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ABSTRACT

In this thesis, we extend the application of BCFW recursion relation to string tree-level
amplitudes. In contrast to the field theory calculation, we encounter the difficulty of
summing over all intermediate physical states with infinite tower of mass levels. We
develop a method to resolve this difficulty by enlarging the sum over all intermediate
physical states to an easier sum over _the ientire Fock space of string spectrum. The
calculation is successfully applied to the 4-tachyon amplitude and then to the cases of one
arbitrary higher spin state and 3-tachyon amplitudes.. We also figure out a generating
function for summing the infinite poles of string spectrum in the BCFW string amplitude
calculation. The generic structure of ‘this generating function for higher spin scattering
amplitude can be obtained from the standard path integral calculation of string scattering

amplitude.
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Chapter 1

Introduction

The calculation of scattering amplitudes has been a central issue in quantum field theory
in which Feynman’s rule provides a clear picture in the calculation of scattering processes.
However, with the increasing numher of external particles, the efficiency of this method
was restricted since the number of Feynmarn diagrams increase tremendously. As a result,
the previous statement may need to be changed from ealculating scattering processes to
how to calculate scattering amplitudes more efficiently. To do so, many novel theories
such as spinor method, color-ordered technique and BCFW on-shell recursion relation

popped out one after another during the past few decades.

The BCFW method was initially proposed for gauge field theory. It merely relies
on the general complex analytic structures of scattering amplitudes. The original higher
point scattering amplitude can then be expressed as sum of products of lower point on-
shell scattering amplitudes. As a result, one can recycle the calculation for lower point

functions to simplify the calculation for higher point functions.

The success of BCFW calculation of scattering amplitudes in quantum field theory
motivates us to extend the calculation to string theory. In this thesis, we extend the
application of BCFW recursion relation to string tree-level amplitudes. In contrast to
the field theory calculation, we encounter the difficulty of summing over all intermediate
physical states with infinite tower of mass levels. We develop a method to resolve this
difficulty by enlarging the sum over all intermediate physical states to an easier sum over

the entire Fock space of string spectrum. The calculation is successfully applied to the 4-
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tachyon amplitude and then to the cases of one arbitrary higher spin state and 3-tachyon

amplitudes.

This thesis is organized as following. In Chapter 2, we give a brief introduction
to BCFW recursion relation in quantum field theory, and some basics of string theory.
Chapter 3 is divided into two parts: the first part contains spinor semiology. Then, in
the second part, we adopt the BCFW recursion relation to compute a concrete example,
namely, 4-gluon color-ordered scattering amplitude. In Chapter 4, we begin with the
familiar four-point Veneziano formula, and demonstrate that how one can extend BCFW
method to four-tachyon string scattering amplitude. In Chapter 5, we extend BCFW
method to string scattering processes with a higher spin vertex and 3 tachyons. Finally,
we give a brief conclusion of this thesis. The last three chapters are mainly based on our

paper [1], which has been accepted in January, 2013.

1.1 Literature Reviews

In [2,3], Britto, Cachazo, Feng and Witten (BCFW) proposed a recursion relation for
scattering amplitudes of Yang-Mills theory based.-on deforming the momenta and taking
the analytic continuation over the complex plane. After doing so, the amplitude can
then be characterized by its poles and the corresponding residues. This feature allowed
one to express the higher point scattering amplitude in terms of sum of products of two

lower-point on-shell scattering amplitudes.

The extension of BCFW recursion relation from field theory to string theory was
initiated by Rutger Boels, Kasper Jens Larsen, Niels A. Obers and Marcel Vonk in [4].
They showed that BCFW technique is applicable for all open 4-point amplitudes in flat
space. They also conjectured that BCFW method could be extended to higher point

amplitudes and to closed string cases.

In 2010, Clifford Cheung, Donal O’Connell, and Brian Wecht [5] demonstrated that
all tree-level amplitudes possessed convergent asymptotic behavior and thus allowed ap-
plication of BCFW recursion relation. Furthermore, in this paper pole structures were

made manifest through binomially expanding the Koba—Nielson formula for tachyon am-
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plitudes.

In [6], Angelos Fotopoulos proposed how to construct the Veneziano amplitude via
BCFW procedure by applying conjectured 3-point function with two tachyons and an
arbitrary intermediate massive state. Namely, for four-point function, the product of two
3-point tachyon-liked amplitudes can be produced by summing over all massive interme-

diate states.



Chapter 2

Preliminaries

In this chapter, we provide a very concise introduction to BCFW recursion relation as

well as some background knowledge of string theory.

2.1 Review of BCEW recursion relation

BCFW on-shell recursion relation {2,3}.allows us-to.express on—shell amplitudes as sums
of products of relatively lower—point on—shell amplitudes. It is known that, from the
Feynman’s rules, the essential ingredients for tree—level amplitudes are propagators and
vertices, which implies that scattering amplitudes are rational functions in terms of kine-

matic variables. If we shift two of the external momenta into complex plane by

ki(z) = ky + 2q, kin(2) = kn — 2q. (2.1)
Energy-momentum conservation is manifestly preserved, /2:1 + l%n = k1 + k,,. We also need
to impose these constraints ¢> = q-k; = q-k, = 0 so as to preserve the on—shell conditions
k? = k? and 155 = k3 of the deformed pair. Amplitudes are now complex functions with
simple poles, which is the consequence of the light-like condition of the shifted momentum
q, locating at the propagators . An complex amplitude with simple poles can be expresses

as

Az =Y e (2.2)
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Taking the analytic continuation over the whole complex plane yields

% %A(z) =A(z=0)+ Z Res (@) . . (2.3)

poles za70
A simple pole manifestly exists at z = 0, which reproduces the un—shifted amplitude
A(z = 0) while other residues from other finites poles form the products of two relatively
lower—point on-shell amplitudes Res (%) = —Ap(24) prAr(2,). If we assume no
boundary contributions as z — oo in the lefz:lzl;nded side of equation (2.3), we can then
write down the BCFW on—shell recursion relation for n external particles

~ A 1 A
An(L,2, )= Y Y AL(1,2,.--,pj)ﬁAR(P;,aH-..,ﬁ). (2.4)

poles zq physcal h
The first summation indicates that we have to sum over all finite poles z, while the second

summation is over all physical intermediate states at a given simple pole z,.

2.2 String theory

2.2.1 The classical version
Nambu—Goto action

Assume the universe is composed by one dimensional objects, so-called strings, instead of

point particles, then we have the corresponding relativistic action

SNG: —T/dA

oxroxv 1%
= T /dO'dT [—det Do an,

= —T/dadT\/(X-X’)2—X2X’2. (2.5)

This is the well-known Nambu-Goto action. X (o, 7) is the track swept by the one
dimensional object, called worldsheet, which is parametrized by the coordinate o and by
the evolution 7. While A is the area of X (o, 7) bounded by ¢ and 7. The notations X
and X’ mean

. _0X X

X — E 9 —_— %. (2.6)
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From the principle of least action 0S5 = 0, we have the equations of motion by

calculating the Euler—Lagrange equation

o (oL o [ oL
or (m‘w) i (aXfu> =0 (2.7)

This method is the same with classical mechanics : we vary the path and fix the initial

point and the end point. The canonical momentum conjugated to X* can be obtained by

definition

I* = 687[/ =-T (X XX - (X/)QXH. (2.8)
I (X/-X)Q—(X)Q(X/)Z 2

-

Clearly to see that due to the square root appears in the denominator, quantizing

this theory is rather complicated.

Polyakov action

In order to avoid the difficulty in quantizing the Nambu-Goto action, the Polyakov action

Sp is therefore proposed, which is given: by

T
Sp=—5 / dodrVhh*P9, X 3 X 1, (2.9)

where h = —deth,s. From 05 = 0, It is easy to get the equations of motion with
respect to the variation of §(X*) and 6h®,

wrt. X" = 0, (x/ﬁhaﬁag)(“> —0, (2.10)

1
wrt. 6h* = 9,X"05X, — §ha/3h7587X“85Xu =0. (2.11)

Equation (2.11) comes from the variantion with respect to the induced metric hqag, i.e.

OL/Ohss = 0. Thus, [7]

20, X"95X,,
= 2.12
haﬁ h'y‘;a,yX”a(qu ( )

Substitute the metric tensor (2.12) above back to the Polyakov action, we are able to

re—derive the Nambu-Goto action.



2.2. STRING THEORY

The action (2.9) is left invariant with 3 symmetries: Poincare, reparametrization and
Weyl rescaling. Using these degrees of freedom, the induced metric h*® can be simplified

to the two-dimensional Minkowski metric n®?

hoP =P = diag (—1,1). (2.13)

Replace A’ with 7*® in equation (2.10), the E.O.M. becomes a wave equation,

namely
Du0° XM = (82 — 92) XM = 40,0_X*" =0, (2.14)
where
0 0
8+ - 80'_+ y 8_ — 80_— (215)

with o =7 + 0.

To solve for X* for open strings, boundary eonditions have to be imposed at the
endpoints, i.e. X#(1,0 =0) = X¥(1,0=r) = 0and X*(r,0 =0) = X*(r,0 =7) =0
. The equation of motion (2.14) is the two-dimensional wave equation with d’Alembert’s

solution of wave equation, i.e.

X" 07) = Xp(o7) + X[ (07)

1
=o' —ip'lnz 44 E —ahz™", (2.16)
n
n#0

Note that we have set the Regge slope o = 1/2, 0 =0 ! [8] and change the variable
z = exp(iT) in the second line of the above equation. The requirement for the reality of

XH* implies

o, = () (2.17)

—n

The Poisson brackets of X* and the canonical momentum I* = 9L/0X, = TX" 2

IThis assumption is often used for vertex operators. It means that the emission of a state at the end

of the string o = 0 at the proper time 7. See GSW book, chapter 7.
’By taking the conformal gauge, n°” = h®? = diag(—1,1). Hence, the Lagrangian is simply L =

(—T/2)0,,X*0%X,,. The canonical momentum could be easily carried out.
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are defined in that way similar to classical mechanics

[X*(0), 1"(0")] pp. = —11""0(0 = o). (2.18)

The subscripts "P.B.” denotes the Poisson bracket. This definition quickly leads to
the Poisson brackets for the position z# and momentum p” in the C.M. frame, and for

the Fourier modes o of X*, i.e.

v - v
[0%7 an]P.B. = 1Moy,

[, p¥]pp. = =M. (2.19)

Now let us turn to the constraint equations (2.11) of o ’s. Equation (2.11) demands that
all of the Fourier modes of world sheet X*(7,0) have to obey Ty, =T__ = 0 in classical
level. For open string, we are able to do the Fourier transformation to express 7', ; and

T__ in terms of the ladder operators, yielding

Lyp=T / (e ridle "™ T ) do
0

TSE : 2
:Z/ eimo (X+X’) do

:% z Qm—n * Oy,

n=—00

= 0. (2.20)

2.2.2 The quantum version

The first quantization of open bosonic strings is presented in this subsection. It is known
that one standard method of getting into the quantum physics from classical is to promote
the physical quantities and Fourier modes to operators. This is equivalent by the substi-
tution: replace the classical Poisson brackets with commutator, i.e. [---]|pp — —i[---].

