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摘      要 
在三維電腦繪圖裡網格參數化一直以來都是很基本且重要的問題，它可被運

用於許多的電腦繪圖領域，如貼圖(texturing mapping)、貼圖合成(texture 

synthesis)、互動式三維描繪(interactive 3D painting)、網格重建

(remeshing)、多解析度分析和網格壓縮(multi-resolution analysis)。之前的

參數化演算法都是自動且全域性的達到最小失真參數化，但是這種最小失真的參

數化不一定適合於每個電腦繪圖領域，如網格重建。在這篇論文裡，我們提出一

個可讓使用者調整局部的參數化的架構來改善網格重建的品質。 
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ABSTRACT 

Surface parameterization is a fundamental problem in computer graphics. It is 

very useful in many applications such as texture mapping, texture synthesis, 

interactive 3D painting, re-meshing, multi-resolution analysis, and mesh compression. 

However, previous parameterization methods automatically and globally balanced the 

distortion of area or angle in the embedding functions. Such a parameterization may 

have low distortions but might not be suitable for some applications, such as 

remeshing. In this thesis, we present a framework that allows users to locally adjust 

the parameterization intending to improve the perceptual quality of remeshing. 
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Chapter 1 

Introduction 
 

In this chapter, we present the problem statement, our contribution, motivated 

applications, and finally the organization of the thesis. 

 

1.1  Problem Description 
 

Parameterization denotes the task of finding a two dimensional map for a surface in a 

higher dimension. Perfect parameterization (isometric parameterization) demands the 

bijective mapping from surface to parameter space that preserves the metric structure 

of the surface, i.e. respect area and angles of shapes. Unfortunately, in general such an 

angle and area preserving parameterization does not exist except for the developable 

surfaces. Thus most current research of parameterization tends to minimize the global 

energy [3, 4, 17] or distortions (angle or area) [8, 20, 25] over the surface during the 

parameterization. Since parameterization distortions are minimized globally, some 

applications may find under-sampling in the areas of geometric or semantic features, 

such as sharp edges or high frequency color. Parameterizations that take signal 

variation into account was presented previously. However, it cannot satisfactorily 

avoid the problem. Since perceptual importance is ultimately determined by a human 

observer, we argue that human assistance in the parameterization process is a natural 

way to solve the problem. In this thesis, we provide a novel method that allows users 

to locally control the parameterization for improving the sampling quality. 
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1.2 Contributions 
 

This thesis describes a novel, user interactive framework for mesh parameterization. 

Along the way to achieve this goal, we present the following contributions: 

 

 A weighted  metric  to increase the sampling ratio of selected regions in 

parameter space 

2L 2
wL

 A simple iterative global optimization algorithm to re-parameterize the triangle 

mesh with facet parameter constraints 

 A alternative approach to re-parameterize the triangle mesh via the spring model 

without facet parameter constraints 

 An interface for user-assisted parameterization 

 

1.3 Motivated Applications 
 

In this section, we briefly introduce several applications to motivate our research. The 

following are some examples of them. 

 

Texture Mapping 

Texture mapping is at the heart of modern computer graphics rendering 

techniques. Texturing the mesh will be as simple as pasting a picture on to the 

parameter space, and mapping each triangle of the original mesh with the part of the 

picture present within the associated triangle in the parameter space. 

 

Remeshing in Geometry Images 

Geometric models are always represented as irregular meshes. By mapping them 

to the plane, one can resample the geometric surface with uniform sampling [6] or 

non-uniform sampling [1]. In order to improve the efficiency for hardware rendering, 

it is better to use the regular sampling pattern. Since our algorithm adjusts the 

2 



important regions in parameter space to get better remeshing quality and keep the 

uniform sampling pattern in parameter space, it benefits to the construction of 

geometry image. 

 

Surface Compression 

By using parameterization, geometric models can be remeshed in geometry 

image, then be compressed by any image coders [30]. Since our algorithm keep the 

regular sampling points in real important regions, it has lower compression ratio 

compared to other parameterization algorithms. 

 

Painting System 

A 3D painting system [10] makes it possible to enhance the visual appearance of 

a 3D model by interactively adding details to it, such as colors, normals, reflections 

etc. If the discretization of the surface is fine enough, it is possible to directly paint its 

vertices. However, in most cases, the desired precision for the colors is finer than the 

geometric details of the model. Assuming that the surface to be painted is provided 

with a parameterization, it is convenient to use texture mapping to store colors in the 

parameter space, and virtually glue the texture image to the model. Because our 

method provides users to control the local parameterization quality (distortions), it is 

very suitable for painting systems. 

 

1.4 Overview of Thesis 
 

In the next chapter, we discuss the fundamental background of parameterizations and 

review some previous work in mesh parameterization and its applications. In chapter 

3, the method for user-assisted parameterization is explained in details. Chapter 4 

demonstrates some applications and analyzes the performance of the method. Chapter 

5 summarizes the method presented and mentions some research directions. 
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Chapter 2 

Background and Related work 
 

In this chapter, we discuss fundamental background and previous methods for 

parameterizing meshes onto the 2D plane. First, we review some fundamental theory 

of global parameterization used in our research. Next, we introduce previous work of 

paramterization and its application.  

 

2.1 Theoretic background of global parameterization 
 

Parameterization is a mapping from two dimensions to higher dimensions. To 

measure the distortions of the mapping, there are many energy models (e.g. harmonic 

energy) or metrics (e.g. Cauchy-Riemann equation) to estimate the distortions after 

the mapping process. For building solid theoretic foundation of our research, in this 

section, we only introduce energy models and metrics directly related to our research. 

 

2.1.1 General setup and notation 

 

Before we review the fundamental theory, we first introduce some basic concepts and 

symbols to help us introduce the fundamental theory. 
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)}(),(),({ FEVS ψψψ=  },,{ FEVT =
φ

 
Figure 2.1 Relations of parameterization φ  and embedding ψ . 

