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摘摘摘摘 要要要要 

在這篇論文中，我們回顧了幾篇文獻資料是關於生態數學裡，Lotka - 

Volterra模型以及有關物種的補丁模型(Patch model)的動態現象。關於

多個物種互動的補丁模型，我們研究 S. A. Gourley和Y. Kuang在 2005

年提出的兩個尚未解決的問題，這是探討遷徙率如何影響兩競爭物種

的補丁模型的動態，與其物種的成長率分佈有關。據推測，在一個高

度遷徙的環境中，物種的制勝策略取決於在某個單一補丁的成長率。

也就是說，物種在其中一個補丁具有最大的成長率就獲勝。另一方

面，在足夠小的遷徙率下可能會出現全局穩定的共存態。雖然我們還

沒有解決這兩種全局動態的猜想，但在這些問題上已有更好的了解。 

 

 

 

 



Global Dynamics for Lotka-Volterra Competition
Systems with Constant Dispersal

Student : Tze-Hung Tsai Advisor : Chih-Wen Shih

Department of Applied Mathematics
National Chiao Tung University

Hsinchu, Taiwan, R.O.C.
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Abstract

In this thesis, we review the investigations of dynamics for Lotka Volterra
models and patch models in mathematical ecology. We study two open ques-
tions posed by Gourley and Kuang in 2005, which are concerned with how
dispersal rates affect the competition in two-species patch model with various
spatial distribution of their growth rate. It was conjectured that, in a high
dispersal environment, the winning strategy for species depends on the growth
rate in a single patch. That is, the species which has the greatest growth rate
will win. On the other hand, the system may have a globally asymptotically
stable positive equilibrium for a small enough dispersal rate. We have not
solved the conjectures, but have better understanding on these issues.
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1 Introduction

In this thesis, we mainly introduce some basic model in mathematical ecology and

investigate their dynamics. In 1838, Verhulst, a Belgium mathematician, presented

the logistic equation to describe the self-limiting growth of a biological population

dx

dt
= rx(1− x

K
), (1.1)

where the constant r is called the intrinsic growth rate and K is the carrying ca-

pacity due to the limited resource supply, such as food, nutrients, space, and so on.

The biological meaning is that populations with interaction among individuals will

control their reproduction. Lotka derived the equation again in 1925, calling it the

law of population growth. The Lotka Volterra system, developed independently by

Lotka (1925) and Volterra (1926), which be used to model the dynamics of ecological

systems with predator-prey interactions.

dx

dt
= αx− βxy,

dy

dt
= γxy − δy,

(1.2)

x is the population density of prey and y is the population density of predator. With

the basic of logistic equation, the form is similar to the Lotka Volterra equations

for predation is that equation for two similar species competing for a common lim-

ited resource. Assume that the population grew up logistically in the absence of

the other, and reduce each others growth rates and saturation population by their

competitive behavior. That is so-called Lotka Volterra competition system

dx1

dt
= r1x1(1− x1

K1

)− αx1x2,

dx2

dt
= r2x2(1− x2

K2

)− βx1x2,

(1.3)

where all parameters are positive, xi is the population of i-th competing species. The

ith species grows logistically with intrinsic rate ri in the absence of the other, Ki is

the carrying capacity of xi and α, β are the interspecific competition coefficients.

In section 2, we will discuss the dynamics of the Lotka-Volterra competition

system. The stability for the coexistence of system (1.3) can be determined by the

conditions obtained by the graphical method (Rosenzweig and MacArthur 1963,

MacArthur and Wilson 1967, Pielou 1969, Slobodkin 1962)[12, 14, 16]. The graphi-

cal analysis suggests that for two competing species, its local stability can imply the

1



global dynamics. But this result is not necessarily true for more than two species

and two species model under other interactions. In 1968, Levins, a mathematical

ecologist, determined the local stability of the equilibrium for n species competition

model by a necessary condition that the determinant of the matrix of competition

coefficients is positive. Strobeck (1973) presented a necessary and sufficient condi-

tion for the local stability of coexistence of the n species competition model [17]. In

1975, May and Leonard studied the three competing species model, with a symmet-

ric assumption of their competing parameters, which has a special class of periodic

limit cycle solutions and a general class of non periodic oscillations of bounded am-

plitude but ever increasing cycle time [11]. And the proof of the general class had

been modified by Schuster, Sigmund and Wolff (1979) [18]. Zhang and Chen (2000)

discussed each cases of the assumption of parameters and presented some necessary

and sufficient conditions for the global dynamics of the positive equilibrium, a family

of limit cycle or a heteroclinic cycle [23]. It shows that, the systems with three or

more dimensions must have much richer dynamical behaviors.