Thus, equation (2.18) and (2.19) need to be rewritten as follows

[X*(0),11"(0")] = in"6(0 — o),
o, ] = mbmnn®™, (2.21)

n

[z, p"] = in™.
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Similar analogy are able to be made with simple harmonic oscillators in quantum
mechanics. If we normalize o/’s such that a” = o/ //m, then [a", a’T] = 7" 6pm_n.
The physical interpretation of a#’s is also very much similar to that in simple harmonic

oscillators. For o with m > 0, it lowers a physical state and as a result a},_,|0) = 0.

I

In contrast, an operator a,, with m > 0 rises the level of a physical state. Since the
world sheet contains momentum which does not share the same Hilbert space with the
oscillation operators. Therefore, a completely ground state for an bosonic open string can

be denoted as |0; p) satisfies

y0/05 p) = 0, (2.22)

p|0; p) = p"[0; p). (2.23)

The constraints of the classical theory correspond to the vanishing of the energy momen-
tum tensors T, and T__ as shown in equation (2.20). In quantum level, the vanishing
of L,, in classical theory should be replaced-by the. positive frequency modes annihilate a

physical state |1), that is

Linsolt) = 0. (2.24)

This is much like the Gupta—Bleuler treatment in quantizing the E.M. theory. But L
should be discussed independently since there exists an ordering ambiguity due to normal

ordering. The normal-ordered expression of L is
1, —
Ly = 3% + Zl Ay + Oy, (2.25)

up to a to-be—-determined constant say a. We include a and demand that a physical state

|1)) must satisfy
(Lo — a)lyh) = 0. (2.26)

Choose a = 1 to avoid ghosts. In addition, equation (2.26) carries the information of mass

M of open strings. From M? = —p? and the number operator N = >, a_j - ay, we have
M2 = —2+22a_k-ak
k=1
=2(N —1). (2.27)
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For example, the scalar ground state (N = 0) with M? = —2 is tachyon. In contrast,
the first excited state N = 1 is given by € - a_1|0; p) , which has M? = 0 and thus is a

massless vector particle with polarization e.

Equation (2.24) and (2.26) form the essential conditions for physical states. L., and
Lg are the so—called Virasoro generators of bosonic open strings satisfying the the Virasoro

algebra

D(m? —m

)
e (2.28)

(L, Ly) = (m —n) Ly +

where D means the dimension of the space—time, which is 26 if we choose a = 1.

10



Chapter 3

Spinor semiology and the application

of BCFW rercursion relation

In this Chapter, a brief introduction.to the spinor notations [9-11] is given by solving Dirac
equation of a massless particle. After these kind of notations have been introduced, some
Lorentz invariant quantities are_created in terms of these notations. Having the above
preparations, those quantities will be used to build upthe 4-gluon scattering amplitudes

by employing the BCFW technique. This.calculation is provided in the last section.

3.1 Spinor notations

In this section, we would like to introduce the spinor notations. Throughout the whole
section, the Lorentz signature 7, = diag(—1,1,1,1) is used. At first, consider a spin-1/2

particle with momentum p. Its behaviors can be understood by solving the Dirac equation

v-p(p) =0 (3.1)

with p? = 0. The gamma matrices in the Dirac representation (or standard representation)

are

(")p = . (w)p= | ' (3.2)

11



3.1. SPINOR NOTATIONS

with o;, 1 =1, 2, 3

Those are the well-known Pauli matrices.

In order to distinguish the Dirac solutions from the Weyl solutions, we add “W ” to
denote the case in Weyl representation and “D” for Dirac. The solution of Dirac equation

(3.1) are often written as

Va
¥(p) = : (3.4)
(G
Expanding equation (3.1) yields
—poYa+0-php =0, —0-pia+pos=0. (3.5)

Above equations (3.5) give us two-choices for, the solutions of ¥4 and 5. They are

respectively ¥4 = ¥, Y = —p. For positive energy py, > 0, we have

VP
idp
6= = “p;_ | (3.6)
D+
\/p—_ewﬁp

where the subscript ” + 7 on v (p) means positive helicity and p, = pg + p3, p_ =

po — ps and
city _ P twr it 2 (3.7)
Vpi+ps /PP
For the case of Y, = —p, the corresponding wave function should be
\/p—_efidw
1 —v/P+
ba=—vp=¢_(p)=—% : (3.8)
\/§ _ p_e—i¢13

12



3.1. SPINOR NOTATIONS

Besides the Dirac representation, the so—called Weyl representation is also common

to see.

In Weyl representation, the gamma matrices are

(5.4
Yy = ! 2 : (3.9)
_(Uu>aﬁ' 0

o, and 7, are defined in the following
Ou = (I7 6:)a 5-# = (Iv _52) : (310)
o are still the three Pauli matrices.

The off-diagonal gamma matrices in (3.9) imply ¥ (p) could be divided into the com-
bination of two 2-component spinors obey different kinds of transformation, i.e.
5/3

V(p) = : (3.11)
na

The lower undotted index & and the upper dotted one ﬁ label the components of
spinors n and ¢ with both of the indices running from 1 to 2. The transformations of
n and £ are assigned in the following: If we denote 77 = nf, & = &, and the SL(2,C)

transformation matrix A with det(A) = 1, then we have

N = An = Na, (3.12)
7= () =7A" = 7, (3.13)
g =¢At = ¢, (3.14)
§=()f=(a"e-é (3.15)

The consistency of the index structure implies following indices assignments for the

transformation matrices:

Ao A0 AT (an

A (A (A s () (3.16)

13



3.1. SPINOR NOTATIONS

For the reason that the Lagrangian of Dirac equation have to be Lorentz invari-
ant, 0,, 0,, A and the Lorentz transformation L, are required to satisfy the following

relations:

Ao, A" =L, o, (3.17)
(AN, A = L7, (3.18)

Consistency requires the following indices assignments for o, and 7, i.e.

0, — (0,) 7 — (6,0 (3.19)

aB ?
If we define a 2 x 2 matrix € as the following

€ =ioy = =—¢ 1 (3.20)
—1..0

where o5 is the Pauli matrix.. We can soon find out, by direct calculation, that

(o) €t =5, (3.21)

= (O-M)Ba = (6_1)5;y (5_“)'?5 € (322)

From equation (3.22), we can immediately see that e changes a upper undotted

(a lower dotted) index into an lower undotted (an upper dotted). In contrast to €, ¢

changes an upper dotted (a lower undotted ) index into a lower dotted (an upper undotted)

. Therefore, the index structures for ¢ and €~ are

€ap = €7, (e_l)aﬁ = (6_1)54'3 (3.23)
such that

TNa = €ap nﬂ’ na = (e_l)aﬂ na. (324)

¢ and €' here are very much similar to the metric tensor g, .

14



3.1. SPINOR NOTATIONS

Expanding the Dirac equation (3.1), n and £ satisfy

G- G-
9 Pe_ _ 9P _ 3.25
|ﬁ|§ £, R (3.25)

For positive energy |p] = po > 0, the equation for 1 means the solution has positive
helicity or right-handed while negative helicity or left-handed for £. The Weyl represen-

tation is related to Dirac representation by a similarity transformation

W D a—
(V)" =S()” S "
where S is the transformation matrix given by

s (1 (3.26)
Vel o1 ) '

This transformation also implies that the solutions of Dirac equation could be transformed

to each other by

o "B SR (n). (3.27)

Thus, the Weyl solutions could be obtained through (3.27)

m v D+
7’]2 /p_ 62'(;517

3 p_e
(W) (D) 3 v
Y (p) = S (p) = = : (3.28)
0 0
0 0

Lorentz scalars could be represented as 11) , where 1) = 917°. The two Weyl basis 7

and ¢ indicate that there may be two kinds of Lorentz scalars. They could be defined in

15



3.1. SPINOR NOTATIONS

the way
wips) = 0 () ¥ (02) = n(pe) n(p)s = —(papi), (3.29)
pins) = 987 () 0 (0) = €p0) 6 0)” = ~lpspi) (3.30)
They are simply called the angle bracket for (---) and square bracket for |- --]. In the

above, we have taken

pi) = n(pi)s,  (pil = n(py)”, (3.31)

pi] = @)%, | = E(py) g (3.32)

The spinors are also related to its null momentum by the identities

Py = (0-p)y, = IP)[PI, (3.33)
P = (@2p)* 2 —|p](p|. (3.34)

Furthermore, some properties of these brackets could be derived by directly calculation:

[pip; [ =Apipi)"; (3.35)

(pipg)pipi] = =205 p;- (3.36)

So far, some useful Lorentz scalars have been made by contracting the an upper
dotted index with a lower dotted index spinor, or an upper undotted index with a lower
undotted index such as in (3.29) and (3.30). As mentioned at the beginning of this section,
we would like to use these Lorentz invariances as building blocks to build up scattering
amplitudes. If we consider amplitudes include massless vector bosons, polarizations also
require to be rewritten in the language of spinors. Polarization vectors with definite

helicities for bosons can be represented as [12,13]

po_ tdotR] g e lalotR)
€<k7 Q)+ - ﬁ(qk> ) (ka Q)f \/E[qk’] : (337)

Here q is some chosen light-like momentum, called reference momentum.

