
國  立  交  通  大  學 

 

資  訊  工  程  學  系 
 

碩  士  論  文 

 

TCP 低速阻斷服務攻擊之預防 

 

Preventing Low-Rate TCP Targeted Denial-of-Service Attack  

 

 

研 究 生：陳志偉 

指導教授：謝續平 博士 
 

 

 

中華民國九十三年六月 



TCP 低速阻斷服務攻擊之預防 

Preventing Low-Rate TCP Targeted Denial-of-Service Attack  

研 究 生: 陳志偉           Student:  Zhi-Way Chen 
指導教授: 謝續平 博士      Advisor:  Dr. Shiuh-Pyng Shieh 

 

國  立  交  通  大  學 

資  訊  工  程  學  系 

碩  士  論  文 

 

A Thesis  
Submitted to 

Department of Computer Science and Information Engineering 
College of Electrical Engineering and Computer Science 

National Chiao Tung University 
In Partial Fulfillment of the Requirements 

For the Degree of  
Master 

In 
 

Computer Science and Information Engineering 
 

June 2004 
 

Hsinchu, Taiwan, Republic of China 
 

 
中華民國九十三年六月 

 ii



TCP 低速阻斷服務攻擊之預防 

研究生：陳志偉                            指導教授：謝續平 

國立交通大學  資訊工程學系 

摘  要 

在 TCP 裡，錯誤的逾期會造成相當大的傷害，而已經存在有兩種類的方法來減輕這個問

題，我們稱他們為保守措施與積進措施，在保守措施裡有用到一個保守重送逾期值(RTO, 

Retransmission Timeout) minRTO，當根據 RTT (Round Trip Time) 所估算出來的 RTO 小於 

minRTO 時，RTO 就會被設為 minRTO，這樣的做法會讓 RTO 變成是可預測的，進而可能被

攻擊者利用。TCP 低速阻斷服務攻擊(Low-Rate TCP Targeted Denial-of-Service Attack) 就是屬

於這種攻擊，在本論文裡，我們提出了四種方法來處裡這個問題，在不改變保守 RTO 的前提

下，我們讓 RTO 變得不可預測，我們也做了分析和實驗來顯示我們的方法在遭預這種攻擊時

可以存活下來。在我們的方法裡，當遭遇攻擊時能達到的平均流量會比改善前多出許多，另

一方面，在平常的狀況下，我們的方法幾會不會影響 TCP 的表現。我們也分析了 TCP 低速

阻斷服務攻擊是如何影響 TCP 的運作即使在攻擊沒有成功時。 
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Improvement of TCP Conservative Retransmission 

Timeout 

Student: Zhi-Way Chen                   Advisor: Shiuh-Pyng Shieh 

Department of Computer Science and Information Engineering 
National Chiao Tung University 

Abstract 

Spurious timeout is very harmful to TCP. Two kinds of approaches were proposed to mitigate 

this problem, conservative approach and aggressive approach. In conservative approach, a 

conservative RTO (Retransmission Timeout), minRTO, is used. When RTO estimate form RTT 

(Round Trip Time) is less than minRTO, it is set to minRTO. This makes RTO become predictable 

and may be exploited by attackers. Low-Rate TCP Targeted Denial of Service is such kind of attack. 

In this thesis, we propose four schemes to deal with this problem. We make RTO unpredictable and 

keep conservative property. Analysis and experiment will be made to show that our schemes 

survive the attack. In our scheme, much better throughput is gained under attack. Besides, in usual 

condition, our schemes affect TCP performance only slightly. We will also analysis how Low-Rate 

TCP Targeted Denial of Service damages TCP operation inherently and how to gain the best 

throughput even if it is not achieved successfully.  
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1. Introduction 

In the Internet, TCP[1] is the most widely used protocol and hence dominate the Internet. In 

order to mitigate network congestion, congestion control in include in TCP. It will let sender to 

deduce his transmission rate when he get the information about network congestion. 

Conventionally, the information is gotten from whether the packets he transmitted are lost. This can 

be done bye monitor the transmitted packets and corresponding acknowledgement. If sender does 

not receive any acknowledgement to transmitted packet for Retransmission Timeout (RTO), he 

thinks that the packet is lost and retransmits it immediately. At the same time congestion window 

and slow start threshold id reduced and TCP goes in to slow start state. This is very harmful to TCP. 

Therefore, the value of RTO plays an important role in TCP. When it is too small, retransmission 

timer will expire even then packet is just delayed, not lost. The timeout will become unnecessary. 

