtain the eigenstate ¢/ as this form.

Gpn ) = €™ [ (6.4)
Where fm is the column vector of mth eigenstate with k, = k:fm. The p is the propagation
diection or decay diection of fm. (p = +1 is right going or decay in right direction.)

In this chapter, we focus upon the erengy range at where only edge channels are the

incident channel. For given energy F, the scattering state CDEZ +, which is for the incident
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channel ¢¥, . is of the form.

¢-€m ('CE) + Z Tm’wgm/ ($) z <0
oY () = Z [ f,;/UO () + byp™ 70 (z)] for 0<z<L . (6.5)
Ztm,wfm’ (J]) L<x

The wave function and the Schrodinger equation are continuous at the boundaries so we

obtain the set of equations that determine the coefficients r],, ¢/ . a, and b, .

m? “m?)

> e o = e FE s = b f500) = = (6.6a)

> [k 2 = am kO fET — b k0 fE IO = kY FE (6.6D)

3 [am,e ot LR b R U ek B n] —0. (6.6¢)

g: [k Foeent "L gt o JRELR RSyt g 8 Mt g2 ] <0

§ (6.6d)
Where f2  is the nth component of f;

Next we derive the current density of @f. Form the continuty equation, we have the
relation between the probability density pf: + and the current density J, £ . The probabil-
ity density is the magnitude square of the scattering function. Substitute the sacttering
function and —id, for the probability density and k, by the Schrodinger equation, we
obtain the current density.

JE= [ (@) aet —i(ef)" (D+ B) o0 +i(0,08) (D+B) | (67)

mli—

The possible incident state is unique so we can define the transmission as this form.

’T|2 _ Jscattem'ng state (68)

J incident channel

We call the transmission from this definition as full numerical result (FN).

We also use the multiple scattering method to semi-analytically study the transport
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' D —) /
[1 _ C ﬂ) — /
7

Figure 6.2: This figure shows the definition of the ¢, r, ¢, 7/, ¢/ and r!. The t, t' and t!
are the transmission coefficients and the others are the reflection coefficients. The ¢ and
r are at the right boundary, x = L, and the ¢’ and r’ are at the left boundary, = = 0.

property. For derive the transmission by multiple scattering method, we need to obtain
the transmission and reflection coefficients at each boundary first. At boundary x = 0,

the scattering state ®Z! that is for the incident channel Y%, is of the form.

BN, (@)
LT () = for : (6.9)
Zt P U"( ) 20

The scattering state ®2-/1 for the incidentichannel ¢ 0 is of the form.

511 Ztin’wgm’ (.%’) x <0
O (z) = E . . for . (6.10)
°()+Zrmmw 70 (z) x>0

At boundary z = L, the scattering state 217 for the incident state ¢2, % is of the form.

-EF‘T:LUO( )+Zrmm o UO('CE) < L
QAT (1) = for : (6.11)
Zt;n/w-ﬁ—m’ (:C) x Z L

The definition of the coefficients is showed in Fig. 6.2. From the continuity of wave

. . . . . . ]
function and Schrédinger equation, we obtain the coefficients £, rf, /v, t.

and 7, (by the set of equations similar to equation(6.6)). Here we focus on the energy
range where only edge channel is incident channel. Only the edge channel are propagat-

ing mode at * > L. We can just calculate the coefficient of this channel because the
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W= 300nm, L= 100nm, UD = 10meY
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Figure 6.3: It is the transmission from FN versus the incident energy for Hy, without
DSOI. The width W of the quantum channel is 300nm. The length L of the potential
V(z) is 100nm and the value of potential energy Uy is 10meV .

others contribute nothing to the total current. (This is only valid for total current in the
propagation direction. If we want to know the current at the transverse direction, we
must include all the terms of the scattering state.) The transmission coefficient 7™ from

multi-scattering method is of the form.

11

TMS frd E t/m/tm/ —|— E t/mlurm///m//r,m//m/tm/ + ..
m!

1
=t {—} tor. (6.12)
m’'m/ 1- TMS m’’'m’

Where [yars],,, = [777],,,, and m in equation (6.12) indicates the incident channel. The
transmission is }TM S ‘2 and we call this as multiple scattering result (MS).

For fixed U,, the transmission is showed in Fig. 6.3. At this energy range, one of
eigenstates is the edge channel in the potential area. The transmission dip near 4meV
is the edge band gap for the incident channel. The minimum of the dips lower than the
edge gap is zero. At the energy range of the dips, some of bulk channels are propagating
mode. The edge and bulk channels couple together to form the dip structure. The energy

of dips is determined by the resonant energy of the bulk channels. At the next section,
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incident energy : SmeV, W = 300nm
T ™ 7%
\
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Figure 6.4: It is the transmission from FN versus U, for Hy, without DSOI. The width W
of the quantum channel is 300nm and the incident energy is 5meV’. The blue circle is for
L = 100nm. The red dash line is for L = 300nm. The black solid line is for L = 500nm.

we will proof that the dips are described by Fano physics.

For fixed incident energy which near the edge band gap region, the transmission struc-
ture is showed in Fig. 6.4. There is an oscillation spectrum due to the Fabry-Pérot res-
onance and the transport spectrums shows that the edge channels could be scattered by
the potential barrier. To study the origin of this reflection, we consider an effective 1D

Hamiltonian H;{fge only containing spin-up edge bands.
H9¢ = Bg"° + M0, + A*“°f,0,. (6.13)

Where ES%° = 3.8meV, M = 0.37meV and A®%¢ = 256meV/nm for W = 300nm.
In Fig. 6.5, it shows the transmission for Hy and H;gge with fixed incident energy. The
transmission structures of the two Hamiltonians are similar. Therefore, the reflection
is mainly determined by the edge subbands and the bulk subbands only enhance the
reflection.

The transmission dip near Uy = 2meV is due to the edge band gap in the potential
region. The tunneling length \°¥¢ of the edge channel is propertional to ‘AEdge /M Edge‘.

The value of A%%9¢ is very large becuase the system has strong spin-orbital coupling. The
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Figure 6.5: It is the transmission from FN versus U, for Hy and H;gge. The width W
of the quantum channel is 300nm and the incident energy is 5meV. The length L of the
potential area is 500nm. The red dash-tineisfor Hy,. The blue solid line is for H S{fge.
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Figure 6.6: It is the transmission from FN versus U, for Hy without DSOI. The length
of the potential L is 500nm and the incident energy is 5meV. The blue solid line is for
W = 2500nm. The red dash line is for W = 300nm. The black dot line is for W = 350nm.
The green circle is for W = 400nm.
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width of the quantum channel is large enough so the energy gap of the edge bands is
small. Tt cause that the tunnel length of the edge channels is larger than 700nm (for
W = 300nm) so the transmission at that energy range is not small.

At the potential range except for the edge band gap region, the reflection is induced by
the pseudo-spin mismatch. If the edge bands is gapless, the pseudo-spins of the opposite
propagation direction edge channels are orthogonal. The pseudo-spin is determined by
the propagation direction of the k, and it is independent of the energy. The reflection of
edge channel is forbidden because of the Klein paradox.

On the other hand, the wave function overlapping of the edge channels at opposite
edge sides opens up the edge band gap in the quantum bar system.[4] This finite edge
band gap makes the pseudo-spin of the edge channels with the energy near the edge band
gap region be different to the edge channels with the energy far away from the edge band
gap. So the edge channel is scattered by the potential barrier if the energy is near the
edge band gap. The Fig. 6.6 shows the reflection decreases when the W becomes larger.
The finite edge band gap is due-to the finite size effect so the edge band gap region is
smaller if the W is larger. The ‘edge channels are more robust if the edge band gap is
smaller so this reflection decreasing suppeorts our claim.

We have showed that the potential barrier can scatter the edge channels, but it doesn’t
mean that the edge channel can’t totally transmit the potential barrier. The edge channel

still totally transmits the potential if the energy is far away from the edge band gap.

6.2 Probing the fano-physics in the transport prop-
erty

For the incident energy not near the edge band gap, the edge channel totally transmits
the potential. In Fig. 6.3, we find there are some transmission dips far away from the
edge band gap. Those dips aren’t due to the reflection of the edge channels but due to
the Fano resonance. In this section, we will proof the dips charaterized by Fano physics.

The Fig. 6.7 shows the probability density of the scattering state with incident energy
—0.2386meV . The figure demonstrates that the scattering has a density peak localized
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at the middle of the potential area. The density peak is contributed by the rasonance of
the bulk channel. On the other hand, our data shows that all of this kind of dips is near
the resonant energy of bulk channels and the dips are independent of the resonant energy
of the edge channel. Therefore, the dips structure is caused by the the bulk resonance
states.

We call the dip near the resonant energy of nth resonant k, from mth higher valence
bulk subband as Dip. m.n. The dips in Fig. 6.3 from right to left are Dip. 1_1, Dip.
2.1, Dip. 3.1 and Dip. 1.2. At those dips, there are an edge channel and at least two
bulk channels are propagating modes. The transmission coefficient 7*° containing the
process only dependent of those channels is similar to the FN (See Fig. 6.8.). The dips
are determined by the propagating channels. However it is hardly to simplify the TM%
by dropping the less important procedure. To show the reason of this and proof the Fano
physics, we analytically derive the transmission coefficient of a simple case.

For Markus Konig’s band parameters[7]listed at Table 3.1, the transmission structure
of Hy with W = 200nm and L = 100nm is showed in Fig. 6.9. (The transmission
structure of this parameter has been caleulated in ref[5]. ) The edge band gap is near
TmeV . At the energy range near highest-dip, Dip. 1_1, there are one edge channel and
one bulk channel are propagating mode. The transmission of FN and MS contributed
by propagating mode only is showed in Fig. 6.10. The difference of the resonant energy
is because we drop the decay channels. The transmission of two method is similar so
we can use the TM9 to characterize the dip structure. In the set of channel vector,

( f;UO, ZZJEI;UO), the TM5 is of the form.

1
™S ~t ———t. (6.14)
L —yums
1 —Teelly — TebThe  —Teelhy — TebThp
I —yms =
—Thelhe — TobThe L — TobThy — Thelhp

Where e indicates the edge channel and b indicates the resonant bulk channel.
The multiple scattering process is described by 1 — v5r6. We first drop the less impor-
tant terms of it. The edge channel rarely reflected because the pseudo-spin of the edge

channel is independent of the incident energy. We drop r’, and r.. dependent terms. Be-
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probability density, ¥ = 300nm, L = 100nm, UD = 10meV, Ei = -0.2386meY
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Figure 6.7: It is the probability density from FN of the scattering state with F =
—0.2386meV, W = 300nm, L = 100 and Uy= 10meV .