 

See Figure 2.1, we call  the surface of the triangulation T and further let 

 denote the set of vertices, 

3RT ∈Ω

)(TVV = )(TEE =  the set of edges, and  the 

set of faces in T. If  has a boundary we distinguish between the disjoint sets of 

interior and boundary vertices  and . Two distinct vertices v, w∈V are 

neighbors if they are the end points of an edge 

)(TFF =

TΩ

IV BV

Ewve ∈= ],[  and for  we let 

 be the set of neighbors of v. In general parameterization 

Vv∈

}],[:{ EwvVwNv ∈∈= φ  

of a triangulation T over a parameter domain  is a homeomorphism 

between this domain and the surface of T ,  

2RT ∈Π

TT Ω→Π:φ  

From differential geometry [31], we know that such a homeomorphism and the 

inverse parameterization (also called as “surface embedding”) 1−= φψ  exist if and 

only if  and TΠ TΩ  are topologically equivalent, i.e. TΠ  is a 2-manifold with the 

same number of boundaries and handles as TΩ . The number of handles is also called 

the genus of a manifold. For example, a sphere has genus zero and the genus of a 

torus is one, etc. If  and  are not topologically equivalent, we should do 

some topological operations to change topology of 
TΩ TΠ

TΩ  to be equivalent to . In 

this thesis, we also cover this problem and we provide a method for doing this. 

TΠ

 

z 

iso-v

(x,y,z) 
(u,v) 

iso-u 

 SΠ TΩ  
ψ

y 
v 

x 
u 
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For triangulations the most natural class of parameterizations are piecewise linear 

functions. Due to the piecewise linearity, ψ  induces a triangulation  

}:)({ TttS ∈= ψ , 

with TT Π=Ω )(ψ  which is equivalent to T in the sense that vertices, edges and 

triangles of S and T naturally correspond to each other,  

)())(( SVTV =ψ , )())(( SETE =ψ , ST =)(ψ , 

and 

)())(( TVSV =φ , )())(( TESE =φ , TS =)(φ . 

We call triangles of S parameter triangles and S itself the parameter triangulation. 

Note that φ  and ψ  are uniquely determined by the images )(vψ  which we call 

the parameter points or parameter values of the vertices Vv∈ . Hence the task of 

parameterizing T is equivalent to finding parameter values Tv Π∈)(ψ , one for each 

vertex . Since we also want Vv∈ ψ  to be bijective , we have to assure the 

parameter points to be arranged such that the parameter triangles do not overlap or 

flips (adjacent triangles in  with opposite orientation). SΩ

 
2.1.2 Spring model 

 

Figure 2.2: Replace each edge of the surface mesh with a spring. 

 

The first class of linear parameterization methods is motivated by a physical model 

[9]. By replacing each edge of the triangulation with a spring, we obtain a network of 
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springs with joints (Figure 2.2). The total energy of this system is 

∑
∈

−=
Ewv

vwS wvDE
],[

2)()(
2
1

2
1)( ψψψ     (2.1) 

with certain (strictly positive) spring constants wvvw DD = , the additional factor 1/2 

occurring because each edge is summed up twice. The partial derivative of ES with 

respect to )(vψ  is 

∑
∈

−=
∂
∂

vNw
vw

S wvD
v

E
))()(()(

)(
ψψψ

ψ
    (2.2) 

and minimizing (2.1) subject to the boundary conditions of )(vψ  being fixed for all 

 is equivalent to solving the linear system of equations BVv∈

∑ ∑
∈ ∈

=
v vNw Nw

vwvw wDDv )()( ψψ ,  IVv∈    (2.3) 

If we separate the interior and the boundary vertices in the sum on the right side of 

(2.3), we can rewrite this linear system as 

∑ ∑ ∑
∈ ∈∩∈ ∈∩∈

=−
v Iv BvNw VwNw VwNw

vwvwvw wDwDDv )()()( ψψψ ,   (2.4) IVv∈

or, more compact, as the matrix equation 

bAx =        (2.5) 

where 
IVvvx ∈= ))((ψ  is the column vector of unknowns, b is the column vector 

whose elements are the right hand sides of (2.4), and the symmetric matrix 

 has dimension 
IVwvvwaA ∈= ,)( II VV ×  and elements 

⎪
⎩

⎪
⎨

⎧

−=
∑ ∈

,0
,

,

vw

uvNu

vw D
D

a
v

.

,

otherwise
Nw
vw

v∈
=

      (2.6) 

 

2.1.3 Convex combination maps 

 

Another linear parameterization method was introduced by Floater [5]. As in the 

previous sections, the first step of that method is to specify the parameter points )(vψ  

of the boundary vertices . Then, for each interior vertex  a set of 

strictly positive convex weights 
BVv∈ IVv∈

vwλ , vNw∈  with 
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∑
∈

=
vNw

vw 1λ        (2.7) 

is chosen and the remaining )(vψ , IVv∈  are determined by solving the linear 

system of equations 

∑
∈

=
vNw

vw wv )()( ψλψ , IVv∈     (2.8) 

Therefore, every interior parameter point is a convex combination of its neighbors. 

Like in Section 3.1.2, by separating interior and boundary vertices, (2.8) can be 

rewritten as 

∑ ∑
∈∩∈ ∈∩∈

=−
Iv BvVwNw VwNw

vwvw wwv )()()( ψλψλψ ,  IVv∈   (2.9) 

and further as 

cBx =        (2.10) 

where 
IVvvx ∈= ))((ψ  is again the column vector of unknowns, c is the column vector 

whose elements are the right hand sides of (2.9), and the II VV ×  matrix 

 has elements 
IVwvvwbB ∈= ,)(

⎪
⎩

⎪
⎨

⎧
−=

,0
,

,1

vwvwb λ  
.