In addition to the competition model, we considered other types of model such

as predator-prey or mutualism(cooperation), etc. And more, we want to know the

global dynamics for n species Lotka-Volterra models. Consider the following system

dxi
dt

= xi(bi +
n∑
j=1

aijxj), i = 1, . . . , n, (1.4)

In general, system (1.4) whose nontrivial equilibrium is locally stable may not be

globally stable. By means of Lyapunov theory, we can guarantee the global dynamics

for system (1.4). So far, most of results about the coexistence have been proposed.

In 1977, Goh presented a sufficient condition to guarantee the global stability of

positive equilibrium for the Lotka-Volterra model. Herein, the appropriate form of

Lyapunov function as follows

V =
n∑
i=1

ci

[
xi − x∗i − x∗i ln(

xi
x∗i

)

]
. (1.5)

In particular, for two species interactions, the conditions can be reduced to its

local stability and both species sustain the density-dependent mortalities due to

intraspecific interactions, that is, a11, a22 < 0. And for two species competition or

mutualism system, the conditions of local stability implies directly a11, a22 < 0.

That is, the local dynamics of coexistence for two species competition or mutualism
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system guarantees their global dynamics. In the end of section 2, we introduced

some interesting results between the competition and mutualism system which are

proposed by Goh(1979) [3, 4, 5].

Biological dispersal refers to that species move from one habitat patch to

another, the reasons leading to this phenomenon not only for individual fitness, but

also for population dynamics, and species distribution. To understand dispersal

and the evolutionary strategies, in section 3, we considered the dynamics of the

Lotka-Volterra system with dispersal, for short, called patch model

duki
dt

= uki (ri +
n∑
j=1

aiju
k
j ) +

m∑
l=1,l 6=k

(Dkl
i u

l
i −Dlk

i u
k
i ), (1.6)

i = 1, . . . , n, k = 1, . . . ,m, where uki is the population of species i in patch k,

Dkl
i describes the dispersal coefficients from patch l to patch k. The forms like

(1.6) have been studied by Levin (1974), Chewning (1975), Segel and Levin(1976).

Hastings (1978) gave a sufficient conditions to the global stability of the coexistence

for system (1.6). This result showed that the dynamics can not be changed for

any dispersal rate if the coexistence always exists. In particular, in 1982, Hastings

proved that the positive equilibrium for a single species patch model is locally stable

under the sufficient large dispersal environment [7]. Dispersal is seem to have a

stabilizing effect. Takeuchi (1989) had proposed such problem that whether the

positive equilibrium, which the value can be changed by dispersal rate, continues

to be positive and globally stable if we increasing the dispersal rates ? For two

species cooperative patch model, Freedman, Rai and Waltman (1986) showed that

there is a positive equilibrium for any dispersal rates, and which is globally stable

if it is unique. Padron (2007) had proved the existence and uniqueness a positive

equilibrium for single species patch model [15].

A coupled system of a nonlinear differential equations can be used to model

a patch system with dispersal rates. Li and Shuai (2010) presented a systematic

approach to construct Lyapunov function for coupled system. Assume that, when

isolated, each vertex system has a globally stable equilibrium and a globally defined

Lyapunov function Vi, i = 1, . . . , n. Then, for the coupled system, a global Lyapunov

function be constructed in this form

V =
n∑
i=1

ciVi, (1.7)
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where ci ≥ 0 are suitable constants chosen from some graph theory and matrix

analysis. In their article, they re-proved the similar result about single species

patch model [9].

Gourley and Kuang (2005) studied the competition in two-species patch model

that have identical competing coefficients and with various spatial distribution of

their growth rate. They studied the dynamics of ODE system largely through the

linearized analysis, showing that the winning strategy for species with a large dis-

persal rate is that which has the greatest growth rate in a single patch. They

hypothesized that this may be a possible explanation for the evolution of grouping

behavior in many species. However, they only complete the result of local stability

and left two conjectures about the global dynamics in the end of article [2].