Dip. 1_1, W= 300nm, L= 100nm, U0 = 10meY
08 T T T T T

transmission
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Figure 6.8: It is the transmission of Dip. 1_1 with W = 300nm, L = 100 and Uy = 10meV .
The red circle is MS contributed by propagating mode only. The black dot line is FN.
The blue soild line is the Fano profile form, equation (6.24).
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M. Konig's parameters, W = 200nm, L= 100nm

transmission

Incident energy(meV)

Figure 6.9: It is the transmission from FN versus the incident energy for Hy, without
DSOI. The band parameters of Hy, is from Markus Konig’s work.[7] The width W of the
quantum channel is 200nm. The length-L-of the potential V(z) is 100nm and the value
of Uy is 10meV .

transmission
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Figure 6.10: It is the transmission of Dip. 1.1 with W = 200nm, L = 100 and U, =
10meV for Markus Konig’s band parameters.[7] The black dash line is FN. The blue
circle is MS contributed by propagating mode only. The red solid line is the Fano-profile
form (equation (6.17)).
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Figure 6.11: It is shows the values of |1 — ryry, — 2repry.|, |1 — 70077, and |2rgry,| near
the resonant energy. The blue sold line is |1 — 1y, — 2repry.|. The red dash line is
|1 — rpry,|. The black dot sold line is 271y, |-

cause wave function of bulk and-edge channels are mismatch, the bulk channel is almost
scattered back to the bulk channel. \We have |mpry,| ~ 1 and |r,r’,| << 1 so we drop
TepThe 10 [1 — Yars],,. The life time‘of the resonant state is very long so |1 — ryry,| ~ 0
near the resonant energy. Therefore, the ry,.r7, in [1 — yars],, must be kept becuase it is
the same order to 1 — ryry, (See Fig.6.11.). The T™® becomes this form.
1 —TebThy
1— YMmSs ~ ) . ) . (615)
—TepTpe 1 — TobThy — TheTep
The system has inversion symmetry so we have |rpr.,| = |reprp.|. The inversion matrix of
1 — vus is of the form.
1 L[ L—=rwrew — Therty, Tely
-~ “eb T (6.16)
L - TMms G T bbrll)e 1
Where G ~ 1 — ryry, — 2rery,. We think that the dip structures originate from Fano
resonance so we predict that G is of the form: (¢ +ia)™'. From the numerical fitting, the

G is this form. Then, we obtain the value of a.
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The T™5 becomes this form:

Z
TS ~ ¢, (1+ ek ) (6.17)

e+ia

Where t, = t't, and 2% = Gito (tLrperiyte + threprppts + tyrosrpte + thty). The life time
of the resonant state is hi/a. The parameter Z is the corresponded Fano factor. The
transmission from equation (6.17) is similar to the FN (See Fig. 6.10). The dip structure
is described by the equation (6.17). The first term is contributed by a continuous channel
and the second term is mainly contributed by a discretized quasi-bound state constructed
by the resonant bulk channel. This transmission form is the Fano-profile form.

The transmission coefficient contributed by the quasi-bound state is of the form:

to
e+ia

T = (6.18)
The quasi-bound state hasing long life time.is strong so it is hard to kill this state.
However, the state having longer life time is more sensitive to the perturbation near the
resonant energy. It is because the value of @ is'too small to neglect some perturbation
terms to a.

In our cases, there are two (more than two) bulk propagating channels and an edge
channel in the potential area. One of the bulk channel is resonant at the dip energy.
The other’s resonant energy is far away from that energy range. The non-resonant bulk
channel has significant effect on the dip structure so we need to derive a set of channel
vectors which contains the resonant bulk state of the system to obtain the value of Z and
a.

To simplify TM5, we represent T™S by the eigenstate 17" of yyrs.

Tarst i ” = G5V (6.19)

Where gJEr,;UO is the corresponded eigenvalue and it indicates which channel it is. The edge
channel isn’t back scattered by the potential so gfe_ Yo ~ 0. The resonant bulk channel
forms the quasi-bound state so angle (gfb’ Uo) ~ 0. The others is contributed by the other

bulk channels. (In some cases, some of them are contributed by decay channels.) We
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define the set of channel vector (@/J’E o 7,D'E Yo, > <¢’E o @/J’E Yo ) The matrix
Yums is non-hermitian so the set of the channel vector (w’ E- UO) is not orthonormal. The

proper set of channel must be orthonormal so we define another set of channel ( ~f;LU°>.

) -

)=

In the set of channel vector (NETZU(’) that contains the resonant bulk state, the TM%

@Z)’E U0> form = 1. (6.20a)

1E— U0> Z)¢E U0>< 7 E—Up

’fmU0>> form>1.  (6.20b)

is of the form.

TMS%t, 1 t:{{I 1

¢ 6.21
L —7ms L —ms (6.21)

Where [Yars),,,, = (fn_f]o) ’YMstm Uo =g (Nf;?UO) tand ) = t@DE Yo According
to the definition of the channel ¥ /. Yo we can analytically derive the form of 7,4 and
[Yas),, = 0 for m > n. (The detial of proof is in the Appendix G.) For example Dip.

1.1, a5 is of the form:

~MS ~MS ~MS
Y11 Y120 713

Yms = 0 45 M5 |. (6.22)
0 0 q¥5

(The transmision is mainly dependent on the propagating channels.)
In terms of 7,75, we can obtain a more simple form of 7M. To derive it, we seperate
Fus into ¥MS and M5, Where 4% is all diagonal terms of J5,5 and 7¥° contains the

other terms. Substituting 4 and 3} for a5, T™® becomes this form.

N—

- 1 - - -
TS~ =1 Z ( MSFMS) i (6.23)
— YMmS -

Where N = Rank (ya5) and T'M5 = (1- 7}},45)‘1. Becuase (W%SfMS)N = 0, the higher

order terms of F¥ STMS are exactly zero. The TMS becomes a finite summation of TM5
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and 5. In this form, it is much easier to drop the small terms of TM5.

For the Dip 1.1, Dip 2.1, Dip 3.1 and Dip 1.2, the #TM5(FM5TM$)2f term is small
enough to be neglect. Therefore, we only keep the ' TMS{ and ¢TMS S M5 terms. The
energy range we focus on is far away from the other resonant energies so we can only
keep the directly tunneling term and the quasi-bound state dependent terms. The TM*

is Fano profile form.

7
TS ¢, (1 2 ) . (6.24)
€+1a
o . . . N Lo
Where ty = t4ts and ;flaa = ﬁF%S tiy+ 3 1 [3%rs] , Dimim |- The transmission
2 m=2 m

of the Fano profile form is showed in Fig. 6.8. It is similar to the FN so the dips are
characterized by Fano physics. The Fano factor Z is —1 for all this kind of the dips
so the edge channel is totally back scattered at the resonant energy. This value of Z is
independent of the value of the band parameter; L, W and U,. It seems that the value
of Z is protected by a symmetry-which is unknowen. Because the edge channel is totally
back scattering at the dip energy, we-canuse the dip structure to be a switch of edge

current.

6.3 The transport property in the presence of DSOI

In this section, we calculate the transmission property of the quantum bar with DSOI. We
include the DSOI terms in the effective 1D Hamiltonian that we have used in the section
7.1. The potential commutes with pseudo-parity operator m, so we can use the effective
Hamiltonian Hy, to describe system. The Hy (equation (5.10)) reads

Hy = : (6.25)

0 WY (ky)

where A’ E/ = E+ ,LLS + Ak, + kac and the p indicates the quantum number of pseudo-
parity. The operator E, §, A and B are defined in equations (5.11)-(5.14). The p =1 and

i = —1 parts are decoupled. Besides, the p = —1 part is like the o = 1 part with minus
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C. We can compute the scattering state only with the even part or the odd part only.
According to equation (3.17), we can calculate the eigenstate of h’/ ZV for given energy E

by diagonalizing this matrix A,

-1
, 1 0 0 1
h,(E) = 3 L (6.26)
0 B —E+E+ud A

Then we obtain the eigenstate z/Jupm as this form.

ikE
fpm(:v) = " upm MEpm. (6.27)
Where is the column vector of mth eigenstate with k, = k% and the p is the

upm pwpm

propagation diection or decay diection of ¥ Doing the similar procedure in section

ppm’

7.1 and 7.2, we can derive the scattering state CI> ,, and the transmission ceofficient TM S,

1

MS /
1ip
R
~ 7, A Z( ;Z,F%S) P (6.29)

m=0

Where ¢/

L Eups FM S and 345 in equation (6.29) are derived from the channel 7, with

ppm
the same equation of ¢, ¢, I'™5 and S The DSOI terms are independent of k, so the
current density of ®% is the equal to equation (6.7). Then we can obtain the FN and MS
result of the state @fp.

For given W, Uy, L and incident energy, the transmission is indepnedet of the incident
direction and the pseudo-parity of the scattering state. The reason of this result is unknow
because the time reversal symmetry only makes the transmission of %, be equal to <I>£:F
The symmetry between state @fp and (IDEp isn’t due to the rotation symmetry because
the rotation operator simultaneously changes the p and p. In addition, the magnitude of
the wave vector of the incident channel of ®7, (See Fig.6.18-6.19.) is different so there is
no explanation for this result.

The Fig. 6.12 shows the transmission for fixed incident energy. The reflection of the

cases with DSOI are smaller than the case of without DSOIL. It is because the DSOI terms
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Figure 6.12: It is the transmission from FN versus U, for Hy and FIW. The width W
of the quantum channel is 300nm and the incident energy is 5meV . The blue solid line
is for L = 300nm. The red dash lineis for L:= 500nm. The black dot solid line is for

L = 300nm. The green circle is for Z== 500nm:-The soild line and dash line is for Hy,
and The dot line and circle is for: Hy.

d=7nm, W=300nm
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k{1/nm) -3

Figure 6.13: It shows edge band gap for Hy and Hy,. The black dash line is for Hy.
The solid lines are for Hyy.
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makes the edge band gap smaller (See Fig. 6.13.). The energy gap correction isn’t due
to the DSOI terms between the edge subbands but it is mainly due to the terms between
the bulk and edge subbands. In the section 7.1, we have showed that the more smaller
edge band gap is, the more robust edge channels are. It is more difficult to back scatter
the edge channel with smaller edge band gap by the potential so the reflection become
smaller.

The Fig. 6.14 shows the transmission structure for fixed Uy. The dip near 4meV is
the edge band gap of the incident edge channel. The DSOI terms make the edge band gap
smaller so the dip is more narrow than the no DSOI case. The dips below the edge band
gap are also characterized by Fano physics. From the right to left, the dips are Dip. 1_1,
Dip. 2.1, Dip. 3_1 and Dip. 1.2. Becuase the DSOI terms modulate the bulk channels,
the minimum of the dips and the resonant energy are changed.

The dips are mainly depend on the propagating modes and their T% % is also described
by the equation (6.24). The a corresponds to the widthness of the dip and the ¢y cor-
responds to the maximum of the transmission. (Our result shows that the phase of ¢,
is independent of p and p.) The value of the #;-and a is indenpendent of the pu and p
because the transmission only depends;en-¥/ Uy, L and the incident energy (for given
band parameter).

Becuase the DSOI terms modulate the bulk channels, the a and the Fano factor depend
on the value of . The Fig 6.15-6.17 show the minimum, a and the Fano factor of the
Dip. 1.1 are dependent on the value of . The minimum of the dips change with ¢ and
we find that the value of § for CdTe/HgTe/CdTe quantum well isn’t small. The Dip. 1_1
is removed at § = 0.4d(ours) and appears again for larger 6. The 0 is large enough to
induce the dip again. The minimum of the dip is non-sensitive to the ¢ at the range of
d =~ d(ours). It is hard to tune the Fano factor by changing ¢. (In our case, the 6 doesn’t
change with an electric field.)

The Fig. 6.18-6.19 show the maximum of the density of the scattering state is different
for different pseudo-parity. It is becuase the Fano factor Z,, depends on the pseudo-parity
(See Fig. 6.17). The Fano factor Z,, depends on the pseudo-parity and the incident
direction.