,
,

otherwise
Nw
vw

v∈
=

     (2.11) 

Note that in general wvvw λλ ≠  and therefore B is usually not symmetric in contrast to 

A in (2.5).  

Comparing (2.11) with (2.6), the convex combination maps can also be validated by 

the spring model because vwλ  can be rewrote with  given by vwD

∑ ∈

=
vNw vw

vw
vw D

D
λ ,   IVv∈ ,   vNw∈    (2.12) 

 

2.1.4 First fundamental form  

 

We have introduced two fundamental linear models of parameterizing the triangulated 
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mesh . In this section, we introduce more complicated metrics of parametering 

 based on the first fundamental form from differential geometry [31]. 
TΩ

TΩ

Given a differentiable surface Ω  and its parameterization φ . We can regard 

parameterization φ  as a mapping from 2R  to 3R  by  

)],(),,(),,([),( vuzvuyvuxvu =φ     (2.13) 

Consider the first fundamental form of Ω : 
222 ),(),(2),( dvvuGdudvvuFduvuEdl ++=    (2.14) 

and arrange the coefficients in a symmetric matrix 

⎥
⎦

⎤
⎢
⎣

⎡
=

GF
FE

I        (2.15) 

we have 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

dv
du

Idvdudl 2  

where 
uu

E
∂
∂
⋅

∂
∂

=
φφ

, vu
F

∂
∂
⋅

∂
∂

=
φφ

, and vv
E

∂
∂
⋅

∂
∂

=
φφ . I is called the metric tensor and its 

eigenvalues denoted by  and . Then we decompose I as 2Γ 2γ

JJI T=  

and 

]/,/[ vuJ ∂∂∂∂= φφ      (2.16) 

where J is the Jacobian matrix and Γ  and γ  are singular values of J. Since J can be 

seen as local affine mapping from 2R  to 3R  by 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1
p

Jq ο ,  ,    (2.17) 3, Rq ∈ο 2Rp∈

where ο  is the original point for completing the affine mapping, it is convenient to 

use  and Γ γ  for describing the lengths and angles of vectors in 2R  after being 

mapped by φ . In other words, the singular values Γ  and γ  represent the largest 

and smallest length obtained when mapping unit-length vectors from 2R  to 3R , i.e. 

the largest and smallest local “stretch”. 
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1p
3q

 

Figure 2.3 Singular values of f represent the largest and smallest local 

stretch 

Now we turn our focus on triangulated surface TΩ . Because triangulated surface 

 is piecewise linear, TΩ φ  can be seen as the piecewise linear map f (Figure 2.3). 

From above discussion, we can imagine that f of TΩ  is corresponding to J of . 

Since the common way to represent f is the barycentric mapping B(p) 

Ω

( ) ><><+><+><= 321321213132 ,,/,,,,,,)( pppqpppqpppqppppB  (2.18) 

where <a, b, c> denotes the area of triangle abc, , , we can discretize J 

by 

2Rp∈ 3Rq∈

tt

vB
uB

vzvyvx
uzuyux

J ⎥
⎦

⎤
⎢
⎣

⎡
∂∂
∂∂

=⎥
⎦

⎤
⎢
⎣

⎡
∂∂∂∂∂∂
∂∂∂∂∂∂

=
/
/

///
///

 

and 

)2/()()()((/ 213132321 AvvqvvqvvqBuB u −+−+−==∂∂  

)2/()()()((/ 123312231 AuuquuquuqBvB v −+−+−==∂∂  

where 2/)))(())(((,, 12131312321 vvuuvvuupppA −−−−−>==< . 

Thus the Jacobian matrix of  is TΩ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−
−−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

)()(
)()(
)()(

2
1

1221

3113

2332

321

321

321

uuvv
uuvv
uuvv

zzz
yyy
xxx

A
JT    (2.19) 

and the larger and smaller singular values of  are given respectively by TJ

 

1q γ 
Γ  

linear map f 

3p2p
2q

parameter domain  Π  S triangulated surface  TΩ
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( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ +−++=Γ 22 42/1 bcaca  max singular value of  (2.20) TJ

( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ +−−+= 22 42/1 bcacaγ  min singular value of  (2.21) TJ

where , , and uu BBa ⋅= vu BBb ⋅= vv BBc ⋅= .  

Based on above deduction, many researchers proposed various stretch metrics by the 

versatile  and Γ γ . For example, Sander et al. [20] define an  distortion measure 

by taking the root-mean-square of 

2L

Γ  and γ , and define  by take the largest 

singular value  as follows : 

∞L

Γ

2

22
2 γ+Γ
=L        (2.22) 

Γ=∞L ,        (2.23) 

Hormann et al. [8] define their deformation metric as 

Γ
+

Γ
=

γ
γdL ,           (2.24) 

Sorkine et al. [26] define their geometric distortion as 

}/1,max{ γΓ=gL ,       (2.25) 

Khodakovsky et al. [11] define area distortion as 

γ⋅Γ=areaL ,       (2.26) 

and anisotropic distortion as 

γ
Γ

=angleL        (2.27) 

 

2.2 Related work 
 
2.2.1 Parameterization 
 

Over the last years, a lot of research has been done in the area of surface 

parameterization. Besides, methods that optimize the parameterization for a given 

surface signal like Sander et al.[19], most approaches aim at minimizing a metric 

distortion. 

In the context of parameterization, harmonic maps were first used by Eck et 
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al.[4]. To compute harmonic maps, Eck et al. derive appropriate weights for a system 

of edge springs which can be efficiently solved. However, the texture coordinates for 

boundary vertices must be fixed a prior and harmonic maps may contain face flips 

(adjacent faces in texture space with opposite orientation) which violate the bijectivity 

of a parameterization. Based on earlier work by Tutte[27], Floater[5] proposes a 

different set of weights for the edge spring model that guarantees bijectivity if the 

texture coordinates of boundary are fixed to a convex polygon. Desbrun et al.[3] 

define a space of measures spanned by a discrete version of the Dirichlet energy, and 

a discrete authalic energy. While the authalic energy remedies local area deformations, 

it requires fixed boundaries and results cannot achieve the quality of methods targeted 

at global length preservation such as Sander et al. [20]. 