This thesis is organized as follows. In section 2, we review the dynamics for

Lotka-Volterra systems, such as competition, mutualism, and predator-prey system.

In Section 3, we study the dynamics for Lotka-Volterra model with diffusion, such

as single species patch model and two species competition in two patch model. In

section 4, we give some numerically examples for two species competition in two

patch model and for other similar models with different dispersal rates. In the end,

we review some results about above subsections, we write it in appendices.

2 Dynamics for Lotka-Volterra systems

In this section, we introduce the dynamics of Lotka-Volterra competition system.

First, consider the Lotka-Volterra system for two competitive species,

dx1

dt
= r1x1(1− x1

K1

)− αx1x2,

dx2

dt
= r2x2(1− x2

K2

)− βx1x2,

(2.1)

where all parameters are positive, xi is the population of ith competing species. We

consider only nonnegative initial values x1(0) ≥ 0, x2(0) ≥ 0. If system (2.1) has a

positive equilibrium, then the stability for the coexistence can be determined by the

conditions obtained by the graphical method [12, 14, 16]. The graphical analysis

suggests that for two competing species, local stability implies global stability. This

result is not necessarily true for more than two species and two species model under

other interactions. Here the question is what conditions guarantee the local stability

of the Lotka-Volterra competition model with more than two species ? Moreover,
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how would one conclude the the global dynamics for other types of models such as

predator-prey, amensalism or mutualism ? Does the local stability can guarantee the

global dynamics ? The answer is no. Here we give a simple example to demonstrate

that a locally stable equilibrium for a two species Lotka-Volterra model may not be

globally stable.

Example 2.0.1.

dx1

dt
= x1(−2 + x1 + x2)

dx2

dt
= x2(5− 3x1 − 2x2)

(2.2)

The system has a positive equilibrium at (1, 1). For the linearized system corre-

sponding to (2.2) , the variational matrix at (x1, x2) = (1, 1) is[
1 1
−3 −2

]
. (2.3)

Its eigenvalues are −1±
√

3i
2

. Hence we concluded that the equilibrium (1, 1) is locally

stable for the model (2.2). But the trajectory through the initial data (2, 1) tends

to (∞, 0).

x ’ = x ( − 2 + x + y) 
y ’ = y (5 − 3 x − 2 y)

 
 

 
 

 
 

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

x

y

Figure 1: Illustrations for the dynamics of example 2.0.1.

In the following subsections, we review the results in the literature [3, 4, 5, 11,

17]. We review the local stability in n species competition system in subsection 2.1,

5



three species competition system in subsection 2.2, global stability in two species

under interaction in subsection 2.3, global stability in n species system in subsection

2.4, global stability in n species mutualism system in subsection 2.5.

2.1 n species competition systems - local stability

For n > 2, Strobeck (1973) derived the necessary and sufficient conditions to the

local stability of coexistence for the following competition systems

dxi
dt

=
rixi
Ki

(Ki − αi1xi − αi2x2 − · · · − αinxn), i = 1, . . . , n, (2.4)

where all parameters are positive, xi is the population of i-th competing species, ri

is the intrinsic rate of growth, Ki is the carrying capacity of the i-th species and

αij is the competition coefficients for j-th on i-th species, where αii = 1 for all i.

Assume that the system (2.4) has a positive equilibrium E∗ = (x∗1, . . . , x
∗
n), which

must be a solution of A(x∗1, . . . , x
∗
n)T = (K1, . . . , Kn)T ,

A =


1 α12 α13 . . . α1n

α21 1 α23 . . . α2n
...

...
...

. . .
...

αn1 αn2 αn3 . . . 1

 (2.5)

which has been called the community matrix by Levins (1968). The solution for

(x∗1, . . . , x
∗
n)T is given by Cramer’s rule :

x̃1 = det


K1 α12 α13 . . . α1n

K2 1 α23 . . . α2n
...

...
...

. . .
...

Kn αn2 αn3 . . . 1

 , . . . ,

x̃n = det


K1 α12 α13 . . . K1

K2 1 α23 . . . K2
...

