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Preface

This thesis is concerned with metric simultaneous Diophantine approxima-
tion in the field of formal Laurent series. In a recent paper, Kim and Nakada
proved an analogue of Kurzweil’s theorem in dimension one for formal Laurent
series. The main aim of this thesis is to give a new proof which works for simul-
taneous Diophantine approximation as well.

An outline of this thesis is as follows. In Chapter 1, we will introduce
background on Diophantine approximation. This chapter is split into three sec-
tions. In Section 1.1, we will briefly recall Diophantine and metric Diophantine
approximation, and state some results in the real case and some analogues over
the field of formal Laurent series. Then, in Section 1.2, we will introduce inho-
mogeneous (simultaneous) Diophantine approximation. Moreover, we will collect
notations and results for the so-called double-metric and single-metric cases. Fi-
nally, Section 1.3 will contain our main results. In Chapter 2, we will recall some
fundamental properties for formal Laurent series. Chapter 3 and Chapter 4 will
contain zero-one laws and a series of lemmas which are important for the proof
of our results in dimension one and higher dimension, respectively. The proofs
will follow from these lemmas. We want to point out that the result in dimension
one is in fact only a special case of the higher dimensional result. Nevertheless,
for the sake of readability and as a warm-up, we will treat the one-dimensional
case separately. Finally, we will end the thesis with some concluding remarks in

Chapter 5.
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Chapter 1

Introduction and Background

In this chapter, we will give a historical discussion and discuss recent results

related to this research.

1.1 (Metric) Diophantine Approximation

It is well-known that the set of rational number Q is dense in R. This means
that for each x € R, there exists a rational sequence {r,} such that |z —r,| < %,
Vn. A fundamental task is to approximate real numbers by a rational sequence
with good accuracy, where the accuracy is measured in terms of the size of the
denominator. The area which is concerned with such investigations is called
Diophantine approximation. In this area, an important question is as follows: for

a fixed irrational number «;, which function ¢ will make the inequality

‘a—@‘<M,m,n€Z
n n

have infinitely many solutions m and n? The following is a typical result.

Theorem 1.1 (G. L. Dirichlet). Let o be an irrational number. Then

a——| < m,n € Z (1.1)

’ m
n n?’
has infinitely many solutions m and n.

In this theorem, Dirichlet took ¥ (n) = % such that (1.1) has infinitely many

solutions. Note that the result holds for all irrational numbers «. The subarea



called metric Diophantine approximation, on the other hand, asks for properties
which hold for almost all real numbers . Here, a property holds almost all if the
set of elements for which the property does not hold is a null set, that is, a set of
Lebesgue measure zero. A famous result in metric Diophantine approximation is

the following theorem of Khintchine.

Theorem 1.2 (A. Khintchine). Let ¥ (x) be a positive continuous function and

suppose that xip(x) is non-increasing. Then

¥(n)

‘a—@‘ < ——= m,n €’
n n
has infinitely many solutions for almost all a € R if and only if Y.~ 1 (n) = oo.

There are many other results in the case of real numbers. In this research,
we are concerned with analogues in the field of formal Laurent series. Next,
we will fix some notation and introduce Diophantine approximation and metric
Diophantine approximation for formal Laurent series.

We denote by IF, a finite field with ¢ elements, where ¢ = p", n € N, p € P.
Moreover, we denote by F,[X] the set of polynomials with coefficients in F,, and
by F,(X) the quotient set of F;[X]. The elements in this set are called rational.
Finally, we denote by

F, (X)) = {f =Y X" a#0,a, € Fq} u {0}

the set of formal Laurent series. Next, we consider in F, ((X~!)) an addition and
multiplication, where both operations are defined as for polynomials. Then, the
resulting structure is easily seen to be a field. Moreover, we equip F,((X!)) with
a norm in the standard way, namely, |f| = ¢%8) for f # 0 and [0] = 0 (here,
deg(f) denotes the generalized degree function). In the sequel, the following set

will be of importance

L={feF,(X™):|f] <1}.

Restricting the above norm to this set gives a compact topological group. Hence,
there exists a unique translation-invariant probability measure which we are going

to denote by m.



Similar to the real case, we can study now Diophantine approximation and
metric Diophantine approximation in the field of formal Laurent series, where
elements of F,[X] play the role of integers. F,(X) is dense in F,((X 1)), i.e., for
each f € F,((X™')), there exists a sequence {r,} C F,(X) such that

1
|f —rn] < —, Vn.
q’ﬂ

Again as in the real case, an important task is to approximate the value of f €
F,((X1)) by {r,} with good accuracy, where the accuracy is measured in terms
of the size of the denominator. This area is called Diophantine approximation
in the field of formal Laurent series. In particular, the analogue to the problem
above is as follows: for fixed f € L, which function ¢ will make the Diophantine

inequality

v(QD)
-4l

el

have infinitely many solutions P and Q)7 The following result is an analogue of

, P,Q e F,[X] (1.2)

Dirichlet theorem for formal Laurent series.

Theorem 1.3 (Analogue of Dirichlet’s Theorem for Formal Laurent Series). We

have,

f——‘ P,Q e F,[X]

QP

has infinitely many solutions P and Q).

We will prove Theorem 1.3 in the next chapter. The subarea called metric
Diophantine approximation in the field of formal Laurent series asks for properties
which hold for almost all f € L. In this setting, an analogue of Khintchine’s

theorem for formal Laurent series was proved by Fuchs in [1].

Theorem 1.4 (M. Fuchs [1]). Let ¢ : {¢" : t € Z>o} — {q¢" : t € Z} be a function
with |QY(|Q|) non-increasing. Then the inequality (1.2) has infinitely many
solutions P and () for almost all f € 1L, if and only if

oo

> b X[") =

k=0
Moreover, in [4], Inoue and Nakada improved this by dropping the mono-

tonicity condition ” |Q] ¢ (|@]|) non-increasing”



Theorem 1.5 (K. Inoue and H. Nakada [4]). Letv : {¢' : t € Z>o} — {¢' : t € Z}
be a function. Then for any set S of positive integers, the inequality (1.2) has
infinitely many solutions P and Q) for almost all f € 1L, if and only if

> dw(IX]*) = 0.
kesS

In analogy with the integer part of real numbers, we denote by [g] the
polynomial part of g for all g € F,((X™!)), i.e., the part of the expansion for
which no negative exponents occur. And we denote by {g} = g—[¢] the fractional

part of g. Note that [{g}| < 1. Then, the inequality (1.2) can be rewritten to

Qf = Pl <v(|Q), P,Q € Fy[X]

which, if ¥ (|Q]) < 1, is equivalent to

{Q/} <¥(lQl), @ € Fq[X].