In Hormann and Greiner[8], mostly isometric parameterization are introduced 

that minimize a non-linear energy. Mostly isometric parameterizations do not require 

boundary texture coordinates to be fixed and avoid face flips. Furthermore, mostly 

isometric parameterizations approximate mathematically well studied continuous 

conformal maps, i.e. maps that perfectly preserve angles. 

Another approach to minimize angular distortion is proposed by Sheffer and 

Sturler[25]. They introduce a angle based flattening method to flatten a mesh to a 

planar plane so that it minimizes the relative distortion of the planar angles with 

respect to their counterparts in the three-dimensional space. Though the minimization 

problem is linear in the relative distortion of angles, it becomes non-linear as a 

number of constraints (some of which are non-linar) have to be taken into account to 

generate the validity of the solution. Levy et al.[15] compute quasi-conformal 

parameterizations by measuring the violation of the Cauchy-Rieman equation in the 

least square sense. They also show rigorously that the quasi-conformal 

parameterization exists uniquely, is invariant by similarity, independent of resolution 

and preserves orientations. Using a standard numerical conjugate gradient solver they 

are able to compute least squares approximations to continuous conformal maps very 

efficiently without requiring fixed boundary texture coordinates. However, in seldom 

cases triangle flips may occur. 

In addition, some methods exist which compute parameterizations over a 

12 



non-planar domain. In Lee et al.[12], a mesh simplification is used to parameterize a 

surface over a base mesh. A similar approach is taken by Khodakovsky et al.[11] but 

with emphasis on globally smooth derivatives. 

Besides angle preserving methods, only a few approaches explicitly optimize 

global area or global length distortions: Maillot et al.[17] minimize an edge length 

distortion, but cannot guarantee the absence of face flips. The authors also propose an 

area preserving energy and combine both energies in a convex combination. Sander et 

al.[20] minimize the average or maximal singular value of the Jacobian to prevent 

undersampling of the surface. However, their metric cannot penalize the anisotropic 

stretching- triangles whose stretch in one direction is significantly higher than in the 

other direction. As a result of anisotropic stretching, parameterization of [20] has the 

parametric cracks problem. Yoshizawa et al. [28] improve parametric cracks with 

adaptively adjusting the spring constants by  metric. 2L

 

2.2.2 Applications of parametrization 
 

Remeshing 

Alliez et al.[1] proposed an interative sampling technique. A mesh is 

decomposed into a set of maps by parameterization and inserted in a pipeline of signal 

processing algorithms. The output of this pipeline is density map, interatively 

resampled using an error diffusion technique commonly used for gray level image 

halftoing. 

 

Geometry video 

Briceno et al.[2] present geometry videos based on geometry image to represent 

animation. Geometry videos resample and reorganize the geometry information, in 

such a way, that it becomes very compressible. They provide a unified and intuitive 

method for level-of-detail control, both in terms of mesh resolution (by scaling the 

two spatial dimensions) and of frame rate (by scaling the temporal dimension). Since 

geometry videos have a very uniform and regular structure. Their source and 

computational requirements can be calculated exactly, hence making them also 

13 



suitable for applications requiring level of service guarantees. 

 

3D Painting system 

Igrashi et al.[10] present a method for dynamically generating an efficient texture 

bitmap and its associated UV-mapping in an interactive texture painting system for 

3D models. They proposed an adaptive and local parameterization mechanism where 

system dynamically creates a tailored UV-mapping for newly painted polygons during 

interactive painting process. This eliminates the distortion of brush strokes, and the 

resulting texture bitmap is more compact because the system allocates texture space 

only for the painted polygons. In addition, this dynamic texture allocation allows the 

user to paint smoothly at any zoom level. 

 

Constrained texture mapping 

Levy et al.[14] introduce constrained texturing mapping by parameterizing 

polygonal meshes with minimum deformation between source textures. They enable 

users to interactively define and edit a set of constraints. Each user-defined constraint 

consists of a relation linking a 3D point picked on the surface and 2D point of the 

texture. Moreover, the non-deformation criterion introduced here can act as an 

extrapolator, thus making it unnecessary to constrain the border of the surface, in 

contrast with classic methods. To minimize the criterion, a conjugate gradient 

algorithm is combined with a compressed representation of sparse matrices, making it 

possible to achieve a fast convergence.  

 

Mesh editing 

 Levy et al.[16] introduce an idea in editing the mesh on parameter domain. They 

proposed an objective function of squared curvature. By minimizing this objective 

function, they extrapolate mesh shape beyond the existing border. In addition, the 

parameter space provides the user with a new means of controlling the shape of the 

surface. 
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Chapter 3 

User-Assisted Parameterization of 

Polygonal Meshes 
 

In this chapter, we describe the user-assisted parameterization of polygonal meshes.  

First, we introduce the topological surgery of Gu [6] to cut the models into a single 

chart. Then, we present the framework of user-assisted parameterization and propose 

the weighted  metric to increase the resolution of selected regions. Finally we 

describe two methods to locally adjusted parameterization by minimizing the 

weighted  metric. 

2L

2L

 

3.1 Overview 
 

 

(d) (a) (c)(b) 

Figure 3.1 Parameter-adjusted regions  and parameter-fixed regions . 

(a) Original model with cut. (b) Paint (green color) and (yellow color) 

on model by users . (c) Parameterization before adjusting. (d) Parameterization 
after adjusting. 

