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Abstract

The Poisson-Nernst-Planck (PNP) model-is a basic continuum model for sim-
ulating ionic fows in an open‘ion-channel.- It is.one-of commonly used models in
theoretical and computational: = The Poisson” equation is derived from Coulomb’s
law in electrostatics and Gauss’s theorem in calculus. The Nernst-Planck equation
is equivalent to the convection-digussion.model.. Many-computation methods have
been constructed for the solution'of the PNP-equations. However, we want to sim-
plify the second order solver of proposed in the-iterature [24] but, we must to deal
with some problems. For example; singular charges, nonlinear coupling and inter-
face. First, we apply the decomposition method [5] proposed by Chern, Liu and
Wang to cope with the singular charges. Second, the matched interface and bound-
ary (MIB) method [24] is used for the interface problem. Third, the initial guess are
given by Poisson Boltzmann (PB) equation and two iterative schemes are utilized
to deal with the coupled nonlinear equations. Finally, the real data of Gramicidin
A (GA) channel protein is obtained from the protein data bank (PDB).
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1 Introduction

Biological ion channel is a porous protein on cell membrane and they are present in
the membranes that surround all biological cells. It allows some particular ions across
cell membrane and then controls the electrical potential dicerence of the internal and
exterior part. These ions move through the channel pore single ..le nearly as quickly
as the ions move through free fuid. In some ion channels, passage through the pore is
governed by a "gate™ which may be opened or closed by chemical or electrical signals,
temperature, or mechanical force..., depending on the variety of channel. lon channel
is vary important for process of life such as control hormone ooze, preservation of salt
and water balance, sensory transduction, nerve and muscle excitation, muscle contraction
etc. [13], in general, ion channels may be classi..ed by the nature of their gating, species
of ions passing through those gates or the number of gates (pores) and localization of
proteins. Moreover, ion channels may be classi..ed by gating, i.e., what opens and closes
the channels. For example, voltage-gated ion channels open or close depending on the
voltage gradient across the plasma membrane, while ligand-gated ion channels open or
close depending on binding of ligands to the channel.

The following is some of the most important development of ion channels, British
biophysicists Alan Hodgkin and Andrew Huxley discoveries concerning *the ionic mech-
anisms in the nerve cell membrain’™ (Nobel Prize in Physiology or Medicine 1963), Erwin
Neher and Bert Sakmann discoveries-concerning '‘the function of single ion channels in
cells” (Nobel Prize in Physiology or Medicine 1991). Roderick MacKinnon for his stud-
ies on the physico-chemical properties of 1on channel structure and function, including
x-ray crystallographic structure studies, and Peter Agre.for his similar work on aquapor-
ins (Nobel Prize in Chemistry 2003).-In the past decades many experimental techniques
have been well-developed for study ion channels [14]. However, this data has driven the
development of the theory and calculations. The commonly used method are ab initio
molecular dynamics (MD) and classical molecular dynamics (MD) [19]. Because taking
into account each ion, it requires a very large number of computing.

The Poisson-Nernst-Planck (PNP) equations are an approximation of ions, for which
we do not deal with a discrete distribution for the ions. Instead, we consider continuous
charge densities. The PNP theory considers the real channel structure and discrete protein
charge locations in its modeling and computation. The PNP theory neglects the ..nite
volume erect of ion particles, which can be important for small channel pores [16]. The
existence and uniqueness of PNP equation is an important issue in mathematics and on
certain restrictions can be obtained [2][3][10]. Due to the overly complex domain, analytic
solution to the original PNP system is unfeasible. Therefore, we focus on the numerical
solution and thus understand the meaning of the results. PNP is a very interesting



model that includes three coupled equations, irregular geometry, discontinuous dielectric
coeCcients, singular charges and nonlinearity.

In mathematics, a lot of discrete methods have been used to solve the PNP equation,
such as ...nite diicerence method, ..nite element method, ..nite volume method and spectral
element method. Among them Q. Zheng, D. Chen and G. W. Wei provide a second-order
convergeence method [24] and this is ..rst method that yields a second-order convergence
in the literature for three-dimensional (3D) realistic geometry of the Gramicidin A(GA)
channel, but the method requires up to 27 ..nite dicerence points. We simplify this
dicerence method to seven points formula and maintain the quadratic convergence. For
initial guess, the potential is obtained by Poisson-Boltzmann (PB) [23] equation and it is
a nonlinear equation. The PB equation will be solved by linearized PB equation as initial
guess and then will need to implement monotone iterative method [17] to solve nonlinear
PB equation. For the singular charge, we implemant the decomposition method proposed
by Chern, Liu, and Wang [5] and the potential is decomposed into three parts such that
delta function disappears in the right hand side. Because we use this decomposition
method [5], we must approximate the gradient of the Green function (section 2.2.4 and
4.3). For interface problem, the match interface and boundary (MIB) method is used to
connect solvent and molcular parts and to treat jump conditions.

For channel structure, Visual Molecular Dynamics (VMD) [15] is designed for model-
ing, visualization, and analysis of biological systems such as proteins, nucleic acids, lipid
bilayer assemblies, etc. It may be used to view more general molecules, as VMD can read
standard Protein Data Bank (PDB) ..les and display the contained structure. VMD can
be used to animate and analyze the trajectory of a molecular dynamics (MD) simulation.
In particular, VMD can act as‘a graphical front'end for an external MD program by
displaying and animating a molecule undergoing-simulation on a remote computer. \We
consider water in the channel and generate Molecular Surface (interface) in 3D uniform
grid by van der Waas radii and a probe ball, i.e., closest distance of water molecules with
protein that is obtained by VMD.

2 Poisson-Nernst-Planck model and numerical meth-
ods

Biological ion channels seem to be a precondition for all living matter [20]. lon channels
are porous proteins across cell membranes that control many biological functions rang-
ing from signal transfer in the nervous system to regulation of secretion of hormones.
Understanding the mechanism of ionic fows within a channel as a function of ionic con-
centration, membrane potential, and the structure of the channel is a central problem in



molecular biophysics [12]. The PNP model proposed by Eisenberg and coworkers [8][9]
as a basic continuum model for simulating the ionic fow in an open ion channel is one of
commonly used models in theoretical and computational studies of biological ion channels.