So far, what we have discussed the so-called homogeneous case. The major in-
vestigations in this research will, however, be for the inhomogeneous case. Thus,
we will introduce metric inhomogeneous Diophantine approximation in the field

of formal Laurent series next.

1.2 Double-metric and Single-metric Inhomoge-

neous Diophantine Approximation

Here, we will introduce the metric inhomogeneous Diophantine approxima-

tion. Let us consider the Diophantine inequality

HQF} =gl <v(Q)), @ € F [X], (1.3)

where f,g € L, and ¢ is a {¢' : t € Z>o} — {¢' : t € Z} function. We will be
concerned with the question of the existence of infinitely many solutions to (1.3)
as well as the asymptotic number of solutions as |@Q| grows. This area is called

metric inhomogeneous Diophantine approzimation for formal Laurent series. In



[9], Ma and Su investigated the problem of (1.3) if f and g are both chosen
randomly. Let

W (y) = {(f,g) € L*: (1.3) has infinitely many solutions @ € F,[X]}.
Then, Ma and Su proved the following result.

Theorem 1.6 (C. Ma and W.-Y. Su [9]). Let ¢ : {¢"' : t € Z>o} — {¢* : t € Z}

be non-increasing. Then, we have

0, f ZQqu[X}w(‘QD < 00,

(m x m) (W(1) =
: L i S gee i 0@ = 0.

Moreover, let us consider the inequality whose 1(|Q|) is equal to g~ '

with [,, > 0 such that

QMY =9l < s QER[X], Qmonic, n—deg(Q), (1)

where f, g € L. In [2], Fuchs investigated the problem of (1.4) and derived strong
laws of large numbers with error terms for the number of solutions @) of this

inequality with deg(@)) < N. In order to state his result, define

Then, his result reads as follows.

Theorem 1.7 (M. Fuchs [2]). For almost all (f,g) € L%, the number of solutions
of (1.4) with 0 < deg(Q) < N satisfies

U(N) + O ((@(N)? (log W(N))**),
where € > 0 is an arbitrary constant.

These results are for f and g both random. This is the so-called double-
metric case. Moreover, the following two single-metric cases have been considered

in the field of formal Laurent series.

(1) fix g and choose a random f € L,



(2) fix f and choose a random g € L.
In [2], Fuchs proved the following result for case (1).

Theorem 1.8 (M. Fuchs [2]). For almost all f € L, the number of solutions of
(1.4) with 0 < deg(Q) < N salisfies

Y(N) +O (W(N)? (log W(N))*") |
where € > 0 is an arbitrary constant.

Moreover, Fuchs also obtained generalizations of the above result in [2]. On
the other hand, in this research, we will concerned with the problem of (1.4) for
case (2). We will obtain a necessary and sufficient condition such that (1.4) has
infinitely many solutions. Moreover, we also generalize this result to simultaneous
Diophantine approximation. Therefore, we will discuss simultaneous Diophantine
approximation next.

Let r, s be positive integers. We denote by F,[X]|" the r-fold Cartesian
product of F,[X]. Moreover, we denote by F,(X)" and F,((X~1))" the vector
spaces over F,(X) and F,((X')), respectively. Let £ = [f1, f2,..., f-] be an
element of F,((X1))". Then,

.....

Define || - || a norm with domain F,((X'))" and range R* U {0} such that ||f]| =

q28®  In the sequel, the following sets will be of importance
L = {re R, (X)) 18] <1}
and
L™ = {matrix A of size r x s : all the elements in A are belonging to L} .

We equip " with the r-fold product measure of I which we also denote by m.

Now, we consider a Diophantine inequality

{aA} —gll < ¥([lal]), q € F [X]", (1.5)



where ¢ is a {¢" : t € Z>o} — {¢" : t € Z} function, and

- 97 - . - 9T
Q1 Jiu fiz o fis 41

a=| 9] empaz [T B e oo | 2 e
_Qr_ _frl fr? frs_ _gs_

In fact, the inequality (1.5) is equivalent to the following system of inequalities

HQ1fi1 + Qafor + -+ Qrfri} — ou| <¥(|lal)
H{Q1fi2 + Qafor + -+ Qrfra} — g2| < ¥(llall)

|{Q1fls + Q2f23 +oeee Qrfrs} - 98‘ < 2/J(”qH)

will be again concerned with the question of the existence of infinitely many solu-
tions to (1.5) as well as the asymptotic number of solutions to the equation as ||q||
grows. This subarea is called metric inhomogeneous simultaneous Diophantine
approximation. In fact, we say that (1.5) is in dimension one if r = s = 1, and in
higher dimension if  or s is more than 1. Similar to the result in dimension one,

Kristensen investigated the problem of (1.5) if A and g are chosen randomly. Let
W,s(¥) ={(A,g) € L"™* x L*: (1.5) has infinitely many solutions q € F,[X]|"}
Then, Kristensen proved the following result in [6].

Theorem 1.9 (S. Kristensen [6]). Let ¢ : {¢" : t € Zso} — {¢" : t € Z} be

non-increasing. Then, we have

07 Zf quFq[X]T 77/}<||q||)8 < 00,

(W) =
" L if Y er, o ¥(lall) = oo,

Moreover, let
v(V) = 3 wlllal)
lall<g™
Then, in [6], Kristensen obtained the following result for the number of solutions

of (1.5).



Theorem 1.10 (S. Kristensen [6]). Let ¢ : {¢' : t € Zso} — {¢" : t € Z} be
non-increasing. Then, for almost all (A,g) € L™ x L*, the number of solutions

of (1.5) with 0 < deg(q) < N satisfies
W(N) + 0 (B(N)? (log W(N)3*)),
where € > 0 is an arbitrary constant.

This situation is again called the double-metric case. Moreover, the follow-
ing two single-metric cases are considered in simultaneous Diophantine approxi-

mation.
(1) fix g € L* and choose a random A € L"*%;
(2) fix A € L™ and choose a random g € LL*.

In [6], Kristensen also investigated the problem of (1.5) for case (1). Let
Wixs(¥,g) :={A € L™ : (1.5) has infinitely many solutions q € F,[X]"}.
Here, Kristensen obtained the following result.

Theorem 1.11 (S. Kristensen [6]). Let r > 2 and let ¢ : {¢" : t € Z>o} — {¢":
t € Z} be non-increasing. Then, for any g € L?,

0, if Sqer, e () < oo,

(Wyses 16, 8)) =
" L i Yger e () = oc.

Moreover, Kristensen also obtained a result for the number of solutions of

(1.5) in case (1) as well.

Theorem 1.12 (S. Kristensen [6]). Let r > 2, and ¢ : {¢" : t € Z>o} — {¢" : t €
Z} be non-increasing. Then, for almost all A € L"™*°, the number of solutions of

(1.5) with 0 < deg(q) < N satisfies

N

W(N) + O ((N)? (log W(N))F*).

where € > 0 is an arbitrary constant.