}{ aR }{ fR

}{ aR }{ fR
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Our proposed user-assisted mesh parameterization has the following characteristics: 

 

 Topological surgery is used to automatically transform the closed-surface into an 

opened-surface which is topologically equivalent to a disk; 

 

 Users can specify parameter-adjusted regions , where the resolution of 

sampling is expected to increase in parameter space for improving the sampling 

quality

}{ aR

; 

 

 Users can specify parameter-fixed regions , where the resolution of sampling 

is expected to be fixed in parameter space for keeping the sampling quality; 

}{ fR

 

 Use the uniform sampling in parameter space to maintain the regular structure. 

Such a uniform sampling is suitable for many applications, such as geometry 

image, compression etc. 

 

To adjust the sampling resolution in parameter space, our basic idea is to increase the 

resolution of selected regions while decreasing the resolution of other regions. To 

achieve this goal, we directly multiply a weight to the  stretch proposed by Sander 

et al [20]. We call this reformulated metric the weighted , denoted as . Then 

we re-parameterize  by minimizing . In this thesis, we introduce two methods 

to re-parameterize , using the iterative global optimization and the spring model. 

The iterative global optimization is a non-linear process and can locally adjust the 

parameterization quality by increasing resolution of  and fix resolution of 

 in parameter space. The spring model is a linear process and faster than 

iterative global optimization. But the drawback is that it cannot preserve facet 

parameter constraints for regions . 

2L

2L 2
wL

TΩ 2
wL

TΩ

}{ aR

}{ fR

}{ fR
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Our user-assisted parameterization comprises the following steps: 

 

1. Transform the closed-surface  into an opened-surface  by using 

topological surgery,  

*
TΩ '

TΩ

2. Construct a global initial parameterization for the surface mesh, 

3. Select the regions  or  on the surface mesh for increasing or 

preserving the sampling resolution in parameter space, 

}{ aR }{ fR

4. Use the iterative global optimization or the spring model to re-parameterize . '
TΩ

 

3.2 Topological surgery 

 
Figure 3.2 Procedure of parametering closed-surface 

To parameterize TΩ  onto a planar domain, TΩ  should be topological disk-like. 

l d eter

Since the closed-s face *
TΩ  is not equivalent to a topological disk, we need to 

change the topology of  by splitting *
TΩ  into opened-surface '

TΩ  that is 

equivalent to the topologica isk before embedding to unit square param  domain 

D (Figure 3.2). To achieve this goal we use the topological surgery proposed in [6]. 

The topological surgery consists of two steps. Step 1 is finding a good cut 

ur
*
TΩ

ρ  to 

reduce the potential distortions after mapping to D. In addition, we also wish to 

minimize the total length of ρ  for reducing the parametric discontinuity. There are 

several automatic solutions to nd such a  fi ρ  [6, 7, 23, 24]. In this thesis, we slightly 

modify Gu’s cutting algorithm [6]. The algorithm starts by finding initial cut, and then 

iteratively augments the cut in unit circle parameter domain C to reduce the potential 

'ρ

ρ  

step1

embedding 

*
TΩ

mesh slicing

step2 3

'
TΩ D 

step
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distortions of the embedding. The algorithm of finding initial cut is the same as that of 

Gu [6], but for each iteration, we use a faster parameterization proposed by 

Yoshizawa [28], instead of geometric stretch parameterization [20], to speed up the 

total process. 

 

 

 

After finding a 

a 

b

a

a-1

b b-1

11' −− ++b+= baaρ  ba +=ρ  
 

Figure 3.3 Slice closed-mesh open along cut 

ρ , step 2 of topological surgery is to slice  into , which is *
TΩ '

TΩ

topologically equivalent to a disk. The algorithm splits each non-boundary edge in ρ  

into two boundary edges to form the opened cut 'ρ  (Figure 3.3). This directed loop 

of edges 'ρ  is the boundary of '
TΩ .  

We say that two edges in 'ρ  is the boundary of and two edges in '
TΩ  'ρ  are 

mates if they result from the splitting of an edge in ρ . A vertex v with valence k in 

ρ  is replicated as k vertices in 'ρ . Vertices in ρ  at have valence 2≠k  in the 

t are called cut-nodes. (We still refer to these as cut-nodes when replicated in '

th

cu ρ .) 

A cut-path is the set of boundary edges and vertices between two ordered cut-nodes in 

the loop 'ρ . Each cut-path has a mate defined by mates of its edges except its edges 

were boundary edges in ρ .  

Our slicing algorithm starts to find a cut node in ρ . Then it recursively traces the 

path along the cut until all cut vertices and edges have been created. Note that, 

whenever the algorithm traces to the cut node and decides which path we should trace 

next, we should choose the paths clockwise to avoid path overlapping. 
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Figure 3.4 demonstrate the parameterization and texture mapping results of two 

different cuts. Figure 3.4 (a), (b), (c), and (d) show two different cuts on the bunny ear 

and their respected parameterizations. Figure 3.4 (e) and (f) are images with texture 

mapped checkerboard. It is apparent that image of Figure 3.4 (f) reveals less angle and 

area stretch, which is due to the fact that the cut ρ  passes through the highly curved 

regions of the bunny ear. Figure 3.5 shows that it is important to consider topological 

constraints introduced by Gu et al. [6] for remeshing to avoid parametric cracks. 
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(a) (b)
 

(c) (d)
 

 

Figure 3.4 Parameterization and texture mapping of two different cuts for the 

bunny ear 

 

(f) (e) 
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(a) (b)
 

(c) (d)
 

Figure 3.5 Parameterization and remeshing with (a and b) or without (c and d) 

topological boundary constraints 
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3.3 Initial parameterization 

 

To construct a global initial parameterization of the surface, there are many solutions 

available [3, 4, 5, 7, 8, 9, 13, 15, 17, 19, 20, 25, 26, 28]. Although most 

parameterization techniques are adequate, one that aims to guarantee uniform 

sampling and preserve conformality structure of the input mesh is most preferable. 