2.1 Poisson-Nernst-Planck model

For modeling the fow of two species of ions through a channel, the steady-state PNP
model (2.1.1)-(2.1.3) reads as [24]

P —V-(e(r)Vo(r)) =4n i qio(r —r;) +4m Z ¢Ci(r), e Q (2.1.1)
NP1 : —V.-Ji(r)=0, r e - : (2.1.2)
NP2 : —V-J(r)=0, r e, (2.1.3)
Ji(r) = —=Di(r)[VCi(r) + B,Ci(r)Ve(r)] fori=1,2 (2.1.4)
e P e R N Ty e

where r = (z,y,2), Ji(r) is the_eurrent density. of an ion species ¢ with ¢;, C;(r) is
the concentration of an ion species i-carrying charge ¢; (for example,q.+ = +1e,qy- =
—1le), J; the concentration fux (current density), D, the spatially dependent dicusion
coeCcient, 5, = ¢;/(kgT), kp the Boltzmann constant, 7" the absolute temperature, ¢ the
electrostatic potential, ¢ the dielectric constant ,.and ¢ the protein charge. The domain
Q = Q,, UQ, consists of two subdomains, namely, the solvent subdomain Q, and the
biomolecular subdomain(2,,,. The electric permittivity has dicerent values in subdomains

and denoted by
€5, V1 €
€(r) =¢, = {e vr e O } (2.1.6)

where ¢, = ¢, is the dielectric constant of the solvent, and ¢, = ¢,, is the dielectric constant
of the molecules. We consider the domain as a cubical box

Box = Q = (=204, 20A) x (—204,204) x (0A,40A) (2.1.7)
For the jump condition at the interface I" given by



Poisson equation:

[¢(r)] = ¢"—¢~ =0, rel (2.1.8)
[e(r)o,(r)] = €nVoT-n—eVé -n=0,rel (2.1.9)
Nernst-Planck:
Ji(r)-m = 0, rel (2.1.10)
where
I = Q,.NnQ, (2.1.11)
ot = lim+ (), ¢~ = lim é(z), r~ € 9, rt e, (2.1.12)

I' is the interface set between 2, and 2,,, n is an outward normal unit vector on I and
A is equal to 10~8cm(Length).

Figure 2: Side view of the GA channel embedded in the membrane.
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Figure 4: A cross section of 3D PNP simulation domain for GA channel.

Fig. 4 is across section of 3D PNP simulation domain for the GA channel [7]. Fig.
2 is a side view of the GA channel embedded in the membrane [24]. Fig. 1 illustrates a
VMD [15] simulation system of the KcsA channel with membrane, water, and ions [1].
The channel protein is in the central part of the simulation domain (a box) as shown in
green color. The membrane consists of bilipid layers shown in light blue surrounding the
channel. The upper and lower regions represent the extracellular (outside of a cell) and
intracellular (inside) solvent regions, respectively, that consist of water and ions.



2.2 Numerical methods for PNP

2.2.1 Finite dicerence method for Poisson’s equation

Discretization of the left hand side of (2.1.1) by the central ..nite dicerence method (FDM)
yields

0 OP(zi,y,2)\ _61‘—%@—1 + (Q-% + €i+%)¢z‘ - €i+%¢i+1

—8x(e(r) 9 )~ N (2.2.1)

for all (z;,y,z2) € Q,, U Qs, W =¢,, o, = &(zi,y,2), Ax = x; —x;-1 = h, and z; are
..nite dizerence grid points. We assume a uniform partition of the box in each direction,
i.e., Ax = Ay = Az = h. To simplify the notation, we write (2.1.1) in 1D as

0(x)

(e2)=5, ) =1 (22.2)

9
ox

The second-order, denoted by O(h?) (convergence order is 2), central FD approximation
of (2.2.2) is
—€_10; 1+ (Gz‘—% + €i+§)¢z‘ — €10

= fi 2.2.3
§3L f (22.3)

For interface problem, we alway assume that
Tiog <Y =21 < (2.2.4)

i.e., every jump position v € T is at the-middle of some neighboring grid points. We
consider the following jump condition for Poisson problem (2.1.8) (2.1.9)

[p(r)] = o7 ¢==0,1cT (2.2.5)
(1), ()] = e.Vo™ -n—eVo -n=0,7rel (2.2.6)

For the jump condition in 1D, we have

[e(r)d,(r)] = €nVo™ - n— eV~ -n=e,df — e, n=(1,0,0) (2.2.7)
or
[€(r),(r)] = VT - n—e Vo -n=—e,df +e,0,,n=(-1,0,0) (2.2.8)

Remark. 2. 1: By (2.1.8) and (2.1.9), it is easy to observe that the electrostatic potential
¢ is continuous and non-dizerential on T'.



2.2.2 Matched interface and boubdary method (MIB)

For dizerent dielectric constant ,,, ¢, and the non-dicerential point, the MIB is used to
deal with this problem such that we can obtain a second-order convergence formula. The
main ideas of the MIB method for handling the jump problem are

(1) considering (2.2.2) as two dizerent subproblems with two disjoint subdomain x < ~
and z > ,

(2) taking the jump condition (2.2.5) and (2.2.6) as the boundary conditions for each
subproblem with respect to its subdomain,

(3) extending smoothly a function ¢(x) de..ned on a subdomain to a ‘..ctitious’ func-
tion ¥(z) de..ned on another subdomain, and

(4) applying Taylor’s theorem to the jump conditions for joining two subproblems
back to one.

De..ne the extension functions

F(z) = {o0)§ Zor Gz) = {30 227 (2.2.9)

U(z), if >y U(z), if <y

Applying Taylor’s theorem to F'(z) at the interface, we have

Fee) = PO) P el e, - o) @2.10)
F(x;)) = F(y)F F'(9)(x; — )+ /2(7) (% — 7)2 + O(h3) (2.2.11)
Fy) = & (x"‘l); Fl) L ome (2.2.12)

Hence, for (2.2.5) we have

Ot Y

07 = Fl(y)=—"=—+0(") (2.2.13)
ot = G(y)= % +0(h?) (2.2.14)
(6] = 0 +2‘I’H — ¢i—12+ i) O(h?) (2.2.15)

Similarly for (2.2.6), subtracting (2.2.10) from (2.2.11) gives



hF'(y) = F(x;) — F(zi_1) + O(R®) (2.2.16)

0 = Fy)=—"—""+00) (2.2.17)
o = G(7)= % +O(h2) (2.2.18)
b = en _hq”‘l L _hqs"‘l +O(h?) (2.2.19)

Therefore, by (2.2.15) and (2.2.19), the following equations

Al¢z‘—1 + AW = AW+ A4¢z‘ - [¢] (2-2-20)
€ (Bl¢i_1 + BQ\I/z) == €+(Bg\11i_1 -+ B4¢z) — [€¢x] (2221)

represent FD approximations of (2.2.5) and (2.2.6), respectively, with local truncation
errors of O(h?). Here, the weight are

1

A = Apsimds = (2.2.22)
—1 ~1

B, =) B =—yBy=By= — 2.2.23

1 3 h> 2 4 h ( )

Solving (2.2.20) and (2.2.21) for the ..ctitious values ¥;and W, ; we obtain
(G_BQAl - €+BlA2)¢i_1 — (G_BQA4 - €+B4A2)¢Z~

Vi = € BoAs —€t BsAs
" € B[] = Agled,]
€ ByAsz < et B3 A,y
= G+ oo T G (2.2.24)
U, = —(€"B3A1 — € BiA3)¢; 1 + (€7 B3 Ay — € ByAs) o,

€+33A2 — G_BQA:J,
—¢" Bs[¢] + As[eg,]
€+33A2 — G_BQA:J,
= D¢y + D2 + Do (2.2.25)

Following (2.2.3) by dizerencing F'(x) at the grid point x;_; and direrencing G(x) at the
grid point z; , we obtain

_Q—g@—z (6 s t+e )¢ — € 1Vin

Ax2_2 2 - fi—l (2226)
_ﬁj_;qlz‘—l + (ej__l + €i+%)¢z‘ — €10
2 2 _ (2.2.27)
Ax?