...
...

. . .
...

Kn αn2 αn3 . . . Kn


(2.6)

and (x∗1, . . . , x
∗
n)T = 1

detA
(x̃1, . . . , x̃n)T .

The following theorem give the necessary and sufficient condition for the local

stability of E∗ in system (2.4).
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Theorem 2.1.1 (Strobeck, 1973). System (2.4) has a positive equilibrium which is

stable if and only if x∗i > 0 for all i and the corresponding linearized system satisfies

the Routh-Hurwitz stability criterion.

Consider a linear system
dx

dt
= Ax, (2.7)

A is the Jacobian matrix about the equilibrium x∗ and x(t0) = x0 is the initial data.

By the theory of linearization for ordinary differential equation, the solution x = 0

is linearly stable if and only if all eigenvalues of A have negative real part. Those

eigenvalues are the roots of the characteristic polynomial of A, which can be taken

in this form

P (λ) = λn + a1λ
n−1 + a2λ

n−2 + · · ·+ an, ai ∈ R, i = 1, . . . , n. (2.8)

Theorem 2.1.2 (Routh-Hurwitz stability criterion). The real part of each root for

(2.8) is negative if and only if

∆1 = a1,∆2 =

∣∣∣∣ a1 1
a3 a2

∣∣∣∣ ,∆3 =

∣∣∣∣∣∣
a1 1 0
a3 a2 a1

a5 a4 a3

∣∣∣∣∣∣ , . . . ,
and

∆r =

∣∣∣∣∣∣∣∣∣∣∣

a1 1 0 0 . . . 0
a3 a2 a1 1 . . . 0
a5 a4 a3 a2 . . . 0
...

...
...

...
. . .

...
a2r−1 a2r−2 a2r−3 a2r−4 . . . ar

∣∣∣∣∣∣∣∣∣∣∣
, r = 3, . . . , n,

are all positive. If an element ak appears in ∆r with k > r, then it replaced by zero.

This theorem has many proofs, here we review the proof of Parks (1962)[13],

the main idea of proof is to construct a matrix B such that A and B have the same

characteristic polynomial and B satisfies the second method of Lyapunov.

Theorem 2.1.3. A necessary and sufficient condition for x = 0 to be an asymp-

totically stable solution of (2.7) is that the matrix equation PA + ATP = −Q has

a positive definite solution P for every positive definite matrix Q.

7



That is, there is a positive definite matrix P such that PB + BTP is negative

definite. See [13] for the detail.

Example 2.1.4.

dx

dt
= x(1− x− ay)

dy

dt
= y(1− y − bx), a, b > 0.

(2.9)

As a, b < 1, the system has a positive equilibrium (x∗, y∗) = ( 1−a
1−ab ,

1−b
1−ab). By the

linearization theory, the variational matrix at (x, y) = (x∗, y∗) is[
1− 2x∗ − ay∗ −ax∗
−by∗ 1− 2y∗ − bx∗

]
. (2.10)

The characteristic polynomial of variational matrix at (x∗, y∗) = ( 1−a
1−ab ,

1−b
1−ab) is

P (λ) = λ2 + (
2− a− b

1− ab
)λ+

(1− a)(1− b)
1− ab

. (2.11)

By the Routh-Hurwitz stability criterion,

∆1 = a1 =
2− a− b

1− ab
> 0,

∆2 =

∣∣∣∣ a1 1
0 a2

∣∣∣∣ = a1a2 =
(2− a− b)(1− a)(1− b)

(1− ab)2
> 0,

(2.12)

Hence, we can deduced that all eigenvalues of A(x∗, y∗) have negative real parts.

2.2 Three species competition systems

Consider model (2.4) with n = 3, we have

dx1

dt
=
r1x1

K1

(K1 − x1 − α12x2 − α13x3),

dx2

dt
=
r2x2

K2

(K2 − α21x1 − x2 − α23x3),

dx3

dt
=
r3x3

K3

(K3 − α31x1 − α32x2 − x3).

(2.13)

Assume r = ri, K = Ki, i = 1, 2, 3 and α12 = α23 = α31 = α, α21 = α32 = α13 = β.