Note that Kristensen’s result holds for the number of solutions to (1.5) in
case (1) as r > 2, and Fuchs obtained the result for the remaining case of r = 1 in
[2]. Therefore, this subarea is complete. On the other hand, we will be concerned
with the question of the existence of infinitely many solutions to (1.5) in case (2).
More specifically, we will find a necessary and sufficient condition such that (1.5)
has infinitely many solutions. In the next section, we will introduce the main

results of this research.

1.3 Kurzweil’s Theorem in the Field of Formal

Laurent Series

We consider the Diophantine inequality

1

{Qf} -9l < o @ € FolX], n = deg(Q), (1.6)

where f is fixed and ¢ is chosen randomly in L. Set
W (l,, f) :={g € L: (1.6) has infinitely many solutions} .

By the Borel-Cantelli lemma, we obtain that ) qlin < oo implies m (W (1, f)) =
0. However, the other direction, namely, m (W (., f)) =1if > qun = 00 is not
necessarily true for all sequence [,,. Consequently, an important question is as
follows: for which f is m (W (I, f)) = 1 or 0 according to Y. ¢~ converges or
not? In [5], Kim and Nakada obtained a characterization of these f. In order to

state their result, define
. 1
S = {fEL:Vlnvmth ZT:oo,
n q "

(1.6) has infinitely many solutions for almost all g}.

Moreover, we need the following notation.

Definition 1.1. f is called badly approximable if there exists a constant ¢ > 0
such that for all Q) € F [X], @ # 0 with n = deg(Q),

{QFY > —

qn+c :




Then, Kim and Nakada proved the following result in [5].

Theorem 1.13 (D. H. Kim and H. Nakada [5]). We have,
S={felL: fisbadly approximable} .

As for the method of proof, Kim and Nakada used continued fraction ex-
pansion in F,((X1)). Thus, their method cannot be extended to simultaneous
Diophantine approximation. Here, we will reprove their result with a method
closer to the one of Kurzweil who proved the analogue of the above result in the
real number field. This new approach not only works in dimension one but also

works in higher dimension. Therefore, we consider the Diophantine inequality

1
[{aA} — gl < P q € Fy[X]", n = deg(q), (1.7)
where A is fixed and g is chosen randomly in IL°. Let us again define a set by

1
qsln

= 0Q,

Spxs 1= {A € L™ 1 VI, with )
(1.7) has infinitely many solutions for almost all g € LS}.

Moreover, similar as above, we need the following notation.

Definition 1.2. A € L"** is called badly approximable if there exists a con-
stant ¢ > 0 such that for all q € F,[X]",q # 0 with deg(q) = n,

1
[{aA}| > PEarTs
Then, the main result in this research is the following theorem.

Theorem 1.14. We hawve,
Srxs = {A e ™% : A is badly approm'mable} .

In the next chapter, we will introduce some properties in the field of formal
Laurent series which we will use in the proof. Then, we are going to prove

Theorem 1.13 in Chapter 3, and Theorem 1.14 in Chapter 4.

10



Chapter 2

Preliminaries

In this chapter, we will collect some results that we are going to use.

2.1 Fundamental Properties in Dimension One

We start by recalling some results which were already briefly mentioned in

the introduction. First, we have the following property (see [8] for a proof).
Proposition 2.1.1. (F,((X™1)),+,-) is a field.
Next, |-| is an ultra-metric norm.
Proposition 2.1.2. Let f,g € F, (X)), then |-| satisfies the following:
(1) 1f| =0 f =0,
(2) [fgl = 1f11gl.
(3) |f + 9] <max{|f|,]|g]}

Proof.
(1) [f[ =0« deg(f) =—0c0o& f=0.
(2) ]fg] — qdeg(fg) — qdeg(f)+deg(g) — qdeg(f)qdeg(g) — m \g\

(3) |f + g| = qleslU+9) = gmaxides(f)deg(9)} — max{qdeslf) gdesl9)}
=max {|f[,[g]}. |

11



Next, recall
L= {feF,(X"):|f] <1}

which we have equipped with the normalized Haar measure m. For all g € L,

d > 1, we define
1 1
B(05) ={retsir—al< 5}
q q

Then, we have the following important properties.

Proposition 2.1.3. Fach two balls in IL are either disjoint or one is contained

in the other.

Proof. Let B (f,q7%), B(g,q¢) be two balls with centers f, g and radii ¢~%, ¢~°.
Without loss of generality, we suppose d > e. Assume that they are not disjoint,
then we have to prove that one is contained in the other. First, we estimate the
distance of the two centers f and g. Let h be in the intersection of B ( 7, q_d)
and B (g,q ¢). Then,

1
If—glzlf—h+h—9|Smax{lf—hl,lh—g|}<?

This means that f € B(g,q ¢). Next, we claim that B (f, q’d) belongs to
B(g,q7¢). Assume that this is wrong. Then, there exists h in B (f,¢7%) \
B(g,q7¢). Now,

|h—g|=|h—f+f—g|gmax{|h—f|,|f—g\}<%.

This implies that h € B (g,q¢), a contradiction. Hence, we obtain B (f, q*d) C

B (g,q¢), which means that one is contained in the other. |

Proposition 2.1.4. Fiz by,by,..., 0 € Fy, g€ L and d > 1. Then, we have

d 00
. . 1
m ({f =) XY aX T Va € m}) -
=1

i=d+1

(o))

and

12



Proof. Assume that h = by X ' +b_ o X 24+, X% Thus, f = pra a; X' e
B (h, q*d) if and only if a; = b; for all ¢ with 1 < i < d. Consequently,

{ be—wzax VaZEIE‘} (h,qld).

i=d+1

Next, observe that

1=m(L)
=m U {f f= ZCZX_Z—FZ@ZX VaZG]F}
c1,...,cq€Fq i=d+1
= > ({f f= ZCZX +Za2X ‘v’aZEIF}>
c1,...,cq€Fq 1=d+1
= ({f f= Zczx-w Z a; X" Va; € F })
i=d+1
Hence
m(B<h,id))= ({ be—w ZaZX Vale]F})
q i=d+1
1
G

which proves the first result. Since m is a translation-invariant measure, we have
that for any g € IL, the measures of B (h, q_d) and B (g, q_d) are the same. So,

we get
m((g.a7") =a7*

forany ge L. |

We conclude this subsection by recalling Dirichlet’s theorem and providing

a proof.

Theorem 2.1 (Analogue of Dirichlet’s Theorem for Formal Laurent series). We

have that
HQf} <

has infinitely many solutions.