10



Although ¥; and ,_, are called ..citious (ghost) value, they are real in implemantation
and de..ned by (2.2.24) (2.2.25) via ¢;_, and ¢,. Consequently, (2.2.26) and (2.2.27)

become
—€ 3¢, o+ (63 +(1—=Di)e )b, — Dae._1 ¢, € 1Dy
: : — — = fioit —2
Ax? ! Ax?
—Clﬁj_%@—l +((1 - 02)6;% + €i+%)¢z‘ - €¢+%¢i+1 G;F_%CO
Az? = fit Az?

or (by 7 = ,_1)

—€0; o+ (€5 + (1 — D1)es)p; 1 — Daesy fos es Dy
Ax? T Ag2
_Clem¢i—1 + ((1 B 02)6771 + 6m)¢z B €m¢i+1 _ f + 6mcb
Az? T An?

_Clem¢i—1,j HA=Co)ed 7 6m)¢z‘,j - €m¢z‘+1,j
Ax?
_Clem¢z',j—1 + ((1 -1 02)6m =+ 6m)¢z‘,j - €m¢z‘,j+1
+
Ag?

(for 2 jumps'in 2D)

€m00 6sl)O

T acil gk

whewe

(G_BQAl — €+BlA2) o GSBQ — GSBl o 2¢€4

Cl - G_BQAg — €+33A2 - GSBQ — GmBg a €s + €m
Cy — —(G_BQA4 — €+B4A2) _ —€sBy + €,,Ba _ €m — €
G_BQA:J, — €+33A2 GSBQ — GmBg €5+ €m
(o _ Bl Aleo] _ 26Balol — [e0u] _ 26,l6)— hleo)
G_BQAg — €+33A2 GSBQ — GmBg €5+ €m
D, — —(e"B3A; — € B1 A3) _ —(€é,B3 — €,B1) _ —(€m — €5)
€t B3 Ay — € By Asg €mBs — €,Bs Em + €
D, — (e"B3 Ay — €™ ByAy) _ €mBs — €, By _ 26,
€t B3As — e By As €mBs —€;By €, + €
D, = _€+B3[¢] + A3[€¢Jz] _ _2€mB3[¢] + [€¢x] _ _26m[¢] — h[€¢x]

€+33A2 — G_BQA:J, GmBg — 6532 €m T €s

11

(2.2.28)

(2.2.29)

(2.2.30)

(2.2.31)

(2.2.32)

(2.2.33)
(2.2.34)

(2.2.35)

(2.2.36)
(2.2.37)

(2.2.38)



Fore,, =1, ¢, = 80, and [¢] =0, we have

2-80 , 79

_ _ __ —C, == 2.2.

c, < Oy m .Co TR Cy T (2.2.39)
92 _ —hled,] 2

Dy = o Da=p,Do=—1- D=, (2.2.40)

which lead to a diagonally dominant matrix from (2.2.30) and (2.2.31). By (2.2.20) and
(2.2.21), we introduce two unknows ¥; ; and W; in order to treat the two jump condition
[¢] and [e¢]. If [¢] = O, we actually have only one jump condition [e¢] to take care of.
Hence, we should let either ¥,= ¢, or ¥, 1= ¢, , in (2.2.21). If we let ¥;= ¢,, then
(2.2.20) become

Arg;_y = A3V 1 — [¢] (2.2.41)

which means that the ..ctitious value ¥;_; will cause an O(h?) error to approximate [¢]
if (2.2.27) is in use. The next question is from which of (2.2.30) and (2.2.31) we should
choose. Numerical results show that (2.2.31) is better. Nevertheless, if both [¢] # 0, and
[ep,] # 0,we should use both.

2.2.3 FDM for Nernst-Planck«(NP) equation in primitive form

We ..rst consider the NP equation in: the primitive form, and simplify it in 1D as

oJ 0 oC ol
= (D= == =f=0. 2.2.42
oxr 0Oz ({ (83: +ﬁ08x)}) f=0 ( )
Dizerencing (2.2.42) at x; gives
0J(i,y, 2) irg = ik
_ ~ o2 2 2.2.43
Ox Ax ( )
[ oC o¢p
—J 1 =~ - = 2.44
ot = [ 0] 22
| Ciy1—C; Cip1 +Ci b — O,
R _DH% ( N + BH% 5 N (2.2.45)
[ C;,—Ci_4 Ci+Ci1 0, — ;4
—J_ 1 = R e — . . 2.2.4
ey P ( A TP T Az (2.2.40)
aJ 1Y) 1
—% ~ A—:c? [%‘—10@‘—1 +a;C; + ai+10i+1] (2.2.47)

12



aii = Diy=Di 3B (6= 6,1)/2 (2.2.48)

a; = —(Di_% + D, l) i——ﬁ %(@ —$;1)/2 (2.2.49)
+Dz‘+lﬁ. ( i1 — B)/2 (2.2.50)
Qit1 = Dz+l + DH—;BH_% (Piy1 — ¢i)/2 (2.2.51)

a;i—1Ci—1 + a;C; + a;41Ci4
Ax?
where equation (2.1.10) is a boundary condition for Nernst-Planck problem not an in-
terface condition. Moreover it is usually called the Robin boundary condition since it
involves the data of both the unknown C itself and VC. If a boundary condition is in
terms of C' only, it is then called a Dirichlet boundary condition and is called Neumann
boundary condition if in terms of VC only. By (2.1.10), we write in 1D as

= /i (2.2.52)

Jon = J-{1,0,0)=J"

oC . .
J* = ( + pC —qb) = g(= 0 in real equation) at ~y (2.2.53)
We discuss the ..nite diaerence apprOX|mat|on of (2.1.10) in two case.
Case 1. n = (1,0,0), X;_1 £€9Q,, X; € Q,,, X; 1= Y Let
C ad
J\= — { (a + pC —qb)} (2.2.54)
2| . 1
Finite dicerence approximation of (2.1.10) at Xi 1 =4 IS
¥ —Cig Vit Cit1 ¢ — diy
-D, ,—~——1_D LTl ) g 2.
( 2 Az i—%ﬂi—% 2 Ax Ji-3 (2.2.55)

where U, is a ..ctitious value. We extend the function C'(x) continuously from x;_; to X; by
considering ¥; as an extra unknown that approximates the ghost value C(x;). This i FD
equation and the i — 1** equation (2.2.52) across the interface can be written respectively
as

. . o . AP
Q; QCZ 2 + Q; lcz 1 + Q; ¥ _ fz‘—l (2257)
Ax?
dz = _Dz—% - 1—561— (¢ ¢ ) /2 (2258)

diy = Di_é - Di—%ﬁi—% ( i z‘—l) /2'



Case 2. n = (—1,0,0) , z; € Qy,, ;41 € 4, and v = Tip1. Similarly, we have

a; Vi +a;11Ci1 + a;12C5 49
N = fin (2.2.60)
di = _DH—% + Di+%ﬁz‘+% (¢z‘+1 - @) /2 (2.2.61)

diyr = Diyi +D; 10,1 (051 — ) /2.
Now we will introducing the Slotoom variable C; [22] by

C; = Cexp(—B;0) (2.2.62)

the concentration fux is then reformulated to

J; = —D;exp(—B,6)VC; = —;,VCi, a; = D;exp(—B;0) (2.2.63)