We rescale the parameter by x̂i = xi
K
, i = 1, 2, 3 and t̂ = rt. Substituting into (2.13)

8



and dropping the hat, we have

dx1

dt
= x1(1− x1 − αx2 − βx3),

dx2

dt
= x2(1− βx1 − x2 − αx3),

dx3

dt
= x3(1− αx1 − βx2 − x3).

(2.14)

In 1975, May and Leonard studied system (2.14) and focused on the system

with a periodic limit cycle solution on the parameter setting α+β = 2, on the other

hand, a nonperiodic population oscillations of bounded amplitude but ever increas-

ing cycle time on parameter setting α + β > 2 and α < 1 [11]. (See Appendices)

System (2.14) has eight possible equilibria : (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1),
1

1−αβ (1−α, 1−β, 0), 1
1−αβ (1−β, 0, 1−α), 1

1−αβ (0, 1−α, 1−β), 1
1+α+β

(1, 1, 1), denoted

by Ei, i = 0, . . . , 7.

Denote the corresponding linearized system for (2.14) by

dy

dt
= Ay, (2.15)

where the variational matrix A at (x∗1, x
∗
2, x
∗
3) is given by 1− 2x∗1 − αx∗2 − βx∗3 −αx∗1 −βx∗1

−βx∗2 1− βx∗1 − 2x∗2 − αx∗3 −αx∗2
−αx∗3 −βx∗3 1− αx∗1 − βx∗2 − 2x∗3

 (2.16)

In particular, the coexistence E7 always exists and its local stability depends on the

sign of real part of eigenvalues for

A(E7) =
−1

1 + α + β

 1 α β
β 1 α
α β 1

 . (2.17)

Then we can verify that the equilibrium E7 is stable if and only if α + β < 2. We

will see in section 2.3 that the local stability implies global stability in two species

competition model. But it is not true for more than two species, just as this system

(2.14), E7 is not globally stable since Ei, i = 1, 2, 3 are all saddle.

2.3 Global stability in two species under interaction

Consider this two species Lotka-Volterra system

dx1

dt
= x1(b1 + a11x1 + a12x2),

dx2

dt
= x2(b2 + a21x1 + a22x2).

(2.18)
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which the species under interaction may be the following types: (i) competition (ii)

predator-prey (iii) mutualism (iv) amensalism, commensalism or others relation.

The positive equilibrium (x∗1, x
∗
2), if it exists, is the solution of

bi +
2∑
j=1

aijxj = 0, i = 1, 2. (2.19)

Goh (1976) proposed a sufficient conditions for the global stability of positive

equilibrium in two species model.

Theorem 2.3.1 (Goh, 1976). If system (2.18) satisfies the following condition:

(i) there exists a positive equilibrium (x∗1, x
∗
2) which is locally asymptotically stable,

(ii) a11, a22 < 0.

Then (x∗1, x
∗
2) is globally stable for system (2.18).

Note that the condition (ii) means the intraspecific interactions are all negative,

each species must be self-regulating. By the linearization theory, the necessary and

sufficient conditions for (x∗1, x
∗
2) to be locally asymptotically stable are

a11x
∗
1 + a22x

∗
2 < 0 and x∗1x

∗
2(a11a22 − a12a21) > 0. (2.20)

So it leads to the following result.

Corollary 2.3.2. For the cases of competition or mutualism, locally stability of the

equilibrium implies a11, a22 < 0. That is, local stability implies global stability.

proof: The variational matrix of (2.18) for (x∗1, x
∗
2) is

[
a11x

∗
1 a12x

∗
1

a21x
∗
2 a22x

∗
2

]
For the case of competition or mutualism, a12a21 > 0. From (2.20), it follows that

a11a22 > 0, thus a11, a22 < 0. By Theorem 2.3.1, (x∗1, x
∗
2) is globally asymptotically

stable.

Now, we give an example indicating that the argument in Theorem 2.3.1 may

not true for more than two species model of interaction.

10



Example 2.3.3 (May, 1975).

dx1

dt
= x1(1− x1 − αx2 − βx3)

dx2

dt
= x2(1− βx1 − x2 − αx3)

dx3

dt
= x3(1− αx1 − βx2 − x3), α, β > 0.