When RTO is too large, sender will wait longer to retransmit even the transmitted is really lost. 

This will cause unnecessary waiting. Both will reduce the performance of TCP. Originally, RTO is 

estimated from the value of Round Trip Time (RTT) since RTO can be thought as the upper bound 

of RTT. But in some condition, there will be sudden delay in network and spurious timeout will 

occur. In this condition, retransmission and other TCP parameter reduction still take place. 

However, these will all be unnecessary since the transmitted packet is probably delayed and not lost. 

There are now two kinds of approaches to deal with this problem. One is to set a minimum value of 

RTO (minRTO), i.e. when RTO estimated from RTT is less than RTO, it is set to minRTO[2][3]. 

We refer this kind as conservative approach. The other one is to keep the original estimation but 

store TCP states and parameters before retransmission [4][5][6][7][8][9]. When unnecessary 

retransmission is detected, TCP states and parameters will be restored. We refer this as aggressive 

approach. In conservative mode, RTO will become predictable since RTO for some connections is 
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set to minRTO. This weakness can be exploited by attackers for malicious behavior. In this paper 

we will propose a scheme to adjust RTO in conservative approach and make the RTO 

unpredictable. 

1.1. Background  

In this section we will describe some background to facilitate understanding our works. It 

includes TCP Retransmission Timeout and Spurious Timeout. 

1.1.1. TCP Retransmission Timeout (RTO) 

TCP, a reliable protocol, maintains connection state between two hosts. It will let sender 

know whether transmitted packets are received by receiver. This is achieved by positive 

acknowledgement transmitted by receiver to sender. That is, when sender receives a positive 

acknowledgement from receiver, he judges that receiver has received the transmitted packet. In 

contrast, when sender does not receive positive acknowledgement respect to the transmitted packet 

for a period of time, that packet will be thought lost. This period is referred as RTO. Therefore, in 

TCP, each time a packet a transmitted, a timer will be set and start for that packet. When the timer 

expires, lost packet will be retransmitted, and the same, a timer will be set for that packet, but RTO 

will back off. It is because TCP thinks that lost packet implies network congestion and everyone 

should slow down to mitigate the congestion. When continuous expiration occurs, it will keep 

backing off until a predefined upper bound is reached. 

On the other hand, when the timer expires, congestion control will be triggered [10][11]. 

Sender’s congestion window will be reduced to one segment and slow-start threshold will also be 

reduced. Hence, timer expiration is treated as an important indicator of network congestion. The 

setting of the value of RTO becomes important consequently. If the value is too large, there will be 
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unnecessary waiting at sender side when transmitted packets are lost in the network. If the value is 

too small, there will be unnecessary timer expiration even transmitted packets or acknowledgement 

packets are just on the flight, not lost. TCP performance decreases in both situations.  

1.1.2. Spurious Timeout 

Briefly speaking, spurious timeout out is unnecessary timeout. It usually happens when there 

is sudden delay in the network. This will cause retransmission timer to expire before the positive 

acknowledgement packet is received. Spurious timeout will cause unnecessary retransmission and 

reduce TCP performance seriously. Some algorithms have been proposed to solve this problem. 

In the Internet, there are many cases in which the delay may vary, for example, path result 

from route flipping [2][12][13]. Dial-up connections may also result delay of many seconds due to 

link-layer error recovery by a modem [14]. The most obvious one, wireless network, will cause 

delays because of its inherent property. With the development of network technology and 

hardware device, many different devices can connect to the Internet through different media and 

communicate to each other. Hence, the number of wireless device connected to the Internet 

become larger and larger. Wireless links, however, are much slower than wired ones and wireless 

hosts may hand off from cell to cell. The network properties may differ from one cell to another. 

Besides, wireless link has higher packet loss rate and may have his owns link-layer retransmission 

mechanism. When communicating with wireless host, the connection will not be as stable as with 

wired host. Especially when host is handing off, the delay will not be avoided easily, even in the 

near future [15].  

Two kinds of approaches have been proposed to deal with this problem. One is to adjust RTO. 

Originally, RTO is estimated from the estimated value of RTT. Later on, in RFC2988 [3], it is 

suggested that there should be a minimum value of RTO. This also prevents spurious timeout and 
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is widely deployed today. This is referred as conservative RTO in this paper. The other one is to 

keep the original estimation and store TCP states and parameters before retransmission. When 

unnecessary retransmission is detected, TCP states and parameters will be restored. We call this 

aggressive RTO. 