Consequently, the self-adjoint PNP s

Na 2
—V - (eV@) = 4> ¢io(r —1;) 47 > ¢:Ci, (2.2.64)
| i=1
Ve, =V [aiv@} —0,i=1,2 (2.2.65)

Consider the Slotboom form of NP (2.2.65) with (2.2.62) and (2.2.63). In 1D, it reads as

aJ “TooC
— = <&%> —f (2.2.66)

and the FD equation at x = z; is

~

N = fi. (2.2.67)
Corresponding to (2.2.53) and (2.2.55), we have respectively
J = —04@ =g aty (2.2.68)
ox
W —Cioy _
—Oéi_% A = gi_%, (2.2.69)



Eq. (2.2.68) is a Neumann BC. If a Dirichlet BC is considered, we then have

— Gp aty = T, = Gp, or (2.2.70)
c = gp, U, = gpi (prlmlthE)

)

The method (2.2.55) (or (2.2.69)) alone to treat the Robin (or Neumann) BC is usually
unstable due to many unde..ned normal vectors n at corner points. To stabilize the
method, we make connections between the adjacent points of ¥; and W¥,_;. For this, in
addition to (2.2.55), we impose

v, +U,_
_ LQ L= o, (2.2.71)
U, +V¥,; = 0, if Ci_% IS not given.

All Robin (with stabilization for the primitive form), Neumann (with stabilization for the
Slotboom form), and Dirichlet BCs are implemented for both GA and cylinder. On the
interface I", we should use either Robin or Neumann BCs. Dirichlet BCs are used only
for testing the code. All numerical results are good as shown in the following tables.

2.2.4 The Decomposition of electrostatic potential

We now implement the decomposition method proposed by Chern, Liu, and Wang [5]
to cope with the singular charges obtained from the protein data bank (PDB). By this
method, the potential ¢(r) is decomposed-into

d(r) = d(r) + dlr)pr € Q= 0, UQL, T = 99, N, (2.2.72)
such that
— )+ () reQ, 5 [ o—¢ —¢" req,

olr) = { 0,rcQ\l "’ o) = { ¢, r € QD (2.2.73)

~ 2
V. (ew) — 47> O, re O\ (2.2.74)

=1
—enAp = —€, A" —€,A°, T EQ,, (2.2.75)

and the Poission equation of ¢° given by

{—emAqﬁo(r) =0, reQ,

() = —6", 1€ I (2.2.76)

and ¢* is the Green function given analytically
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“(r) = 3° % re R 2.2.77
e N CET I e P #210

which is the fundamental solution of the following equation

Na
—e, AP (r) =47 Y ¢;6(r — 1), r € R (2.2.78)
j=1
Summing (2.2.74), (2.2.75), and (2.2.79) gives

V. (Vh) = -V (ev@ +$)) - V. (evas) — e NG — ey A

= 4rm % ¢;0(r —r;) +4m i ¢C;, r € Q\I. (2.2.79)
j=1 i=1
which is exactly (2.1.1). Note that ¢* satis..es (2.2.79) in the whole space R? of a uniform
medium with the dielectric constant ¢,,. Since we have two dicerent media of ¢,, and ¢,
in a bounded domain ©, ¢° can be thought as a correction potential to ¢* that accounts
the electric responses of dicerent dielectrics .and boundary conditions. In general, the
analytical form of ¢” is not availableiand hence its numerical approximation is inevitable.
We next decompose the interface.conditions (2:1.8) and (2.1.9). By (2.2.76) we have

[¢] =0onT (2.2.80)
which implies that

[b(r)] = 5} {gr=0mer (2.2.81)
[Eﬁ(r): — 0,rel (2.2.82)
epn(r)] = :e (%1 +En)} rel (2.2.83)
[ean(r): = [edn] — [Bn] T ET (2.2.84)
[€n] = eV (0" +¢°) - mreTl (2.2.85)

(bu®)] = [enV(6—0" —0") — Vo] mrel
[6nV (=¢" —¢”)] ‘n,r el (2.2.86)

due to PNP is three coupled equations and then to introduce iterative method for PNP
equations in next section.
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2.2.5 The Gummel and SOR-Like schemes

The Gummel algorithm [6] is an outer iteration given by

Gummel’s Algorithm for Nonlinear PNP
stepl | Solve (2.2.76) for ¢°

step2 | Gauss initially ¢ — ¢
step3 | Evaluate ¢ = ¢° + & + ¢ by (2.2.72)
step4 | Solve NP1 C; =

step5 | Solve NP2 C, = )
step6 | SOR-Like(2.2.87)

step7 | Substitute ', C and solve (2.2.74) for ¢ — &
step8 | If || & - & || or || M- || >TOL i=1,2 then Go to step3

By [24], the SOR-Like(inner iteration) is a necessary rule for PNP to converge in step6
and is de..ned as

~new ~old ~new
C«Znew _ wCled & (1 A w)c’z?ww (2287)

where the relaxation parameter w is selected between 0 and 2.

2.3 Test case for PNP _equations

Now we will check the method described above can achieve quadratic convergence. For
nonlinear PNP models, the test solutions [24] are chosen to be

¢(r) = coszcosycosz, r € (2.3.1)
o(r) + ¢°(r) + ¢*(x), r € Dy
¢(r) { o). r e, (2.3.2)
0 , re,
Cilr) = { 0.2cosxcosycosz+ 0.3, r € (2:3.3)

0 ref)
C = ’ " 2.3.4
2(r) { 0.1cosxzcosycosz + 0.3, r € () ( )

where r = (z,y, z) and the PNP system can be written in the following form
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0(p) —

" S reon. #29

P @ —V-(e(r)Vo(r)) = iqi@(r) + F(r),r e (2.3.6)
NP1 : —V.-J(r)=F, rezé (2.3.3)
NP2 : —V.J)=F, reQ, (2.3.4)
Ji(r) = —Di(r) [VCi(r) + ¢:Ci(r)V(r)] i = 1.2 (2.3.5)
¢*(r) = i 9 req, (2.3.6)

j=1 emy/ (@ — 252+ (y — ;)2 + (2 — 2;)?

where ¢ = 1, ¢ = —1, D; = D, = 1, and the right hand side can be calculated as the
following

B (3e5-0.1) cos X cosycosz, r € B B
F) = { 3e,,co08Xcosycosz,r €8, €m =1, € =80 (2.3.7)
Ar) = V- [VCl(r) E cl(r)va(r)} L req, (2.3.8)
Fyr) = V- |VGr) ~ GOVl i e, (239)

For the test case, we have three.unknown Cj(r), Cs(r) and ¢(r). Due to we decompose
the electrostatic potential ¢, and thus.avoid the prablem of delta function. On interface
', the jump condition are given by

led,] = (€mV (¢ + ¢° + ¢*) — €,VP) -n 0 and [¢] =0 (2.3.10)

then we have two jump condition of ¢ as following

9] = 0 (2.3.11)
led,] = (emVo—€eVo)-n
= (enV cOsT COSYCosz — €5V COSTCOSYCoS2) - N (2.3.12)

3 The Poisson-Boltzmann (PB) equation

The PB equation is to describe the electrostatic potential of the ion concentration in
the uniform state. For the solution of the PB equation, we put this process into two
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steps. First,we use ..nite dicerence to solve the linearized PB equation and initial guess
of nonlinear PB equation are obtained. Second, when we get a good initial guess, we will
need to implement monotone iterative method [17] for our nonlinear PB equation.