The Z,, is always real for those kind of the dips. (We doesn’t know the reason yet.)
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W = 300nm, L= 100nm, UD = 10meV
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Figure 6.14: It is the transmission from FN versus the incident energy for Hyy. The width
W of the quantum channel is 300nm. The length L of the potential V'(z) is 100nm and
the value of Uy is 10meV .
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Figure 6.15: It shows the transmission at the Dip. 1_1 from FN and MS versus the value
of 0 of Heps. The unit of the x-axis is our 0 result at d = 7nm. The width W of the
quantum channel is 300nm. The length L of the potential V' (z) is 100nm and the value
of Uy is 10meV. The dash line is the FN. The solid line is the MS with the propagating
modes only.
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Figure 6.16: It shows the value of the Fano factor of the Dip. 1_1. The minus 6y, range
shows the result of 2’" because the AV is.equal to the A/ f with minus C value. The

Fano factor derive from the equation(6.24). The other parameters are the same as Fig.
6.15.
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Figure 6.17: It shows the value of a of the Dip. 1_1. The other parameters are the same
as Fig. 6.15.
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The density ofd':H, incident energy=0.0375meY, L=100nm, ¥W=300nm.
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Figure 6.18: It shows the density of ®,, from FN at the Dip. 1.1 (The incident energy
is 0.0375meV.). The other parameters'are the same as Fig. 6.15.

The density ofd>_+, incident energy=0.0375meV, L=100nm, ¥W=300nm.
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Figure 6.19: It shows the density of ®_, from FN at the Dip. 1.1 (The incident energy
is 0.0375meV.). The other parameters are the same as Fig. 6.15.
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transmission at Dip. 1_1
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Figure 6.20: It shows the transmission at the Dip. 1_1 from FN and MS versus the value
of Uy. The width W of the quantum channel is 300nm and the length L of the potential
V(z) is 100nm. The circle is the FN. The solid line is the MS with the propagating modes
and the longest decay mode only.

The system doesn’t have inversion symmetry so the 7, is dependent on .
Zﬂp = IU,pZ((S, UO) L) (630)

Where z is a function of 6 and z(6 = 0) = 0. In the presence of DSOI, the value of Z,,
isn’t —1 and it becomes dependent on the L and Uy. The Fig. 6.20 shows the minimum
of the Dip. 1.1 versus Ujy. We can tuning the minimum of the dip by changing Uy so we
can tuning the Fano factor by the Uj.

In Fig. 6.21-6.22, we show the values of the Z,, and a depend on Uj. In this case
the longest decay channel contributes not small terms to T %S . We keep those terms
to calculate the Z,, and a. In this case, the (ﬁgﬁ,fﬁﬁ)g term is small enough to be
negelected. The T)!° is of the form.

2

I S N m| . Zupla
MS MS ~MS 1MS _ Hp
Tﬂp ~ t,/up [F#p <7U’M,Fup > ] tup = to (1 + H—m) . (631)

m=0

The T/ is the Fano profile form so we seperate it into two part to and (itgZ,pa)/ (e +ia).
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Figure 6.21: It shows the value of Fano factor of the Dip. 1_1. The Z,, is derived from
equation (6.31). The circle is for gy = —1.The plus sign is for g = 1. The other parameters
are the same as Fig. 6.20.
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Figure 6.22: It shows the value of a of the Dip. 1_.1. The other parameters are the same
as Fig. 6.20. (At the potential range near 6.7meV, we can’t obtain a.)
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Where the [f%s } . dependent term contributes (toZ,,ia)/(e+ia) and the ¢, contains the

other terms.
From the result above, we find out that the Fano resonances can help us to swtich
the location of the edge states. In section 6.2, we have showed the state <I>6Ed?f that is the

linear spuerposition of the ﬁf{’fp and wedge can be at one edge of the sample.

1 Zkedge

(Dedge(z y) ff«j‘diiy( ) zA/(OC) g‘fﬁ;(y)} . (632)

Where fgdZ;( ) is the column vector part of w%di;(x y) and A'(z) = A+ <kedge /{:Edfp> .
If we can change A'(z) form A’(x) to A’(xg) 4+ m, we can switch location of the @edge
The transmission coefficient le‘;[ 9 near the resonant energy of the Fano-type transmis-

sion dip is of the form.

Lyt 6, Uy, L)i
TYS ~ <1+ W“) Ly &+ 1020 Uy, L)ia. (6.33)
&+1a €+1a

If the incident state is @%d?f , the-transmited state T[@Edge( ,y)] is

TR (0 y)] = e () + e g, )] (6.34)

The relative phase A} at the resonant energy is of the form:

A +pz(6,Un, L)ia
P = = 1. 6.35
¢ —pz(6, Uy, L)ia (6.35)

If the incident state @echie is at one edge of the sample, the transmited state ég{f is at
the opposite edge. The location of the edge state can be switch by the square potential
and the potential also changes the spin polarization of the edge state. (See section 6.2.)
The Fig. 6.23-6.24 show that it works and the side of the edge state is really changed.
The edge-switchung length L. from the difference of k, is about 30um in this case. Fano
physics give a much shorter device to switch the spin and the location.

In Fig. 6.15, the edge state totally transmits the potential barrier but Fano resonance

still exist at that energy. At that kind of case, the transmission property still obeys

Fano physics. Therefore, there exist some structures that we can’t distinguish by the
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CHAPTER 6. QUANTUM TRANSPORT IN A QUANTUM BAR

transmission. The structures can make the same thing that the dips can because they are
all described by the Fano physics. For example, the Dip. 4_1 for W = 300nm, L = 100nm
and Uy = 15meV is removed from the transmission spectra in the pressnce of DSOI. The
Fig. 6.25-6.26 show that pure spin edge state totally transmits the potential and the spin
polarization is changed by the potential. (In this case the L. is about 270um.)
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Figure 6.23: It shows the density of the @?gﬂe(m, y). The potentila energy Uy is 10meV
and the incident energy is 0.0375meV (Dip. 1_1). The width W of the quantum channel
is 300nm and the length L of the potential V(&) is 100nm. The incident state is localized

at the edge y = —150nm. The reflection and transmission states are localized at the edge
y = 150nm.
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Figure 6.24: It shows the spin polarization density of the @j;{?f (x,y). The parameters of
the system are as the same as Fig 6.23.
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Figure 6.25: It shows the density of the @?‘f(x, y). The potentila energy Uy is 15meV
and the incident energy is —2.808meV (Dip. 4.1). The width W of the quantum channel
is 300nm and the length L of the potential V(&) is 100nm. The incident state is localized

at the edge y = —150nm. The reflection and transmission states are localized at the edge
y = 150nm.
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Figure 6.26: It shows the spin polarization density of the @%‘{ﬁf (x,y). The parameters of
the system are as the same as Fig 6.25.
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Chapter 7

Summary

7.1 Conclusion

In chapter 2, we have show our result of theeffective 2D Hamiltonian which describe the
energy range we are interesting in.of the:CdTe/HgTe/CdTe equantum well. DSOI couples
the conduction and heavy hole bands. The coupling removes the energy crossing of the
bands.

In chapter 3, we study the edge state solution in an semi-infinity boundary system.
The gapless edge state exists for Ho;; when A = MB — (B§/A)* > 0 and |B| > |D|. The
gapless property is due to time reversal symmetry and a pair of edge bands. DSOI doesn’t
induce any other edge bands so there are only two edge bands in the system. Beside, the
time reversal symmetry protects a two level degeneracy at I' point. Therefore the energy
dispersion of the edge states must be crossing and the edge energy gap is still closed if we
include DSOI. The edge bands are gapless and the system is still topologically non-trivial
if A > 0. On the other hand, the DSOImakes some systems that are topologically non-
tirival without DSOI become topologically trivial. The DSOI does effect the topological
property of the 2D electronic system.

In chapter 4, we try to obtain the topological number by chern number, winding
number and spin chern number method. In chern number consideration, we can’t tell the
topological phase changing as the value of d changing. The chern number is zero with

the eigenstate of the H.s; including d. The zero property of the chern number is due
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to the form of the eigenstates above. On the other hand, we can obtain the non-trivial
chern number by another set of eigenstate for § = 0 case. The two kinds of eigenvectors
describe the same system but the chern number of those two kinds of eigenfunction are
different. Therefore the chern number is not invariant under guage transformation.

In winding number or spin chern number considerations, we can obtain the condition
of the topological phase change. But winding number only works for 2 x 2 Hamiltonian
and we must drop the region near the I' point of the 2D k space to obtain this result.
In addition, the topological phase diagram from spin chern number consideration is de-
pendent on the generator (the detail of the derivation). Sometimes we can’t know the
topological number of a set of band parameter with only one generator. We need a proper
way to obtain the generator.

In chapter 5, we derive the effective 1D Hamiltonian of a quantum bar. Then, we
discuss the edge states and the edge channels in the quantum bar. The edge channels in
the following are the eigenstates of the effective-1D Hamiltonian. The edge state in the
following is the superposition of the'edge channels with the same energy and propagation
direction.

In section 5.1, we derive the effective-1D-Hamiltonian of the width W quantum bar.
The effective 1D Hamiltonian has a symmetry that we call pseudo-parity. The eigenstates
have different pseudo-parity are only coupled by y-dependent potential (magnetic field).
(The y-direction is the transverse direction.) Therefore, we use the pseudo-parity to
simplifiy the calculations in chapter 6.

In section 5.2, we discuss the property of the edge states and the edge channels. Where
the edge channels are the eigenstates of the 1D Hamiltonian with specific wave vector.
The DSOI terms mix spin so the edge channels isn’t a pure spin state. The edge channels
are localized at the two edges so the magnetic impurity near any edges of the sample will
effect all of edge channels.

On the other hand, by the edge injection, we can generate an edge state that is a
pure spin state and localized at an edge of the sample Where the edge state is linear
superposition of the edge channels that have the same energy and propagation direction.
The location of the edge state is determined by the relative phase between the edge

channels. The finite size effect[4] and DSOI make relative phase vary in z, the longitudinal

63



CHAPTER 7. SUMMARY

direction. The location of the edge state will change when it is propagating. The spin
polarization of the edge state changes with the location so the spin polarization will
automatically precess.

In chapter 6, we discuss the transmission property of edge states in a quantum bar.
First we discuss the transmission structure through a square potential in no DSOI system.
The edge band gap is not zero in a quantum bar system because of finite size effect. We
show that the edge channels are back scattered by a potential at the energy range near
the energy gap. The pseudo-spin of the edge channel at that energy range becomes energy
dependent so the reflection is not zero. Though the non-zero edge band gap makes the
edge channels scattered by the potential, the edge channel still totally transmits at the
energy range not near the energy gap.

On the other hand, we show the transmission dips at the energy range not near the
edge band gap is due to the Fano resonance. The edge channel forms the continuum
spectrum and the resonance bulk-channel froms the discrete state (quasi-bound state).
Because the life time of the resonance bulk state-are very long, we need to change the
representation channel to calculate the Fano factor and life time of quasi-bound state.
For the system without DSOI, the Fano factors are always —1 and the edge channels are
totally back scattered at the dip energy.

Finally, we discuss the transmission structure through a square potential in the pres-
ence of DSOI. The edge channels are more robust against a potential because the edge
energy gap is smaller to the no DSOI case. The edge energy gap reduction is mainly due
to the coupling between edge and bulk subbands. On the other hand, the transmission
dips at the energy range not near the edge band gap are still characterized by the Fano
resonance. The Fano factors now depend on the potential energy (or the length of the
potential). The edge channels aren’t totally back scattered at the dip energy. The addi-
tional phase from the Fano resonance is dependent on the pseudo-parity. We can use this
to change the spin polarization and the location side of the edge state. The potential can
be much shorter than the edge-switching length L. so we can change the spin without a

very long (large) device.
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7.2 Future work

According to the result in this thesis, we have three new questions to study. The first
is the transmission property through the potential that breaks the pseudo-parity. The
transverse position operator breaks the pseudo-parity symmetry. So the transmission of
quantum point contact or a side gate is different to the case we consider. The potential
may can split the spin of the edge bands so we may have another way to modulate the
spin and the side of the edge bands.