Here, we use the method proposed by Yoshizawa et al. [28] for our initial 

parameterization because it has properties mentioned above. Moreover, it requires to 

solve a simple, sparse linear system and is usually handled in a matter of seconds 

using a Conjugate Gradient solver with good preconditioning. 

 

3.4 Weighted L2 stretch metric 

 
Figure 3.6 Relations between sampling ratio in parameter space and γ⋅Γ  

We al to he  observe that the sampling ratio in parameter space is inverse proportion  t

γ⋅Γ  (see Figure 3.7). Thus, to increase the sampling resolution of selected regions, 

hould decrease the we s γ⋅Γ . We indirectly minimize the γ⋅Γ  by minimizing 2L  

stretch metric proposed by Sander et al [20]. Besides, in order to achieve lower value 

of the γ⋅Γ  for regions in }{ aR , we multiply a weight larger than one to the current 
2L . Th mula is given bye for  

1>⋅Γ γ

1<⋅Γ γ

R2 

R2 

R3 

R3 
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)()()( 22
iiiw fLfwfL ⋅=       (3.1) 

and 

2
)(

22
2 γ+Γ

=ifL        (3.2) 

where ) is the weight of face  and ( ifw  if Γ  and γ  are singular values of 

Jacobia

 

n J. 

jv

 
Figure 3.7 Measuring )( ivK  using corner angles iτ  

1τ 3τ
2τ

We still h gh  Because 

metr ny

ave a problem, that is, how to select a proper wei t? 2L  

ic can quantify the distortions of parameterization, we can easily use a  

user-specified scalar, which is larger than one, as the weight. But we want to 

distribute more sampling points over highly stretching regions in 3D, the constant 

scalar is not good enough. Therefore, we need to quantify the 3D stretching 

information and use this as our weight. Since the 3D stretching information is highly 

related to the curvature’s magnitude, we use Gaussian curvature as the weight. By 

Gauss-Bonnet theorem [31], we know that the Gaussian curvature of vertex jv  is 

given by: 

∑−=
i

ijvK τπ2)(       (3.3) 

where iτ  is the corner angle around vertex  (Figure 3.8). 

r nt resolution, we need 

jv

Besides, in order to get similar results fo models of differe
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a roughly similar ratio of triangles in proportion to the size of the models. We 

heuristically use the Vlog  term to compensate for the different resolution, where 

V  

our

is the number of vertices of the mesh. From above discussion, we finally define 

 weight for each face f  as follows: i

⎪⎩

⎪⎧
⎨

⋅
=

∑
∈

1

)(
)( ifj

j
i

vK
fw      (3.4) 

Note that if is less than one, we simply let 

logV

ai

ai

Rf
Rf

∉
∈

∑
∈ ifj

jvK )(  Vfw i log)( =  to avoid 

parametric degenerate and negative weight.  

.5 Re-parameterization via the iterative global optimization 

In this sect arameterization 

f R . The L  increases the sampling resolution in parameter space for each face 

 of R  while decreasing the resolution of other regions. Besides, some regions 

may already have good enough resolution in parameter space. Thus we don’t want to 

ch the 

 

3

 

d

 
Figure 3.8 Local minimization in parameter space 

 

ion, we describe the method to locally optimize the p

o  }{ a w

i a

ange resolution in such regions. For achieving this goal, our user-assisted 

parameterization allows users to set several facet parameter constraints in such 

regions to form }{R  and the iterative global optimization algorithm proposed here 

2

f }{

f
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will avoid the re-parameterization in regions of }{ fR . 

stretch, the optimization process can also be seen as a non-linear m

Since our  metric is non-linear and we want to minimize the global 

inimization 

prob ur

non-linear metric. Random descent algorithm  series of local optimization 

ed.  

 

2
wL 2

wL  

lem. Thus we use the random descent algorithm [8, 20] to optimize o  

attempting to minimize distortions over the mesh. For triangulated mesh, the local 

minimization means adjusting the position of the vertex inside its 1-ring 

neighborhood (Figure 3.9) in parameter space. 

We perform a user specified number of iteration through all vertices in order to 

minimize the wL . We now describe how each iteration is perform

employs a

2

We start the iteration by measuring the 2
wL  distortion of each vertex jv , which

is defined as the integrated distortions of its adjacent faces as follows 

( ) ∑∑ ⋅= )(/)(()( 222
iiwjw fAfAfLvL     (3.5) 

where if  is an adjacent face of jv  and )( ifA  is the area of if . 

)i

We then sort the vertices from the highest to the lowest di

en optimizing each vertex, we first determine the 

regio

of the longest edge adjacent to it (in parameter space). Later, we perform a binary line 

convex kernel of its neighborhood. Since the 

algorithm

stortion, and locally 

optimize them in that order. Wh

n it belongs to. If it belongs to the parameter-fixed regions }{ fR . We ignore it 

and pick the next vertex. Then, we pick a random search direction and set the 

maximum distance d, which is the distance that the vertex can move, to be the length 

search minimizing distortion to place the vertex somewhere between 0 and d away 

from its previous position.  