3.1 The Poisson-Boltzmann (PB) equation and linearization

Because PNP models are nonlinear and coupled with C; C; and ¢, the initial guess of 50 is
a function that must be carefully computed. After reading Appendix 2 in [23], we realized
that the initial guess function should be set as the solution of the Poisson-Boltzmann (PB)
equation

—V - (e(r)Ve(r)) = 4r i q;0(r —r;) + 472 GCM™* exp(—B,6(r)), r€ Q  (3.1.1)

=1

where CBU* is bulk concentration of mobile ions of ith type are given and other parameter
are same with (2.1.1). We will need to implement monotone iterative method [17] for both
nonlinear PB and PNP models. An electrolyte is any substance containing free ions that
make the substance electrically conductive. . Electrolyte solutions are normally formed
when a salt (NaCl) is placed into a solvent such as water and the individual components
dissociate due to the thermodynamic-interactions between solvent (water) and solute
molecules (NaCl), in a process. called-solvation. - This redistribution of solute molecules
in solvent is the focus of Debye-Huckel theory. This theory uses the Boltzmann factor
exp(—p,¢(r)) of dissolved ionswith ¢; in-the local electrostatic potential ¢(r) to estimate
the increase or dicrease in the local concetration C;(r).relative their bulk concentration
Chk (1), ie.,

Cil(r) = CYIrED5.0(r) (3.1.2)

Of course, the potential ¢(r) is itself infuenced by the redistribution of sodium (Na) and
chloride (CI) and by the location of singular charges ¢;, so the potentials and concen-
trations must be solved for self-consistently. The bulk concentration C?“*(r) is de..ned
the ratio of the total number of mobile ions of i** type and the total volume that they
occupy. It is zero inside the solute and constant outside. The PNP model (2.1.1)-(2.1.3)
reduces to the PB model in the absence of a fux, i.e., in the absence of applied voltage,
i.e.,, Vo = 0 in dirichlet boundary condition. The PB equation is usually applied to a 1:1
salt solution where there are cations (positive charges) of valence z with a counter ion

19



(negative) of valence —z. In this case with z = 1, we have C**(r) = C,, and

2
> 4GP exp(—5;0(r))
i=1

ey exp(=16(r)) — e.Cy""* exp(—B,0(r))

exp(—f,9(r)) — exp(—=B29(r))

= 26600 B
20, HED ~ 0 00)
: €c
= —26600 Sll’lh(mﬂﬁ(?’))
2e¢2Cy) KpT . €c
=~ TR e smh(KBTqS(T))
KgT e
24\B . c
= _— .1.
k . smh(KBTqS(T)) (3.1.3)
where p2c
12 ey T €
0, reQ,
The nonlinear PB equation is thus
KiT e ol
—V - (e(r)Vo(r)) + 47k f sinh(KBchﬁ(r)) - 471'; Go(r—r;), reQ  (3.1.4)
Applying Taylor’s expansion
.. 02—
0 f— - N PR
¢ =14 g (3.1.5)
to sinh(7=7¢(r)) with § = 2=7.6(r), we obtain
inh(—< o ))—9+9—3+ (3.1.6)
Sin KBT T = 6 1.

The linearized PB equation corresponds to the ..rst degree approximation of Taylor’s

expansion, i.e., sinh(z 7

—V - (e(r)V(r)) + 4rk?

KgT

(r)) ~ 6 and is written as

0 = —V-(e(r)Vo(r)) + 4rk>d(r)

Na
A qid(r—ry), r€Q (3.1.7)
j=1
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Because of delta functions and using the decomposition method previously described,
(3.1.1) can be written as

—V - (e(NVO(r) = =V (e(r)Ve(r) — enAd* — emAg’

Na 2
= A4r Z q;o(r —ry) +4m Z 4;C exp(—B,(d + ¢)) (3.1.8)
=1 =1

which yields, in corresponding to (2.2.74),

2
—V (e(r)Vo(r) = 47y qCM* exp(—B;(+ ¢))
=1
2
= dn ) q,Cr* exp(—B,0) (3.1.9)
=1

~ constant, r € £,

Similarly, for (3.1.4) and (3.1.7), we have

LV () V() + Ak e S = 0, re QT (3.1.10)

Ce KBT
V(@Yo + ArkPd(r) = 0, reQ/T  (3.1.11)
with

KpT™ 3.1.12
0, e Q. ( )

The boundary and interface conditions.for ¢ are the same as those in (2.2.80) (2.2.86).

2
12 - {—LQ@CO r e Q,

3.2 Monotone iterative method for the nonlinear PB equation

Discretization of the left hand side of linear PB equation (3.1.11) by the central ..nite
dicerence method (FDM) yields

_a% <6(T)W> +Ank2g(xi,y, 2) =

_ei—%qsi—l + |:<€i—% + 61_;'_%) + 47Tk2A.fU2i| ¢Z - GH_%qﬁH_l
Ax?

e O\ (321)

with v
e< 0 Q
k2 — { Ko7 S0 (3.2.2)



and for the interface condition, we use the MIB method (2.2.32). Now back to the
nonlinear PB equation (3.1.10). Let

F3) = 47rk2K€BCT sinb( 2 6(r)), 7 € AT (32.3)
Qo) = —vmdmvamywmﬁkzrmh%@T&myreQuﬂ (3.2.4)
De...ne
GO _E%G@+w?_G@)
_ i~V (ENV(O(r) + 1)) + Ff 4 tw) + V- (e(r)Vo(r)) — F(9)
_ ;j—V%dﬂwa%+ﬂ5+woiF@)
— timqmvw+wm%% (3.2.5)

Note that the dizerentiations in —V . (&(r)Yw) and F'(¢) are digerent, i.e., Vw =

(52,52, 52) and F'(¢) = %ff) etc. <The linearized problem of (3.1.10) is thus

~(0) ~(0) ~(0)  ~(1)

G ) = -V - (e(r) D) + @D D) =GP % w =0 — & (3.2.6)

then we have
V- (e(r) V) BB ) =B — ()8 (32.7)
[A . F/(g(O))]g(l) - F(gs(O)) B F,(a(o))g(o) (328)

1
where A is a coeCcient matrix corresponding to the dlscretlzatlon of V @

F’(qﬁ ) is a diagonal matrix with entries d;; = F’(qj( :
3" are obtained by linear PB.
The monotone iterative method with FDM for (3.1.10) is to replace (3.2.9) by more

general form

( ) ),
(r)) with 5 (r)) = 3, ~ B(r.),

A— A3 =28 + F(@") (3.2.9)

where A can be a constant diagonal matrix or a variable diagonal matrix. Of course if

A = F’(a(o)), we have Newton’s method. The MIB method is once again be used on
interface I'.

(0)
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4 Dimensionless formulation and approximation of
interface condition

4.1 Unit Conversion and physical constants

For real physical problems, It is important to solve PB and coupled PNP equations in
one unit convention. We apply the Gaussian units shown in following tables and the
dimensionless process show in next section.