The second is what is the origin of the surface states at the boundary between nor-
mal and topological non-trivial materials. The topological physics predicts we can find
surface states at the boundary between the topological trivial and topological non-trivial
materials. According to our study in the chapter 3, we find out that the bulk energy gap
closing can change decay direction of the wave vector, vertical to the surface. Besides, the
gap-closing can also change the topological number.[19] Therefore, the decay wave vectors
having the same pseudo-spin direction-at different region have opposite decay direction.
The pair of decay wave vectors form a surface state at the surface. Is it the origin of the
surface states?

The final is what is the transport of the edge channels in a very dirty quantum bar.
In a quantum channel, DSOI makes the edge channels that have different pseudo-parity
can be coupled by normal impurity. The phase difference bewteen the edge channels
determines the spin polarization of the edge states. The spin of the edge state may not
depend on L.. On the other hand, the finite size effect makes the edge channels can be
back scattered. DSOI lets the all edge channels can be coupled by impurity only. This can
occur without any bulk channel at the Fermi energy. The transport of the edge channels

in a very dirty system may not be a trivial question.
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Appendix A

Detail derivation: From basic band
formulation to effective 2D

Hamiltonian

In this appendix, we start our :derivation from the 3D 8 x 8 Kane Hamiltonian with
DSOL.[6] The energy range we focus.upon is far away from the split-off bands. To simplify
the problem, we reduce the Hamiltonian into the 3D 6 x 6 Kane Hamiltonian. Some of
the perturb terms are smaller than the others so we justify and drop the smaller terms.

Then, we show how to derive an effective 2D Hamiltonian with C' terms that are orig-
inated from DSOI. For checking the band structure, we derive two effective 2D Hamilto-
nians. One is with the basis independent of DSOI terms and the other is with the basis
depending on the Ck, terms in H3D,. Then we discuss the isotropy and the gap closing
of the band structure. At the final section, we derive the effective 2D 4 x 4 Hamiltonian
that we use in this thesis for describing the band structure of conduction and heavy hole
bands.

Our result shows the energy crossing of the conduction and heavy hole bands is at
well thickness d,. ~ 6.6nm and it is not equal to ref.[1] This difference doesn’t comes from
keeping the correction of effective mass but comes from the difference of band parameter
of Kane Hamiltonian. (In the ref[1], they use HgCdTe instead of CdTe.) Only the energy

band gap of the effective four band Hamiltonian is much different to the other groups’
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result and it doesn’t change the topological physics (See chapter 6.).

Ck, terms perform like constant in the effective 2D Hamiltonian so it must be kept
when we keep 7 terms (effective Luttinger parameters) in HgZs. C terms remove the
band crossing at I' point but it doesn’t make the global band gap always opened. It
make the Dirac point becomes the Dirac ring with critical k. and the gap is still closed at
d =~ 6.6nm.

Even C and v terms both make the band structure be anisotropic. The energy dif-
ference of conduction and heavy hole bands versus the direction of k is still small. By
dropping the neglectable terms in H;l),, we obtain the effective 4 x 4 Hamiltonian H.,

that has been announced at ref[7].

A.1 3D 8 x 8 Hamiltonian

The lattice structures of HgTe and €dTe are zinc blende structure so they do not have
center of inversion. It makes those materials-be BIA. This symmetry broken makes a spin
orbital interaction well known as-DSOL We-introduce DSOI effect by adding C terms in
Kane Hamiltonian[6]. Those terms appear-at H}, and Hpg listed below.

We start our study from Kane Hamiltonian that contains ['6(conduction band), I'§(hole
band) and I'7(split-off band) subbands. In the order of basis vector (|I'6,1/2), |I'6, —1/2),
II'8,3/2), |I'8,1/2), |I'8, —1/2), |I'8, —=3/2), |[I'7,1/2), |[I'7,—1/2)), 3D 8 x 8 Kane Hamil-

tonian H3L; is of the form:

Hc Hch Hcs
1S = | H, H, H. | (A1)
HY, H,, H,
H.=E.+ Tk
H, = E, — k%
1 1
—5Pk. —Pk-

1 1
~LPk, Pk,
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1 2 1
i JEPk PE 0
¢ 1 2 1
0 —LPh \@sz 2Pk
. LR QiR VoS
hs —
V25 (3R Q@ —LR
Ev — THkig \/g
Tl R__ S . — B0k
. 2
R,_ Ev Tsz 3Ok, S__
—Typk 2
Hy = "B Tk
V3 o = Tik; N
S—H— 2 Ch- _TkaIQ; R—+
2
— 30k S, R Ey = Tuk:
2 + + ++ _THpkf)

Where Sy, = (y4k2 +7-k2,) + vCk., Ry = vkuk. + 5Ck_,, Q = V27 (k2 — 2k2),
k* = k2 + k2 + k2, k) = k2 + k7 and k=, k. + pik,. The parameters list above are
T = £ (142F), Ty = £-(m1 =290 T L (v + 27), Ty = %(% +2), Trp =

2m0 2m0 m
2 5 )
amg (11 = 72), 7 = 2V355%, and = @2%0(72 + 13)-

2myo

mg is the mass of free electron. The parameter E., E,, Es, P, F, 71, 72, 73 and C

depend on the material and their values are listed at Table A.1.

Table A.1: The band structure parameter of HgTe and CdTe

EC Ev E,s P F

HgTe —0.303¢V  0eV  —1.08¢V  8.46eV-A 0
CdTe 1.036eV  —0.57e¢V  —1.48V  8.46eV-A  —0.09

i V2 Y3 0[13]
HgTe 4.1 0.5 1.3 —74.6meV-A
CdTe 1.47 —0.28 0.03 —923.4meV-A

@ All parameters except C are listed at Ref.[12]
®We set E19 =0 and B9 — EC? = 0.57eV[12]
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A.2 3D 6 x 6 Hamiltonian

The split-off band is far away the energy range we want to analyze. Therefore we drop
split-off band but keep 2nd order terms by Lowdin perturbation theory. We call the new
Hamiltonian as 3D 6 x 6 Hamiltonian HZL;.

In the next chapter, we want to derive the 2D effective Hamiltonian by expanding
H3Ds with the eigenfunction of HLs (0,0, —id,). The k, term is like constant and the
Kane Hamiltonian describes the band structure near I' point. Therefore we can drop
some terms in 2nd order perturb terms because they are smaller than the others for small
k. We drop k* and k* terms but keep k,k? and k,k? terms. Furthermore, the P terms
are much larger than the others so the effect of P° terms in 2nd order perturb term are
small enough to be neglected.

The 3D 6 x 6 Hamiltonian is
3 =00 g + 7@, (A.2)

Where H® is ith order term. Their forms are

(H),,, = HY, | (A.3a)

(H(l))mn = Hp,ps (A.3Db)

(H®) e = S H il (b ). (A.30)
2 4 En—E ' E,—E

H° is a Hamiltonian with eigenenergies E; of I'6, '8, and I'7 subbands. H] . is (H3Ls)mn
except for F;. The variables m and n indicate I'6 and I'8 subbands and the variable [
indicates I'7 subbands. HZZ contains the eigenenergy(H®) of T'6 and I'S subbands and
all interaction between those subbands (H(").

Hc Hch

H(O) + H(l) — ; . (A4)
HCh Hh
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To simplify H®, we let R and @ as those forms:

Q' = (Hl, Hi ). (A.52)
RU= (s o ). (A.5b)

We can rewrite H® as this form:

HIchs T
H(2) — 1 (RTQ + QTR) — E.—Eg HcsHhSAchs (A 6)
2 f H} Hy, -
HthcsAchs Ehsj

Where A, = % ( o 1 =+ ﬁ) H ,TZSH ns contributes P° terms so we drop it. Therefore

the 3D 6 x 6 Hamiltonian is

ngD6 - . (A7)

The HC(2) and H c(z) come from 2nd order perturbation term. The Hc(2) term is the effective

mass correction term of the conduetion band and is of the form:

) (A3)
¢ 3(E.—Ey)

We define T, =T + 3(%358) so H. + H(EQ) becomes this form:

H.+H% = E, + T,k (A.9)

After dropping the terms we neglected, H (E,? is of the following form:
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[ Pk
Vi | —Pyk_k?
1 Pek
Vo | — (2P — P_) K2k,
2
Hc(h)T:
L[ Pk ks
Vo | + (2P — P3) kK2

P, (k2 — 2k2)
—3P_Kk,

1
3v2

|

1
3v/2

|

L
NG

} _
| %]

1
[

1
NG

|

Pk,
+ (2P — P3) k_k?

— (2Ps — P_) K2k,

|

P, (k2 — 2k2)
+3P_ Kk,

|
|

(A.10)
_Pk?

|

—Pk_k.
— Pk k2

|

Where K =1 (K2 + k2), k2 = k2 + k2 + k2, k2 = k2 + &2, k= ko + piky,

P.=

2(2E.—E,—E,)

\/§(2EC_E’U—ES) S
4(EU—E5)(EC—E5)PC’ Py =

A.3 2D Hamiltonian

V3(Ec—Ey)(Ec.—Es

)Pfy and P_

_ 4(2E.—E,—FE5s)
- \/g(Ec_Ev)(Ec_ES

)P’y,.

We consider a CdTe/HgTe/CdTe quantum”well structure showed in Fig. A.1. In z-

direction, there is a HgTe layer thickness of d nm between two CdTe layers. We set z =0

at the middle of HgTe layer. Forderiving the 2D effective Hamiltonian, we separate

the 3D 6 x 6 Hamiltonian HZZ; into two parts, Hy and H’'. Here we treat all k, and

k, dependent terms in HZZ; as perturbation(H’). In the set of basis vector (|['6,1/2),
|I'6,—1/2), |I'8,3/2), |I'8,1/2), |I'8,—1/2), |I'8, =3/2)), Hy is of the form:

E. 5
E,.
0 +T.k? 0 0
E,

0 0 TR 0

HO == E
2 v
0 2Pk, 0 0
0 0 0 0

71

0 0
JEiPE 0
0 0
(A.11)
0 0
E,
ke
E,
0 +T, k>
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Figure A.1: It shows the CdTe/HgTe/CdTe quantum well structure. We set z = 0 at the
middle of Hg'Te region in the following calculation.

E., E,, T., Ty and T}, are function of z and all they are in this form

T T | N Y ) Y () PR

Where 6 (2) is step function. x*29:s band paraneter of HgTe and x“? is band parameters
of CdTe.

The |I'8,+3/2) subbands are“decoupled-to the other subbands and form the heavy
hole subbands |Hi,+). Because P terms are much larger than 7. and T}, terms, we must
keep them for calculating the eigenenergy. The |I'6,4+1/2) and |I'8, £1/2) subbands are
coupled by \/ngZ terms and form the conduction subband |E1,4) and light hole sub-
band |L1,+). k. is an odd parity operator. The symmetry of [['6,£1/2) and |I'8, +1/2)
subbands is different in z-direction. The |['6, £1/2) part of F1 subband is even. The
|T'6, £1/2) part of L1 subband is odd. The detial of the basis is in appendix B.

The eigenenergy of H1, H2, H3, E1 and L1 is showed in Fig. A.2. The energys of
conduction and light hole subband are different from ref[1]. The energy crossing of the
conduction and heavy hole bands is shifted to d. ~ 6.58nm. It is not because we have keep
the effective mass corretion terms but because the band parameter of Kane Hamiltonian
they use are different.

The effective mass corretion not only effects the eigenenergy but determines the sign
of the M¥ in HZ |, we will define later. If we are to drop this terms, the M¥ will always

be negative. According to it, we can see that effective mass corretion is already kept
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Figure A.2: This picture shows the eigenenergies of the subbands versus the well thickness
d. The blue line is E1. The red line is H1. The red dash line is H2. The red dot line is
H3. The green line is L1.

in ref[1]. In their system, they doesn’t use CdTe to be the barrier material. They use
Hgp.3/Cdy.7Te to be the barrier material so the band parameter of Kane Hamiltonian is
different. It mainly effects the eigenenergy of conduction and light hole subbands.