1.2. Contribution 

In TCP with conservative RTO, there is a minimum value of RTO (minRTO). When RTO 

estimated from RTT is less than RTO it is set to minRTO. In this situation, RTO will become 

predictable and maybe exploited by attackers. Low-Rate TCP Targeted DoS takes advantage of 

this weakness and make throughput of victim approximate zero. In this paper we will propose a 

scheme to adjust RTO and make it unpredictable to improve the security of TCP in which 

conservative RTO is deployed. In our scheme, the damage of attack will be reduced and better 

throughput will be gained apparently. On the other hand, TCP performance will only be affected 

slightly in usual condition. 

1.3. Synopsis 

This paper is organized as follows. The related work of our scheme is given in Chapter 2. In 

Chapter 3, our scheme is proposed. Then, the experiment, evaluation and analysis are illustrated in 

Chapter 4. Finally, a conclusion presented in Chapter 5. 
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2. Related Work 

In TCP with conservative RTO, when estimated RTO is small than minimum RTO (minRTO), 

it is set to minRTO. This means that for connections between two near host or with high bandwidth, 

RTO would be the same value, i.e. the value of minRTO. This may be a problem because many 

RTO are the same and predictable. There is already an attack, Low-Rate TCP Targeted DoS, that 

takes advantage of this weakness. In this chapter, we will describe the operation of conservative 

RTO and the attack. 

2.1. Conservative RTO 

The conservative RTO that we refer in the paper is the one proposed in RFC2988 [3]. The 

setting of RTO is illustrated below.  
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RTO: retransmission timeout 
RTT: round-trip time 
SRTT: smoothed round-trip time 
RTTVAR: round-trip time variation 
G: clock granularity (typically ≦ 100ms)  
 
Before a round-trip-time (RTT) measurement for a connection 
       RTO = 3 seconds 
 
When the first RTT measurement R is make 
       SRTT = R 
       RTTVAR = R/2 
       RTO = SRTT + max ( G , 4*RTTVAR) 
 
When a subsequent RTT R’ is made 
      RTTVAR = ( 1 - β  ) * RTTVAR + β  * |SRTT – R’ | 
      SRTT = ( 1 - α  ) * SRTT + α  * R’ 
      RTO = SRTT + max ( G , k*RTTVAR) 
 
If RTO < 1 second  
      RTO = 1 second 
 

TT is measured, RTO is set to 3 second. After RTT is measured, RTO can be thought as 

s some network variation. When the network is more unstable, the value of RTTVAR 

 variation ) will be larger. 

. Low-Rate TCP Targeted DoS 

w-Rate TCP Targeted DoS is an attack that takes advantage of predictable RTO. When it is 

d, the throughput of victim will be down to approximate zero. The predictable RTO of 

makes attackers know when the victim will retransmit after packet loss occurs. Attacks 
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then burst packets in the same direction with victim’s retransmission around this time. The burst 

lasts just a short period of time. Their purpose is to make the retransmission packet of victim to be 

dropped. When each RTO is predicted by attackers, victim will never transmit packet successfully 

and throughput will decrease to zero. In Figure 2-1, the basic Low-Rate TCP Targeted DOS attack 

is shown. The length of the burst is set to around RTT since it will be enough to make whole 

window of packets to be dropped. The period of the burst is set to minRTO (1 second in RFC2988) 

since RTO of connections of victim will always be multiple of minRTO if that estimate from RTT 

is less than minRTO. Thus, whenever victim makes a retransmission, the retransmitted packet will 

meet the burst packets of attackers. The burst rate is set at least the same with victim link. 

However, it should be much larger than victim link since the purpose of the attack is to make all 

retransmitted packets to be dropped by occupying the queue. Larger burst rate will cause better 

effect, but it will be detected more easily. Besides, legitimate packets of other user that access the 

same queue of target will help dropping the packets of victim. In this case, the burst rate of attacks 

may be not so high. This kind of attack is hard to be detected accurately with low false alarm since 

it just bursts for a short time and this behavior is somewhat like normal user. In the following of 

this paper, when mention “Low-Rate DoS”, it means “Low-Rate TCP Targeted DoS” described 

above. 
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Figure 2-1 Low-Rate TCP Targeted DoS 

3. Proposed Scheme 

In this chapter, we will describe how we improve the security of TCP in which conservative 

RTO is deployed. We improve the security by adjusting RTO and make it become 

unpredictable .There some requirement we should meet: 

 

security: the RTO should be adjusted to be unpredictable.  

performance: the performance of TCP before the adjustment should be kept. 

