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“Six degree of Separation” told us:‘any two individuals, selected
randomly from almost anywhere on the planet, can know each
other via a chain of average no more than six intermediate ac-
quaintances. There are more tens of millions of people around
the world, but the social network is-a small world. With the
dramatic growth of the World Wide Web and the Internet, even
the rise of the social network-Facebook, the distance between
two people seems much shorter than before. Through the exper-
iment result, on Facebook, any two individuals are connected in
five steps or fewer, on average. The world seems smaller. In this
thesis, we construct a dynamic random graph model to simulate
Facebook. We regard each user of Facebook as a vertex and
the friendship between two users as an edge, and try to depict
the pattern of the random graph as time being approximately
infinity. In the process of the construction, we applied different
probability distributions to adding new vertices and edges, and
deleting existing vertices and edges. Based on the preferential at-
tachment and the idea of the weaker tends to be weeded out, the
model seems to conform with Facebook. Furthermore, we prove
that the degree distribution satisfies the power-law, a common
feature of the small world networks. Therefore, we conclude that
Facebook is also a small world.
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1 Introduction

Throughout of this thesis, all notations, terms and graph properties on
graph theory, we refer to the textbook written by D. B. West, see [16]. And

for the facts on probability we refer to [9] written by R. Durrett.

1.1 Small world

Since the name “small world” was mentioned in [13] by S. Milgram, people
start to study more carefully about the properties of the “small world.”
Among them “six degree of separation” attracts more attention. That is to
say, any two individuals, selected randomly from almost anywhere on the
planet, are “connected” via a chain of on average no more than six interme-
diate acquaintances. The idea'can be traced back to the 1960s with Stanley
Milgram’s small-world experiments-[13]. Milgram called it the “lost-letter
technique.” He selected 296 volunteers and asked them to dispatch a mes-
sage to a specific individual, a stockholder living in the Boston suburb of
Sharon, Massachusetts. The volunteers were told that they couldn’t send
the message directly to the target person (unless the sender knew him per-
sonally), but that they should route the message to a personal acquaintance
that was more likely than the sender to know the target person. Milgram
found that the average number of intermediate persons in these chains was
5.2 (representing about 6 hops). Milgram’s observation became famous and
passed into popular folklore in the phrase “six degree of separation.” This
is known as the small world network in recent years.

Empirical observations on not only social networks but also Internet

graphs and biological networks have revealed similar properties. Generally,



among the small world networks there are three common characteristics:
(1) short average distance; (2) high clustering coefficient; and (3) the degree
distribution generally follows a power law, that is, the number of vertices
with degree k decay as k™ for some exponent \. Here average distance
is the average length of the shortest path between any two vertices in the
graph. And the clustering coefficient of vertex i is

2e;
Ci= s,
ki(k; — 1)
where ¢; is the number of edges in the subgraph induced by vertex ¢ and its
k; neighbors. The clustering coefficient C' of a graph G = (V, E) is defined

to be the average of the clustering coefficients of all vertices,

O:Zg@z‘.
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Earlier study of network structure has focused on random graph. The
classical model of random graph was introduced by Erdos and Renyi in 1960
[11], of which vertices have equal-probability of connecting each other. But
it is not suitable for modeling these real-life networks since it does not have
power-law degree sequences. This has driven the development of various
alternative models for random graphs.

Beginning with the small-world model by Watts and Strogatz in 1998
[15] and the preferential attachment model by Barabdasi and Albert in 1999
[1], a lot of new random graph models have been defined and studied in
recent years; see [5] for a survey. All the models can be classified into
two groups: static (also known as explicit or off-line) and dynamic (also
known as recursive or on-line). The difference between these two groups

can be conveniently explained in the context of the algorithmic method for
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defining a random graph. In a static model, the set of vertices is fixed and
the algorithm operates on the set of edges. However, in a dynamic model,
the set of vertices and edges may change during the course of the defining
algorithm.

One of the most widely-studied models of static models, after the random
graph, is a model proposed by Watts and Strogatz in 1998 which shows both
the short global separation and high clustering coefficient.