We define the set of basis vectors (|E1, +), |H1,+), |E1l,—), |H1,+), |H3,+), |H3,—),
|H2,+), |H2, =), |L1,+), |L1,—)). The effective 2D 10x 10 Hamiltonain H ,, is defined
as

[H12£<10 (kxw ky)Lj = <Z| Hg>?6 (kl" ky’ k2> |]> : (A'13)

Where [i) is ith element of basis set. In our calculation we have treat the k., dependent

terms as

1

xk? = koxk.. (A.15)

Where Y is some band structure parameters like 7. In general, the band structure param-
eters are not the same in two materials so k, operating on y will precdures a J-function

on the boundary. This d-function contributes a term propertional to x#9 — x“?¢. For
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example, the matrix element [H{}) 0], is of the form:

(1] HE, (koo kg, b) 12) = by /

Because v depends on materials and is

equation (B.5) doesn’t vanish.

S PE(2) Hy (2)
—iFEy (2)y[0.Hy (2)]
—izEy (2) Hy (2) [0.7]

— 25 P35 [0-E ()] [0-Hy (2)] |

dz. (A.16)

in the form of equation(A.12), third term of

According to the symmetry of basis, the effective 2D 10 x 10 Hamiltonain HZP ,, is of

the form:

H2D H2D
H120Dx10:<( s ; )

i)

(A.17)

EP 4+ MEK2 5 Ak 0
20 _ Ak Ef+ M k2 0
eff = 0 0 EE + MEK? Ak
0 0 Ak, B+ MPK?
Ask_ TN 0 0
0 Ak, MR
0 Zf?ﬁ? 0
2N _
2D\ _ —ilk?
(H2P) i 0 0 0
| ik
0 0 WDk ke
. —i1k?
~iDk, ) w2 0 0
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El 0
+ M k>
o B
+ME?
0 0
0 0
0 iI3k?
+iJ3k?
—il3k? 0
—iJsk?

Ey!
+MIE?

Aok,

0

0

Ey'
+MEE?

0

Ask_

Lk
k2

Ask_

0
Ef
+MEE?

0

i];;ki
+iJsk?

0
0
Aok,

0
Ey
+MEk?

A.4 2D Hamiltonian with Dresselhaus spin-orbital

interaction (DSOI)

Considering the 3D 6 x 6 Hamiltonian HgZ:dncluding DSOI, the Hamiltonian at I' point

is of the form:

HgXDG(Ov 07 kZ) =

ka? 0
0 e PR
0 Y2 P.k? fTH 2
2Pk, 0
0 Pk,  Ck,
—2p )2 0

\/gpkz

0

0
E,

—Ck,

—Ck,

0

E,
Tk

(A.18)

The C and P. terms are much smaller than the others showed in equation (A.18) so we

can treat them as perturbation or keep them in calculating the basis vector of effective 2D

Hamiltonian. If we treat them as perturbation, the basis vector is as the same as what we

derived in the last section. Because the symmetry of DSOI term is different to the others

in H3D,, C and P. contribute nothing to the terms already existing in HL,;, (equation

(A.17)). With the terms induced by DSOI, the effective 2D 10 x 10 Hamiltonian HZ
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is of the form:

2D
H10><10 = ( ( 55,

EF + MFE?

2D
Heff -
aEk_

o+
MER?

Ask_

03+
MER?

iDSk,
(H")" =
—ilk*
—iJok?

]
—iJOk?

—iDk,

2D
Hey

Ak,

Ak EH 4 MHR?

01+
MER2

a1k+

MR

a4k+

~iDCk_

—il k%
—ik
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Figure A.3: This figure shows the eigenenergy of H;l ,, at T’ point with DSOIL. E1, H1
and H3 are coupled by Ck, and blue lines show the energy at I' point for them. L1 and
H?2 are coupled by C'k, and denote red lines.
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Where 6;, a;, ag, ar, D, ME, I¢ and J¢ term are contributed by C' and P. terms.
Becuase 6; terms are constants and they couple E'1 and H1 subbands, the energy crossing
at I point will be anti-crossing (See Fig. A.3).

On the other hand, we can keep C' and P, terms in computing the basis vector. In

77



APPENDIX A. DETAIL DERIVATION: FROM BASIC BAND FORMULATION TO
EFFECTIVE 2D HAMILTONIAN

this new set of basis, we can derive a new effective 2D 10 x 10 Hamiltonain H2P ,,. For
deriving the new basis vector, we define the new Hj as equation (A.19) with P. = 0.
The P, terms are smaller than C' terms so we treat them as perturbation to simplify the
equation.

Pk, couples |I'6, £1/2) and |I'8, +1/2) subbands. Ck, couples |I'8, £1/2) and |I'8, F3/2)
subbands. So |I'6,+1/2) and |I'8, F3/2) component have the same symmetry and are real.
II'8, £1/2) component have the opposite symmetry of the others and is pure imaginary.
II'6,+1/2) , |I'8, £1/2) and |I'8, F3/2) are coupled together to form ‘gi,j:> and | Ai, +
subbands. Where |54, ﬂ:> subbands’ |T'6,+1/2) component is even function and |Ai, +

subbands’ |I'6,4+1/2) component is odd function. The detial of the basis is in appendix
C.

The eigenenergy of S and A subbands are showed at Fig. A.4. The Pk, and Ck.
terms make the curve of S subband not cross to each other. The energy at I' point of two
methods are similar(See Fig. A.5): It shews we ¢an treat C' and P, terms as perturbation
and the band structure of two method are comparable.

When d is larger than d.. ’52 i> is stmiliar to |E1,4) and ’Sl > is similiar to

=)

>) The effective

|H1,4). For comparing the result, we-define the set of basis vector( |52 +>

52.), [S1+). |88.4), |85, -), AL ), |41, ), [d2.+). |

2D 10 x 10 Hamiltonian H?L,,, is defined as

30 (ke b)) = (G HY (o By ) |5) (A.20)

Where ‘5> is ith element of basis set. According to the symmetry property of S and A

subbands, H2P |, is of the form:

Fr2D F72D
Herf H}

g2
10x10 (f{12D)T f{%D

(A.21)
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Figure A.4: Tt shows the eigenenergy of S and A subbands. The blue line is the eigenenergy
of S subband versus d. The red line. is'the eigenenergy of A subband versus d.
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Figure A.5: The blue solid line is the eigenenergy of H;P o at T’ point versus d. The red
dash line is the eigenenergy of H3Z,,, at T’ point versus d.
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ES + 6. . iJsk? = iJghk? =
+3}\~431g23 Aok +z’E5+k£ sk +¢EZI<£ gk
. E5 4 03 = —iJsk? = —iJek?
B 7 ) L
—iJsk? = ES 404 , d .
T B R S 7
H2 e
LT ij5k2 < ES + 84 ~ Sg
—il5k =t Ark_ A Ack_ N
R iLsk? 7 M,K? ° +Myk?
—iJgk? = 5 . ES+56 .
—z’iﬁﬁki gk fMgk:? Ak MZH T Ak
i, EL g e Ak BT
Ot LiLek? i + Mok? o M;k?

A.5 2D band structure: Isotropy and gap-closing

In the section 3.2, we have showed that the DSOI terms make the £'1 and H1 subbands
anti-crossing. But It doesn’t mean that the global energy band gap between conduction
(E'1) and heavy hole (H1) bands is always opened. To study whether the gap is cloesd or
not, we start our study from the effective Hamiltonian with £1 and H1 subbands only.

For the basis without case, the effective Hamiltonian with E1 and H1 subbands only is

of the form:
ElE + MlEk2 A1k+ O/Ek+ (51 + MlckQ
Ak EF + MEE? 5 + MCE? ark_
H2, (ko Ky d) = 1 oo e 1 - (A22)
aEk_ 51 + Mlckz EIE + MlEl{Q Alk‘_
51+ MEK? ark.y Ak, EF + ME?
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The eigenenergy E,, is of the form (See Appendix E):

(CLE + (11)

E,u =Eo+ Dk* + 1 7

k

+p\/(A1k; + [0y + MER2)? + (M — Bk? — u@k) . (A.23)

Where D = 1 (ME + M{"), B=1(Mf - M), M =1 (Ey — Ep1) and
Ey = % (Em1 + Eg1). The energy dispersion is isotropy becuase the anisotropy is mainly
induced by k% and k% at H7”. Only when we including the effect from H2 and L1
subbands, the bands structure will be anitropy.

The value of ar and a; are much smaller than A;. The zero-gap exists when the

two bands with the same p touch at the same k.. The value of energy gap is sim-

ilar to min 2\/(A1k + 1|6 + MER)) + (M — Bk? — u@ky . From numerical
calculation, we find out that the energy gapiis closed at d = d. =~ 6.58nm. A4, is
positive so k. is the root of Ak — 61 — M'lck2 = 0. We have A; >> §; and Mlo SO
ke 0/ A|,_, = 4.36 x 10-°nm~%(See Fig. A.6.) Therfore the DSOI terms don’t remove
the gap-closing. It makes the Dirae point become the Dirac ring and the global band gap
is still closed at a special well width d..

Then we do the similar procedure to discuss the gap-closing picture in the effective
Hamiltonian with the basis incuding C'. For d < 8nm, the E1 and H1 couple together
to form the S1 and S2 subbands so we study the effective Hamiltonian with S1 and S2

subbands only.

E5 46
+§\ij22 Aok Asky  0¢ + Mgk?
- S5 -
Ak PO sk Ak
r72D +M1]{Z2
Ask_ 66 + Mgk? ﬁ% k; Agk_
. . EY+54
o + Mek?  Aiky Aok ﬁ% k;
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The eigenenergy F,, is of the form (See Appendix D):

~ ~ ~ 1 ~ ~
Ep,u :EO + Dl{}z + /L§ (Al + Ag) k

+ p\/ (Agk + o [56 + Mﬁw]f + (M ~ Bk - ﬂ% [;11 - Ag} k) (A.25)

Where D = (Ml +M2>/2, B = (m - Mg)/z, M = (E31 + 01 — g _52)/2 and
Eo = (Egl + 51 + Esz + 52> / 2. The band structure is still isotropy when we drop the
effect from A1 and A2 subbands.

Because ’fll — A, , the zero-gap exists when the two bands with the

>> ‘[11 + A,

same p touch at the same k.. The value of energy gap is similar to
2

min (2\/<A2k +p [56 + Mgkﬁ})Q N <M — Bk2 — M% [/Nll — 1213] k:) . From numerical

calculation, we find out that the energy gap is closed at d = d. =~ 6.56nm. The difference
between this case and the case with the basisiwithout DSOI may come from the high
oder terms of Ck,. The high oder terms of Ck, kept in H}P . is dropped in H3P . Tt
changes the gap closing point. keis the root of M — Bk? — ,u% [Al — 1213] k = 0. We have
A% >> ’MB S0 ko A ’2]\;[/ <f~11 - Ag) ld:dc ~4.75 x 1073nm~1.(See Fig.A.7.)

Now we study the gap-closing in the effective 10 x 10 Hamiltonian. We shows the
min(E2 — E3) at the 2D k-space versus d in the Fig. A.9. Where E2 and E3 are the

energies of middle two bands of conduction and heavy hole bands.(See Fig. A.8.) The
energy gap is closed at d ~ 6.583nm for basis without C' and closed at d ~ 6.558nm
for basis with C. We also obtain k. ~ 4.358 x 10 >nm ™! and k. ~ 4.781 x 10 *nm ™1,
The band structure is anisotropy so the value of d. depends on the direction of k. For
basis without C the difference of d. is about 10~"nm and the difference of k. is about
10~8nm~!. The difference for basis with C'is in the same order. The differences of d,. and
k. are so small that the d. and k. are isotropy.