0 |7Q€IF[ ] (2.1)

13



Proof. Note that the claimed result is trivial if f is not irrational. Therefore, we
can assume that f is irrational. Now, we need to prove the following claim: for

all N € N, there exists a non-zero polynomial () with deg(Q)) < N such that
1
{Qf} < o~ (2.2)

First, we know that the number of Q # 0 with deg(Q) < N is ¢™*1 — 1. We
divide L into ¢ balls such that

N o0
L= |J {f:f:ZbiX‘“r > aiX_i,‘v’aiEIFq}.
=1

bi,....bn€F, i=N+1

Then there exist at least two different nonzero Q1,Q2 € F,[X] with deg(Q1), deg(Q-2)
< N such that [{Q1f} — {Q2f}| < ¢~V (if not, then the number of Q # 0 with

deg(Q) < N is at most ¢V which is a contradiction). Hence,

5 > HQuf) ~ {Quf} = K@ — Qa1

So, (@1 — @2) is a solution of (2.2). This proves our claim. Moreover, our claim

clearly implies that (2.1) has infinitely many solutions. 1

2.2 Fundamental Properties in Higher Dimen-
sion

In this section, we will show that all properties from the previous section
hold in higher dimension as well.
Let us fix positive numbers r and s. Then, the norm | - || on F,((X™1))"

from the introduction has the following properties.

Proposition 2.2.1. Let f,g € F, ((X™))", then || - || satisfies the following:
(1) |fl =0« f=0.
(2) |If + gl < max {|fl], [|g]|}-

Proof.

14



(1) |Ifl| = 0 < deg(f) = —00 & = 0.

— qmax{deg(f)vdeg(g)}

= max {[/f[|, [[g][}. 1

Recall
L7 = e F,(X ) : ] < 1)

which we have equipped with the product measure of L (also denoted by m).
Moreover, as before, for all g = [g1,...,9,] € L", d > 1, we define

, 1
(g, ) {feL :Hf—g|!<@}

Hia(o)

As in the one-dimensional case, we again have the following important properties.

Proposition 2.2.2. Fach two balls in IL" are either disjoint or one is contained

in the other.

Proof. Let B (f,q"%), B(g,q ) be two balls with centers f = [f1,...,f,], g =
[91,...,9-] and radii ¢~¢, ¢~¢. Without loss of generality, we suppose d > e.
Assume that they are not disjoint. We know that

o(e) o0 ) was(e) -fio(o )

Then, by Proposition 2.1.3, we have

This implies that

Hence, we obtain B (f *d)
the other. |

15



Proposition 2.2.3. Let d be a positive integer. Fix bgj) eF, foralli=1,...,d

and 3 =1,...,r. Then, we have
d_ o . . 1
m ({f: i Bl =3 00X+ 3 aP X val EIFq,Vj}) =
i=1 i=d+1 q
and

(o))

Proof. Assume that h = [hy, ..., h,], where h; = 37
any £ = [f1,... f,] with f; = 3% al/ X,

b X~ for all j. Then, for

=1 "1

1

fe B (h, —d) iff o) = b9 1 <i<d Vi
q

This implies that

d 00
. p y . . 1
{fz i B =3 0P X7 4+ 3 o X7 vl € Fq,Vj} =B <h, —d> .

=1 i=d+1

Consequently,

d )
m({f: AR -—Zb(”X*w > X7 vaY elﬁ‘q,vg’}>

i=d+1

1 1
= () = (15 ()
q
1 ~1 1
AT (5 () ) -l
Since m is a translation invariant measure, we have

(o (ng) = (2 (e5))

for any g € IL". So, we get

1 1
m(B (g,¥)> :ﬁ forany g € L". 1

Next, we need the following notation.

Definition 2.1. A r x s matriz A is called irrational if QA does not belong to

F,[X]® for all q € F,[X]" with q # 0.

16



As in dimension one, we conclude by stating and proving Dirichlet’s theo-

rernn.

Theorem 2.2 (Analogue of Dirichlet’s Theorem for Formal Laurent Series). We

have that
1
[{aA}| < J=] 9€ F[X]", deg(q) =n (2:3)

has infinitely many solutions.

Proof. Note that the claimed result is trivial if A is not irrational. Therefore, we
can assume that A is irrational. Then, similar as in the one-dimensional case,
we need to prove the following claim: for all N € N, there exists a non-zero

polynomial vector q with deg(q) < NN such that

[{aA}] < (2.4)

e

First, we know that the number of q # 0 with deg(q) < N is ¢V*Vr — 1.
We divide L into qL¥J balls as in the proof of Dirichlet’s theorem in dimension
one. This yields that a subdivision of IL.* into QL%JS balls. Then, there are two
different nonzero polynomial vectors q;,q, with deg(q,), deg(qy) < N such that
Hay A} = {ap A} < ¢~

(if not, then the number of q with deg(q) < N is at most gl < gV =gV a
contradiction). Hence,

1
NEo {Hai A} = {a A = (a1 — az) A}

So, (q; — g,) is a solution of (2.4). This proves our claim. Moreover, due to the

irrationality of A, our claim implies that (2.3) has infinitely many solutions. 1

17



Chapter 3

Kurzweil’s Theorem in

Dimension One

Here, we are going to prove Theorem 1.13 from the introduction. Therefore,
fixa f=fiX"1+ foX2+-... For the next three lemmas, we assume that f is

irrational.

Lemma 3.1. {{Qf}:Q € F,[X]} is dense in L.

Proof. Let us fix n € Nand g = ¢t X '+ g2 X 2+ -+, where g; € F,. Then we
claim: there exists @ with deg(Q)) = N such that [{Qf} — g| < ¢~™. In order to
prove this, we consider g = aA, where

— -7 — El — -

g1 agp fi fao In
92 ax f2 fs o fan
g=1 . a= A= : : , :
| 9n | | ON ] L INt1 Ins2 o fNan |

Then we claim: rank(A) = n as N is large enough. We need to prove that the

column vectors of A are linear independent. Suppose that this is wrong. Then,

O'/l(flvf27"'va+1) +"'+an(fnafn+1a~~'7fN+n) = (070’70)

with ; not all zero. Let P(X) = oy + ap X + -+ + @, X" !, P(X) # 0. Then,
{Pf} < ¢ ™' On the other hand, the number of P is finite (since n is

18



fixed), which means that min|[{Pf}| > ¢ ¥~! for N large enough. This gives a
contradiction. Therefore, P(X) must be 0, which implies that the column vectors
of A are linear independent. Then for all g, there exists a such that ad = g.
This implies that Q = ag+a; X +---+ay X" satisfies [{Qf} — g| < ¢ . Hence,
{{Qf} : Q € F,[X]} is dense in L. 1

Lemma 3.2 (0-1 law). Let a measurable set E in L be invariant under the action

-+ {Qf} for all Q € F,[X]. Then, we have m (E) =0 or 1.