Table 4.1. Physical Constants
Symbol | Meaning Value Unit Reference
A Angstrom 108 cm
A ampere 1A=1C/s A
cal calorie 4.1859x 10" erg
C coulomb 10'°/3.336 esu
Dy+ diousion coeccient 2x107° cm?/s [24]
Dg,- diausion coeCcient 2.03x10° cm?/s [24]
e =e¢. | elementary (proton). charge | 4.8032424x 10710 | esu
€, dielectric constant no unit
€0 vacuum permittivity 8.8542x107*2 Cm-tv-!
h Planck’s constant 6:6261 <1034 Js
| current A
J joule 107 erg
kg Boltzmann constant 1.3807x10° 16 erg/K
I liter (volume) cm?
M molar (moles per liter) mol/cm?
mol 6.0221x10%
Na Avagadro’s number 6.0221x10%? mol—!
T temperature 27315+ T (°C) | K
\% volt 3.336x10°? erg/esu
Table 4.2.Unit Scale Factors
Name | femto | pico | nano | micro | milli | centi | deci | kilo | mega | giga
Pre.x | f p n 1 m c d k M G
Factor | 10715 | 1072 | 107 | 107 | 1072 | 1072 | 107! | 103 | 106 10°
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Table 4.3. Unit Convention
Meaning Symbol Value Unit Ref.
Potential kgT/e. =1.3807x10716x300/(4.8032424 x 10~19)

=8.62355x107° erg/esu
Concentration | M=molar | = mol/l =6.0221x10%/cm3 cm—3
Current pA = pico ampere =10-12 A

Table 4.4. Gaussian units[24]
abbr | unit | represents | equivalent expressions
dyn | dyne | force esu?/cm?
erg |erg | energy dyn-cm

4.2 Dimensionless formulation

Physical phenomena within a channel system are controlled by boundary conditions
(BCs). We now describe the BCs of the PNP system. For the Poisson equation (2.1.1),
the voltage applied to the system is given by the potential dicerence (a Dirichlet BC),
denoted by 1, > 0 and shown in Fig. 4, along the z direction, and a Neumann BC on
other parts of 0f2, namely,

¢ (z,y,08) = W, ¢(z;9,40A) =0 (4.1)
% = 0, for || =20 or |y| = 20.and z # 40 and 0. (4.1(a))

The unit of V4 is mV (milli volt). The boundary data for C; is similarly denoted by C
in the unit of M (molar). Moreover, a single-value of Cj is assumed for both C; (x,y, 2)
and Cs (z,y, z) on 92N 09, i.e.,

Cy(z,y,2) = Cy (z,y,2) = Co, V(x,y,2) € 0NN I, 4.2)

For this project, the dielectric constants are set to

€m = 2,65 = 80 4.3)

and the dirusion coe€cients in bulk are given in Table 4.1. Note that the Gaussian units
are adopted in [24]. The fundamental dicerence between the SI (International System of
Units) and Gaussian units lies in the presentation of Coulomb’s law

F— q192 [SI] — % [CGS-GaUSSian], (44)

4rregr?

24



where CGS stands for centimetre-gram-second. Note that the vacuum permittivity ¢,
does not appear in the Gaussian format (in [24]).

Let | = 1A(10~8¢m). By using the following scalings with the new dimensionless
quantities marked by the subscript (or supscript)

A A @“5)
= —C Ci = ,i;; = l;; (4.6)
Eq. (2.2.74) can be written as
—Vs (6358 V.o ) = iqz@
W @w) - Brogg-fea e

where V, = <a§s7 ais, Bzg> And (2.1.2) and (2.1.3) can be expressed as

keT g
(o kBT

L DAV Cr OS] = 0

1
-V, D; [VSCi +

l2 Civs¢5

12
T
s DYV 2 CV0°) = 0

l22

Vi DFVCP + ;OV0°] = 0 (4.8)
We further check the unit of C? that

oo _ Cil’el _ 6.0221 x 10% x 107'° x (4.8032424)° x 10~
LT kT 1.3806620 x 10-16 x 300

cm’esu®  esu? (no unit)} . (4.9(a))

= 335.4257 =
cm3-erg  esu?

k;BT
4.8032424 x 1010 [V esu  lesu Jesu 107erg esu ]

~ 300 x 1.3806620 x 10-16 | erg erg Cerg

48032424 x 1071 107 [erg esu
300 x 1.3806620 x 1016~ 102

3 336 esu erg

(no unit)]
3.336

= 38.6858 [(no unit)] (4.9(b))
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Moreover, we verify a similar unit de..ned in [24] using its notation (see Eq. (52) in [24]
where 1 dyne = esu?/cm should be 1 dyne = esu?/cm in Table 5)

kg7 1.380662 x 107" x 300 [dyncm ~ esu®  esu (4.10)
e 4.8032424 x 10-10 esu  esu '
es
— 0.8623 x 1074 [—“}
cm
cm
ldyn = 1 [gsz } =10"° [N], 1[esu] =1 [dynl/zcm
kg - m?
_ _ -7 _ _
llerg) = 1[dyn-cm|=10"" [J], J= 2 =N-m
llesu] = 3.336 x 107 [C] (4.11)
o C b ! 38.6563 (4.12a)
u = _— = = . .
bd “300 x kgT  °300 - 0.8623 x 104 bd
e
200mV—— = 0.02580 no unit ( by (4.9(b
300kaT [ no unit (by (4.9(b)) )]
5 _ c Nal2e2 . 6.0221 x 10% x 10716 x (4.8032424 x 10710)
b b 3 103 x 0.8623 x 10—4
= 0.33545Ch, [no-unit ("by (4.9(a)) )] (4.12b)
C, ¢,
Zbd o .000867722
Ubd (I)bd

From above relations, we observe that the Gaussian units are quite complicated and that
the scaled concentration (4.7) and (4.8) is_dimensionless.. We will use the CGS-Gaussian
units.

Remark 4.1. The above scaling convention-is used in our code. For example, the
coordinate system of the domain is expressed by (4.5) and the dielectric constants are
exactly given as (4.3). Consequently, the BC (4.1) is also required to be scaled as

e 1 Vv .
Vil = Vo = 38.6858 x 11 = 0.0386858 [—V (no u |t)] (4.13)

We thus have
Vo = 100mV = V; = 3.86858. (4.14)

Similarly, for (4.2), we have by ( 4.9(a) )
Cy = 1M (molar) = C3 = 335.4257 (4.15)

Note that we can scale Eq. (4.8) further as

48
100 100
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Moreover, we also have

aw+ = Lg-=-1, (4.17)
-5 2
S : f()}?6 [c(r::; s} =2 107 E]
Dy = 2 fof?ﬁ_s lc‘r::fs] —2.03 x 10" H
(140'?1) — 11)0%1 =2, ll)gcl'l‘ = 2.03.