We has showed that the d. and k. are isotropy. Is the band structure is isotropy?
In Fig.A.10-A.13, we show the energy difference versus ¢, the angle of k vector, with
fixed amplitude of k vector. We find out the energy difference is about 10~*meV for
k = 0.0lnm™~!. The energy difference between & = 0 and k = 0.0lnm ™! is 2meV. The

energy difference in the ¢ is much smaller than in the amplitude of k vector so the band
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structure is nearly isotropy. The isotropy property is because of the anisotropy depending
on k2. The band structure is mainly determined by the & linear term so the band structure

is isotropy for small k.
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Figure A.6: This figure shows the energy dispersion of H Sf% with d = 6.58nm. The black
vertical indicates the k..
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Figure A.7: This figure shows the energy dispersion of H 3]% with d = 6.56nm. The black
vertical indicates the k..
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Figure A.8: This figure shows energy structure of conduction and heavy hole (3 land S 2)
bands. The E1 is the energy of the 1st highest band. The E?2 is the energy of the 2nd
highest band. The E3 is the energy-of the 3rd highest band. The F4 is the energy of the
4th highest band.
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Figure A.9: This figure shows min(E2 — E3). The blue solid line is for the Hfﬁc. The
red dash line is for the H2F.
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Figure A.10: This figure shows the energy difference of HZD , versus ¢(angle of k) at
d = 6.58nm. Here we show the value\of Ei(¢) — Fi(¢ =0) at k = 0.0lnm ™.
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Figure A.11: This figure shows the energy difference of HZD , versus ¢(angle of k) at
d = Tnm. Here we show the value of Ei(¢) — Ei(¢ =0) at k = 0.0lnm ™"
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Figure A.12: This figure shows the energy difference of H2D  versus ¢(angle of k) at
d = 6.56nm. Here we show the value\of Ei(¢) — Fi(¢ =0) at k = 0.0lnm ™.
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Figure A.13: This figure shows the energy difference of H2P versus ¢(angle of k) at
d = Tnm. Here we show the value of Ei(¢) — Ei(¢ =0) at k = 0.0lnm ™"

38



APPENDIX A. DETAIL DERIVATION: FROM BASIC BAND FORMULATION TO
EFFECTIVE 2D HAMILTONIAN

A.6 effective 4 x 4 Hamiltonian

The band structure of two route of effective 10 x 10 Hamiltonian is similar to the other
when d is not near d.. We can use any one effective Hamiltonian to describe the system
at d = Tnm(See Fig. A.14). In the following analysis, we use the effective Hamiltonian

HZP |, to study the topological nature of the system.

d=7nm
-10 .

A5}

=20+

E(meV)

251

.30 m

-35 I I I I I | I I 1
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
k(1/nm)

Figure A.14: It shows the eigenenergy of HL.,, and H?P |, with the well thickness 7nm.
The solid line is the eigenenergy of HZP .. The dash line is the eigenenergy of HZP ..

In the current work[4], the edge state is discovered in the energy gap between the
conduction (E1) and heavy hole (H1) bands, so we focus upon the energy range near
E1 and H1 subbands. We reduce the effective Hamiltonian HZE, ;. to an effective 4 x 4
Hamiltonian H.¢y with Lowdin perturbation theory up to 2nd order. In the set of basis
(|E1,+), |[H1,+), |E1, =), |H1,—)) , Hesy is of the form:

Heyp=H9+HY + H®. (A.26)

H© is the eigenenergy of E1 and H1 subbands. H" is of the form:
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!/ / (5+(5l
(ME+MT) R (A+ ke (a+d)ke o
6/
(A—i—A,) k_ MlH]{IQ 6+ C1.2 (CL1 +CL/1) k_
HY = 51 A (A.27)
/ +0 E 1E\ 1.2 /
(a+a) k- o (M1+M1)k (A+ Ak
5+ , ,
—|—MC]€2 <a1+@1)k+ (A+A)k'+ MlHICQ

The M’f, A d, 8, MC and oy are donated by P., P_ and P;. The contribution
form those terms is much smaller than the other terms like C' and v so we drop those
terms. Furthermore the M terms just correct the value of M and M{’ and we can
make those terms zero by an unitary transformation. Dropping those terms doesn’t affect
the physical picture of H.¢s. The a and a; are also dropped because C' is much smaller
than P and we also can make a or a; zero in the similar way of M¢. Here we only keep
the P? terms in H® because P issmuchrlarger than the others terms.

We redefine the parameters keptin H. ;.

—M + BE* > Ak, 0 J
) Ak_ M — BEF? 5 0
H.ry = DE* + . (A.28)
0 J —M + Bk*  Ak_
d 0 Ak M — Bk?

Where M = w, B = M, D = w and A = A;. The definition of M¥,

3
M{E, Aj and 6 are

ME = [ (TIB Q) = Tiy s )] = + (ﬁ) + (ﬁ)
M == [ Ty () 11 (2)
5= %/E2 () {C, .} Hy () d:
D= —i / % By (2) Lo (2) + B (2) L (2)] d:
P

1
A= [ | 5550 G H )4 3B ) o) By 2]
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Table A.2: The band structure parameter of H.yy

M(meV) B(meV/nm?) D(meV/nm?) A(meV/nm) §(meV)

ours 4.83 o978 376 1.68
S.C. Zhang][1] 6.86 5.14 346
Markus Konig|[7] 10 512 364 1.6

@ This band parameter is for d = 7Tnm.
®TIn ref[1], they didn’t include DSOL

Where the definition of Ei(2), Es(z), Li(2), L2(2) and H;(z) are in Appendix B. The

value of parameters is showed at Table A.2. Our parameter A, B, D and ¢ are similar to

other’s result. Only the value of M is much different to the other group. The physics of

two set of band parameters is the same (See chapter 6.).

We show the band structure from Hgppand HiE, o at Fig. A.15. Those two Hamil-

tonian gives the similar energy dispersion so, we.can use H.sy to study the topological

physics of CdTe/HgTe/CdTe quantum well system.

d=7nm

-20

-

0 0.002 0.004 0006 0008 0.01 0012 0014 0016 0.018 0.02

k(1/nm)

Figure A.15: It shows the eigenenergy of conduction and heavy hole bands from two
effective Hamiltonian. The blue solid line is from HZ ;. The red dash line is from H,;.
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Appendix B

Basis definition of H 12£< 10

Both |Hi,+) and |Hi, —) subbands are the solution of the same differential equation. We
define FH,(z) as the space part of |Hi, £).

<Hz‘,+yz>:(o O —Hi(z) 0 0 0).

<Hi7—|z>=(o 00 0-0 H(2) )
Where H;(z) is the eigenfunction with eigenencrgy EX of Schrodinger equation:
(B, (2) + 0.Tw (2) 0,) H; (2) = EJ'H; (). (B.1)

The wave function has specific symmetry at z-direction. We define H;(z) with odd ¢ as
even function and H;(z) with even i as odd function. For the even function, H;(z)’s form

is

bﬁeﬁflz z < —d/2
Hi(2) = alfcos(alz) for —d/2 <2< d/2 -
bH bl d/2 < z

For the odd function, H;(z)’s form is

bH Pl z < —d/2
Hi(z) = ¢ allsin(alfz) for —d/2 <2< d/2 .
—pHe bz d/2 <z
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B9 -EH
Where off = T and gH =
H

EH_EGd
Cd
TH

. We get the eigenenergy EI! through the
boundary condition that is from continuity of wave function and Schrodinger equation.

For the even function, the boundary condition at z = —d/2 is

Ad aq
—TSBH cos (%) T9a! sin <ole) =0. (B.2)

For the odd function, the boundary condition at z = —d/2 is

Hq "
TG sin <a’T) + T}l cos (O%T) =0. (B.3)

For |E1,+) and |L1,4) subbands, Pk, terms make the symmetry of the |I'6,+1/2)
component opposite to the |I'8,4+1/2) component. We set the |I'6, +1/2) component is
pure real so Pk, terms also make the |I'8 +1/2) component pure imaginary.

We defined E'(z) as the space part of {I'6,41/2) subbands and E?(z) as the space
part of |I'8, £1/2) subbands.

<E17+|Z>:(E1(z) 00 —FEy(2) 0 0>.

(BL-2)= (0 Ei(x) 00 —E(2) 0).

Where Fy(z) is pure imaginary and FEj(z) is real. They satisfy the set of Schrédinger

equations.

[EC (Z) - azTc (Z) az] El (Z) - \/gPaZE2 (Z) = ElEEl (Z) . (B4a)

[Ev (Z) + azTL (2) az] Ey (Z) - \/gpazEl (2) = E1EE2 (Z) : (B4b)

Where EF is eigenenergy of E'1 subband. We let e’ as the solution of HgTe region and

e7"% as the solution of CdTe region. 0% and ¥ are functions of EF and determined by
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Schrédinger equation(B.4).

(EC* — B = TG (BC - B + T00FF) + 2P =0, (B9

(B9 — BF — TH9(68 ) (B9 — BF + T, "0(657) + 2 [P6")* 0. (B.6)

All ¥ are pure real (See Fig. B.2) but the part of §¥ may be imaginary. The functional
form of conduction band will dependent on EF. When EF > EH19 two of §¥ will be

imaginary (See Fig. B.1). Ej(z) is even function[l] so F;(z) and Es(z) are of the forms:

Chet’® 4 Ches 2 < —d)2
By (2) = Ajcosh(6Fz) + Aycos(6¥z) for —d/2 <2< d/2 .
Che 1% 4 Che 12 2> d)2
Cy Dy e 24 Cy Dy * 2z < —d/2
Ey(2) = ABysinh(6F 2) 4+ AyBosin(6fz) for —d/2 <z <d/2 .
—CyDie " —CyDye " 2> d)2

Hg pE THQ(51E)2

. . ECd_pE__pCd(,E\2 . EHI_ _
From equation(B.4a), we have D; = —z\/g oy O B =—i 3 1P5§c

i

H H
and By = —Z\/EE ’ Ei,;g G2y vE and 0F are positive real and we let 65 =Im[6F].
From the continuity of wave function and Schrédinger equation at boundary z = —d/2,

we derive the set of equations determining eigenenergy :

§2d L I~ ~Ed
A; cosh {T} + Aj cos [ 5 } — iZIOi exp {—T} =0, (B.7a)
B §Ed Eq
AJBlﬁnh{é%Q}%—Ang$n[ }4—2:(7[)exp[ 72 ]__o, (B.7b)

Hy [ 5E A, si ord E cd_E _ rd 0
L Aj sinh | 05 Ay sin +ZT v Ciexp 5| = 0; (B.7¢)
2

6Ed oFd Ed
Tflg (5{514131 cosh {171 + 65" Ay By cos { 5 }) — ZTLCd EC.D; exp { 7’2 ] = 0.

i=1

(B.7d)

When EH9 < EF < E9_all §F are real(See Fig. B.1). The functional forms of F;(z)
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Evs

_02 1 1 1 1 1 1
2 A A D

Figure B.1: This picture show the solution of §%. The solid line is the real part. The dash
line is the imaginary part. The right vertical line is Ef9(= 0eV'). The left vertical line is
Ef9(= —0.303¢V). When E¥ is between EX9 and EM9 all 6% are real. Otherwise two
of 6% will be pure imaginary. Heré we-only show-two of roots. The other root are minus
times of the roots showed here.