Proof. Suppose that m (E) > 0. By [3], for all € > 0, there exists a radius ¢~¢
such that

dm < em(E)

i 27 (2062) < 0n)
(B (0. ) e
for all @ € F,[X]. Consequently,
/ 1- " <E : <B (97 qid) i {Qf}>> dm < em(FE).
: m (B (9. %) +1@r)
This implies that there exists a g € I with
m (B0 (5 (o3) +10f}))
m (B (g.4) +{Qf})

1—

< €.

Thus
(0 (8(02) + t01)
m (B (9. %) + 1)
Since {{Qf}: Q € F,[X]} is dense in L, we get the inequality

>1—ce.

m(E)>1—¢

for all € > 0. Hence, we obtain the result m (£) =1. 1

Lemma 3.3. Let

o {geLr!{Qf}—g\<

Then, E is invariant under the action - + {Qf} for all Q) € F,[X] and hence
m(E) =0 or 1.

—— withn = deg(Q) has infinitely many solutions} )
qntin
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Proof. Fix a polynomial ). Let g € E. Then, we can find infinitely many @ with
deg(Q) > deg(Q’) such that

{@Q@—-Q)f}Y—gl=KQrf}t = (g +{QfHI <

qn—i-ln )

So, we get E+{Q'f} C E. Conversely, since [{(Q + Q')f} — g| < ¢"" ' has in-
finitely many solutions, we get that [{Qf} — (¢ — {Q'f})| < ¢ "' has infinitely
many solutions. Thus, g—{Q'f} € E. Then, g = g—{Q'f}+{Q'f} € E+{Q'f},
this means £ C E + {Q'f}. So, we obtain F = E + {Q'f}. Consequently, F is
invariant under the action - + {Qf} for all @ € F,[X] and hence m(E) =0 or 1.
I

For the next two lemmas, f is assumed to be badly approximable. Thus,
there exists a constant ¢ > 0 such that for all @ € F,[X], @ # 0 with n = deg(Q),

1
qn+c '

{Qr}H >

Lemma 3.4. Let g € L. Then, the number of {Qf} with deg(Q) < N belonging
to B (g, q*d) is at most max{qg™ T4 1}.

Proof. First, we need the following claim: define g = g1 X "1 4+go X 24 -4 gg X 0+

-+, where d > 0. Then, the number of {Qf} with deg(Q)) < N belonging to
B (g,q*d) is either ¢ or 0, where 0 > 0. Let a; be the coefficient of X* of Q,
Vi=1,2,...,N. Define

— — T — — T — —
Qo g1 fi f2 fa
o a‘1 b= 9‘2 A fz fj:s fd.+1 |
| N | | 9d | | Insr fas2 o0 [Nt ]

Let us consider the linear system
aA=b.

We have to discuss the number of solutions (which is equal to the number of

{Qf} with deg(Q) < N belonging to B (g,q7%)). There are two cases:

1. If the linear system has no solution, then the number of {Q f} which belong
to B (g, q_d) is 0.
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2. If the linear system has a particular solution a = [ag,aq,...,ay], then

a + ker A is the set of all solutions of the linear system. Hence the number

dim ker A

of solutions is | ker A| = ¢ =q°.

By the above cases, we obtain our claim. Next, we suppose ¢° is the number of

{Qf} with deg(Q) < N belonging to B (g,q™%). We consider the following cases:
1. If o = 0, then the number of {Q [} belonging to B (g,¢™7) is 1.

2. If o > 0, then there exist two points {Q1f}, {Q2f} € B (g, q_d) such that

HQ1f} — {Q2f} < ¢V, where deg(Q1),deg(Q,) < N. Because f is
badly approximable, we get

e > M)~ {@ar)

1 1
- |{(Q1 1 QQ)fH "y qdeg(Ql—Q2)+C = qN+c'

This implies that ¢7 < ¢gVte=a.

By the two cases, we obtain that the number of {Q f} with deg(Q) < N belonging
to B (g,q™%) is at most max{¢" "¢ 1}. |

We give a second method of proof which is in fact easier.
Second Method of Proof. Let @, Q' be two different polynomials with deg(Q), deg(Q")
< N. Because f is badly approximable, we have

1
QA =1 N = H@-@N> g 2 e

This means that the distance between two points {Qf}, {Q'f} with deg(Q),

deg(Q’) < N is at least ¢~V . Now, we consider two cases:
1. If ¢ ¥=¢ > ¢~ then there is at most one point in B(g, ¢ ¢).

2. If ¢ V=¢ < ¢74, then the number of points in B(g,¢~?) is at most

q __ _N—d+c
qufc =4 ’

Hence, the number of {@Q f} with deg(Q)) < N belonging to B (g, q’d) is at most

max {¢V~4 1}, |
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Lemma 3.5. Let [, be a sequence with qz% = o00. Then, for all k > 0, we have

O U ({Qf} nm) >qcl+1. (3.1)

n=k deg(Q)=n

Proof. We first exclude the case ¢ = 2.
Let I/, = max{l,, c}, ¥n € N. Then, we have > ¢~ = co. Assume that (3.1) is
false. Hence, there exists kg € N such that

1
m U U ({Qf} v ) < — e , for all N > k. (3.2)

n=ko deg(Q)=n

We define a set

Ly :={ deg(Q) = N : {Qf} € U U ({Qf} W)

n=ko deg(Q’)=

N-1
U U s(@n )
n=ko deg(Q’)=n
We first estimate the number of elements of Ly. Let

U U 5(@hn ) - Us (@ ).

n=ko deg(Q’)=

where B ({sz} : q%) are disjoint, Vi. By (3.2), we get

(U U s(ien i)

n=ko deg(Q

. (UB ({Qif} 7 %))
-Yn (5(t@n. ;)

Using Lemma 3.4, the number of @ with deg(Q) < N such that {Qf} belong to
U; B ({Qif}7 q%) is at most Y, max {¢" "% 1} = max {¢"t° Y, ¢4, ¢V} =
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N+1 _ N N

¢". Thus, the number of Ly is at least g v — ¢~ = ¢"(q¢—2). Next, we

claim that

U B({Qf}, w)

Q€ELN

CU U ({@f} W) U U <{Qf} W).

n=ko deg(Q’)= n=ko deg(Q’)=
(3.3)

In order to show this, fix (); € Ly. Suppose there exists a polynomial Q)5 with

deg(Q2) = u < N and B ({Qlf},q_N_”V) N B ({ng},q_”_li) # (). We know
that {Q1f} does not belong to B ({Q2f}, q*“*lit). Hence,

({QQf} — ) cB ({Q1 11, QNLHN) |

Then, we get
1
{Q1f} —{Qaf}] < e

By Lemma 3.4, the number of {Qf} belonging to B ({Q1f}, q’N’”V) is at most
max{¢¥ Vvt 1} = max{¢~*° 1} = 1. Thus, we get {Qif} = {Q2f}, a
contradiction. Consequently, (3.3) holds. Now, we show that any two balls ap-
pearing on the left side of (3.3) are disjoint. We again use proof by contradiction.
Therefore, suppose there are two different polynomials ()1, Q2 € Ly such that
B({Qi1f},¢ V") and B ({Q2f},q V~'~) are not disjoint. Thus, we know that
these two balls are equal. This implies that

{Qu} = {Qaf) = H(@ = QY <~

Hence,
{(Q1—Q2)f} €B <0,q_N_l§V> .