16



3.2. CALCULATING COLOR-ORDERED 4-GLUON AMPLITUDE THROUGH
BCFW RECURSION RELATION TECHNIQUE

3.2 Calculating color—ordered 4—gluon amplitude through

BCFW recursion relation technique

Before starting calculating the color-ordered amplitude, we would like to introduce how

does ”color-ordered” amplitude come from [11].

The gauge transformation for QCD for a spin-1/2 particles is
P = el 2aTeNy, (3.38)
The generators T, obey the commutative relation
[0, T3] = iV2 fare T (3.39)

If we are primarily interested in the SU(N,), T, can be used as basis for any N, x N,

matrices. Ty’s also satisfy the relation

Ngfmyl (e i N 5 (3.40)
ia

71 22 21 12"
N,
a=1

The structure constants (color factors) fape€an be obtained from

i

fabc:_\/§

Tr (THT) T.) . (3.41)

Let us now consider the amplitude for four incoming gluons. With the coupling
constant suppressed, the scattering amplitude M is composed of s, ¢t and u channels
M = M + M, + M, (3.42)

with

Ms - falazbfa3a4b As> Mu = falagbfa2a4b AU7 Mt = fa1a4bfa3a2b At- (343)

From equation (3.41) and (3.40), product of two color factors, for example f,, a6 fasasbs

can be decomposed as sum of traces of product of T}’s, i.e.

1
fa1a2bfa3a4b = _5 [TT<Ta1Ta2Ta3Ta4) - TT<Ta1Ta2Ta4Ta3) - TT(TM Ta3Ta4Ta2) + TT(TMTMTGST@)] .
(3.44)
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3.2. CALCULATING COLOR-ORDERED 4-GLUON AMPLITUDE THROUGH
BCFW RECURSION RELATION TECHNIQUE

This color factor is indeed belonged to the s-channel. Similar results can be obtained for

both the ¢ and u channels, they are respectively
1
Jaragbfazasp = — ) (Tr(To, Toy Ton Toy) — Tr(To, Toy Toy o) — Tr(To, To, Toy Tay) + Tr(To, 1o, 1o, Tuy)]
(3.45)

1
JarasbSazazb = — ) [TT(TaleTasTaz) - TT(Ta1Ta4Ta2Ta3) - TT(TalTa3TCL2Ta4) + TT(TmTazTasTaz;)] :

(3.46)
With the color decomposition, we can write amplitude M in (3.42) as
2,3,4
M=) M (1jkl) Tr(T, T, T, To,). (3.47)
JFR#L

M (1jkl) inside the summation in the above equation are called the “color-striped” am-

plitudes since the color factors fu;. has been striped away. We find
M (1432) = M (1234) = —% (A + Ay,
A4(1243)::A4(1342)::%(fg-+44u),
A4(1324)::A4(1432)::——%(—aAU—%/L). (3.48)

We can immediately find out that the sum of the right hand sides of the above three
equations add up to zero, which means that there are only two independent color—striped

amplitudes.

Now that most of the preliminaries have been developed, we shall start calculating
the color-ordered amplitude M (17273%4%) = —1 (A4, + A). By choosing the reference
momenta which satisfy ¢; = ¢ = ps4, g3 = q4 = p1 , the four-gluon vertex amplitude and
the t-channel A; give zero contribution, only A, survives. One can carry out this example

through standard Feynman’s rule, and it turns out the answer is

ggrgr) - (12
M (17273%47) = 12)(23) (30 (1) (3.49)

We next directly borrow the above result and use BCF'W recursion relation to re—construct

this amplitude. We can use contour integral to write

L (ma3tat) = M (1723 ) s+ Y Res

271 z

z

M (1—2—3+21+)]
poles, zq o

(3.50)
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3.2. CALCULATING COLOR-ORDERED 4-GLUON AMPLITUDE THROUGH
BCFW RECURSION RELATION TECHNIQUE

If the boundary terms vanish as z — 0, we have

M(17273%4%) l,.o=— > Res

poles, 2470

(3.51)

A4(1—2—3+4+)]

z

2=2zq

The momenta deformation in equation (2.1) is equivalent to deform the spinors in

the way that

lp1) = p1),  [P1] = [p1| + 2[pal,

1P4) = |pa) — 2|p1),  [Pa] = [pal- (3.52)

It is easy to verify that momentum is conserved by

4

4
Z’pz>[pz| = ZU'Pi =0 (P1+p2+ps+pPs) =0 (p1+ P2+ D3+ Dpa).
i=1 i=1

Thus,
D1+ P2+ p3 A+ Py =prtpotp3 +ps = 0.

Obviously, a simple pole arises from the propagator when the intermediate vector

p? = (P1 + p2)? goes on-shell, that is

—(ﬁ1 +p2)2 =0= <]51p2>[p2]§1] = <p1p2)[p2p1] + Z(p1p2>[p2p4], (3-53)

and the pole occurs at

— = _[p2p1]
z2=12,= papa] (3.54)

It is convenient to express the propagator as

1 R,
(p1 + p2)? Cz—z, (8.55)

in which R, = —1/{p1p2)[p2pa.

After doing the analytic continuation, the residue (3.52) gives rise from this pole is

= M1 2 pH) =2 M(p~3T4h). (3.56)
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3.2. CALCULATING COLOR-ORDERED 4-GLUON AMPLITUDE THROUGH
BCFW RECURSION RELATION TECHNIQUE

If momentum p’s are allowed to be complex, three-point functions can be defined,
they are

(12)*
(12)(23)(31)”

M (172%37) = 07 (3.57)

M(17273%) = 223]B1]°

Explicit calculation of equation (3.57) are offered in the Appendix A. Then from
(3.57), we have

(p1p2)®[pspal®
(p2ﬁ> [ﬁps] [p415] (ﬁp1> '

M(1727p" M (p~3T4T) = (3.58)

Put the shifted momenta into (3.58), its denominator goes like

<]92]5> []5]73] []04]5] <13p1>
= {{p2l (Ip1) ([p1] + 2[pal) + [p2)[p2] ) [pal} - {{p1| (Ip1) ([Pl + 2[pal) + [p2)[P2l) [P3)}

= (p2p1) [P1pal(P1P2) [P2p3]- (3.59)

From the fact that (p;p;) = [pipi] = 0, some of the terms in the denominator of
equation (3.58) will vanish. Finally, M(172=p%)M (H=374%) could be found out to be

independent of z, i.e.

<P1]92 > 3 [P3P4] 3

T —o—t A4+ L
M2 )Mp37 ) = <p2p1>[p1p4]<plpz>[p2p3].

(3.60)

Use the result of R, as well as equation (3.54) and (3.60), the residue (3.56) becomes

[p2p4] 1 (p1p2)?[p3pal®
[p2p1] ' <p1p2>[p2p4] . <p2p1>[p1p4] <p1p2>[p2p3]. <3'61)
After applying the following formulae,
<p2p1> [plpzﬂ = - <p2p3> [pspd )
<p1p2> [pQP?J = - <p1p4> [p4p3} )
(pipj) = —(pjpi):
[pip;] = —[pjpi)-
, then equation (3.56) becomes
(12)*
TIenenan (362
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3.2. CALCULATING COLOR-ORDERED 4-GLUON AMPLITUDE THROUGH
BCFW RECURSION RELATION TECHNIQUE

Put a minus sign in the above equation, we can soon recover the result of equation

(3.49).
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Chapter 4

Four-tachyon scattering amplitude

When applying BCFW on-shell recursion relation to string amplitudes, pole structures
become obscure if we formulate the amplitudes by say Koba—Nielson formulas. We begin
with the familiar four-point Koba—-Nielson formula;.and review how the pole structures
are made manifest through binomially-expanding this integral formula in [5]. Later, we
use our algorithm to solve for the difficulty of summing over infinite number of physical
states by enlarging the sum over all physical states to over the completely Fock states [1].
This algorithm comes from the inspiration from.the Ward identity in field theory. Finally,
we find a mathematical connection between the residue prescribed from BCFW and the
generating function for Stirling number of the first kind. This connection is quite useful for
the further evaluation when we extend the application of our algorithm to the amplitudes

containing higher spin particles.

4.1 Poles extraction

The Koba—Nielson formula for four-tachyon scattering amplitude is given by
1
A(1234) :/ dzo(1 — zy)keks Lhke (4.1)
0

where we use gauge fixing to set z; = 0, 23 = 1 and 24 = 4o00. For the purpose of

extracting poles, we need the following binomial expansion
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4.1. POLES EXTRACTION

(o —y) = Ni ()=, (12)

0

where the combinatorial factor (;) is defined to be

(a)Ea(a—l)(a—Z)---(a—N%—l). 43

Inserting the result in equation (4.2) to (4.1), the Koba—Nielson formula becomes

A(1234) = i (kzjf‘q’) (=N /01 2Rkt o (4.4)

N=0

Carry out the world sheet integral over z, and use the mass-shell conditions for
tachyons k} = k2 = —M? = +2, we have ki : ko= (k1 + k2)?/2 — 2. After doing so, the

s—channel propagator emerges [5]

= ke ks o’ 2
A(1234) = Z( N )(—1) TR AN 1) (4.5)

N=0

Having extracted the propagator 2/ {(ky=4-+ks)2 + 2(N — 1)] from the tree-level tachyon
amplitude, we next would like to re—construct (4.5) by BCFW technique. Manually choose

the pair of deformation to be k; and ky, i.e.

ki(2) = ky + 2q,  ka(2) = ks — 2q (4.6)
with ¢ = k1-q = k4-¢ = 0. Assume there is no boundary contributions when z approaches

to infinity, (4.5) could be expressed by the BCFW recursion relation

A1234= Y % AL<1, 2, Ph> (k1+k2)212(N—1)AR<ph’ 3,4). (4.7)

poles zn physical h

Obviously, there are infinite number of poles exist in the denominator due to infinite

tower of mass levels of the intermediate states. For an arbitrary mass level N, they are

(k1+k2)2+2(]\7—1)
— N=0,1,--. 4.
ZN 2(] 'k’g ) Oa ; ( 8)
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4.2. SUMMING OVER ALL PHYSICAL STATES

Compare equation (4.5) and (4.7) at each level N and we have

. R R . ko - ks
> AL, 2, PM) AR(P", 3, 4) = (=)N : (4.9)

physical h N

Thus, in order to verify the validity of BCFW in the tree level string amplitudes, we have
to be able to handle the scalar residue at the left-handed side of equation (4.9) as sum

over all intermediate physical states at a given mass level N and prove the equality of

(4.9).