Remark 4.2. Following [24], the dicusion coe@cient pro..les are de..ned via an interpo-
lation function along the z-axis (the channel axis)

Fr) = f(z) =n (‘—) ey () (4.19)

Zbu — Zch Zbu — Zch
where n > 2 is an integer, z € [z, zpy] Which is a burering region between the channel
pore and bulk regions. The diausion coe@cient function is then de..ned by

D r € Channel region
D(r) = ¢ Dcn + (Deye= Dy ) f(xr) x € Bugering region (4.19)
Dy, r € Bulk region
Dyy = D+ 0r_Dpy=Dgi—and Dep-= 0.05Dpy. (4.20)

The burering region is set (symmetrically about > ='0) to
55 .
Zbu — Zcho = EA,zbu —13A,ifn =2
35 .
Zbu — Rch — ?A — T 13A, If n = 9

20 .
Zbu — Zch = §A , 2pu = 13A, if n = 19. (4.21)

Example 4.1. Nonlinear GA PNP, Singualr Charges, Diausion Function (4.19), no
Exact Solutions. We now try to reproduce the results of Figure 9 and Table 6 in [24].
The BC data for this case are as follows:

Vo =200mV, Cy = 0.1M = Vj = 7.73716, C; = 33.54257 (4.22)

The ..rst thing needed attention is scaling. From above dimensionless analysis, the orders
of (4.14) and (4.15) are O(1) and 0(102),Nrespectively. The code will blow up if (4.16) is
not used. Therefore, the scaled variables qﬁs and C? in (4.6) should be changed to

~s ~ € 2e? 7.73716 33.54257
— C s =(C— Vs = 2T s = 20T 4.23
¢ ¢w1kBT ¢ UJQkBT 0 w1 0 Wao ( )
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where the scaling factors w; and w, are crucial for the convergence behavior of Gummel’s
algorithm and will be chosen from the coding experience. Accordingly, (2.2.79) should be
scaled as follows

V. (eVg) = ( (& + ) (4.24)

kgT
= - (wl 5 ) . erv ¢ ) + emAs¢: + emAs¢g

- 4@%( £) 47" 4 C

i=1

[V (69.8") + s + o]

| Pe
wlszT

Ny 2
Ar 37 qio(r — ;) + 47 3 ¢:Ci
j=1

=

qj l2€2 i l2 2
= 47 5(r—r; 4 =G
jzl €. (r rj)wlki T + 7121 ee wikgT
Na Wo
=4m ) ;0. (r° —x3) F dr—= Z q;Cs, (4.25a)
j=1 Wii=1
. [vs : (ervﬁ)} I 47r— z G2, S; = % (4.25)
1
Therefore,
5.(°—x3) = 6(r )T g0 g0 (4.26)
S(r'=r’) =o(r —r; , 24 , = .
J J wlkBT 2 wlkBT 5 wlszT
By (2.2.77), we also have
* eg Na q’/ec
¢y(rs) = > - -
wlkBT Jj=1 lem\/(xs - 33'5]) + (3/5 Z/s]) + (Zs Zs])
s 3 i
' j=16€m (33'5 33'5])2 + (3/5 ys])2 + (Zs 25])2’
2
e
S, = c 4.27
! wikg Tl (4.27)
2
e
S — C
! wikg Tl
B 4.8032424 x 1010 esu?
~ w; x 0.8623 x 104 x 10-8 |erg x cm
557.0268 .
= —— [no unit] (4.28)
w1
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Now we consider NP equations

V- D(r) [vc(r) +-Lomver| = o
kgT |
1 wlkBT q ~s )
J— . D —_— =
BV D0) [7.00) + 2L )y 5 )] = 0
V. D) [V.C() + w1’ Cv,6° ()| = 0
wokgT s s s s ~s 7
e Ve D) [V.C0) + VG )] = o
V.. D" [vscs b0t C VG| = 0,8 =
The linear PB equation(3.1.7) given by
Na
—V - (e(r)Vo(r)) + Ank?(r) = 47 Y q;0(r —r;), 1 € Q
j=1
by (4.5) and (4.23), we obtain
KBTwl KBT 2630bulk
e Va6V, (1)) ==4r o KT w1G4(rs)
KpTw, purr K BT
= — eclz vs . (6rv8¢8(’l"8)) -+ 877'6008 @UJQU.&Q%(TS)
KgTw l,
— NN Y g, 1)
Therefore
[=Vs - (- Vsy(rs)) + 87TCgulkw2¢s(T8)]
el? Na
Na
= 47quj(5(7"5 Ts;)
j=1
Scaling nonlinear PB equation ( 3.1.4)
=V - (e(r)Vo(r)) +4 szBT sinh( C o(r)) =4 iAj oO(r—r;), refd
¢ T €c KBT - Trj:l qj 7
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we have

KgT e

— . 2 B 1 ¢
V- (e(r)Vo(r)) + 4nk ‘. Smh(KBTQS(T))

KT

= DB G (6, Vb, (1)) + T2 CYE sinh(wy ¢, (75))]
e.l? w1
Therefore
[—Vs - (6, Vsp,(rs)) + 87r Cb“lk sinh(wy1¢,(rs))] = 4w Z q;0 (4.31)

4.3 Approximation of interface conditions

Due to the interface condition (2.2.86) and ¢° is only de..ned in ©Q,,, we remark that
the following extrapolation scheme is also described in Section D in [11]. We now de-
rive a nonlinear extrapolation formula for this case from which we can approximate the

derivative 3¢°(2;,1) = 42¢"(z,).

Case I {wi2, w51, 2} C Qny 21 €T, 251, 2542 € Q (see Fig. 5.).

¢0(x) = Ag+ Az + Asx® A3 + Ayt (4.32)
%¢0 (24)
Gii1 = =HAo + Amp A Asx; [+ Asal | + Asx}

¢; = Ap + ATt Aozi + Agat+ Aga}

¢, = Agtdir, + Azx?/ + Agxf’/ + A4xfy
b1 = Ao ¥ MidrAste + Astd | + At
Giyog = Ao+ Aizio + A2$12+2 + A3$§+2 + A4~’C?+2

Q

Af + 2450+ 3A505 -+ EA, 7

where the values of ¢, , and ¢, , are obtained by the following two extrapolation formulas
similar to (4.32)

() = Ag+ Ax + Aya® + Asa®
¢i—2 = AO + AI.TZ‘_Q -+ AQ.T?_Q -+ Agl'?_z
Giny = Ao+ Aoy + Asal | + Azzl
¢i = Ao + All'i + Agl'zz + Agl’?
Qﬁ,\/ = AO + All'n/ + Agl'?/ -+ Ag{lj’i -+ A4£L’i
b1 = ¢"(Tit1) (4.33)
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¢i+1
¢i+2

Ag + Az + Asx? + Aga® + Ayat

Ag + Ay + Aga? o 4 Asa , + Ay},
Ao+ Az + Al | + Azl | + Agz}
Ao + Ay + Aya? + Agad + At

Ao + Az, + Agx?/ + Agxf’/ + A4xi1/

Ao+ Arxipr + Aol + Azl + Agzly

¢0($z‘+2) (4.34)

Case Il. {xi_% 737¢+§}C L, {x; 1, 2, 3C Q, w01 € Q.