We prevent faces from flipping (changing orientation) by setting distortion to be 

infinite if a triangle is flipped in the parameter space. This constraints the feasible 

region of the vertex to be inside the 

 does not introduce flipped faces, it is guaranteed to produce a valid 

parameterization result. 
25 



The high-level algorithm can be summarized as follows: 
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IterativeOptimization(Input triangle mesh TΩ ) 
 ComputeInitStretch(); 

 Do 
 For each iteration 

  SortByStretch(); 
  For each vertex v Ω∈ T  

V v); 

ence 

  Do 

   If fRv∉  

    Optimize ertex(
  Endfor 
 Until converg

 
 

 

 

 

 

OptimizeVertex(Input vertex 
 Dir <- RadomDir; 

v) 

 R <- TrustRegionRadius; 
Low <- 0; 

 High <- 1; 

tretch(v+Low*R*Dir) 
igh <- Mid; 

id; 

 

 For each iteration 
 Do 
  Mid <- (Low + High)/2; 

retch(v+High*R*Dir) > S  If  St
   H
  Else 

ow<-M   L
 Until convergence 

 

 



3.6 Re-parameterization via the spring model 

 is not specified, we can directly use the spring model to locally 

ptimize the parameterization by adjusting the spring constants  as follows: 

ijij v      (3.6) 

iterative global optimization algorithm. Moreover, in our experiment, it also has more 

ome 

cases, but the drawback is that it cannot do the re-parameterization while avoiding the 

entire regions in 

 

 

If }{ fR

o ijD

)(/ 2
jw

oldnew LDD =

Because the spring model can be solved by a linear solver, it is faster than the 

evident remeshing results than the iterative global optimization algorithm in s

}{ fR . 
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Chapter 4 

pplication and performance 

 

eterization 

in remeshing and show the performance analysis. 

s. Although these 

eshes capture geometry accurately, their connectivity quality is usually far from 

tions. For instance, irregular meshes are not appropriate for 

putations using Finite Elements, or for rapid, textured display on low-end 

 

A

analysis 

In this chapter, we demonstrate the application of our user-assisted param

 

4.1 Remeshing 
 

Geometric models often come from a variety of sources including 3D scanners, 

modeling software, and output from computer vision algorithm

m

subsequent applica

com

computers. Uniform remeshing scheme is able to approximate an irregular mesh as a 

semi-regular mesh. When applying unfirom remeshing using current 

parameterizations, we often find it’s difficult to preserve the sharp features. Our 

user-assisted parameterization provides a way to solve this problem. 
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Figure 4.1 shows the cut and an initial parameterization. Figure 4.2 demonstrates 

e procedure of user-assisted parameterization and the results. We directly painted 

e regions over surface mesh, as shown in Figure 4.2 (a). Figure 4.2 (b)(c) are 

e parameterization before and after re-parameterization. The green color regions 

aR  in parameter space are corresponding to regions in 3D painted by the user and it 

is ev

samp

th

}{ aR  th

th

{ }

ident that the resolution of }{ aR  becomes larger. In the Figure 4.3, Figure 4.5, 

Figure 4.7 and Figure 4.8, the comparison of remeshing results is shown. In addition, 

the remeshing quality depends on the sampling resolutions in parameter space. Thus 

Figure 4.4 and Figure 4.6 show the comparison of remeshing results with different 

ling resolutions. Our user-assisted parameterization has better remeshing quality 

in lower sampling ratio than the initial parameterization. 

 

 

 

 

 

Figure 4.1 Creation of initial parameterization. (a) original mesh with cut (12948 

triangles; genus 0). (b) initial paramterization 

(a) (b) 
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(a) (b) (c) 
 

Figure 4.2 User-assisted parameterization. (a) green color region are  

painted by users. (b) before re-parameterization. (c) after re-parameterization. 

}{ aR

(a) (b)

(c) (d)
 

Figure 4.3 Remesing results of fandisk. (a) remeshing using the initial 

parameterization. (4802 triangles) (b) remeshing using the user-assisted 

parameterization. (4802 triangles) (c) wireframe of (a). (d) wireframe of (b). 
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Figure 4.4 Comparisons of initial parameterization (left column) and 

user-assisted parameterization (right column) on the Fandisk model with 

different sampling resolutions. 

M3 : 2025 vertices, 3872 faces

Original : 6475 vertices, 12948 faces

M1 : 529 vertices, 968 faces

M2 : 1024 vertices, 1922 faces

M4 : 4096 vertices, 7938 faces
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(a) (b)

(c) (d)
 

Figure 4.5 Remesing results of cube. (a) remeshing using the initial 

parameterization. (1922 triangles) (b) remeshing using the user-assisted 

parameterization. (1922 triangles) (c) wireframe of (a). (d) wireframe of (b). 
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Figure 4.6 Comparison

M3 : 2025 vertices, 3872 faces

M2 : 1024 vertices, 1922 faces

M1 : 529 vertices, 968 faces

M4 : 4096 vertices, 7938 faces

Original : 5402 vertices, 10808 faces 

s of initial parameterization (left column) and 

user-assisted parameterization (right column) on the Cube model with different 

sampling resolutions. 
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Figure 4.7 Remesing results of venus. (a) original model. (b) original model with 

painting. (c) remeshing results using the initial parameterization. (d) remeshing 

results using the user-assisted parameterization. 

(a) (b)

(c) (d)
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(a) (b)

(c) (d)
 

Figure 4.8 Remesing results of isis. (a) original model. (b) original model with 

painting. (c) remeshing results using the initial parameteri n. (d) remeshing 

results using the user-assisted parameterization. 

zatio
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4.2 Performance Analysis 
 

This section gives several performance statistics of our research. All are tested on a 

Table 4.1 evaluates the cutting length percent and timing of initial 

es 

of mesh edges. 

istortion error we use 

1.5GHz AMD Athlon XP PC. 

parameterization. The cutting length percent measures the length of the seam edg

with respect to the total length 

Table 4.2 measures quality of initial parameterization by various metrics. We 

employ 2L  stretch metric and consider edge, angle, and area distortion error 

functions defined below. To measure the edge d

∑ ∑∑ −

−
−

−

−

ji

ji

ji

ji

uu

uu

pp

pp
, 

3Rpp ji ∈−  and 2Ruu ji ∈−where the sums are taken over all edges . The angle 

distortion error is defined by 

∑∑
=

−
j iF3

where the sums are taken ove

ijij

3

1
,,

1 φθ , 

r all the angles  and of the triangles 

of meshes , and F is the total number of triangles(faces) of . The area 

distortion is measured by 

3
, Rij ∈θ 2

, Rij ∈φ  

TΩ TΩ

∑ ∑ ∑− )(/)()(/)( jjjj uAuAtAtA , 

where the sums are taken over all the triangle area  and 

Table 4.3 measures the quantitative quality of parame rization or remeshing 

results. The remeshing results are evaluated by IRI-CNR Metro tool [29].The 

 and initia eterization have 

simil

3)( RtA j ∈ 2)( RuA j ∈ . 

te

remeshing results of user-assisted parameterization l param

ar mean hausdorff distance. Although the global distortions of parameterization 

and maximum hausdorff distance of remeshing increase in our user-assisted 

parameterization, we get better perceptual remeshing results by keeping the local or 

semantic features. This is because the perceptual importance of human observers is 

36 



not directly related to distortions of parameterizations and maximum hausdorff 

distances. 