4.2 Summing over all physical states

Before straightly doing the summation over all intermediate states in equation (4.9), let
us first take a look at a scattering process such as ete”™ — ete™ in field theory . The
propagator of this process is gauge boson. If we shift the first and the fourth particles,
the BCFW recursion relation reads
A~ Y T A8 (1 2P, A% (P, 3, 4). (4.10)
state b

The intermediate states are composed of massless bosons. In (3+1)D flat space-time, we

have [14]

N = €46, + €, 65 + egef + eﬁef, (4.11)

T

where €' and €, are the two transverse polarizations with definite helicities while €,

1 1
and eﬁ are respectively the time—like and longitudinal 4-vector. We can replace 7, in
equation (4.10) with that in (4.11). But since the Ward identity of gauge theory governs
that, for a scattering of n particles, if all (n — 1) particles are physical polarized while the

n-th particle carries unphysical polarization, the amplitude vanishes. Thus, we have

A~ A’f(i, 2, ph) (Gzﬁ,j + eljej + 6565 + eﬁef) A;(ﬁ*h, 3, ZL)
= AY(1,2, P") (efe, +e,6) AR(P", 3, 4). (4.12)
Originally in (4.10), we sum over all intermediate states. It turns out that it is equivalent

to summing only physical states since the time-like and longitudinal polarization are

clearly unphysical.
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4.2. SUMMING OVER ALL PHYSICAL STATES

Having had a glimpse at the scattering amplitude in field theory, we then come to
the main task of converting the scalar residue (4.9) as a summation over physical states.
Firstly, we have to understand how to construct an arbitrary state from ladder operators
with general mass level NV in the Fock space [15]. In general, a Fock state can be built up
by successively acting creation operators o, with m > 0 on a ground state |0; P), that
is

o0 m

H VN, I mNm 'mNm

m=

|{N,.}; P) 0; P). (4.13)

The above Fock state |{N,,}; P) carries N;-multiple of o, mode operators and Ny—
multiple of o, mode operators and so on. We use {N,,} to label the normalized Fock
state and, for simplicity, denote o' o2 ---... ot = (o )N’". The number N,, of

—m —m —m

the m-th mode operators must satisfy

N=> mN,. (4.14)
m=1

It should be emphasized that differént tensor indices of o, are treated as different oper-
ators although they have the same mode. However, generic Fock states include ” ghosts”
such as a27|0) since it has negative norm, i.€. (0]a%a%|0) < 0. Thus, there comes a
problem, we need to get rid of these kind of unphysical states from Fock space while
summing over all intermediate states. It turns-out to be a difficult objective since we do
not know so far how to construct the polarization tensor for a general mass level N. With
the implication from the previous discussion of the electron—positron (ete™ — efe)
scattering process at the beginning of this subsection, we are able to avoid this difficulty
by enlarging the range of summation from the physical states to the entire Fock space of
string spectrum. This fact is guaranteed by the so—called ” No-Ghost theorem”. Hence,
equation (4.5) can be written as
A, (1,2,3,4) pOI;N;CAL (1.2 P) S i A (P.3.4). (4.15)
With this understanding, we are able to write the left-handed side of the residue
equation (4.9) as

Iy = Z < —/%1;0)‘/0“@2)

{22 mNm=N}

[N} i P) Tinay (AN} P | Valka) | R0 )

zo=1

(4.16)

25



4.3. LEVEL MATCHING

for a given mass level N. T{n,.} = (Musviuove = * T, vw,, ) 1S the polarization tensor for
a set of intermediate states {N,,} with definite mass level N, which satisfies equation
(4.14). Thus, we can see a subscript {/N,,} at the bottom of Tiy,,;. Equation (4.16) is

expected to equal

(kQJ'Vk?’) (—1)N. (4.17)

This equality will be explicitly proved in the following subsection 4.4. We can similarly
generalize equation (4.7) to an arbitrary n-point function. If we choose k; and k, to be
the deformation pair, then the BCFW recursion relation for this scattering amplitude can

be calculated by

Al = S5 X iV Vil [N P gl
i N {N=Y, mNpy} i
{Nwm}s Bl Vilki) -+ Vi (ko) Fn). (4.18)

where P, = ). k; is the momenta flow from the adjacent external particles.

4.3 Level matching

In order to quickly match the residue (4.17)"getting from the Koba—Nielson formula with
that obtaining from BCFW prescription (4.16), one can do level matching to see whether
our result is correct or not. For future reference, the explicit expressions of the first 4

levels from equation (4.17) are provided in the following

N=0=1[=1,

N=1 :>]1:—l€2'/{33,
]{32'1{73(1{32'1{33—1)
2! ’
ey kg (kg — 1) (R ki — 2)
3!

N:2:>]2:

N=3=I=

e Level N =0: For N =0, all N,, = 0. We have T = 1. Thus, the contribution

from this level is simply
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4.3. LEVEL MATCHING

Io= Y (k0| Vo(ks) [0;p) x 1 x (05| Va(ks) | ks; 0) = 1. (419)

zo=1
As was expected!

e Level N = 1: In this case, there is only one intermediate state:

{oi}.

T = 1. Put o, into (4.16), residue I; of this level could be easily worked out

I = (—k1; 0] Vo(ka) (a®)) 05 ) mw (0; 5] (o) Vo(ks) | ks; 0)

= — ko - k3. (4.20)
Agrees with our argument!

e Level N = 2: In this case,the intermediate states for N = 2 are shown as follows:

a_9 ()[2_

L=T +T. (4.21)

I is respectively constituted of 2 components from contracting the right-handed
and left-handed 3—amplitudes with 2 distinct intermediate states. For 77, the tensor
structure is T = 1,

a# v

Ty = (—k1;0| Vo(ks) (f;) 10 9) M (059 | (%) Vo(ks) | 43 0) |29t

~ oo 1 Oé/i N R O[l/ oo 1 o A~
= (—ky; 0] e 2 nbean (722) 105 5) Ny (039 | (7%> eXn=t whaoon | k)
ky - ks

= - (4.22)

As for Ts, T = 1y, Muaw, since this state contains two operators and of course, two
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4.3. LEVEL MATCHING

sets of tensor indices are required. Thus, its contribution reads

- S e, T L aullauz -
T2 = <_k1’0|6 nELn n=l T |07p> Nuivr Musve

vy V2

(05| (%j; ) e L

Mk
\/§ pivypgve \/5
kg - k3)?
- @ (4.23)
2
Frankly, the sum of the two components reveals our prediction!
L =T +T,
_ _Faks (ky - ks)”
2 2
ko - k3 (ke - ks —1
_ hakshe ks = 1) (4.24)
2!

e Level N = 3: Three intermediate states are'needed to be taken into account:

(010

vt f’f}

[3 - Tl —+ T2 + Tg. (425)

Ty comes from the contribution of a_3/ v/3, and the tensor structure is simply 7 =

Ny -

,LL
Y
= (—h1; 0] ez wharan

ko - kg
= — . 4.2
- (1.26)

Ty = (- k:l,O\Vo(k:g)( ) Volks) | a5 0) o1

2) 105 D) 1y (0; 29|(\/§

) ’0 p> U <O P| (\/§> 62211 Lkz-a_p ‘ ]%4; 0>

s\&
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4.4. EXPLICIT CALCULATION OF RESIDUE

As for T5, the tensor structure is 7 = 7,1, Musr,- S0 its contribution reads

Ty = —l% -0 >t Lho-an — et Ska-an 0/1120/121 0:p
2 = < 1, ‘6 " € " \/5 | 7p> Nuavr Mpavs

(0; 9 (ag\l/(;—[? ) GRLSVCELS) | 43 0)

_ M (4.27)

Furthermore, T3 could be also computed, and its tensor structure is obviously 7 =

n#l 141 77#2 v2 77#31/3 :

5 o g e 1 (oo o .
T3 — < — k‘17 O ) eZn:l nkz —n e n=1 nkQ n (%) 0,p> nﬂlVlnNZVQnﬂiiVii
| (OO S kg g )
<07p ( \/§ ) € k47 0
. (—ks - o) (ool .
- < B kl; 0 ‘ 3! 1\/3_1| = O;p> Npyvy Muove Mpsvs
| (aboiet Vi WS
(kg - ks)®
=3 (4.28)
Thus, sum T}, T and T3 together
I3 =T+ T+ T3
__kaks (ky - ks)® (ko k)’
3 2 3!
:_kg'kg(kg'kg—l)(kQ'kg—Q) (4.29)
3! ' '

Same as we have claimed before.

4.4 Explicit calculation of residue

Level matching method is restricted in verifying only the first few levels since the calcu-

lation becomes more complicated while the mass level of the intermediate states getting
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4.4. EXPLICIT CALCULATION OF RESIDUE

higher although it seems to be straightforward. What we are going to do in this section
is to demonstrate the explicit calculation of equation (4.16) for an arbitrary mass level

N, and prove the equality of (4.16) and equation (4.17).
At first, recall the tachyon vertex operator
Volk, z) =: XD .= ZW,, (4.30)
where
Zy = eikethpne _ k-1 ika (4.31)

p in equation (4.31) is the momentum operator. W, is the pure oscillation part of V4,

which is
oS} z— "

W, = eznzl %k;(x,n e~ Yo 5 k2~an. (432)

Those conventions and definitions could be found in Green, Schwarz and Witten’s book [8].