Evsy
2.
15¢F
<
% 4l
D5F
_____ — e
0 “s\/-—-—-—_—-ﬁ\,.-
1 1 1 1 1 1 1
2 15 1 05 ] 05 1 15 2
E@V)

Figure B.2: This picture show the solution of v¥. The solid line is the real part. The dash
line is the imaginary part. The left vertical line is ESY(= —0.57¢V). The right vertical
line is ES4(= 1.036eV). In the energy range ES?Y < B < E° all 4F are real. Here we
only show two of roots. The other root are minus times of the roots showed here.
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and Fy(z) are

Cle’ylEZ + 026752 z < —d/2
Ey(2) = ¢ A cosh(6F2) + Ay cosh(0F2) for —d/2 <2< d/2 ;
Cre 17 4 Che 122 z>d/2
OlDle’Yfaz + CQDQQ’YQEZ z < —d/2
Ey(2) = § AyB;sinh(6F2) + AyBysinh(652) for —d/2 <z <d/2 .
_C’ZDle—VFZ — CQDQG_,)I;Z z > d/2
Hg H
Where D; \/g Bt EP;,YTCd(% 2 and B, = —i %Ec 7E{;;gc 68 From the same

condition of equation(B.7), the eigenenergy is determined by the set of equations:

5= (s [£4] - 20 -0 B

2
Z (A B, sinh { } + C;D; exp { }) (B.8b)
=1

2 E
Z (TCHQ(SEA sinh {52(11 + TC%EC; exp [ }) (B.8c)
=1

2 E
Z ( T}95F A; B; cosh {62d} + TNEC; Dy exp [ %26[}) = 0. (B.8d)
i=1

We can follow the similar procedure to get the eigenenergy of L1 subbands. The form of

light hole subband is

<L1a+\2>:<L1(z) 00 —Ly(2) 0 o).

<L1,—|z>:<o Li(z) 0 0 —Ly(2) 0>.

Where Ly(z) is pure imaginary and L;(z) is real. The Schrédinger equation describes L1
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subband is the set of the equations:

[Ec (Z) - azTc (Z) az] Ll (Z) - _PazLZ (Z) = ElLLl (Z) : (BQ)

woo%!

[Ey (2) + 0.Tp (2) 0] L (2) — ([ 2 PO.L1 (2) = By La (2). (B.10)

w

Where EY is the eigenenergy of L1 subband. L;(z) is odd function[1] so Li(z) and Lo(2)

are of the forms:

C’le’hLZ + CQG’YQLZ z < —d/2
Ly (z) = ¢ Ajsinh(6F2) + Aysinh(0kz) for —d/2 <z <d/2 .
—Cle_’YlLZ — 026—72% z > d/2
ClDle’yle + CQDQGVZLZ z < —d/2
Ly (z) = ¢ A1 By cosh(dL2)4 Ay By'cosh(6kz) for —d/2 < 2<d/2 .
Cnge‘%Lz =+ CQDQefthz z > d/2
Where D; = —i\/gE‘?d_Ele;?Cd(”L)Q and B; = —i\/gEfg_Ei;;ffg(éiL)Q. All 4% and 61 are

real. Those v* and 6 are the root of eqs(B.5) and eqs(B.6) by substituting EF for EE.

The eigenenergy is determined by the set of equation:

2 L L
Z (Ai sinh léZQ_d] — C; exp [—%Qd]) =0. (B.11a)

2
oLd Ld
=1
2 I L
Z (TcHgéiLAi cosh {512—61 + TOEC; exp [—% d]) = 0. (B.11c)
i=1

2
6Fd Ld
T}195E A, B sinh [71 + TE4EC;D; exp {—%2 D = 0. (B.11d)
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Appendix C
Basis definition of H10><10

For Si subbands, we define

Si, :|:> as the form:

<S’z‘,+‘z>:(§§(z) 00, —Si(z) 0 5”%(2))-

(3. 2= (9 B S8 0 —8i) o).

Where Si(z) is pure imaginary and.S%(z) and §%(z) are real. The Schrédinger equation

of Si subband is the set of equation listed below.

(Bu(z) + Tu(2)k2) Si(2) + \/gpkzés'(z) — E95i().  (Cla)
(Bu(2) ~ Tu(2K2) $4(2) + || S PESI(E) — CR84() = BSSy(). (Cb)
(Bul2) — Tu(2)k2) 8i(2) — C(2)k.Si(=) = ESSi(2). (C.1c)

Where EZS is the eigenenergy of Si subbands. We let €9°# as the solution of HgTe region

and ¢7°% as the solution of CdTe region. The following equations determine 6° and 55:
( ngC THg((SS) > < H9U+TH9 55 2) <€ff +THg 5S) )
2 PR35y (8o + T (9%)2) + (CH10)* (352 (f'or = THo(8)2) 0. (C2)

)" (6%
( Cd,c _ %45 )2> < Cd,v + TS5 2) <€sz +T9(55) )
) (7

n ;PQWS) < Cdv | TCd(5S ) + (C9%( 2 ( Cd,c _chdﬁs)2> —0 (C.3)
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H [ H I d I d [
Where e/9¢ = pHo _ (S Hov — pHe _ s Cde — pOd_BS and £ = EC4_ES. For

all Si subbands, 5°s are all real(See Fig. (C.2)). The two pair of 6° are real the others

are pure imaginary(See Fig. (C.1)). Si(2), Si(z) and Si(z) are of the forms:

3
~ =S
> pielt
=1 z < =4
2 ~
Si(2) =< > ajcosh (05z) + aj cos (55?2) for —4<><4
i=1
3 d
> pie Uk 2 <7
KA
\ J=1
4
3
58 58 75 %
Z p;q;e’ J
J=1 z < —35
2 ~ ~ ~
Si(z) =< > afbysinh (5]52) + azbs sin (552) for —d <2< 1.
j=1
d
S~S —~3z 53 <%
—pigie
\ J=1
4
3
— a | )
Z S’]"Se £3 z
-~ J J d
Jj=1 z < —3
2 ~
Si(z)={ > ases cosh (65%) o cos (552) for 4 <o<d.
j=1
3 d
e 2
\ J=1
Hg,c_mHg(55)2
. .7 . €; =T, 0%
From equations (C.1a) and (C.1b), we obtain b3 = —i §+(]>
’ J 2 iP6% ’
5
Hg,w_Hg, Hg,ermH Hg,wpHg | 2 52 HgnHg (55\%
o5 = fRdns e ) ) ()
J 2 PCHQ(S;;)Q ;
c < 2 v c c v < 2 N 4
BS . §EZHQ‘ +TCHg<5§") s §€ng’ sflg’ —(sflg’ TLHg—EZHg‘ TCHg—i%P2)(§§) —TcHngg@g)
3= 71/ 2 P59 3T T2 PcHo(55)° ’
c ~ 2 v c c v ~ 2 ~ 4
5 §€Z_Cd, _chd(%s) d g §Ei0d, EiCd, +(8iCd, TEd_EiCd, TCCd-l-%PQ)(VjS) _TCOdTLCd(,y]s)
4 = —/2 5 and 7y =4/3 52 .
" PCCd('yj)

’3/]5 , 05 and 65 are positive real and we let qu = Im[d5]. From the continuity of wave
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function at boundary z = —d/2, we derive the set of equations:
2 0%d ~Sd
Z a; cosh JT + a3 cos ij exp = 0. (C.4a)
j=1

2 59
~ 05d - ;
> " afbf sinh (%) + a3 by sin ( > + Zﬁqu exp (—%) = 0. (C.4b)

j 1

Jsd ~S =S 5Sd - ~S =9 Vrd
Za ¢ 9 cosh + a5 ¢5 cos ijr] exp | ——5— | =0. (C.4c)

The Schrédinger equation is continuous at boundary z = —d/2. We have
—d/2+e
l_i_r:% / [(E.(2) + To(2)k2) Si(2) + \/gpkzgg(z)]dz =0. (C.5a)
—dj2—¢
—d/2+¢
lim / [(Bu(2) — Tu(2)k?) Sy()+ \@szzéi(z) — C(2)k-S5(2)]dz = 0. (C.5b)
—d/2—¢
—d/2+e
li_rg% / [(Eolz)=Ta(z)k?) Si(z) — C(2)k.Si(2)]dz = 0. (C.5¢)
—dj2—¢

C depends on the materials so it is a function of z. By treating Ck, terms in the

equation(C.5b) and (C.5b) as 3 {C, k.}, we obtain

—d/24¢

1 ) d

L lim / {Ok) 1 (2)dz = —L (=)Mo — ), (C.6)
—d/2—¢

The (k,C) term contribute a d-function at the boundary. This J-function givens an

addition in the boundary condition. From equation(C.5) and (C.6), we derive the set of
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equations:
(S - 5%d 554

TcHg Z(%Saf sinh jT 5Sa3 sin + ZTC‘H] P exp —37 = 0.
Lj=1

[ 2 ~ ~ ~Sd -
TLHg dedfbf cosh (%) 55 bgq oS ( ) + Z Cd’yjspjsqf exp < T)

_ Hg ~5~S Sfd ~5~S ~3 - Cd S 7S %Sd
=3 C ;ajcj cosh <T>+a3c cos (T)] —;C’ P; jexp< T)]
(C.7b)
o R 05d 3 45d
Ty? Zéfafcf sinh (%) 05 i3 &5 sin ( ) Z Cd%spfrf exp ( ]7)
j=1
L ~Hg : ~S7S Ssd 578 cd v7d
-3 C ;ajbjsmh( 5 )+ab SlIl( ) +ZC’ e exp<—7>]

Those two sets of equation above determine the eigenenergy.

We can do the similiar produre tofind Aé¢subbands. We define ‘fli, :|:> as the fors:

i+ 2= (A 0 0 —Ai(x) 0 Ay(2) ).

(Ai=| 2= (0 Aix) -Ay(z) 0 ~Ay(z) 0).

Where A% (z) is pure imaginary and A#(z) and Aj(z) are real. The Schrodinger equation
of Ai subband is the set of equation listed below.

(B + T2) o)+ 2PR) = EAALG). (Cma)
(Bu(2) — To(2)k2) Al(2) + ngZflﬁ(z) — CO(2)k,Al(z) = EAAL(2). (C.8b)
(Bulz) — Tu(2)2) A(2) - COAb(z) = BAL(). (o)

Where E;* is the eigenenergy of Ai subbands. The functional form of A(z), Ab(z) and
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Evs &
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02r
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01r
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08 06 -04 02 0 02 04 06 08 1 1.2
E(eV)

Figure C.1: This picture show the solution of 5. The solid line is the real part. The dash
line is the imaginary part. The right vertical line is E9(= 0eV'). The left vertical line is
EM9(= —0.303¢V). When E° is between EF9 and EC4(= 1.036eV), two of 67 are pure
imaginary. The other §%s are real.:Here we only.show three of roots. The other root are
minus times of the the roots showed here.