By Lemma 3.4 again, the number of {Qf} in B ({Q1/}, q_N_“V) is at most
max{q°~'~,1} = 1. Consequently, {Q.f} = {Q2f}, a contradiction. By the
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latter claim and (3.3), we now obtain

w (U U 5 (10 i )

n=ko deg(Q)=

>m U U ({Qf} " ) ( U B ({Qf}7 N-H’ >>
n=ko deg(Q)=n Q€LN
N-1 1
2o U U B(ten g | + -2
n=ko deg(Q)=n o
q—2 q—2
on (U U e
n=ko deg(Q ¢ ™

Yo

As the series Y q_l% diverges, we have a contradiction for NV large enough.

Now, we consider the case ¢ = 2. Since ) ., ¢ " = 0o, we have either
> om0 g % = 00 or > >0 g nt1 = 0o. Without loss of generality, assume that
the first case holds. Then, the same proof as above can be used with the one

difference that is instead of Ly, we consider

Loy = {deg(@) =2N :{Qf} € U U ({Q [} i )

n=ko deg(Q’)=n
2N -2

U U s(@n )

n=ko deg(Q’)=n

Hence, we obtain

m L]j <{Qf} W) >d Z g

n=ko deg(Q)=n [

. I . . .
for some d > 0. As the series > >~ ¢72» = 00, we have a contradiction again for

N large enough. 1

Proposition 3.1.

S2O{feL: fisbadly approximable}
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Proof. Let f be badly approximable. We have to show that

(AU U s(ien )] =1

k=0 n=Fk deg(Q)=

By Lemma 3.5, we obtain

U U ({Qf} an) >#>0,Vk.

n=Fk deg(Q)=n

Consequently,

NU U s(ten )] >0

k=0 n=k deg(Q)=n

and Lemma 3.3 implies the claim. |

Proposition 3.2.
S CA{feL: fisbadly approximable}

Proof. Assume that f is not badly approximable. We will show that a sequence

l, we can choose such that > 7 li = oo but for almost every g € L, there are

at most finitely many () with

{Qf} —gl < e Q € Fo[X], deg(Q) =

Let us choose (R;, S;) such that

where deg(S;) = n;, and define

to=10

,and for t;_ <n<t;, l,=t;—n .

Then, we have

1 1
Z ,L>Z I, 1:Zmzz—:m.

nl zlq i=1
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On the other hand, let @ be a polynomial such that deg(Q) < ¢;, Vi. Then,

QR q
‘Qf - — q2ni+2z
This implies that
R’ 1
Q- < o <1

Note that deg(R;) < deg(sS;). Therefore,

J U ({@f},qn%n): U B({Qf},%)

ti—1<n<t; deg(Q)=n ti—1<n<t; deg(Q)=n

R 1
< U a5

deg(R})<deg(S)

Then, we can estimate the measure of union of these balls

m| U U ({Qf} HH) <m| U B(%l)

t
ti—1<n<t; deg(Q deg(R;)<deg(S;) i 4
]
7 qtl qti qz
So we get
00 > 1
Yol U U slenge)) sXg<
i=1 ti—1<n<t; deg(Q i=1

Hence, for almost every g € L, there are at most finitely many @Q’s such that

HQf} —g| < ¢! with deg(Q) =n. 1

Finally, Proposition 3.1 and Proposition 3.2 imply Theorem 1.13.
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Chapter 4

Kurzweil’s Theorem in Higher

Dimension

Here, we are going to prove Theorem 1.14 from the introduction. Therefore,

fix a r x s matrix A. We first need a technical lemma.

Lemma 4.1. If Au™ € F,[X]|" for someuT # 0, then A is not badly approximable.

Proof. Assume that A is badly approximable. Let us fix some notation. First, set

fir fiz o fis Uy
4 f?1 f‘22 f?s = U‘z
| frl fr2 frs | | Us |
and
_f11 fiz - fls_ _Ul_ —U1f11+"'+Usfls- _R1_
AT — for fa2 o fos Us B Urfor + -+ Usfos _ Ry
| frl fr2 frs 1 L Us | L Ulfrl +"'+Usfrs i | Rr |
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which is in F,[X]". Then, by Dirichlet’s theorem,

_ | Nr
|Q1f11+ Qafor +-- +Qrfr1 — Pi| <gq L=

_ | Nr
|Q1fiz+ Qafor+ -+ Qrfro — P <gq L=t

_ | Nr
Q1 frs—1 + Qafos—1+ -+ Qrfrsm1 — Ps1| < q L=

has infinitely many solutions in Q1,Qs,...,Q, and P, Py, ..., P, with N =
max;<;<, deg(Q;). Next, multiply both sides of the above inequality by |Us| and
set Q; := U;Q; and P} := U,P; for all i, j. Then, we obtain

_ | Nr
Q1 i+ Qofor + -+ QLfr — Pl| < |Uylg o

_| Nz
Q' fi2 + Q5 for + -+ + Q) fro — P3| < |Uslg =1l

_| Nr
Q' fracs + Qhfoacs + o0+ Qb fracs — Py < |Udlg™H7.
This implies that
\ N'r —c
Q) fir + Qofor + -+ + Qpfrn — Pf| < g 57117

N'r
(Qfi2+ Qufor+ -+ Qs fro — By < g7 1507 (4.1)

LN,
Q) frs1 + Qyfos 1+ + Q. froq — P_|| < g~ Lemilme

has infinitely many solutions in @,...,Q. and P{, ..., P/, where

»deg(Q}) and ¢; is a suitable constant. Now, consider

e

UsflsQll +- UsfrsQ:»

=Y (Ri—Uifu—++ = Usrfis1) Q)
i=1
r s—1 s—1
=D QR =Y U (Qifrj+ -+ Qufj— P)) =D _U;Pj
i=1 j=1 J=1
This implies that

r s—1 r s—1
Y UfusQit Y UP = QiRi= = U (Qfi; + -+ Qufry — F))
i=1 j=1 i=1 Jj=1
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Hence,