(2.21)

As α + β < 2, the system has a positive equilibrium E∗ = 1
1+α+β

(1, 1, 1) which is

locally stable but not globally asymptotically stable. So, in next section, we will

introduce a result proposed by Goh (1977), it is a sufficient conditions of the global

stability of coexistence for the many-species model.

2.4 Global stability in n species systems

consider
dxi
dt

= xi(bi +
n∑
j=1

aijxj), i = 1, . . . , n, (2.22)

The nontrivial equilibrium (x∗1, x
∗
2, . . . , x

∗
n) for system (2.22) is the solution of the

following system of equations

bi +
n∑
j=1

aijxj = 0, i = 1, 2, . . . , n. (2.23)

Denote

A = [aij]. (2.24)

Theorem 2.4.1 (Goh, 1977). If there is a positive equilibrium (x∗1, x
∗
2, . . . , x

∗
n) and

a constant positive diagonal matrix C such that CA + ATC is negative definite,

then (x∗1, x
∗
2, . . . , x

∗
n) is globally asymptotically stable for system (2.22).

In particular, the theorem is true for A is symmetric and negative definite

(May 1974) or A is not symmetric but A + AT is negative definite (Getz 1975). In

the following example, A is not symmetric and A + AT is not negative definite, but

the system also has a globally asymptotically stable equilibrium.

Example 2.4.2.

dx1

dt
= x1(1.1− x1 − 0.1x2)

dx2

dt
= x2(4− 3x1 − x2)

(2.25)
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The only one positive equilibrium (1, 1) is globally asymptotically stable if we choose

c1 = 1, c2 = 1
30

in Theorem 2.4.1. Actually, we can also conclude the result by the

argument of Theorem 2.3.1.

x ’ = x (1.1 − x − 0.1 y)
y ’ = y (4 − 3 x − y)    
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Figure 2: Illustrations for the dynamics of example 2.4.2.

The following example showed that the conditions in Theorem 2.4.1 is not

necessary true for the global stability of system (2.22).

x ’ = x ( − 1 − x + 2 y)     
y ’ = y (0.8 − 1.3 x + 0.5 y)
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Figure 3: Illustrations for the dynamics of example 2.4.3.
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Example 2.4.3.

dx1

dt
= x1(−1− x1 + 2x2)

dx2

dt
= x2(0.8− 1.3x1 + 0.5x2)

(2.26)

The only one positive equilibrium (1, 1) is globally asymptotically stable and we

can verify that there is no suitable positive constants c1, c2 such that CA + ATC is

negative definite.

2.5 Global stability in n species mutualism system

Suppose that there exists a positive equilibrium (x∗1, x
∗
2, . . . , x

∗
n) for system (2.22),

then the model can be rewritten in this form

dxi
dt

= xi

n∑
j=1

aij(xj − x∗j), i = 1, . . . , n. (2.27)

More generally to say, a mutualism (commensalism) between two species means

that one species benefits (or not affected) from the interaction with the other. Each

one species promotes the growth of every other species or unaffected under the

interaction, that is, aij ≥ 0 whenever i 6= j.

Denote

A = [aij]. (2.28)

Before studying the dynamics of system (2.27), we introduce the principal minors

of a matrix. Let M be a n × n matrix, a minor of M is the determinant of some

smaller square matrix obtained by deleting some numbers of rows and columns. A

minor of order k is principal if it is obtained by deleting n − k rows and the same

n− k columns. The leading principal minor of order k is a principal minor of order

k obtained by deleting the last n− k rows and the same n− k columns.

Theorem 2.5.1 (Goh, 1979). The locally stable positive equilibrium of (2.27) in

the case of mutualism is globally asymptotically stable if and only if all the leading

principal minors of −A are positive.

Finally, we give an interesting result for the Lotka-Volterra systems, consider

system (2.27), we assume B = [bij] = A−1, if it exists. This gives a new system

dxi
dt

= xi

n∑
j=1

bij(xj − x∗j), i = 1, . . . , n, (2.29)

13



Then the following result give a relationship between systems (2.27) and (2.29).

Let Z be the set of all real square matrices whose off-diagonal elements are all

non-positive.

Theorem 2.5.2 (Goh, 1979). If (2.27) is a globally stable model of mutualism,

then (2.29) is a globally stable model of competition.