Evsy
T T T T T T T T T T
1.2} / i
-...--'-'-'-
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= 06} E
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~
\\\ \
~
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08 06 -04 -02 0 02 04 06 08 1 12
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Figure C.2: This picture show the solution of #°. The solid line is the real part. The dash
line is the imaginary part. The left vertical line is ES4(= —0.57¢V). The right vertical
line is £S4(= 1.036eV). In the energy range ES? < EF < EY? all 4#° are real. Here we

only show three of roots. The other root are minus times of the roots showed here.
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Al(z) are
( 3 "
g d
j=1 z < —5
- 2
Al (z) = Zldf sinh (642) + a3 sin (5‘4 ) for —4 <> <4
]:
3 d
> e 2=
\ J=1
( 3
S plgle’ 4
Jj=1 z -5
2
i ~AFA A AT A A
A (2) = ;yjjmwwg)+%bax@ >ﬂx_%<z<g_
3 d
> e 2 7
\ J=1
( 3 »
S e d
J=l z < —3
5 2
Al (2) = ¢ > atel sinh(642) @4 afsin (5’4 ) for —4 « , < 4
=1
3 d
Z pArAe 7] 3 <z
\ =1
Hoe_gpiio(54)° SO0 Hoe | (Howp_HovgHa 2 p2)(54)2 gHortis(54)!
Where bt = —i /37T ::\/F'z s ey A e p s V)1 (5
iP64 ) 2 PCH9<§;.4)2 J
FOR S T S F e B IR U Y S
: CdP(SA 2 ’ 2 Ccd Ccd Ccd PCHCg(SSéq)2 2 7 4
q' = ﬁ}:g@lmw?:ﬁb%C%NW%”Wﬁﬁwywwmﬂ'
75 PCCd(’yjA)

A8, o and 64 are positive real and we let 04 = Im[64]. From the continuity of wave

function at boundary z = —d/2, we derive the set of equations:

2 TA < 3 ~ A
04d 6id Y;d

~A _: J ~ . 3 ~A J —

E: a; sinh (—2 > + aj sin (—2 ) + ]E 1 P; exp (— 5 ) =0. (C.9a)
. dd AT Fid

~ATA A 3 A ~A
E a;b; cosh( 5 ) + ag'bs cos (T) - jE:1 Py q; exp _jT = 0. (C.9b)
2 54d ad) id

~A~A . ~A~A . 3 ~A A
E a; c; sinh (%) + a3 ¢; sin <7> + E lp] + exp ( %) = 0. (C.9¢)

=
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From Schrodinger equation at boundary z = —d/2, we derive the set of equations:

H : SA-A SAd SA~ Cdx Vi d
T Z ;a; cosh 5 + 05as cos ZT fy]p] exp | =5~ =0.

(C.10a)
TCd5AsA A Vi
+Z LD eXp< JT)

5Ad SAd 3 ~Ad
]7> + @5 ¢ sin (37 + Z CYp1 7 exp %7 :
j=1

- ot - 54d i yitd
A=A-A A~ A=A 3 CdzA~A=A
E sa; jcosh<]2 >—|—53a303cos< 5 )] E Ty97; D575 exp _]T

2 N ~Ad
ng Z 04a4p4 sinh ( J

7j=1

54d . 54d > FAd
~ATA 3 Cd~A ~A
-5 ) + ag by cos <—2 - E 1 Cpiqy exp | == | |-
j:

Those two sets of equation above determine-the eigenenergy.
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The time reversal operator for H, Ff

The time reversal operator © is of the form:
0 =UsK. (D.1)

K is the conjagate operator and-Ug is the unitary transformation. The definition of Ug
is

[Weli; ={il©1j) - (D.2)
Where |i) is the ith basis vector. The time reversal relation of the angular momentum
state |j, m) is

O |j,m) = ™= |5, —m) . (D.3)

From the definition of basis vectors, we have

|H1,+) = FH; (2)|T8,43/2) . (D.4)

|E1,+) = Ey (2) |16, £1/2) + By (2) |18, +1/2) . (D.5)

The quantum number j of I'6 subbands is 1/2, and the quantum number j of I'8 subbands
is 3/2. Ey(z) is pure imaginary and H;(z) and E)(z) are real. According to the property
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of the basis vector, the time reversal relation of £'1 and H1 subbands is

O|H1,+) = F|HL, F). (D.6)
O|E,+) = +|E,F). (D.7)

In the set of basis vector (|E1,+), |H1,+), |E1l,—), |H1,—)) , the time reversal operator
O is of the form:

o= K. (D.8)
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Appendix E

The eigenvalue and eigenvector of

the special 4 x 4 Hamiltonian

Consider a 4 x 4 Hamiltonian Hyyxq:

he F
Hizy = DE> ¥ ( : ) . (E.1)
Ff b

Where h, and F are

_M+BE Ak )

h, =
Ak_, M — BE?

ak 5 + bk?
F = * )

6+ bk*  d'k_

The relation between h, and h_ is
ho =V,h, V. (E.2)

Where V,, = pe™":%, the k is the amplitude of the k vector and the ¢ is the polar angle

of the k vector. Let the eigenvector ¢ of this form:
Pl = ( gt et ) : (E.3)
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HAMILTONIAN

The Schodinger equation becomes a set of equations:

(DE* + hy) ¢ + FV,¢ = E¢. (E.4a)

(DE* + V,h V) V.o + F'g = EV,¢. (E.4b)
Because F'V), is hermitian, the equations (E.4a) and (E.4b) are the same.

ak (6 + bk?)et
FV, = u | . (E.5)
(6 + B'k?)e a'k

Therefore, we can derive the eigenenergy of Hyy4 by the 2 x 2 Hamiltonian HY,.

o DR —M + Bk? + pak  (Ak + [0 + bk?)) e (E6)
o (Ak+u[5+ k) e ® M~ BI2+udk | |

The eigenenergy is

E,, = Dk* + pa,k + p\/(M — Bk2 Fyia_k)? + (Ak + p[5 + bk2])°. (E.7)
Where a, = (a + va')/2. We have the form of ¢ so we also have the form of ¢.

[Ak + p (5 + bk?)] e
E,, — Dk*> + M — Bk?* — nud'k
O = % [ o pa'k] ' (E.8)
V2 1 [Ak + 1 (5 + bk?)]

p|E, — Dk* + M — Bk* — pa'k] €'

108



Appendix F

Basis definition of Hyy .

Substituting —id, for k,, Hy is of the form:

hy(0,—0,; W 0
Ho(W) = +(0y50,)7) . (F.1)
0 h_(0,—0,; W)
Where
~ MS[B Dlo,” TAO,
he (0, —id,; W) = : 0, Y : (F.2)
=TAO, M + [B — D] 8y2
We have h_ = 0,h .0, so we can obtain the form of the eigenstates.

(i) siw 0 0).
<A;i,+!y=( Al 00).

(

(

(S; 4, +|y) =
(S; 4, —|y) =
(A i+ y) =

Where Si(y) and Si(y) are the elements of |Si,+). Ai(y) and AL(y) are the elements of
|Ai,+). Hy is real so Si(y), Si(y), Ai(y) and Ai(y) are all real.
The Schrodinger equation of S subbands is the set of equation:

— (M +[B + D] 3) S (y) + A9, S5 (y) = E; S} (y) . (F.3a)
(M +[B = D]83) S5 (y) — A9,S} (y) = E]'S; (y) - (F.3b)
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Where E? is the eigenenergy. We let ¢* be the solution of Si(y) and Si(y). From

equation (F.3), we derive the form of A:

a+ yﬁ
N = B pE (F.4)
Where o = ~MB + EFD + 4 and 8 = \/a? + — M?)(B2 — D?). The value of

A% is larger than 2M (B — D) and M B is positive in our parameter and ref[1]. Therefore
when |E?| < M, we can find that all \s are real and the eigenstate in this energy range
is edge like state. In the other hand, when |EY| > M, we can find that two As are pure
imaginary and the eigenstate in this energy range is bulk like state.

Si(y) is even and Si(y) is odd. For edge like state, Si(y) and Si(y) are of the forms:

cosh [\, 9] cosh [A_y]

Si(y) = Pp———=+ P ————. F5
1) " cosh [Aw] cosh [A_w)] (F.52)
, sinh A1 4] sinh [A_y]
5(Y) = Pr@Qy—=—4+ P Q- ———. F.5b
S5 (y) @y sl & sinh A ) ( )
Where w = W /2. Taking this form into equation(F.3b) we obtain
Qi = o (M + E — £=5) tanh [Npw] and @ = 43— (M + EY — §5) tanh [A_w]. Be-

cause the value of A is very large, the value of \ is too large to numerically calculate the
eigenenergy with the normal form of wave function. We set the wave function in this
way[4] to avoid the numerally overflow near the edges. The wave function is zero at the

edge. Therefore the equation that determines the eigenenergy is of the form:

Q- =Q-. (F.6)

For bulk like state, Si(y) and Si(y) are of the forms:

cosh [A;y]

Si(y) = P, cosh v 0] + P_cos [A_y]. (F.7a)
Sy (y) = P+Q+% + P_Q_sin[A_y|. (F.7b)

Where A\_ = Im[\_], Q4+ = AA (M + Ef — 4= )tanh [Ayw] and

Q_ = (M + EF — Q+B ) For the similar reason of edge like state, the wave function
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of Ay part must be this form. The wave function is zero at the edge. Therefore the

equation that determines the eigenenergy is of the form:
Q_sin [A_w] = Q1 cos [A_w]. (F.8)

By the similar way, we can also obtain the eigenenergy of A subbands. The Schrodinger

equation of A subbands is the set of equation:

— (M +[B + D] 9) A (y) + A0, A3 (y) = B Aj (y) . (F.9a)
(M +[B — D] 9y) Ay (y) — A9, Aj (y) = B A3 (y). (F.9b)

Where Ef! is the eigenenergy. Al(y) is odd and A4(y) is even. For the edge like A state,
Al (y) and AL(y) are of the form:

: B sinh [\ ] sinh [A_y]

Ay (y) = Pr@=mists 530 PQ - D] (F.10a)
. ~=cosh Ay cosh [\_y]

A, (y) = Pr. cosh [y uw] “cosh [A_w]’ (F-106)

Taking this form into equation(F.9a), we obtain @, = ﬁ (M — B - %) tanh [\ w]

and Q_ = ﬁ (M — EA — %) tanh [A_w|. The eigenenergy is determined by the equa-

tion.

Q- =Q+. (F.11)

For bulk like state, A¢(y) and A%(y) are of the forms:

; inh [\

Al (y) = P+Q+SS;2T[>:3]]] + P_Q_sin[A_y]. (F.12a)
i _ p cosh[Ay]

A2 (y) = P+m + P_ cos [)\_y] (Fl?b)

Where A = Im[A_], Q4 = - (M — E{* = §75) tanh [\ w] and

Q- = (M—-E}- gig) The eigenenergy is determined by the equation.

Q_sin [A_w]| = Q4 cos [A_w]. (F.13)
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Appendix G

The analytical form of ;¢

Consider a N x N matrix v. Let vector |i') is eigenvector of v with eigenvalue g;.

vlih) = gil7) - (G.1)

The set of vector (|i’)) contains N elements-and it is linear independent.
The matrix v is non-hermitian so the vectors-|i') are not orthonormal. We need an

orthonormal set of vector so we define-a_orthonormal set of vector (‘5>)

1) =1) for m = 1. (G.2a)

|m) = N, (|m’> - z_: In) (n |m'>> form > 1. (G.2Db)

n=1

The set of vector (]i')) is linear independent so the subset of vector (|j);j < n')
is linear independent and expands a n’ dimension vector space V’. According to the

definition of vector ﬁ>, we have

i) = Nild') = Ni ) Cy|j)

I
z
=
~
—
Q2
w
N~—
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The subset of vector (‘§> g <n ) is linear independent and expands a n’ dimension vector

space V. From the equation (G.3), the vector space V is equal to the vector space V.
For ¢ > n’, the vector m is orthogonal to the all elements of the subset of vec-

tor (’3> g < n’). So it is also orthogonal to the all elements of the subset of vector

(17) ;7 < n'). The matrix v doesn’t change vector |i'). The vector ~ m is of the form.
Y \Z} = ngékz |k’,> (G4)
k=1

Therefore the matrix element <§| ¥ m is zero when j > 1.
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