T s—1 T
D U@+ Y UiPj =Y QiR
i=1 j=1 i=1
N'r

where ¢ is a suitable constant. Dividing both sides by |Us| gives
T d Zj:l UjPJ{ B 22:1 QiR
i=1 o

’
N_;J_C3’

< q_Ls

where ¢ is a suitable constant. Since U, divides @] and P} for all i, j, we obtain

_ E;:l Ujpg{ - 22:1 Q;Rz

T
Us

is a polynomial. Thus, we have proved that

Qi frs + o+ Qrfrs +T| < g 1575007,

/

Now, set q' = [Q}, @5, ..., Q.] and ¢ = min{c;, c3}. By the above inequality and
(4.1),

[{a' A} < g7t
has infinitely many solutions. Consequently, we obtain that A is not badly ap-

proximable, a contradiction. Hence, the proof is finished. |

For the next five lemmas, we assume that A = [f;;] . . is badly approx-
imable. Then, there exists a constant ¢ > 0 such that for all q € F,[X]",q # 0
with deg(q) = n,

1
[{aA}]| > PESES
Lemma 4.2. {{qA} :q € F,[X]|"} is dense in L*.

Proof. Let us fix n € Nand g = [g1, 92, .- .,9s] € L*, where

gi=g X 4 gPX T p V=12, s

J J
We have to show that there exists q = [Q1,Qs, . .., Q,] with deg(Q;) = N; such
that

I{ad} - g| < qi (4.2)

29



First, fori=1,2,....,rand j =1,2,...,s, set

Fi= fOX T X2

and let
- -7 - I - -7
az@) fz‘('l) fi(jQ) T fi(' : 9](‘1)
(1) (2) (3) (n+1) (2)
a=| , Aij = fz. fz.] . J . , by = gj.
_ aZ(N) _ ] fz'('NH) fz'('NH) fi(jgv+n) _ _ gj(n) _
Finally, set
— 19T — - _ -
aj A A oo Ags b,
a A A e Ay b
o 2 A= '21 .22 '2 b= '2
L Ay | L Arl ArQ g Ars | | bs |

Then, the inequality (4.2) has a solution if and only if aA’ = b has a solution a.

In order to prove that this system is solvable, we have to show that rank(A’) = sn

as N is large enough. Assume that there exist aq, ..., ag, not all zero such that
1 N+1 1 N+1
O-/l(fl(l)w--v 1(1 )a"'a.fﬁl)v"w 'r(1+)) (43)
o (F, Y — o,

Now, we set p = [Py, P», ..., P € F,[X]*, p # 0 with

P(X)=0o;+ X+ Fa, X" !
Po(X) = qpy1 + Qpya X + -+ ag, X!

Py(X) = ae—1ynt1 + Qo—yng2 X + -+ + s X"
Hence, (4.3) can be rewritten to
{Pifao+-+ Pfisy | <q ™!
forall i = 1,2,...,r. This implies that

H{APT}HI < ¢~
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On the other hand, since A is badly approximable, Lemma 4.1 implies that ApT
does not belong to F,[X]", Vp # 0. Consequently, since the number of p is finite
(since n is fixed),

min ApT}H|| > ¢ N,
min I {ApTH] > g

for N large enough, a contradiction. Hence, we obtain that p = 0 which implies
a1 = g = -+ = g, = 0. Thus, our claimed result is proved. Therefore, there
exists a solution of aA’ = b. This implies that for all n € N, (4.2) has a solution.
Finally, we have proved that {{qA} : q € F,[X]"} is dense in L. 1

The next two lemmas are proved as in the last chapter. Consequently, we

will omit the proofs.

Lemma 4.3 (0-1 law). Let a measurable set E in 1L° be invariant under the action

-+ {qA} for all q € F,[X]|". Then, we have m(E) =0 or 1.

Lemma 4.4. Let

1
E = {g {aA} — gl < m with n = deg(q) has infinitely many Salutions} :

Then, E is invariant under the action - + {qA} for all q € F,[X]" and hence
m(E) =0 or 1.

Next, we need the following result which is similar to Lemma 3.4 from the

last chapter.

Lemma 4.5. Let g € L° and d > 0. Then, the number of {qA} with deg(q) < N

belonging to B (g, q’d) is at most max{g™"res—ds 1},

Proof. For the proof, we use the second method of proof of Lemma 3.4. Therefore,
fix q,q € F,[X]|" with deg(q), deg(q’) < N. Since A is badly approximable, we

have
1 1

Nroo°
gl

This means that the distance between any two points {qA} and {q'A} is more

[{aA} — {d'A}|| = [{(a — d)A}|| >

Ldeg(qS—Q’)TJ+c —

than q‘L%J‘C. Then, we consider the following two cases.

1. If ¢"L%F)=¢ > ¢=4 then there is at most one point in B(g,q ).
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2. If ¢~ 5)=¢ < ¢~ then the number of points in B(g,q?%) is at most

(q_d)s . S qu—i-cs—ds.
R

Hence, our claim is proved. |

Lemma 4.6. Let I, be a sequence with > q~*'" = co. Then, for all k > 0, we

have

1 1

n=k deg(q)=
Proof. We first exclude the case ¢ =2 and r = 1.

Let I/’ = max{l,,c}, ¥n € N. Then, we have > ¢~*' = co. Assume that (4.4) is

incorrect. Hence, there exists ky € N such that

1 1
m U U ({QA}, m) < — = P for all N > k}o (45)

n=ko deg(q
We define a set

Ly = { degta) = Vs {a) € J U ({Q’A%W)

n=ko deg(q

\NLf U (@) )

n=ko deg(q’)=n

We first estimate the number of elements of Ly. Let

U U (. o) =Us (e )

n=ko deg(q’)=n

where B ({q;4},¢™%) are disjoint Vi. By (4.5), we get

1 1
qcs+1 Z m U U ({q/A}7 M)

n=ko deg(q’)=n

(e (o5
o (aian )

1
= ; qsdi :
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Using Lemma 4.5, the number of q with deg(q) < N such that {gqA} belongs to

U, B ({in}, q*di) is at most ) . max {qN”CS*Sdi, 1} = max {qN’"*CS > g4 gNT

N+1)r _ Nr Nr __

= ¢"". Then, the number of elements in Ly is at least ¢ " —q'" =

¢V (¢" — 2). Next, we claim that

1
BQ@LﬁWf)
U pLa

qeln

cU U ({q’A} mw) U U ({q'A}’ﬁ)'

n=ko deg(q)=n n=ko deg(q)=n
(4.6)

In order to show this, fix q; € Ly. Suppose there exists q, € F,[X]" with
dog(ay) = u < N and B ({aA}.q 570) 0 B ({apd}. L 5174) # 0. We
know that {q, A} does not belong to B ({g,A}, ¢ 1%~%). Hence,

1 1
B <{<12A}7 m) cB ({OhA}’ m) :

Then, we obtain
1

qL%JH;V ’

Ha1 A} = {q A} <

By Lemma 4.5, the number of {qA} belonging to B ({qlA},q’L%J%O is at
most max{g""NT=sIvtes 1} = max{q *»*° 1} = 1. Thus, we get {q,A} =
{q,A4}, a contradiction. Consequently, (4.6) holds. Now, we show that any two
balls appearing on the left side of (4.6) are disjoint. We again use proof by
contradiction. Suppose there are q;, q, € Ly such that B ({qlA},q*L%J%O
and B ({qu}, q*L%J%V> are not disjoint. Thus, we know that these two balls
are equal. This implies that

1
H{a1 A} = {a A = [{(ay — @) A}| < —
gl Ity
Hence,

1
{(qy —qy)A} e B (0, m) .