 

We adjust the RTO in four different modes and separate the time to reset RTO and the time to 

retransmit loss packet. We will define some variables first and then step into out scheme. 

3.1. Definitions 

Here we will define some variables and they will be used in the following sections. 
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timeout the maximum time sender should wait until receipt of the ACK for the 

transmitted packet 

estrto the RTO estimated according to RTT and historical RTTs before make 

conservation 

minrto the minimum RTO that is set for transmitted packets 

backoff the backoff multiplier of RTO 

t_timeout the time at which timer expires 

t_rtx the time at which the loss packet is being retransmitted 

r the range with which we use to adjust t_timeout or t_tx with 

 

With the definition above and RFC2988 we have the relation:  

 

timeout = max(minrto,estrto) *  backoff 

 

Obviously, for connections in smooth network or between two near hosts, the RTT will not 

be too large and the timeout for transmitted packets will always be minRTO multiplied by an 

integer. In such case, the timeout for transmitted packets will become predictable, and will be 

exploited by attackers. Low-Rate TCP-Targeted Denial of Service Attack, for example, is a kind of 

attack achieved by taking advantage of this weakness. In the following sections, if we do not make 

any adjustment, we assume that the value of RTO is minrto and backoff coefficient is 2. Besides 

when we mentioned the term “conventional TCP’, it means the TCP version before our 

modification. 
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3.2. Random-Delay Scheme 

In conventional TCP, t_timeout and t_rtx can be viewed the same in TCP layer regardless of 

protocols of link layer and physical layer, i.e. as soon as the timer expires, lost packet is 

retransmitted immediately. However, in our first two schemes, we randomly delay the 

retransmission when timer expires. Hence t_timeout and t_rtx are separated apart. The value 

t_timeout is kept unchanged as conventional TCP and t_rtx is randomly chosen so that the actual 

time lost packet is retransmitted will not be guessed easily. 

3.2.1. Fixed Random-Delay Retransmission   

In order to avoid the condition in which the retransmission time of lost packet is predictable, 

we delay the time to retransmit the lost packet. Once the retransmission timer expires at t_timeout, 

the timer is reset but the lost packet will not be transmitted then. After that, a time interval [0,t) is 

chosen and we pick a time spot randomly in the interval as the period we want to delay the 

retransmission packet.  

Since we separate t_timeout and t_rtx, how much the timer timed and the elapsed time 

between when packet was retransmitted and the timer expired differs. The former one, obviously, is 

timeout and we let the latter one tr for following use. The value of tr can be treat as actual timeout 

for retransmitted pack. In common case, tr should be larger than minrto since minrto is the first 

timeout and tr is the nth actual timeout for retransmitted packet. To meet this requirement, the time 

interval at which we chose random-delay from is at most [0,minrto). In the extreme case, the 

delayed time for retransmission is minrto and tr is also minrto, i.e. tr is half of timeout. This would 

only happen at the first time retransmission timer expires sine the value of the second timeout is 

twice of minrto due to backoff operation. If the timer expires again, tr will be at least three times of 
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minrto because random interval is [0,minrto) and next timeout is 4minrto. Therefore, the relation of 

r_rtx and t_timeout can be represented as: 

 

t_rtx = t_timeout + minrto * random(r) 

 

The value of r is between 0 and 1. The random() function will randomly return a real value 

located in the interval [0,r). Consider Low-Rate DoS attack, assume any packet sent by victim will 

be dropped when attacker bursts packets. Let  be the lasted burst time, n be times of continuous 

timer expiration, and R be (minrto * random(r)), the probability that every retransmitted packet is 

dropped is: 

l

n

R ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ l,1min  

When R is larger than , the attack will not always make the retransmission packets of victim 

dropped. In contrast, if  is larger than R, retransmission packets will be always dropped. Of 

course attackers can enlarge  to make the attack powerful, but the attack will not be “Low-Rate” 

and will be detected with more probability. So how to set the value of r is an important issue. We 

will discuss this in next chapter. Let minrto 1 second, this scheme can be illustrate as Figure 3-1. 

l

l

l
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Figure 3-1 fixed random delay scheme 