In addition, the most studied dynamic models are the birth-only ones
(where only the addition of vertices and edges takes place). On 1999,
Barabdsi and Albert have proposed a simple model for internet growth
which generates power-law through a random multiplication process—a kind
of “rich get richer” phenomenon'in-which .the vertices with most edges are
the ones that gain new edges at the fastest rate.

In contrast, models that-conclude birth and death (addition and deletion
of vertices and edges) have‘been studied’much lesser. Dorogovtsev and
Mendes [10] studied a model which interleaves the addition of nodes and
edges with a uniform deletion of edges. Later, Chung and Lu [3] and Cooper
et al. [4], independently, have studied a dynamic model that combines
the addition of nodes and edges with a uniform deletion of both vertices
and edges. These birth-death models have also been found to generate
graphs with power-law degree sequences with exponents that depend on

the addition/deletion probabilities.



1.2 Facebook — An introduction

Facebook is a social networking service website originated in the United
States and launched in 2004. It was established by Mark Zuckerberg with his
college roommates and fellow students Eduardo Saverin, Dustin Moskovitz
and Chris Hughes. As of now, Facebook has over 900 million active users
around the world. Users must register before using the site, after which
they may create a personal profile, add other users as friends, and exchange
messages, including automatic notifications when they update their profile.

Furthermore, on 2011, a new study from Facebook and the University of
Milan has shown that people in the world are better connected than before,
with users of the social network now connected by less than five contacts.
The study, which used data taken from Facebook’s 721 million active users
(more than 10% of the global population); with 69 billion friendships among
them, shows that any two people on the site are on average separated by
just 4.74 intermediate connections, see [2; 14]. That shows indeed Facebook
is a smaller world.

In this thesis, we will consider a dynamic model where interleaves ad-
dition and deletion of vertices and edges for Facebook. As a consequence,
we show that the model has the power-law degree distribution as well. By
doing so, we have created a new mathematical model for Facebook network

which shows that it is a “smaller” world.



2 A smaller world

We start with the design of our model.

2.1 The idea of design

We regard each user of Facebook as a vertex and the friendship between
two users as an edge. Note that the probability with which a new user
makes friends to the existing users is not uniform. But there is a higher
probability that the new comer makes friends to someone who already has
a large number of friends. This is the idea known as preferential attach-
ment. Similarly, the older user more likely establishes friendship to the user
who has more friends. Conversely, if a user has few friends on Facebook,
he may withdraw from Facebook due to-lack of interest. This implies that
the vertices with lower degree have the higher probability of deletion. Fur-
thermore, the friendship between two users may break with some unknown
reasons. Hence, the probability of edge-deletion is the same among all edges
of the graph.

By the above observation, the mathematical model for Facebook network

can be designed as following.

2.2 Facebook model

As mentioned above, we let each user of Facebook be a vertex and the friend-
ship between two users be an edge. Now, we can build up our Facebook
model starting with two vertices which are connected by an edge.

Let the graph (G; consist of two vertices connected by an edge, and in

each discrete time-step t + 1, t > 0, the graph Gy, is constructed from G,



in which one of the following four steps is carried out:

1. Birth of vertices: With probability p; > 0, a new vertex with one
edge is added to the graph. To incorporate preferential attachment,
the edge is connected to an existing vertex z chosen according to the

following probability distribution:

dy (u) _ dy(u)
ZwEV(Gt) dt(w) 26t
where d;(u) is the degree of the vertex u of Gy and e; =| E(Gy) |.

forue V(Gy), (1)

Piyi(z =u) =

2. Birth of edges: With probability ps > 0, a new edge is added between

a vertex chosen by (1) and another vertex chosen randomly among

V(Gy).

3. Death of vertices: With probability ps > 0, an existing vertex z is
chosen for deletion along with all-the edges incident to z in G;. To
make small-degree vertices with larger possibility of deletion than the
higher-degree ones, the vertex z is-chosen by the probability distribu-

tion:

vy — di(u)

v — 2e¢;

Pii(z=u) = for u € V(Gy), (2)

where v, =| V/(Gy) |.

4. Death of edges: With probability py = 1 — p; — p2 — p3, one randomly
chosen edge is deleted from E(GY).

In following analysis, we are concerned with the behavior in approxi-
mately infinity time. Hence, we ignore the influence of multiple edges and
allow the isolate vertices to exist. And we can set the probability p; > p3

and py > py so that an empty graph G; occurs very rarely.