4.4.1 Explicit calculation of 3—point amplitude

Considering the on-shell amplitude, 2o ¢an-be set to be 1. Thus, we just have to take care

of the oscillation part W,. We use Agr and Aj, to denoted the right and left 3—amplitudes

AL:AL(]ACl,kQ,p): < —]271,0‘%(]{}2)’{Nm}7p> 1, (433)
Zo=
Ap = An(=P kg, l) = ({Nn}: P ‘ Volks) ‘ 10 ) 1 (4.34)
Zo=
Calculating Ag
Put the definition of | {N,,}; P) and Vj into Ag, we have
Ap = <0-15 ﬁ BCHEN P TR k1; 0 >
R — ) L \/m € 4,
_ s ¥ (OCZL) " Lpsam | 7. .
_<0,P 71_[1\/7”]\[—”17]\[”1!67" ‘k’4,0>
. 0 (ay )Nm 1 ]{3 Q. Nm, R
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4.4. EXPLICIT CALCULATION OF RESIDUE

Using the commutative relation [ a’] = mdy,i, 0" and the identity (0]ala®,]0) =

a!n®, where a denotes the power of «,, not a tensor index, yields

an

H W (4.36)
Calculating A

Ay, can also be able to carry out by following the same manners

AL:<—I%1;O)6_

1 Lhoan <H mNm > 0; ]5>

"

7 —L koo Oé_m . T
= < — ]{31,0) ngl (& m k2 W ‘0,P> (437)

For the reason that the number of creation and annihilation operators inside the
Dirac bracket must be the same otherwise it will ' vanish. Use the Taylor expansion to
expand the exponential part and-only the N,;-th erder term survives. Then,

I

1 N (o, )N .
LN~ o AR
= (o () e o

5™

T
HW

m=1

(4.38)

4.4.2 Contracting Ar and Aj,

Using equation (4.16), (4.36) and (4.38), it is easy to calculate I for a general mass level
N.

k)

{X mNm=N} m=0

—ky - k)"
(5 ) N TN UmNm

Notice that N, and m satisfy the following two relations:

> mNn,=N, > N,=1J (4.40)
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4.4. EXPLICIT CALCULATION OF RESIDUE

Using equation (B.9) and the definition (B.8) of Stirling number of the first kind in

the Appendix as a generating function , Iy can be rewritten as

=3 P ek = (M) (.41)

This is the result we have expected!
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Chapter 5

Scattering with higher spin particles

Having a great success in the full-tachyon amplitude, now let us generalize our algorithm
to the scattering amplitude contains an arbitrary spin state and three tachyons. As
a warmup exercise, we first demonstrate how to explicitly calculate the residue from
BCFW prescription of the scattéring amplitude of one vector and 3 tachyons by using
our algorithm. The corresponding generating function can be found as well but which
is slightly different from the four-tachyon case. -Then, through path integral approach,
the generic structure of generating function of scattering amplitude of an arbitrary spin

vertex and 3 tachyons can be systematically worked out [1].

5.1 Scattering amplitude of one vector and 3 tachyons

5.1.1 Algebraic calculation

The vertex operator of a massless vector is
V(k,2) =€ Xe*XG) (5.1)

The 1-vector 3-tachyon scattering amplitude is given by the following integration
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5.1. SCATTERING AMPLITUDE OF ONE VECTOR AND 3 TACHYONS

1
A(1§34)= /< k1,0|€2 (Zz)%(k2,22>%(k372’3)|k4, >d22
0

1 1
= (€2 k3) / dzg |1 — 2o %87 | zo|1%2 — (€5 - y) / dzg |1 — zo|f2 8| g1kt
0 0

(5.2)

where 2 means the second particle is chosen to be a vector. e, here is the polarization
of the incoming vector particle carrying momentum ky which obey k3 = ky - € = 0. By
applying gauge fixing, we set z; = 0, z3 = 1 and z4 = oo. As the same with the pure
tachyon scattering case, we expand (1 — 2)™* ™ and (1 — 2,)™" by using equation

(4.2), and integrate over z,, which yields

_ N (ko kg —1 N-1 2
A(1234) = (€2 - ks3) NZ:< AL )( ) (k1 + k2)2 + 2(N — 1)

(ko K3 W 2
Z( Al ) S (ke k)2 2(N — 1) (5:3)

N=0

—

where N is the mass level of the intermediate states, The propagator 2/[ (k1 +k2)?+2(N —
1)] has now been extracted. It is obvious that the residue of equation (5.3) is consisted
of two terms, one of the term is proportional to €5 - k1 and the other one is proportional
to €5 - k3. The term proportional to €s - k1, i.e. (kzz\f“) (—1), is simply corresponding to the

4-tachyon amplitude. But, a new term comes from the other one proportional to €, - kj.

The residue of 1-vector 3—tachyon amplitude from BCFW prescription can be written

as

Yo (0 —ki[(ea- X)V (K, 22) [{Nm} 5 D) Ty ({Nim} s PIV (K3, 25) 105 Kia)|zpmzgn
{ZmNn=N}

(5.4)
Differ from the 4-tachyon amplitude, an extra term e, - X locates at the second particle.

Algebraically, the term proportional to €; - ky in equation (5.3) can be obtained by acting
the operator e;-p in e- X = €5-(p+ 32, _; e ) I to the bra ( —k;; 0|, which reproduces

LS 1 a—n€e™ gives no contribution since (0| a_,, = 0, for n > 0. Thus, €, - X could be equivalently

written in that way.
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5.1. SCATTERING AMPLITUDE OF ONE VECTOR AND 3 TACHYONS

—éy-k1. The rest of its kinematic dependence could be easily shown to be the pure tachyon

residue as in equation (4.16), that is

D =k OV (kay 20 ) [{Nm} s P) Tingy ({Nm} 5 PV (ks, 23) [0 ks ),
{3 mNm}
which confirms our prediction. And yet, the term proportional to €5 - k3 is

Iy = Z <—k1;0‘<ieg-anzz_">%(/€2)

{3 mNm=N} =1

{Nm} ;p> TN}

< {Nn}sp ‘ Vo(ks) | k; 0 > (5.5)
Residue (5.5) has to be equal to
w3 () e (5:6)

N=1
in equation (5.3). The next step is to show the equality between equation (5.5) and (5.6).
For this example, the level matching and evaluation for the generating function are left

in the appendix C.

5.1.2 Explicit derivation for the related residue of interest

Having done the basic algebraic calculation in the previous subsection, we would like to
explicitly deduce the equality between equation (5.5) and (5.6). For a general mass level
N, this kinematic dependence Iy can be derived from gluing two 3-point amplitudes, that
1s

Iy = Z <—k1;0‘<§:62'an>%(k52)

{3 mNn=N} n=1

[N} i2) Tinay { AN} 52 | Volhs)

k;4;0>

zo=1

We denote the two 3-point on—shell amplitudes (the left part and right one) as

{Nm} ;p>

)
zo=1

Ay = Ayl e, P) = (= k130 (i@ ) Vo(ka)
n=1

Ap = Ap(=P, kg, ks) = ( {Nm} P

Vo(ks)

k4;0>

zo=1
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5.1. SCATTERING AMPLITUDE OF ONE VECTOR AND 3 TACHYONS

The explicit calculation of 3-point amplitudes

Apr has been obtained before, which is

00 k”)

Ap = 1‘_[1 Ny (5.7)

On the other hand, the algebraic structure of Ay is new to us, which is given by

1= (0] (X -0 Vi

(0] o) vt T el o) |

o),

2=1

(5.8)

[M]8

n=1

=1

After setting zo = 1, the tachyonic vertex Vy(k2) becomes

Vo(ks) = exp[i i .pa_p] eXp[ - i k:'?ap].
p=1 p=1

When moving € -, to the right, it will first encounter the term exp [ Yopey (kyay)/ p]
. But remember that the polarization €3 and the momentum ks, are orthogonal; therefore,
only the identity of this term survives after «,, contracting with a_,. Thus

(0] (ca-a) T[ e 55 (;Nﬁ) = o)

1 m=1

[
WE

AL

3
Il

1 )Nm

0 *w—(a_”) *M—(a_m 0
N ] I S =)

[
NE

(5.9)

n

Using Taylor expansion to expand the exponential part inside the square bracket in the
equation (5.9) and moving those things to the left, we see that only the (N, — 1)-th order

term do not vanish. Thus,

= S0l (-2

n=1
oo I )Nm

1 =" (:wﬁ > (5.10)

m=1m#n
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5.1. SCATTERING AMPLITUDE OF ONE VECTOR AND 3 TACHYONS

Using the commutative relation [a# |, a%] = mdy,n*, we will reach at

m n

> —)Na=lp Ny e (RN ] S — )N
A, = Z{[( ) nNnN:! ) 11 \(/FM_)W} (5.11)

m=1m#n

Gluing A; and Ap

Combine the left 3-point amplitude Ay, in equation (5.11) with the right one Ag in (5.7),

we obtain

[N} i2) Tinay { AN} 52 | Volhs)

k:4;0>

(= mi0] (S an) vt

- =N, (62 - ki) (ko o kg)™2? A — k- k)
—Z{[() <><>]H( )}

nVn Nyl mim N,,!
z m=1,m#n

> niN, (e - ks 7 —kg'k3Nm
:Z[—#]HW- (5.12)

m=1

For any given mass level NV, we have

N = i niN,,.
n=1

Thus, the result (5.12) we just obtain above can be written as

e Nm,
—NEQ’k?’H(_k”k?’) . (5.13)

Summing over all physical states, we have the residue Iy:

62'1{33 d (—kg'kg)Nm
Iy = Z (=) N kg - ks H mNe N |
{N=X,, mNn} m=1
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5.2. GENERATING FUNCTION FROM PATH INTEGRAL APPROACH

5.1.3 Recover the result

The generating function for the residue proportional to €; - k3 is

€2 - ks L d 1@ k3ln(1—2)
k‘g . k‘g dZ

d
= (e k3) i [In(1 — 2)] ekzkaln@=2), (5.14)

The quick evaluation of this generating function is left in Appendix C.2. Use the relations

(B.3) and (B.4) in the appendix and Iy can be rewritten as

Iy = (N 2 S D gy (5.15)
J=0
=e-ks Y w (S)NTUN (kg - ks)” 71 (5.16)
J=1 ’

Refering to (B.10) in the appendix and setting X = ks - k3 in that relation, we soon

recover the result:

kot kg — 1

5.2 Generating function from path integral approach

As we shall see in the previous examples of full-tahcyon and 1-vector 3—tachyon am-
plitude, we can always find a generating function related to the residue prescribed by
BCFW. In the following, instead of the operator method used previously, we adopt path
integral approach [16] to calculate the generating functions. We first take the 1-vector
3-tachyon amplitude as an example to illustrate how to re-derive its generating function

(5.14) from path integral formalism.