3.2.2. Geometric Random-Delay Retransmission 

In the scheme mentioned above, the extreme case only happens at the time when first 

retransmission timer expires. We want to make the extreme case happen when each retransmission 

timer expires. This will cause the time interval [0,t) to become large and let the time to retransmit 

packet more unpredictable. The goal we want go achieve now is to make tr be always half of 

timeout. It is reasonable to do this since the nth timeout should be larger than (n-1)th one. And the 

effect of backoff will be reserved if we let tr always be half of timeout, i.e. the nth tr will be twice of 

the (n-1)th tr. Therefore, the relation of r_rtx and t_timeout can be represented as: 

 

t_rtx = t_timeout + 1/2 * minrto * backoff * random(r) 

 

The value of r is between 0 and 1. The random() function will randomly return a real value 
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located in the interval [0,r). Let us onsider Low-Rate DoS attack, assume any packet sent by victim 

will be dropped when attacker bursts packets. Let  be the lasted burst time, n be number of times 

of continuous timer expiration, and R be (minrto * random(r)), the probability that every 

retransmitted packet is dropped is at most: 

l

n

R
⎟
⎠
⎞

⎜
⎝
⎛ l  

This happens in the extreme case when  is less than R and R is very closed to minrto. Note that 

when  is larger than R(but still less than minrto), victim still have chance to retransmit packet 

successfully. This is because that the delay time for retransmission also have the “backoff” feature. 

The larger the number of time of continuous timer expiration is, the more probability with which 

the packet to be retransmitted successfully. Let minrto 1 second, this scheme can be illustrate as 

Figure 3-2.  

l

l

 

Figure 3-2 geometric random delay scheme 
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3.3. Random-Timeout Scheme 

In random delay scheme, we delay a period randomly to retransmit packets when timer 

expires. However, the time when the timer expires remain unchanged. And this may be another 

exploitation for attackers although we have not have any information of such kind of attack. On the 

other hand, we may need one more timer for each packet. It is used to time the delayed 

retransmitted packet. In this section, we will introduce an enhanced scheme to improve the 

deficiency. 

3.3.1. Fixed Random-Timeout 

Although the random delay scheme make the actual packet retransmission time unpredictable, 

when the timer expires is stall predictable, and there should another timer for the delayed period. To 

improve these, we adjust timeout and let t_rtx the same with t_timeout. When the estimated RTO is 

less than minrto, we will not set RTO minrto. Instead, we assign a new value to RTO and this value 

should be unpredictable. Besides, we should keep the backoff property of conventional TCP, i.e. the 

second timeout should be about twice of the first one and the third one should be about four times 

of the first one. To meet these requirements, we add a random time to conventional timeout each 

time it is computed, and the random time is between 0 and minrto. We can represent the adjusted 

timeout as:  

 

timeout = minrto * backoff  + minrto * random(r) 

 

The value of r is between 0 and 1. the random() function will randomly return a real value located 

in the interval [0,r). Therefore, the largest range of the first timeout will be [minrto, 2minrto), the 
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largest range of the second timeout will be [2minrto,3minrto), and the largest range of the third 

timeout will be [4minrto,5minrto) … and so on. The backoff property is implicitly kept. Assume 

the first t_timeout and t_rtx is t1. The second t_timeout and r_rtx will locate in [t1+2minrto, 

t1+3minrto). Consequently, t_timeout and t_rtx will be unpredictable and timeout will keep the 

backoff property. Let minrto 1 second, this scheme can be illustrate as Figure 3-3. 

In the random-delay scheme, t_rtx is always large then t_timeout. Consequently, the total 

time to wait for timer expiration and delayed retransmission is larger than minrto. In the random 

timeout scheme, since timeout is adjusted, it is possible for the timeout to be small than minrto. 

This can be represented as: 

 

timeout = minrto * backoff  - minrto * random(r) 

 

In this situation, the value of r should be chosen carefully. It should be smaller than what we 

showed previously. But no matter how small it is, it will make minrto meaningless and the RTO 

will be less conservative. Besides, under the Low-Rate DoS, this will not help much. We will show 

the detail in next chapter. Therefore, we do not encourage adjusting timeout this way.  

 

Figure 3-3 fixed random timeout scheme 
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3.3.2. Geometric Random-Timeout 

There is another way to adjust timeout to become unpredictable and keep its backoff property. 

In random-delay scheme, we introduce random delay for retransmission when timer expires, and 

then the randomly delayed time is from fixedly adjusted to geometrically adjusted. We do similar 

works in random timeout scheme. That is, each time when timeout is computed, it is increased with 

a random value, and this value will increase geometrically when continuous timer expiration occurs. 