In order to obtain the degree distribution of the Facebook model, we need
more informations. First, we are concerned with the number of vertices in

the Facebook network.

2.3 Number of vertices in the Facebook network

Proposition 1. The expectation of the number of vertices in the Facebook

network at time t is O[(p1 — ps)t].

Proof. We assume that p; > p3 so that the number of vertices in the
graph is indeed growing (on average). Hence it is assumed that v; > 0 for
all t > 0.
For all t > 0, v411 = vy + X441, where X, is a discrete random variable
and

Iy —with probability p;;

X1 = ¢ =1, with probability p3; and
0, with probability ps + p4.

Thus, the expectation of vy is
E[Ut+1] = E[Ut] + (p1 — pg), for ¢t > 1. (3)

Which implies that E[v;] = O[(p1 — p3)t]. [

2.4 Number of edges in the Facebook network

In this section, we consider the number of edges in the Facebook network.

Proposition 2. The expectation of number of edges in the Facebook network
(p1 —p3) (1 +p2 — p4)t
D1+ 3

at time t is ©



Proof. For convenience, we assume p, > p4 to ensure that the number of

edges is growing( on average).

Let Ni(t) be the number of vertices of degree k in Gy, and define N_;(¢) = 0
for all ¢.

For all t > 0, e;y1 = e; + Y11, where Y, is a discrete random variable
specified by

1,  with probability p;
1,  with probability po;

—k
—k, with probability psNy(t) (v = k) k€ [0, A(Gy)];

v — 2e;’

Yt+1 =

—1, with probability p4;

where A(Gy) is the maximum degree of G;.

(ve — k)
v — 2¢;

k is chosen to delete.

Note that is the probability of the event that a vertex with degree

Hence, with G, fixed, the number of edges after the (¢ + 1)th step is

v —k
E[Yi1 | Gi] = p1 +p2 —p3Zka(t) :

k>0

5~ Pi
v? — 2ey

This implies that

Elei1] = Eleg] + p1 + p2 — p3E

Ut—k
kN, (t —
> ‘“”Uz—zet] P

k>0

= Ele)] + p1 + p2 — ps — p3E

where d, is the average degree of G,.
Then we evaluate the two expectations multiplied by ps in (4).

Firstly, since

kN (t -
Z k( ) = dt7
Ut

k>0



we obtain

ZkN_"f(t_) =K

k>0 v — dy

V¢ kak(t)
E _
vy — dy Z Ut

k>0

:E[ 261}.
Ut—dt

Secondly, using the approximation as in [7],

vt v}

2N _ 2

k>0

Hence,

Uy ('Ut — dt)

k2N, (t 1 k2N, (t
Z ~ k:( ) —E _ Z k( )
Uy _2615 (o —dt Ut

k>0

Then, by substituting them into (4), we have

2¢e 8¢?
Eler1] ~ Eles] + p1 + p2 — par=p3E [v td] + 3l [UQ( : } '

. — U tUt—CZt)

We consider the equation as t.— 00, so.the differences between the number
of edges at time ¢ and mean-are relatively small. We may ignore some terms,

yield

2p3 8ps 2 _
Eler1] — (1 - m)E[et] - (mﬂ@[et} X p1+p2 —pa; (5)

which is a non-linear difference equation.

Methods for solving such equations are known only for a few special cases.
Because we add or delete at most k£ edges at one time, we may assume that
Ele;] = et, where ¢ is a constant that does not depend on ¢. Substituting
Ele;] with et and E[v;] with ©[(p1 — p3)t] by Proposition 1 in (5), and then
taking the limits as t — oo, we get

2p3
P1— D3

€+ € =p1 + P2 — Ps.



Therefore,
_ (p1 — p3)(p1 + p2 —P4).
P1+ D3
o) (p1 — p3)(p1 + P2 — pa)
D1+ P3

ie., Ele] = tl. [

2.5 Degree distribution in the neighborhood of the
deleted vertex

Before turning our attention to the degree distribution in G;, we need to
evaluate one more quantity, namely the expectation of IV, ,Elt) - the number of
neighbors of degree k of the vertex chosen for deletion during step t. And

N ,glt)(u) is the number of neighbors with degree £ of the vertex u at time ¢.