In table 4.4, table4.5 and table 4.6, we show the maximum and mean hausdorff 

distances in different sampling ratios. 

 

Model Size(face#) Cut % Cut Time(sec) Param Time(sec) 

Triceratops 5660 1.135 8.984 0.704 

Isis 10000 0.589 28.031 1.75 

Bunny 10000 0.693 44 1.953 

Horse 15000 1.04 72.656 3.329 

Fandisk 12948 0.565 40.328 2.5 

Ta Statis  cuttin initial parameterization. Cut % means cut 

length percent 

 

ble 4.1 tics for g and 

Model 2L  Stretch Edge Stretch Angle Stretch Area Stretch 
Triceratops 1.521 0.534 0.396 0.283 

Isis 1.297 0.440 0.393 0.251 
Bunny 1.291 0.461 0.393 0.271 
Horse 1.789 0.767 0.529 0.513 

Fandisk 1.257 0.519 0.428 0.216 

Table 4.2 cs of vario tches on initial parameteriza

 

 

 

Statisti us stre tion 
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Face  Stretch 
Maximum 
Hausdorff 
Distance 

Mean 
Hausdorff 
Distance 

2L
Model 

OS ini i  in   RS t user nit user it user

Fandisk 12948 4802 1.257 2.468 0.9 0 0.03 4 95 1.22 5 0.04
Isis 10000 4 1 3 0802 .290 1.326 .239 3.264 .238 0.235 

Venus 1418 1922 1.249 1.256 6.790 7.134 0.498 0.490 
Cube 10808 1922 1.191 2.043 0.051 0.054 0.002 0.001 

T .3 ic  ss pa eri  a nd e 

re ete n nd ean origin an sh e in  

able 4 Statist s for user-a isted ramet zation fter a  befor

-param rizatio . OS a  RS m al size d reme ing siz  face. 

 
Uniform remmeshing 

Original 1 2 3 4M M M MModel 
V F V F V F V F V F 

F  64 8 andisk 75 1294
Cube 54  10808 

529 968 1024 2025 4096 
02

1922 3872 7938

Table 4.4 Numbers of vertices and faces in models of different resolutions M. V 

a ep  iv he nd F r resent respect ely t vertex number and face number. 

 
Fandisk Model 

Maximum 
Hausdorff 
Distan

Mean 
Hausdorff 
Distance ce 

Sampling 
Ratio 

Init user init user 
M1 2.479 .414 0.152  2 0.167 
M2 1  1  0  0.100 .593 .756 .084
M3 1.189 1.311 0  .041 0.055 
M4 0.840 1.003 0.021 0.029 

Table 4.5 Maximum and mean hausdorff distance emeshed Fandisk in 

differ sampling re ns. 

s for r

ent solutio
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Cube Model 
Maximum 
Hausdorff 
Distanc

Mean 
Hausdorff 
Distance e 

Sampling 
Ratio 

Init user Init User 
M1 0.059 .059 0.003  0 0.001 
M2 0  0  0  .051 .053 .002 0.0007 
M3 0.0008 0.0004 0.046 0.051 
M4 0.036 0.045 0.0004 0.0003 

Table 4.6 Maximum and mean hausdorff distances for remeshed cube in 

differ sampling re ns. ent solutio
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Chapter 5 

nd Future work 

ced a user-assisted parameterization that allows users to locally 

eterization and have demonstrated that the method is effective in 

 

Summary a
 

5.1 Summary 
 

We have introdu

control the param

improving the quality of remeshing. We have derived the weighted L  metric, 

denoted as 2

w , to increase the sampling resolution on selected regions. The weight is 

computed by Gaussian curvature and vertex number of given meshes. In order to 

minimize the 2

wL , we employ a simple iterative global optimization algorithm to 

re-parameterize the triangle mesh in such a way that sampling resolutions on some 

selected regions can be increased or alternatively preserved. We also introduce 

another fast approach to re-parameterize the triangle mesh via the spring model. The 

method can only be used to increase the sampling resolution on the selected regions. 

 

 

2

L
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5.2 Future work 

his section will introduce some potential applications and future work. Some of the 

c ovel and demand intensive research in the future. 

ol the local 

arameterization, it is very suitable to integrate with the 3D painting system. We can 

nted by users as our selected regions of user-assisted 

param

sed in parameterization is not well sensitive to geometric 

etrics that is more sensitive to both of the geometric shape such as 

e. Such parameterizations will provide 

bette

 

T

appli ations are quite n

 

3D painting systems 

Because our method provides users with an interface to contr

p

use the strokes pai

eterization iteratively. Then we allow users to have authority to determine 

whether to do re-parameterization by our weighted metric for gaining the better 

sampling quality of painted stroke in parameter domain or not. Furthermore, we can 

analyze painted strokes to get the variation of color signals and use this information as 

the input in our metric. 

 

Geometrically and signally sensitive metric 

Previous metrics u

feature. M

curvature, and the signal variation are desirabl

r quality for remeshing and texture mapping. 
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