It can be represented as: 

 

timeout = minrto * backoff + minrto * backoff * random(r) 

 

The value of r is between 0 and 1. the random() function will randomly return a real value located 

in the interval [0,r). Therefore, the largest range of the first timeout will be [minrto, 2minrto), the 

largest range of the second timeout will be [2minrto, 4minrto), and the largest range of the third 

timeout will be [4minrto, 8minrto) … and so on. The backoff property is implicitly kept. Assume 

the first t_timeout and t_rtx is t1. The second t_timeout and r_rtx will locate in [t1+2minrto, 

t1+4minrto). Consequently, t_timeout and t_rtx will be unpredictable and timeout will keep the 

backoff property. Let minrto 1 second, this scheme can be illustrate as Figure 3-4. 
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Figure 3-4 geometric random timeout scheme 
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4. Analysis  

In this chapter, we will describe in detail how the proposed scheme improves the TCP 

conservative RTO. Performance and security issues are included. Besides, we made an experiment 

with Low-Rate DoS and our proposed scheme. It consists of random delay scheme and random 

timeout scheme. We also discuss how the value of r affects the performance of the scheme against 

Low-Rate DoS. 

4.1. Security and Performance 

The TCP conventional RTO suggested in RFC2988 will cause a predictable RTO. In the 

proposed scheme, no matter random delay scheme or random timeout scheme, the actual time to 

retransmit packet become less predictable. The security problem has been indeed improved. Up to 

now, we have only known one kind of attacks which takes advantage of this weakness, Low-Rate 

TCP-targeted DoS. In conventional TCP, Low-Rate DoS results in approximate zero throughput at 

victim. But after improvement, our proposed scheme survives this attack. This is because the 

retransmitted packet in our scheme will not always meet burst packets of attacks.  

The version of TCP most popularly deployed today include fast retransmission feature. 

Recall that when TCP receiver receives an unexpected packet, he will send back an ACK to sender. 

The purpose of the ACK is to ask sender to retransmit the expected packet because that packet was 

probably lost. In TCP versions with fast retransmission feature, such as Tahoe, Reno and Vegas, 

sender will retransmit packet once he receive three duplicate packets. The time required for sender 

to receive three duplicate packets is often less than RTO at first time packet loss occurs, especially 

for conservative RTO. This is aim to not let TCP fall into timeout state, as described previously, this 

will be harmful to TCP performance.  Hence, in usual case, TCP retransmission timer will not 
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expire very often. In our proposed scheme, we make the first timeout from minrto to at most 

2minrot. This will make RTO more conservative but the delay retransmission time will increase. 

However, under the protection of fast retransmission, we believe this will affect average TCP 

performance less. On the other hand, attacker can cause network congestion or packet loss to let the 

retransmission timers expire. In this situation, a following unpredictable timeout will avoid the 

retransmitted packet being dropped in the trap arranged by attackers.  

4.2. Experiment 

In this section, we will describe how we make experiment. The result will also be presented 

accompanied by some analysis and discussion.  

4.2.1. Environment 

Our experiment is made with NS simulator. The topology is show in Figure 4-1. Node A is a 

FTP server and node D is a FTP client. Node B is an attacker who uses Low-Rate DoS attack to 

reduce throughput of A. And node D can be viewed as a router. The bandwidth of link AC is 2Mbps, 

BC is 10Mbps, CD is 1.5Mbps. We set the bandwidth of link BC larger than AC because we want 

to let the attacker have more power to achieve his attack. Propagation delay on each links is 10ms. 

The size of queue on node C for link CD is 10 slots. The whole experiment lasts for 50 seconds. In 

the beginning, FTP connection is setup between node A and node D, D retrieve files from A. After 

1 second, Low-Rate DoS is started from node B. Attack is started late because we want to let TCP 

window of FTP connection grow to a suitable degree. 

In the experiment, we deployed our schemes in the FTP connection and minrto is set 1 

second. We also adjust the burst duration of Low-Rate DoS for each of the deployed scheme. Once 

a value is changed, one hundred experiments are made continuously. We take the average as our 
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result.  

 

Figure 4-1 experiment topology 

4.2.2. Experiment Result 

Before the experiment result is showed, we give some analysis of our proposed scheme and 

Low-Rate DoS. This will be helpful for us to explain the experiment result.  

At first, we define some variables, and variable defined in chapter 3 is also used. 