Proposition 3. The expectation of N,St) in the Facebook network at time t
(O 26?75 :|

is approzimate kKE[Ny(t)|E [—_ :
Ut (Ut = dt)

Proof. As G; is fixed,

ueV (Gr) Ut B 2€t
_ 1 N(l) 1 N 1) d
T —d Z k’t(u)_v(v—d) ke (W)d(u)
E T wev(ay) BT eviay)
(6)
Then, note that the two summations of (6) are
1
> Nid(u) = kNi(®)
ueV (Gy)
and
Ni(t) k
Z th)(u)dt(u) = den]t
ueV(Gt) =1 j=1

10



Here dy; ;¢ denotes the degree of the jth neighbor of the ith vertex of
degree k after step t. It may be approximated by the average degree Jt(”
of a random neighbor of a random vertex. This quantity Jt(l) ~ 2d,. Hence
we get

ENp(t)  2kNy(t)d;
v — dy B vt(vf —dy)
— kN’“(t_)u — 2—d’f).

vy — dy Ut

1
E[N.) | G ~

By taking the expectations of both sides, we obtain

Vs — 2d} :|

E[N,}] ~ KE[Ny(t)|E {m

2.6 Degree distribution of the Facebook network

Finally, after finishing the above analytic results, we turn our attention to

the degree distribution of the graph Gi.

(p1 + p2)(p1 + p3)

2p1(ps + pa) + 2paps
2p1(p1 + p2 — pa)

p2(p1 — p3) + p1(pr — p3 — 2p4)
for Facebook network satisfies the small world phenomenon: the degree dis-

Theorem 2.6.1. If > 1 and

> —1, the mathematical model we construct

tribution obeys the power-law.
Proof. By analyzing the change in Ny(t) between the ¢ th and the

(t + 1) th step, we have

E[Np(t + 1) — Ni(t) | Gy

= plclil) (t) + p201£2)(t) + P3CIE;3) (t) + p401(€4) (t) 4+ P11,

11



C,(Cl)(t) _ (k— 12)2\[1@—1(75) B k];fl;(t)’
() = (k — ggkl(t) n Nkvtl<t) N k‘];fzft) 3 Nzt(t)’

3 vy — 2d, Ni(t)(vy — k) vy — 2d,
CE) = (ko DN () =0 = = 55— — BNult) s
0154)(15) _ (k+ 1)Np14(t) . ka<t) (7)

€t €¢

Term C’,gl) (t) in (7) reflects the expected change in Ng(t) due to the birth
of vertices. When a new vertex with one edge is added to the graph Gy, if
the other end of the edge connects to an existing vertex of degree k£ — 1,
then the number of vertices of degree k in Gy will increase by one. On
the other hand, if the end vertex connects.to a vertex of degree k, then the
number of vertices of degree k in- Gy will decrease.

Term O}gz) (t) in (7) exhibits the expected change in Ni(¢) due to the
birth of edges. As a new edge is.added to the graph Gy, if a vertex of degree
k — 1 is chosen to being an end vertex, the number of vertices of degree k in
Gyq will increase. On the other hand, a vertex of degree k is chosen, then
Ni(t+ 1) will decrease.

Term C’,gg) (t) expresses the expected change in Ny (¢) due to the death of
vertices. There are two different ways of deleting a vertex which can cause
Ni(t) to decrease: (a) a vertex of degree k is deleted; and (b) the deleted
vertex is adjacent to one or more vertices of degree k. The expected fall
due to deletion of a vertex of degree k is E[Ny(t)|E[(v; — k)/(v? — 2¢;)]. In
addition, Proposition 3 implies that the expected drop due to deletion of

a vertex which has one or more neighbors of degree k is kE[Ny(¢)|E[(v; —

12



2d;)/ (v — 2¢;)]. In a similar manner, one may also lead to the increase of
Ni(t) due to deleting vertices.