By Lemma 4.5 again, the number of {qA} belonging to B (0 q_L%J_”\f) is at

cs—sl,

most max{qg®* *~, 1} = 1. Consequently, {q; A} = {q,A}, a contradiction. By
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the latter claim and (4.6), we obtain

(U U ()

n=ko deg(q’)=n

N-1
1
/
>m|{ U U B({q%m) (U B<{qA} gPF I >)
n=ko deg(q’)=n 4 €Ly
N-1 , 1 , Nr 1 3
>m B({dA}, w7 ) | + (@ —2)q Nr |y
qL 1L [5r1+y
n=ko deg(q’)=n q
N-2
1 T —2 =2
>m B ({Q'A}, m) + (qsle> + 4 o7 :
n=ko deg(q’)=n q q 1
Yo
2 > (qr - 2) Z qslil
n=ko

As the series Y ¢~ diverges, we have a contradiction for N large enough.

Now, we consider the case ¢ = 2 and r = 1. Since ano g ' = 00, we have either
Yons0d” slan = 00 or Y ons0d st = 00, Without loss of generality, assume that
the first case holds. Then, the same proof as above can be used with the only

difference that instead of Ly, we consider

Lo = {deg<q>=2N Haye ) U B ({q’f“}’qm;%ﬂ

n=ko deg(q’)=n

U U 5 (@A) o

n=ko deg(q’)=n

Hence, we obtain
m U U (qA}W) >d2q2”
n=ko deg(q |‘

. — gl . . .
for some d > 0. As the series > .°7 ¢ %2 = 0o, we have a contradiction again

for N large enough. |

Proposition 4.1.

Srs 2 {A e L™ : A is badly appmximable}
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Proof. Let A be badly approximable. Then, we have to show that

ﬂU U ({qA},ﬁ> — 1.

k=0 n=k deg(q)=n

By Lemma 4.6, we obtain that for all £ > 0,

1 1

n=k deg(q

Consequently,

NU U 5 (1@t ) | >0

k=0 n=~k deg(q)=n

and Lemma 4.4 implies our claim. |

Proposition 4.2.
Sys C {A e L™ : A is badly a,ppmxz'mable}

Proof. Assume that A is not badly approximable. We will show that we can
choose a sequence [, such that y >, ¢ " = oo but for almost every g € L#,

there are finitely many q with
1
H{qA} - g” < & o ad € Fq[X]T7 deg(q) =
qL = +ln

Since A is not badly approximable, there exists a sequence q® Ql , QQ o, Qr )]

belonging to F,[X]" with deg(q”’) = n; and n; increasing such that

. 1 ,
{a"A}| < FECESTIN Vi e N.
q

Define

fo=0 _
. ; and for t;_; < n <t ln_LMJ-
ti=n;+1,1>1

Then, we have

Z sln>z Sl 1:ZWZZ?:&>.

n=1 4 i1 4 i-1 ¢° E i=1
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On the other hand, assume without loss of generality that ¢" = ||q|| = ]Qgi)].
We have to show that

U U sathe) ) cUB ({aaha 502,

ti—1<n<t; deg(q)

where the right union runs over all ' = [Q], @5, . . ., Q,] which fulfil the conditions

@<l <" @ < g

Fix {qA} with ;1 < deg(q) = n < t;. Then, there exists a polynomial A such
that |Q1 + hQ'"| < ¢™~!. Note that |h| < ¢t~ Now set

= Q1+ hQY, Q2+ hQY, ... Q, + hQY).
Then, we obtain
I{aA} — {dA}|| < |h||{aPA}| < ¢' i g LF 0 = g L,

Note that

| nr nr 7”(’5 —n) _nr_ T(i —n) _ z

Hence, we have

B ({ad},q"¥17) € B ({d'A},q7150%2).

Therefore, our claim is proved. Now, we estimate the measure of union of these

balls

! s(-17 ni+ti(r— s—1
m| U U ({qA} W) < (FLEH2) gritti(r=1) < (35—,

ti—1<n<t; deg(q)=n

Consequently,
oo 1 oo o
S U U (@) o) | < Td <
i=1 ti_1<n<t; deg(q)= Ea i=1

Hence, for almost every g € L°, there are finitely many q’s with deg(q) = n
satisfying [[{qA} — gl < ¢ 157

Finally, Proposition 4.1 and Proposition 4.2 imply Theorem 1.14.
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Chapter 5

Conclusion

We conclude this thesis with some remarks.

First, note that in the real number case, the approximation function in
Kurzweil’s theorem is assumed to be monotonic (compare with the theorems of
Kristensen in Section 1.2 were also some monotonicity assumptions are used). In
this work, on the other hand, the approximation function is of the form ¢="~»
with no monotonicity assumptions on [,,. However, note that our approximation
function tends to 0 as n tends to infinity (this was not assumed by Kurzweil).
In fact, we guess that if one replaces our approximation function by ¢~'», then
in order for the result to hold, a monotonicity condition on /,, similar to the one
used by Kurzweil is needed.

Next, we briefly discuss possible almost sure results for the number of
solutions of (1.6) (similar considerations can be made for the higher dimensional
case). Let us denote a sequence of random variables counting solutions of (1.6)
by

Xy = #{solutions in  with ) monic of (1.6) with n < N}.

Then, we have that

Xv=), >, XB({Qfta—m=in)

n<N deg(Q)=n

where y 4 denotes the indicator function of the set A. Hence, we obtain for the
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expected value

SIS

n<N deg( ) n<N
An interesting question is whether or not one can prove a strong law of large
numbers for the number of solutions? More precisely, is it true that for any badly

approximable f, we have

XNNZq a.s.?

If yes, what can be said about the error term (which should then depend on
Diophantine approximation properties of f)?
Overall, there are still interesting questions left concerning inhomogeneous

Diophantine approximation in the field of formal Laurent series.
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