Note that the amplitude can be written as
A(1234) / Hdz ek X(=) ooy XethrX (@) o pthaX(z) .o pika X(2) ) (5.17)

where (- -} is short for (0] ---|0). For convenience, one can exponentiate € - k3 up to the

exponent and take the linear term in €5 at the end of calculation. Here, one also need the
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5.2. GENERATING FUNCTION FROM PATH INTEGRAL APPROACH

identity [8] (: edt :ief2 ... efM 1) = exp [Zi<j<AiAj)} Use the world sheet SL(2, R)

to set z; =0, z3 = 1 and z4 = co. We have [16]

4
A(1234) = / Hdzl(: ik X (1) .. ik X(z2)er X . ik X (25) . gika-X(2) Miinear in e
i=1
(5.18)

4
_ /Hdzie_zjdkj,Lkly<XH(zj)X"(zl)+z'2#2eauka(Zz)X(zj))|lm€arin€2 (5.19)
i=1

1
-k €k
_ Ao (1 — 2,)k2ks Jhike €2 R €2 h3 ' 590
R e e (5.20)
The propagator in the above equation is (X*(x)X"(y)) = —n*In(z — y). The term

proportional to € - k; has been considered before, which is the same as in the case of pure
tachyon amplitude. Thus, we just neglect the analysis on it. The term of our interest
is the one proportional to €3 - k3 in equation (5.20). Please note that, in the previous
discussion we binomially expand (1 — z)*¥2#3 ;and take the world sheet integral to obtain

ki1-ko

the propagator. Obviously, 2z has been integrated-away, hence does not involve in the

generating function. This implies that the generating function should be

k2 k3ln(1—2 €3 zo=LIn(1=22)
Gl = 6{ g\ 2)}6{ w2 }|linearin €2

d
= (eg-k3) 29 153 [n(l-<gs)] elkz ks in(l=22)] (5.21)

which is exactly the same with (5.14). Please note that there is an extra term z-£In(1— z)
in equation (5.21) if we compare this equation with the generating function for the pure
tachyon case. This result can be viewed from the term e, - X in the vertex operator, which

results in (X*(z)X"(y)) in equation (5.19),

(X () X" () = i (X (2) X)) =~ — ) (5.22)

Following the same spirit, one can generalize this method to a more complicated case

such as a vertex containing arbitrarily n-multiple of € - X’s, that is

V(ks, 2z2) =: <€§1) X) <e§2) X) X oo X (egn) X) etk X(z2) . (5.23)

This higher spin particle has mass level n, therefore, k&3 = —M? = —2(n — 1). From the
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5.2. GENERATING FUNCTION FROM PATH INTEGRAL APPROACH

path integral formalism, the amplitude should be

A(1234) / Hdz et X(=) <6;1) X) <e§2) X) X - X (egn) X) etk X (22) .

ik3-X(z3) .

te : etharX(=a) ) (5.24)

4
- / [ desleXe0 o e XCarpa X Xmrd X
= i % .

- oiks X (23) .. pikaX(za) :>|linearin€(1) @ o (5.25)
/ Hdzl exp{— Zk’mk’w 2) X" (z1)) +ZZ€2M v XM(zQ)X”(zj)H—
i<l J#2
. 2 ; v
g Z 62“ ij<Xu(22)X ] Tt Z 62“ JV ZQ)X (Z])>}|multilinear in eél),sgm,m,
J#2 #2
(5.26)
1 2 2
0 Z 1—=z z 1—-=z
(n) (n)
€ k1 €’ - ks
- X — . 5.27
[ z 1 =% } ( )

Having the above experience, some other-terms can be obtained from amplitudes

containing relative lower spin vertex. Thus, we know the new term is the one proportional

to <6;1) : k‘g) (eéQ) . kg) X oo X <e§n) . kg), and thus it is

/ S (1= 2y i (e (7 hs) (&7 ) x o (47 ko)
0

: (1—2)"

1
= (-)" (Gg) : ks) <6§2) : kg) X e X (eg") : kg) / dzy (1 — zg)f2 ks Shuke (5.28)
0

. 22)k2~k3—n

Binomially expand (1

ks —n ota
> [ (—yeri

at the end of equation (5.28), we reach

s kg'kg—n a—n 2
=2 Y e ey (529)

From the previous experience, throw the propagator in the above equation (5.29)

away, and the rest should be the residue from BCFW prescription. The generating func-
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5.2. GENERATING FUNCTION FROM PATH INTEGRAL APPROACH

tion G,, for this new term can be seen from equation (5.26)

Gn _ 6{6(21).1% zdizln(lfz)}e{e(;).kg Zd—‘izln(le)} «

(n)
% 6{62 k3 zdizln(lfz)}e{k-kg, 1n(1—z)}|mumlmem O (530)
2 2 €a 6
d d
= [(6%1) . kg,) i In(1— z)} {(69 : k3> zgln (1-— z)} X
n d
X {(eg ) k3> i In(1- z)} ehzkaln(1=2) (5.31)
[ ko-ks—n
- (eg”-kg) (eé”-kg) XX (eg@.k;g) ST ()% (5.32)
a=n a—n

After setting z = 1 in equation (5.32), this is exactly the residue from BCFW prescrip-
tion of the new term in equation (5.29). Equation (5.31) contains n derivative terms
z(d/dz)In(1 — z). They can be traced back to the n-multiple of € - X’s in the vertex

operator.

From the above arguments, we can conclude that the derivative term z (d/dz) In(1—2)
appears in the generating function can-be traced back to the term e - X of the vertex
operator. This term e- X will later results in (X™*(z)X%(y)) o< z (d/dz)In(z —y) and thus
exists in the generating function. The key feature connecting the generating function
with vertex operator has been made manifest now; generalization to more complicated
configuration of vertex operators can be'established. For example, consider this emission

vertex for the second excited state
V(ky, 20) =2 €3 - X (25)eR2X () . (5.33)

Having the previous experience, to obtain the generating function of the vertex (5.33), we

have to calculate (X (z)X (y))

(X)X () = (e — ). (5.34)

Multiplying z(d/dz)z(d/dz)In(1 — z) by €5 - k3 and the factor exp [ks - k3 In(1 — 2)] leads
to the generating function of the vertex (5.33)

d d
Gy = (€3 - k3) pE [In(1 — 2)] ekzkain@=2), (5.35)

The above calculation can then be generalized to the vertex operator having arbitrarily

n-th order derivative of X*(7), namely

V(kg, 22) =€y (aﬁg)X) Gikz.x(@) . (536)
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5.3. BRIEF SUMMARY

Following the same procedures, we first evaluate

O XH(x)

orn

ED ) = (o) e ) (537

and the generating function of the scattering amplitude with vertex (5.36) and three

tachyons can be easily calculated by

d n
G, = (€ - k3) (za) In(1 — z)ekzksin(=2), (5.38)

Combining the algebraic structures of equation (5.31) and (5.38), we are able to obtain
the generating function of a scattering amplitude of 3 tachyons and one arbitrary spin

state, for example

<61-X> <62X> (Q-X)---:@ik'x : (5.39)

is given by

— d d .d d _d X In(1-=2)
G = (Yl Zdzln(l z)) (Yg zdzzdzln(l z)) (Yg zdzzdzln(l z)) e :

(5.40)

where Y] = €1 - k, Yo = 65 - k andY3 = €3 - k.

5.3 Brief summary

In the first section of this chapter, we first generalize our algorithm from four—tachyon
amplitude to an amplitude of one vector and three tachyons. Generating function for
this case still exists. In section 5.2, we show how to adopt path integral approach to
systematically find out the generating function of a scattering amplitude of one arbitrary

string state and 3 tachyons.
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Chapter 6

Conclusion

Let us summarize what we have achieved in the thesis. Motivated by the success of
BCFW recursion relation in field theory, we are interested in applying this method to
string theory. In field theory, Feynman’s tule helps us to write down scattering amplitude
systematically. In BCFW calculation-of field theory,”the BCFW poles are determined
by Feynman propagators. However, when applying BCFW method to string amplitudes,
the BCFW poles for string amplitude such as Veneziano amplitude are not manifest.
In [5], Clifford Cheung et at binomially-expanded the integrand of Veneziano amplitude

to extract the pole structure of string amplitude.

In this thesis, we extend the application of BCFW recursion relation to string tree-
level amplitudes. In contrast to the field theory calculation, we encounter the difficulty
of summing over all intermediate physical states with infinite tower of mass levels. We
develop a method to resolve this difficulty by enlarging the sum over all intermediate
physical states to an easier sum over the entire Fock space of string spectrum. The zero
contributions of extra states are guaranteed by the no-ghost theorem in the open bosonic
string theory. In this calculation, we do produce the conjectured scalar-behaved residue
observed in [5]. The calculation is successfully applied to the 4-tachyon amplitude, and
then to the cases of one arbitrary higher spin state and 3-tachyon amplitudes. For the
cases of higher spin scatterings, we figure out a generating function for summing the
infinite poles of string spectrum in the BCFW string amplitude calculation. We also find

out that we can use identities of the Stirling number of the first kind to sum over the string
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Fock space. The generic structure of this generating function for higher spin scattering
amplitude can be obtained from the standard path integral calculation of string scattering

amplitude.

Our work has lead to several interesting topics for further study. So far, we just
considered the string scattering amplitude of 3 tachyons and one arbitrary string state. It
would be natural to extend to 4—point amplitudes containing more than one arbitrary spin
state and to scattering amplitudes of more than 4 particles. It would be also worthy to
explore the string amplitudes beyond bosonic open string. Since our algorithm describes
a sum over infinite intermediate states, studying the sub—-leading terms in high energy

limit might be achieved.
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Appendix A

Calculation of 3—point functions with

complex momenta

Here we provide the detailed calculation of 3—point functions, namely equation (3.57) in

Section 3.2. Part of the calculations are referred to [10,11].

Momentum conservation implies that p; +ps + p3 = 0 for three-gluon vertex. Hence,

we have

P% =0=(p, +P3)2 = —2py - ps. (A1)

Consequently, the angle bracket and the square bracket are zero if we confine ourselves

to real momenta, i.e.

|<pipj>’2 = |[pipj]|2 =0, 1,J€ {17 2, 3} (AQ)

As a result, three—point functions are ill-defined. However, if momenta are allowed to
be complex, then equation (3.35) collapses since it is valid for real momenta. We thus
can choose [p;p;] = 0 but (p;p;) # 0, which gives meaning to the three-point function
M (17273%); while the other choice [p;p;] # 0 but (p;p;) = 0 gives meaning to M (112737).