Term 0,24) (t) reflects the expected change in Nj(t) due to the death of
edges. If the deleted edge has an end vertex of degree k + 1, then Ni(t)
increases. On the other hand, if an end vertex is of degree k, then Ni()
decreases.

The last term in (7) comes from the fact that the degree of a new vertex
is always one.

Assume that E[N(t)]/t converges to a; as t — oo. Notice that if
E[Nk(t)]/t is not converging to any number, then there is no solution for
ai. To obtain a recursion for ag, we take the expectation of (7) and find

the limit as ¢t — co. By Proposition-1,2 and 3, this yields

[aa(k +2) + Bolarsa + [ea(k +1) + By]ar1 + [aok + Bolax

= 2p1(p1 — p3)(P1 + P2 — Pa)Okis

where

g = —2p1(ps + pa) — 2paps,

ar = (p1 +p3)(p1 + p2 + 2p4) + 2p3(p1 + P2 — pa),
Br = 2(p1 + p2)(p1 + p2 — pa),
apg = —(p1 + p2)(p1 + p3),

Bo = —2p2(p1 + p2 — pa)- (8)

13



To solve (8), we will use Laplace’s method as described in [12] to solve

the nonlinear homogeneous equation:

(o (k + 2) + Boagyo + [a1(k + 1) + Bilakt1 + [k + Bolaxy =0,  for k> 1.

(9)
Assume that the solution of the homogeneous equation is of the form:

ap = /b t*=th(t) dt, (10)

where the function h(t) and the limits of integration a, b are yet to be
determined.

Note that integration by parts of (10) yields

b
kay, = [t’“h(t)]g-/ t*h'(t) dt. (11)
Now, define
Qo

gba(t) = 052t2 + Cllt + g = 042(1 y — t)(— — t) and
&%)

¢p(t) := Bat® + Bt ¥ 85 = But + fo.
By substituting (10) and (11) into (9), we obtain
b b
[t*Ga(t)h(1)]5 — / t*da ()R () dt + / L pa(t)h(t) dt = 0.
Then (9) is satisfied if a, b and h(t) are chosen such that
[t*h(t)¢a(t)]e = 0 (12)

and

hi(t)  o¢p(t)
h)  toat) (13)

14



By integrating both sides of equation (13), we get

h(t) = (1 — 1) (22 — ),
Qg
where
A = Bo _ 2p2(p1 + p2 — p4)
@ (p1+p2)(pr+p3)
A — Bo+ B 2p1(p1 + p2 — pa)
2 — - )
as —ag  pa(p1 — p3) + p1(p1 — ps — 2pa)
A — Boaa + Prag
g = —

060(042 - Oéo)
2(p1 + p2 — pa)[2p2(p1ps + Pops + p1pa) — (p1 + p2)*(P1 + p3))]
(p1 + p2)(p1 + p3)[(p1 + p2) (1 — P3) — 2p1p4]

Now, by our assumption

(P + p2)(Prpa), o0

2p1 (p3F pa) 4 2pap3 . a2

and
2p1 (1. +pa — pa)
p2(p1 — p3) Fpr(p1 — P3s =2pa)

then (12) is satisfied with @ = 0 and b = 1. Using the notation =< to denote

= Ay > -1,

that the left hand side is bounded from above and below by constants times
the right hand side, and the notation ~ to denote that the quotient of the
right hand side and the left hand side converges to a constant. Hence we
obtain

1
ap = / Rl — )220 s gy
0 Q2

1
x/ A=l — ) 2 gt
0

L(k+ A)T(1+ Ap)
T T L+ + ) (1)

~ kO >

15



Here, (14) is obtained by a formula in [6] (Table 1 (5) p.27).
Hence, asymptotically the degree distribution of GG; follows a power-law with

exponent 1+ . |

Moreover, we have the following corollary.

Corollary 2.6.2. If p1 > p3 + 2p4, the mathematical model for Facebook
network satisfies the small world phenomenon: the degree distribution obeys

the power-law.

Proof. By Theorem 2.6.1, the degree distribution of the facebook model

obeys the power-law, if the followings hold:

Qo @HmMm+m)>1

a2 (D3 + pa) +2paps

and
_ 2p1(pr P2 — p4)
p2(p1 = p3) + pilpi = ps— 2pa)

A2

Firstly, since p1, p2, p3, pa > 05:2p5(ps + pa) + 2p2ps > 0.