Q

AO + All' + Agl'z + Agl‘g + A433'4 (435)

A+ 214233'7 + 314333'3 + 414433%

AO + Alxi—l + AQ.’L'?_l + Ag.’L‘?_l -+ A4.’L‘?_1
AO + Alxi + AQJZ'ZZ + Ag.’ll'? + A4l';1

Ao + All'n/ -+ Azl'?/ + Agl‘i + A4l‘i

AO -+ Alxi—H =t AQ.T?+1 + Agl‘?_,'_l + A4x?+1
AO —+ All'H_g T A2$?+2 \F A3~T?+2 + A4~T;L+2

AO + Alx -+ A2$2 + A3.T3
Ao + All'i_% == Azl‘?_g ~ A3.’L‘?_§

2 2
AO -+ Al.’L'z‘_l + Azl'?_l -+ Ag.’L‘?_l
AO + Alxi == AQ.’IZ’? -+ Ag.’ll'?
Ay + All'n/ -+ Azl'?/ + Agl‘i + A43§'§
¢ (i11) (4.36)
AO + All' + AQ.’L‘Z + Agl'g + A433'4
Ag + A,

i3 + Azl'?_% + Agxf_%

Ao+ Armioy + Agl | + Asal | + Agzi
Ag + Ay + Aga? + Agx? + Ay

Ao + Az + Agx?/ + Agxf’/ + A4xi1/

Ao+ Ay + Aga? 4 Agad |+ Ayt
°(2i40) (4.37)
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Case III. {xi_%,xi+%} el x; € U, xi41 €
(x) = Ao+ Ayx + Ayr® + Asa® (4.38)
0
%qﬁo(’y) ~ Ai+ 24w, + 34327
Qﬁ,,// = AO + All',y/ + AQJL'?// -+ Agl’i/
¢, = Ao+ Az + Azx? + Agl'?
¢, = Ao+ Az, + Agx?/ + A337§,
Giv1 = Ao+ Arwipr + A25’7?+1 + A3x§’+1
¢O($) = AO -+ All' + Azl'z
¢"/ = AO + Alxﬂ/ —+ AQ.T?//
¢; = Ao+ A+ Asa?
¢7 = AO + All.'y + AZI.?/
Gin = (i) (4.39)
Case I:
Case Il
Case IlI:

Figure. 5. The schematic diagram[11] for three dicerent case
we given the notation transformation by following

Notation (Fig. 5. ): 1 2 3 4 5 6
Notation in extrapolation formula: z; 3 z; o =; 1 =; Xiy1 Tio
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and the interface points A, B are denoted

Case 1 Case 2 Case 3

A T s T3 T 1
Bl w1 w1 m

4.4 Numerical results for test cases

All results of test cases are given in this section where the second-order convergence has
been obtained. Now we consider test csae in section 2.3.

Example 4.2 Consider real GA channel structure and dielectric constant ¢,, = 1,
es = 80. Jump condition are given by [¢] = 0 and [e¢,] = g # 0 (2.3.12). Numerical
results for the Poisson problem are shown in Table 4.4.1 with good O(h?) convergence.
Numerical results of the same exact solution (2.3.1) used in [24] for the GA channel are
also presented for comparison. Note that the MIB method of Wei et al. [24] requires
more than 27 FD grid points whereas ours requires only 7 under the assumption (2.2.4).
The method with (2.2.52), (2.2.55), and (2.2.70) in the primitive form (sec. 2.2.3) gave
perfect results as shown in following table for. linear PNP problems.

Table 4.4.1. Linear, Ours.vs \Wei’s [24] MIB

Ours-test Wei's [24] test
hinA | Eg | Order |~ £ Order
2 0.4466
1 0.0922 | 2.28 +-0.1400

0.5 0.0228 | 2.02 | 0.0271 2.36
0.25 0.0057 | 2.00---0.0152 0.84

Table 4.4.1 : Comparison of convergence order between Wei’s test and ours test

Table 4.4.2. Linear
Dirichlet BC Robin BC
mesh sise P NP1 NP2 Time P NP1 NP2 Time
2 0.4466 | 1.0203 | 1.1903 0.4466 | 1.0302 | 1.4471
1 0.0922 | 0.0457 | 0.0360 0.0922 | 0.0451 | 0.0434
0.5 0.0228 | 0.0103 | 0.0072 | 1m14s | 0.0228 | 0.0103 | 0.0081 | 1m1l4s
0.25 0.0057 | 0.0025 | 0.0017 | 10m28s | 0.0057 | 0.0025 | 0.0018 | 10m31s

Table 4.4.2 : Use of dicerent boundary conditions at the interface

Example 4.3. For nonlinear case, consider real GA channel structure and dielectric
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constant ¢,, = 1, ¢, = 80. Jump condition are given by [¢] = 0 and [e¢, ] = g # 0 (2.3.12).

Table 4.4.3. Nonlinear

Wei’s

[24]

Ours

h A

P

Ord | NP1

Ord | NP2 | Ord

P

Ord

NP1 | Ord

NP2

Ord

1

0.1400

0.0841

0.0554

0.0925

0.0327

0.0168

0.5

0.0272

2.36 | 0.0167

2.33 | 0.0123 | 2.17

0.0228

2.02

0.0074 | 2.14

0.0037

2.18

0.25

0.0152

0.84 | 0.0046

1.84 | 0.0039 | 1.65

0.0057

2.00

0.0018 | 2.04

0.0009

2.04

Example 4.4. Consider nonlinear case, real GA channel structure and dielectric constant
€n = 1, €, = 80. Jump condition are given by [¢] = 0 and [e¢,] = g # 0 (2.3.12). But
add diausion function (4.19) in NP equation

Table 4.5.(n=2)

hA| P

Ord | NP1

Ord

NP2

Ord

1 0.0924 0.0344

0.0194

0.5 | 0.0228 | 2.02 | 0.0076

2.18

0.0038

2.35

0.25 | 0.0057 | 2.00 | 0.0019

2.00

0.0009

2.08

The following two tests is to consider dicerent parameters (w, w-) for nonlinear Poisson-
Boltzmann (PB) equation (3.1.4). The parameters (w;,w,) only be applied at the bound-

ary (4.12a) (4.12b) and C*** =10.1 molar, ;= 0 (4.1).

0.5

=

1
25

1 1
30 35

Figure. 6. (wy,w>)=(300,100)
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KBT.'II e,

Figure. 7. (wy,w>)=(300,150)

5 Conslusions

By the test case in section 2.3, we get a better results than [24] (in Table 3.1). However,
the parameters w; and w- in (4:23) are-very sensitive to real PNP and PB models from
which we are still unable to obtain good results that are'’comparable to those in [24]. In
the future, we have to go to explore the relationship between mathematical parameters
(w1, w9) and physical ecects and give a reasonable explanation. If we obtain good results
for PNP equation, the I-V curve predicted by the model and we can compare between
the PNP prediction and experimental. data. The accuracy of the PNP model can thus be
determined to simulate the ion channels:

In general, the PNP equations can be added to the time parameters and become 4D
problem, i.e., —V,.- J;(r,t) = 0C;(r,t)/Ot. Moreover, we may also consider the intuence of
temperature as a function 7'(r, t) is the the absolute temperature depends on the location
r and time ¢.

Moreover, quantum exects will be taken into account, i.e., we will consider a quan-
tum corrected Poisson-Nernst-Planck model [17]. In such a small ion channel, it is very
reasonable to consider the quantum ecects and it may lead to simulation results that are
closer to the experimental data.
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