With this idea in mind, we are going to compute the color-ordered amplitude M (17273%).
Slightly different from standard Feynman’s rule for QCD, here we employ the color—striped

3—gluon vertex since the color dependences in the 4-gluon scattering amplitude have been
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striped away, which is

V2

with the coupling constant suppressed. Through Feynman’s rule, the on—shell amplitude

Vs(p1, p2, p3)1H2He = (A.3)

9" (p1 — p2)"™* + g™ (p2 — p3)"* + " (p3 — p1)"*]

for 3 incoming gluons is

M<1_2_3+) :61u162u263u3V3<p17 D2, pg)ﬂllﬂl&
1

:E [e1-€2(p1 —p2) €3+ € €3(p2—p3) €1+ €3-€1(p3 —p1)- €] . (A4)
Choose for the polarization vectors to be
_ 1 |qloup _ 1 |qlo.|p 1 (slo,|p
6(p1)# — __M, 6(]?2);1 — __M7 e(pg):j — _M (A.5)

V2 qpi] V2 aps] V2 (sps)

with reference momenta ¢ and s. This choice of polarizations leads to ¢ - € = 0, which
can be easily verified by
€1 - €2 0 [qlau| p1)[9la"| p2) = —(pilouldllglo” | p2) = 2(p1p2) ga] = 0.

Equation (A.4) then becomes

M(17273"7) = % (&5 €1) (D5 ~€2) €3 - €2)(ps - €1)] - (A.6)

Each terms in the above equation can be also computed separately by using the contraction

rules of spinors and the Fierz identity, yielding

€2 - €9 = _M ETIpy = _i' [qu](p3p1>.
i [qp2){(sps)’ ’ 2 [qp1]
L6 = _M €0 - Do = _i ) [qp3]<p3p2>
T Tgpd(spsy 5 ] (A7)

—~

So far, we have expressed those kinematic dependences (A.7) of the three—point amplitude

in terms of the angle brackets and the square brackets; then equation (A.6) evaluates to

—9—a+\ __ [qp?)] s _ S
M(17273 )——[qpl][qu] o) (laps](psp1)(sp2) — [aps](p3p2) (sp1))
<p1P2> [qu] 2

lap1][ap2]

Note that we have used equation (3.34) twice to get the above result. When multiply the

(A.8)

numerator and denominator by (p;p2)? and use equation (3.34) again, the ¢ dependent

factors of (gp3) cancel, and we obtain

(12)*
(12)(23)(31) "
Similarly, we can also calculate the other three-point amplitude M (172%37) by following

M (17273%) = (A.9)

the above procedures. But for this case, we must assume (p;p;) = 0 but [p;p;] # 0.
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Appendix B

Stirling number of the first kind

The unsigned Stirling number |s(N, J)| and signed (ordinary) Stirling number s (N, J)

can be obtained from the rising factorial and falling factorial, respectively, i.e.

p(z — 1) a(x =NHD=D 0 s(N, J)27, (B.1)
J=0
p(z+1) = (z + N=1) = " [s(N, )|z’ (B.2)

<
Il

0

The relation between the unsigned and signed-Stirling numbers could be easily proved as
[5(N, )| = (<)¥7 s(N, J). (B.3)

Besides, the unsigned Stirling number of the first kind also has its meaning in combina-
torics, which counts the number of permutations of N elements with J disjoint cycles [17],

namely

it N!
svonl= > I o (BA)
N,,! mNm
{7=%,, N } m=1 m

where N, J, m and N,, obey the following two relations

> mNny=N, > Nn=1J (B.5)

Let’s consider the following binomial expansion of (1 — z)%,

(1—-2)% = exp[Xln(l — z)] = 3 (ﬁ) (—)NN. (B.6)

N=
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The combinatorial factor (ﬁ) is defined as

(X) 2@ —1)(z— N+1)

NE N . (B.7)

It is easy to see that, from equations (B.1) and (B.3), the binomial expansion (B.6) can

be rewritten as

(1 . Z)X _ Z Z SU]\\[["‘D (_)NXJZN
_ Z Z |5(]]\\7;!J>’ (—X)7 2, (B.8)

After getting rid of the z dependent terms in both (B.6) and (B.8) formulas and

X

applying the equation (B.4) , one could further express the binomial factor (—)~ ( N

)as

(])5) )" = XN: ﬁ ];),(—%? (B.9)

which leads to a crucial mathematical identity for the full-tachyon scattering ampli-

tude.

Furthermore, we can perform the operation % (z d%) to both the left-handed and
the right-handed sides of equation (B.8). Then, compare the coefficients of the powers of

z, one obtain an useful identity

(J)\(f - 1)(_)N N G%) i 2 ﬁ ](V;‘,X—Tiﬁ (B.10)

J=1{N,,} m=1

This identity would be applied to the residue of 1-vector 3—tachyon amplitude.
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Appendix C

1—vector 3-tachyon amplitude

C.1 Level matching of the first 3 mass levels

Before giving the exact proof of the equality between equation (5.6) and (5.5), we are
going to use the level matching approach to check whether the first few mass levels are
right or not. In the following, we-list the first three mass levels of equation (5.6) for future

reference:

N=1 :>11:€2'k’3,

N =2 :>12:—(€2'k’3)(k’2'k’3—1),
{(kg-kg—n(kg-kg_z)

N:3:>13:(62'k’3)

2! } - 2'k3 [(kQ ks)? — 3 (ko - ks) + 2}.

Please note that ks - €3 = 0 and the normalized Fock state is given by

H\/T

In the presence of the term ) ey - o, in Ay, things become a little be complicated.

[ {Nm}; P) = |0; P). (C.1)

e Level N = 1: For N =1, there is just one intermediate state:

{o1}
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C.1. LEVEL MATCHING OF THE FIRST 3 MASS LEVELS

We expect that the residue (5.5) for this level should be I; = € - kj.

oo
[eS) _ oo 1 .
L = < —kl;O‘ ( E ez-ozn> Xzt wkron o= S0y gkaan o

n=1

<0; P ‘ o eXen=1 whs-a—n

i

ks 0 > (C.2)

:<—k1;0‘(ieg-an>a“1 k4;0>

- 77,w€§k?§ = €y k3- (CS)

o (0: P (ks - a1)

As was expected!

e Level N = 2: In this case, we have two intermediate states:

a_106_q

{f \/—}

Residue I5 of this level is consisted of two parts 77 and 75 corresponding to the two

different intermediate states, which is
[2 — T1 -+ TQ, (C4)

where T} and 75 are

T1=<—/€1;0)<Z > et wharan =300 hean (O‘_\/%)

<O;P) (%) et wha-an /{74;0>
= €y - k3, (C.5)

and

©° H1 o p2
(bt (B b (223
n=1 ﬁ
atal? 0
<0 p‘(# enty phson k4;0>
V2!

= — (62 . k?g)(k?g . k’g) (06)

> Nuivr Mpsvs

Thus,

[2 - Tl -+ T2
= — (62 : k’g) (k‘z . k‘g — 1) . (C?)
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C.1. LEVEL MATCHING OF THE FIRST 3 MASS LEVELS

e Level N = 3: For N = 3, there are three distinct Fock states as shown in the

following;:

Q_o20_q

s f’\/_}

IL=T +T,+Ts. (C.8)

I3 is respectively constituted of 3 contributions of the three intermediate states.

Carry out the tedious calculation of T3, T5 and T3,

> o] 1 o] Oé'u
T, = < —k ;0 ‘ ( €9 - Oén> e~n=1 wk2-a—n e &=l nha-on (__3) ‘0, P> v
1 1 E 2 \/3 um

\ k4;0>

o 0o
o] () e
(7] (55

= €2 k3) (09)
[ee] M1 2
T2 — < _ kl, O ‘ (Z 62 . an) 6220 1 711162 Qen 8_ ;.10:1 %kz'a" (a_\Q/(%_l) >77M1V177N2V2
el (7)) % el
3
= - B (€2 - k3)(ka - k3), (C.10)

and

7, = ( ~is0| (Z ) T Bk o B ke (%) 0.7
vy V2 V3

a7 oo 1 ay,
77/1411/177#21/277/1,31/3 <O7 P ‘ (%) eznzl nk3

_ %(62 ) (ky - Fis)2, (C11)

we then have

Is =T + 15 + T3

_ah [(Ko - k) — 3 (ko - k3) + 2]

2l
(kg - ks) (k- kg — 1)
2l ‘

= €9 kg X (C12)

Frankly, the sum of these three components confirms our prediction!
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C.2. QUICK EXAMINATION OF THE GENERATING FUNCTION

C.2 Quick examination of the generating function

In Chapter 5, we have claimed a generating function to help us work out the residue
of the 1-vector 3—tachyon amplitude. In this section, we are going to demonstrate how

to quickly examine the correctness of this generating function. At first we can choose

ol ot .
an arbitrary intermediate state, for example [{N,}; P) = 7 \/‘;T | 0; P); equation (5.5)
reads
- ] —n [ Mot
<O§ _k1| (Z €2 - Qi 22n> e nkzans (q—\/—) |0; P>77M1V177M2V2
n=1 Vavr (C.13)

V1 A V2

(0% Oé,r, S RN
(0; P| (;M)e Hoanast|0; o).