Hence we consider

(p1 + p2)(p1 + p3) — (2p1(p3 + pa) + 2p2p3)
= P} — p1p3 + P1P2 — PaP3 — 2p1Pa

= p2(p1 — p3) + p1(p1 — p3 — 2pa). (15)

If p1 > ps + 2p4, then (15)> 0, ie., -2 > 1.
%)

Secondly, if p1 > p3 + 2py, then pa(p1 — p3) + pi(p1 — p3 — 2ps) > 0 and

2p1(p1 + pa — p4) > 0. Which implies

2 _
Ay = p1(p1+ P2 — pa) S 0> 1.

p2(p1 — p3) + p1(p1 — p3 — 2pa)

16



Hence, if p; > p3 + 2p4, then the two conditions of Theorem 2.6.1 hold.
That is to say, if p1 > p3 + 2p4, then the degree distribution of the facebook

model obeys the power-law. |

The condition p; > ps + 2p,4 of Corollary 2.6.2 is close to the situation
of the real-network of Facebook, which is that the probability of birth of
vertices is much higher than death of vertices and edges. This ensures that

the graph model is growing.

Example 1. If we pick p1 = 0.5, po = 0.25, p3 = 0.125, then py, = 0.125

and py; > p3 + 2py. Hence we obtain

ap ~ k"r’, for k> 1. [}

17



3 Conclusion

In this thesis, we consider a “random” graph model that combines the ad-
dition and deletion of vertices and edges in order to set up a model which
fits the Facebook network. As a consequence, we found that our model for
Facebook generates graphs with asymptotically power-law degree distribu-
tion, the common feature of the small world networks. That is to say, we
have more confidence to believe Facebook is also a small world. Indeed, it
should be smaller.

As for future work, the model in this thesis is only in accordance with
Facebook. It would be interesting to construct a general model for various
networks. On the other direction of research, we need to find the average
distance of the random graphimodel theoretically. So far, only experimental

results are obtained for small'worlds including Facebook network.

18



References

1]

[10]

A. L, Barabasi and R. Albert, Emergence of scaling in random net-

works, Science 286 (1999) 509-512.

L. Backstrom, P. Boldi, M. Rosa, J. Ugander, and S. Vigna. Four
degrees of separation. CoRR, abs/1111.4570, 2011.

F. Chung and L. Lu, Coupling online and offline analyses for random

power law graphs, Internet Math. 1 (4) (2004) 409-461.

C. Cooper, A. Frieze and J. Vera, Random deletion in a scale-free

random graph process, Internet Math. 1 (4) (2004) 463-483.

A. Cami, Techniques for.analyzing dynamic random graph models of

web-like networks: An-overview, Networks 51 (2008) 211-255.
B. David, Nouvelles tables d’intégrales deéfinies, Leide : P. Engels, 1867.

N. Deo and A. Cami, Preferential deletion in dynamic models of web-

like networks, Inf. Proc. Lett. 102 (2007) 156-162.

M. Deijfen and M. Lindholm, Growing networks with preferential dele-
tion and addition of edges, Physica A (2009) 4297-4303.

R. Durrett, Probability: theory and examples, Wadsworth and
Brooks/Cole, 2003.

S. Dorogovtsev and J. Mendes, Scaling behaviour of developing and

decaying networks, Europhys. Lett. 52 (1) (2000) 33-39.

19



[11] P. Erdés and A. Rényi, On random graphs, Publ. Math. 6 (1959) 290-
297.

[12] C. Jordan, Calculus of Finite Differences, Rottig and Romwalter, 1939.

[13] S. Milgram, The small world problem, Psychology Today 2 (1967) 60-
67.

[14] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow. The anatomy of
the Facebook social graph. CoRR, abs/1111.4503, 2011.

[15] D. J. Watts and S. H. Strogatz, Collective dynamics of ’small-world’

networks, Nature 393 (1998) 440-442.

[16] D. B. West, Introduction to graph-theory, Pearson Education Taiwan
Ltd. 2008.

20