  

B:  the bandwidth of the link connected to victim 

l :  burst duration of Low-Rate DoS 
T:  burst period of Low-Rate DoS 

Consider our scheme and Low-Rate DoS, each time t_rtx dose no conflict with the burst duration of 

attack, the connection will last at most ( minrto - ). After that, the connection will be interrupted 

by next burst packets of attack and all packets transmitted will be dropped. This will cause the TCP 

l
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to go into timeout state and victim will keep silent and wait for at least minrto to retransmit lost 

packets. Hence, we assume  is always less than minrto, the best throughput victim can achieve 

become 

l

 

minrto
BB l

−
2

 

 

Half of the total time is occupied by waiting, and in the rest time, burst duration must be eliminated.  

To achieve the best throughput, the right time to retransmit packet is at when the busrt just finishes. 

We name this time point as “sweet point”. The TCP slow-start is not taken into consideration, so 

the value of the throughput should be decrease some. The case we described above is that T equals 

to minrto and timeout ≧ minrto. However, there is another case. In [16], it described that when 

minRTO of victim is uniformly distributed in range [a, b], null time scales will shift to b. It means 

that when T is set to b, throughput of victim will be approximate zero. Actually, the throughput will 

not be zero since some packets can be retransmitted successfully before the burst occurs. But this 

will be make throughput of victim to be minimum compared to other attacks with different values 

of T. The best throughput victim can reach become: 

 

B
T

T l−  

 

When the value of T is large, better throughput will be gained. This implies that the larger the range 

[a, b] is the better throughput there will be.  

The result of fixed random-delay scheme is illustrated in Figure 4-2. The x-axis represents 

the burst duration of Low-Rate DoS and y-axis represent the average throughput of the victim. 

Each curve in the figure represents a value of r. The curve with lowest throughput is what r=0 
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presents. Note that the least throughput is not zero because we have unattacked connection for 1 

second in the beginning. But we will call this throughput zero regardless of that it is not really zero. 

When the burst duration is short, it seems that the attack do not affect the victim much. This is 

because that the queue in router buffs the burst packets. While the throughput of conventional TCP 

fell into zero, our proposed scheme survived. When burst period is short, curves with small value of 

r will get larger throughput because they retransmit at the sweet point with more probability. 

However, the throughput of them will decrease when burst duration increase. Smaller the value of r 

is, more rapidly the throughput decreases. It is because that less delay time will not help TCP to 

escape the burst duration which is long. The best-performed curve is r=0.5 since it perform 

averagely at head and best in half-tail.   

 

Figure 4-2 result of fixed-delay scheme 
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Figure 4-3 result of geometric-delay scheme 

The result of geometric random-delay scheme is shown in Figure 4-3. It is similar with fixed 

random-delay scheme. When the value of r is small, the throughput also decreases more rapidly 

than that with large values of r. However, the throughput with small value of r does not decrease so 

rapidly in geometric delay scheme. This is because that TCP will probably escape from the trap in 

geometric scheme after several continuous timer expirations since the delayed time grows 

geometrically. When the value of r is around 0.4, TCP has larger average throughput than others. 

We can observe that, in the geometric random delay scheme, when the value of r is larger 

than 0.4, the average throughput is less than that in fixed random delay scheme. This is because 

geometrically increased delay will probably decrease the probability of t_rtx locating at sweet 

point.  

Figure 4-4 shows the result of fixed random timeout scheme. It is similar with Figure 4-2, but 

produce larger throughput, especial when r is small. It is because that fixed random timeout scheme 
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has implicit ability to “shift away” from the burst pried. Note that t_timeout does not locate at 

minrto or multiple of minrto on time axis (assume packets are send and lost at 0). When t_rtx is 

conflict with burst period at tc from the beginning of burst period, the next t_rtx will locate at the 

time tc plus a random time. It will perform well as r is between 0.3 and 0.5. Actually, this mode is 

the best one among our proposed schemes in the experiment.  

The result of geometric random timeout is displayed in Figure 4-5. Averagely, it does not 

perform better than fixed random timeouts. The reason is the same as in random delay scheme. 

Geometrically increased timeout will probably decrease the probability with which t-rtx hits sweet 

point. But when the value of r is small, this mode will help TCP to shift away from burst period 

more quickly due to geometrically increased timeout. Thus, the throughput will be larger than that 

in fixed random timeout scheme when the value of r is small. This mode will perform better as r is 

between 0.3 and 0.4 

 

Figure 4-4 result of fixed random timeout scheme(1) 
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Figure 4-5 result geometrical random timeout scheme 

The result of anther mode where timeout is probably less than minrto is shown in Figure 4-6. 