Equation (C.13) can be easily carried out, yielding

N (€3 - k3) X ¢ (@)q(’fz_’%) (ﬁ)erM <§>qw (ﬁ)r (C.14)

q 22 T Z2 q ) r )

Please notice that, while deriving, for-the residue (5.5), we act the operator % (z d%)

with X = ky - k3 upon (1 — 2)% '='exp[XIn(1 — z)], and the coefficients of the powers
of z in z:£ [In(1 — 2)] e* (172 just right’ provide a connection between the combinatorial
factor (5.6) and the residue (5.5). Therefore, residue proportional to € - k3 at a given level

N = g+ is determined by the 277" term expansion coefficient of the generating function

Y- zi [In(1 — 2)] X 0= (C.15)
dz
_ (_ZYTLZn> 7X<Z+%+%+ ......... )
n=1 n
Y. Y. X
= (- + Ty o+ ) = = )
q r r
Y. X Y. X
= +( Y s 70,27"—zq>—|—---. (C.16)
q r r q

Setting Y = €5 - k3 and z = z3/29, equation (C.14) agrees with the result in (C.16).
We can therefore conclude that equation (C.15) is indeed the generating function of the

term proportional to €5 - k3 in the 1-vector 3—tachyons amplitude.
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Appendix D

Amplitude of one rank—two tensor

and 3 tachyons

In the following, we provide an explicit calculation on one rank—two tensor and three
tachyons amplitude, but fail to prove the equality of Eq.(D.13) and Eq.(D.15). Instead,

we do level matching for up to N = 5.

D.1 Path integral

The vertex operator of rank—two tensor is given by
V(k,2) = €, X1 X" kG (D.1)

The formalism for the scattering amplitude of one rank-two tensor with 3 tachyons is
shown as follows
4
A(1234) = /H dzi(—k1; 0] € OXH(22)0X" (22) Voo (ko) Vo (k3) |ks; 0), (D.2)
i=1
where €, is the polarized tensor which obeys k,e*” = tre = 0. Thus, some of the terms

of €., X~ X" would vanish. As a result, € XEXV of equation (D.2) can be equivalently
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D.2. EXPLICIT DERIVATION OF THE RESIDUE OF INTEREST

written as

(61 . X) <€2 . X)
€ ﬁ € m -m € ﬁ € n -n
— [ 122 + Z_Z . Z (a—ng + 2y )] X [ 2 + Z_Z . Z (a_mZQ + ap2q )]

z
m 2

€1 p €2 P 1
= + — e ey e ey
< oy ) ( Py ) z% 1° p E 5" 2" p E 2

1 o0
2 (61- E amz;"> (62- E anz;l). (D.3)

Moving p in (D.3) to the right and acting on the bra (—k;; 0|, we can quickly find

n

out that the residues proportional to k}'k} and k{'k§ have been observed previously for

the calculation of four-tachyon and one-vector three-tachyon amplitudes. The only new

residue is the one proportional to k4k%, which is

Iy = Z < — kl;O‘ Z(el “ 0 (e ow,) Vo(ks)

{>>aN,=N}

[N} P) Tiny

(D.4)
({Na}: P 4Yoes) | s 0)

D.2 Explicit derivation of the residue of interest

In this section, we aim to analytically calculate equation (D.4) by using our algorithm.

As usual, we first calculate Ar and Aj, separately. Ag is the same as before, which is

0; k4>
] (k)™

e (D.5)

Ap = <{Nm}§P‘V0(k3)

zo=1

m=1

While the left 3—point amplitude Ay, is given by

A= = k0| Y (er- am)lea - an) Valka) [ {Na} 5 P). (D.6)

Here, the double summation over m and n can be rewritten as a sum of two parts, that is

Z(El Z €1+ ay) (€ ap +Z €1 ) (€2 ay). (D.7)

m,n m#n
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D.2. EXPLICIT DERIVATION OF THE RESIDUE OF INTEREST

Plug equation (D.7) into Ay, yielding

223 (0 (e em) () TLe ™ Fmm )

m=1 n=1

[o¢] o 2 Na
- <0’ {Z (€1 am) (€2 an) +Z (e1-an)(e2 O‘n)} Heiha (a;l) l O>'
m#n n=1 a=1 a"e Ne?
(D.8)
Following the same manners, Ay can be calculated by
_kgam (0, i _kpen (0l "
b= 3 (o] oo S D ) 2 SR )
m#n m "
= _kyag Oélia N > _kgran alin N
L S e S ol oo e S -

i

I1 e L 0) (D.9)
o aine valNe N,! ' '

Applying the commutative relation of ladder operators-[at , a”] = md,,,n*", we reach

1N [ N o () T EERE N, o () (k)

N e Al \/W e
(=) 2 N, (N, — 1) €]t eb? (k“) k“)

>3 VNI o H¢ m

(D.10)

After contracting with Ag, finally we obtain I

Iv=%" [(—)le mNr]nV(Tln-ﬂL]izi) (k2 k:g)le] [(—)an nNnJ\([E? n;;g) (ks - kg)an]

n#m
e ( k’Q kg nd —2 nan(Nn — 1) (61 . kg) (62 . ]{?3) (kQ . k3>Nn_2
_11;[ # N,! alNe - Zl N, ! nfNn 8

i Clk)™

N,! alNe
a=1l,a#n a

But as we shall see, Iy looks very "ugly”. The next step is to make it clean. Recall that
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D.2. EXPLICIT DERIVATION OF THE RESIDUE OF INTEREST

in order to calculate Ay, we draw out the terms of a = m, n inside the product notation
and let them contract with a,, and «,, outside. We then put them back into the product

notation, i.e.

mNm TLNn(El . l{fg) (62 . ]{73) > TZQNn(Nn — 1) (61 . ]{33 62 k?g s k‘g ]{33
-{x 5> I

(kg . k3)2 (kg . kg) N I gNa

n#Em n=1 a=1

(D.11)

Equation(D.11) can be further simplified by the following identity

= Z mN,, ZnNn

=Y mN,nN, + Zn?N2 (D.12)

m#n

Finally, Iy can be calculated by

Iy = (61 . kS) (62 2k3) Z [ ZRQN ] H — N)‘N ) (D.l?))

(k2 ’ kS) {N=3"_ mN} m

Alternatively, by using path integral, the term proportional to k4k% in the scattering

amplitude is given by
1
(e k) (2 ) [ o 1=zl gt
0

>~ (ko k3 —2 N2 2
(k) i) X () O ey 09

N=2

From the previous experience, we know that Iy is the rest of the part of equation (D.14)
without the propagator 2/[(k; + k2)* + 2(N — 1)]. Therefore, we expect that Iy must

equal to

(kzN/{:i; 2) (SN2 (61 - ks) (62 - k3) . (D.15)

So far, we cannot directly prove Eq.(D.13) and Eq.(D.15) are equal. But, we indirectly
show that they should be equal through level matching, which is given in the next sub-

section.
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D.2. EXPLICIT DERIVATION OF THE RESIDUE OF INTEREST

D.2.1 Level matching

In the following, we do level matching for up to N = 5 to see whether equation (D.13)
and (D.15) are equal to each other or not. For convenience, we set X = kq-k3, Y1 = €1 - k3

aﬂdYé 262'k3.

e Level N = 2: The intermediate states for this level is shown as follows

{\/_ Oé\;gl}
12 e () (D) e (B
o (D.16)

e Level N = 3: We have three.intermediate states for NV = 3. They are

901

(5 f’f}

p= 2 o (-5 BB (- 2) e 5 () -0 (D]}

=YY, (X —2). (D.17)

As was expected!

e Level N =4: For N =4,

2 2
—4 _300_1 (O} a” 102

{ Va3 T vzl Vel Vf'}

[, =t mX( x X x X +X3 [mx< X)%
1 4 "922.91 3.1 2.1-20 " 4 4

X2 X2 X3 x*
8X<?-m>+mx<§T>_6X<24-m>+4X<ZTX

(D.18)
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D.3. GENERATING FUNCTION VERIFICATION

e Level N = 5: There are 7 intermediates states needed to be taken into account

a5 a0y a_sa_g  al,ay  a?iaz Al o

VBT VAT V237 Va2 Var3t o V32 \/_

{ -},

L=- -5 S - — + -

Y,Y, X Xz X2 X3 X3 Xt X
925 x (— ) _ [25><
5 4.1 3.2 2.3 20-22 3.2 5l

2 2 3

(—X>+17><<X >+13><(X )—11><<X >—9><( X >+
5 11 3.2 o3 o1 22

T () -5 (5] }
[(X—Q)(X—?))(X—AL)]
3! ’

~ vy (D.19)

Agrees with equation (D.15).

D.3 Generating function verification

In this section, we would like to“verify the generating function for one rank—two tensor,
3 tachyons amplitude. All the procedures are the same as that in the previous case.

We first choose a particular Fock state’as intermediate state, for example |{N,,}; P) =

QM gH2 M3

Zog 2ok N ]0 P) which has mass level'of N'=¢+r + [ , equation (D.4) reads

G
< -cm) <§_O:1€2-om)e Lkyaaz; @ (cj;](i/%a?x?)
<0P

a;l 04?2 O{ly3 lk3-a, 28
ea %05 ky ).
V4 NG \/_

Setting X = ky - k3, Y1 = €1 - k3, Yo = €5 - k3 and z = 23/25, equation (D.20) can be

0; P >77u1u1 NpavaTusvs

expressed as

(x| X (Vixg) , (ax]) X

. . sz—l—(q’ > r) + . z l z?z”—l—(q<—>l)
Yy x 1 Y; X
+< 1;( )zl( 2xr)zr—zq%—(l<—>7"). (D.20)
r q

Residue (D.4) proportional to (e - k3) (e - k3) at level N = ¢ + r + [ is given by the

expansion coefficient of the (¢ + { + r)-th order term of the following function

G=Y Zdiiln(l —2)Y, z%ln(l — z)eXin1=2), (D.21)
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D.3. GENERATING FUNCTION VERIFICATION

One can further expand Eq.(D.21) to examine the argument

Y, - Y] - Y-l
G:<"'+ L9 p g 2Ly 1l zl+"')
q r

Y, - Y, - Y, -1
(..+ 2 qzq_|_..._|_ QTTZT_|_..._|_ 2[ Zl+...)
X X X
(---+—zq+---+—z’"+---+7zl+---) (D.22)
q r
Y1 % Y, X X Y] X Yoxl) X
:[ —l—(l q)zq<2 r)z”—zl—l—(qu)—l—(l q>zq(2 )zl—z”—l—(q<—>l)
q r [ q [ r
Yy x 1 Y, X X
+<1l )Zl(Qr T)Z’"Ezq+(l<—>r)+---] (D.23)

It is obvious that the residue (D.20) contributed from the Fock state |{N,,};:P) =

Bl pg M3
a_, a g Ay

N |0; P) of level N = g+ r + [ is indeed equal to the 297"+ term expansion
coefficient of equation (D.21).
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