The poor performance is due to not only less probability for t-rtx to hit sweet point but also it has 

more chance for TCP to be conflict with burst duration. When continuous timer expiration occurs, 

it “shifts away” from the burst very slowly. The left-half of the random interval which originally 

doest not conflict with burst period will have more chance to conflict after repeated expiration.  
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Figure 4-6 result of fix random timeout scheme(2) 

4.3. Discussion  

Apparently, in all of the proposed schemes, TCP can escape from the trap of attackers. The 

throughput also increases instead of being zero. Now let us consider the ideally most throughput in 

the experiment. Assume  is 0.15, the most throughput is l

MbpsMbpsMbps 525.0
1
5.115.0

2
5.1

=
•

− . It equals to 67.2Kbytes/s. When  is 0.3, the most 

throughput is 38.4Kbytes/s and when  is 0.45 that is 9.6Kbytes/s. From the result of the 

experiment, we can observe that our schemes not only escape form the trap but also get good 

through under Low-Rate DoS attack. No matter in which scheme we proposed, it is clear that the 

value of r affect the scheme in similar way. As the value of r is small, TCP will perform better 

when burst period is short, but the throughput will decrease rapidly when bust period becomes 

longer. As the value of r is about 0.3 ~ 0.5, the performance is the best. As the value of r is larger, 

l

l
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the performance will become worse. But actually, it will perform better when burst period is large. 

However, the influence is small in this situation and the attack is not “low rate” any more.  Among 

all of our proposed schemes, we think fixed random timeout scheme is the best one since it can 

“shift away” suitably when timer expiration occurs.  

Consider that why conservative RTO may fall into the trap of Low-Rate DoS and aggressive 

RTO won’t. One reason is that conservative RTO gives attackers opportunity that they can burst 

just for a short time and rest for a longer time. The other reason is that conservative RTO is 

predictable and aggressive RTO is not because it is adaptively set according to the value of RTT 

and RTT will not always the same. Although we want to keep conservative property of RTO, we 

can still make RTO adaptive to RTT. It would be: 

 

timeout = r * rstrto + minrto * backoff 

 

or 

 

timeout = r * rstrto * backoff + minrto * backoff 

 

This seems like a subset of random timeout scheme addressed in chapter 3. It does not involve 

randomness but still has some random property from the RTT (or network status). Hence, the 

routine of generating random number can be skipped compared to previous described schemes. But 

the RTO in this situation will be more predictable than random scheme sine RTT follows network 

state and not really random. 

Low-Rate DoS is the only one attack we found that take advantage of the weakness of 

predictable RTO. In our experiment, we observe that it is not easy to let TCP go into timeout state. 
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One reason is that queues in routers can buff the burst. Another reason is that it is hard to make all 

packets in a window to be dropped with just short burst duration, especially when then the link 

bandwidth of attack and victim is similar. In TCP with fast retransmission feature, if one packet is 

dropped first and three packets in window are successfully received later by receiver, three ACKs 

that request for the same lost packet will be transmitted. When sender receives the ACKs(about a 

RTT after the beginning of burst), the burst is about stopped, and the retransmission will probably 

successful. This is why we enlarge the bandwidth of attack link in our experiment. However, our 

purpose scheme is to provide a more secure protocol by make RTO unpredictable and the threat of 

Low-Rate of is what we should avoid. 
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5. Conclusion 

In this thesis, we have addressed that spurious timeout is very harmful to TCP. Two kinds of 

approaches are proposed to mitigate this problem, conservative approach and aggressive approach. 

In conservative approach, a conservative RTO, minRTO, is used. When RTO estimate form RTT is 

less than minRTO, it is set to minRTO. However, this makes RTO become predictable and may be 

exploit by attackers. Low-Rate TCP Targeted DoS is such kind of attack. It burst for just a short 

time periodically to make every retransmission packet of victim to be dropped and hence the 

throughput of victim will decrease to approximate zero. We also propose four schemes to deal with 

this problem. We make RTO unpredictable and keep conservative property. The analysis and 

experiment also showed that our scheme survive the attack. Besides, in usual condition, our 

schemes affect TCP performance only slightly. In the experiment, it is illustrated that how the 

random parameter r affects our schemes. To gain the best throughput under Low-Rate DoS, we 

explained that it can achieve by retransmitting at “sweet point”.   
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