Proof. Since −A ∈ Z and from Theorem 2.5.1, we have all the leading principal

minors of −A are positive. Equivalently, all real eigenvalues of −A are positive.

This is equivalent to the inverse (−A)−1 exists and all elements of (−A)−1 are

nonnegative. It follows that (A)−1 = B exists and all elements of B are non-

positive. Such results had proved by Fiedler and Ptak (1962)[1]. Suppose that there

exists a positive diagonal matrix C such that CA + ATC is negative definite, then

(A−1)T (CA + ATC)A−1 is also negative definite. It follows that BTC + CB is

negative definite. Hence, the system (2.29) is a globally stable of competition.

Example 2.5.3. Consider the following model of mutualism among three species,

dx1

dt
= x1(0.5− 2x1 + x2 + 0.5x3),

dx2

dt
= x2(−3 + 5x1 − 4x2 + 2x3),

dx3

dt
= x3(4 + x1 + 2x2 − 7x3).

(2.30)

The positive equilibrium (1, 1, 1) is globally asymptotically stable if we choose c1 =

5, c2 = 1 and c3 = 1 in Theorem 2.4.1. The inverse of the interaction matrix is given

by

B = A−1 =

 −6 −2 −1
−9.25 −3.375 −1.625
−3.5 −1.25 −0.75


Hence, this is a model of competition as follows,

dx1

dt
= x1(9− 6x1 − 2x2 − 1x3),

dx2

dt
= x2(14.25− 9.25x1 − 3.375x2 − 1.625x3),

dx3

dt
= x3(5.5− 3.5x1 − 1.25x2 − 0.75x3).

(2.31)
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Again the equilibrium (1, 1, 1) is also globally asymptotically stable by choosing

c1 = 5, c2 = 1 and c3 = 1 in Theorem 2.4.1.

But the converse of Theorem 2.5.2 is not necessarily true. It means that the

inverse of the interaction matrix of a globally stable Lotka-Volterra model of com-

petition may not be an interaction matrix for mutualism. This mathematical result

suggested that in nature mutualism is less than competition and prey-predation [5].

3 Dynamics for Lotka-Volterra system with dif-

fusion

Consider the following Lotka-Volterra system with n species under dispersal in m

patches
duki
dt

= uki (ri +
n∑
j=1

aiju
k
j ) +

m∑
l=1,l 6=k

(Dkl
i u

l
i −Dlk

i u
k
i ), (3.1)

where i = 1, . . . , n, k = 1, . . . ,m, and uki is the population of species i in patch k; Dkl
i

describes the dispersal coefficients from patch l to patch k. System (3.1) or its similar

form has been studied by Levin (1974), Chewning (1975), Segel and Levin(1976).

First, we recall the following result by Goh (1977), for the Lotka-Volterra

system without diffusion,

duki
dt

= uki (ri +
n∑
j=1

aiju
k
j ), i = 1, . . . , n. (3.2)

Theorem 3.1 (Goh, 1977). If there is a positive equilibrium E∗ of (3.2) and a

constant positive diagonal matrix C such that CA + ATC is negative definite, then

E∗ is globally asymptotically stable for system (3.2).

We review the global stability for coexistence of species in subsection 3.1, Lya-

punov functions for large-scaled coupled systems in subsection 3.2, single species

Lotka-Volterra patch model in subsection 3.3. And the model of two species com-

petition in two patches is studied in subsection 3.4, whose the results are proven in

subsection 3.5.
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3.1 Global stability for coexistence of species

Suppose that there also exists a positive equilibrium for system (3.1) with diffusion

rate Dkl
i ≥ 0, denoted by Ē = (ū1, ū2, . . . , ūm), where ūk = (ūk1, ū

k
2, . . . , ū

k
n), and

ūki > 0, i = 1, . . . , n, k = 1, . . . ,m. We will discuss the global stability for the

coexistence Ē in system (3.1). In 1978, Hastings presented a sufficient conditions

for the global stability of the coexistence Ē in system (3.1) as follows.

Theorem 3.1.1 (Hastings, 1978). Assume that (3.2) satisfies the hypotheses of

Theorem 3.1 and Dkl
i = Dlk

i , i = 1, . . . , n, k, l = 1, . . . ,m. Then the positive equilib-

rium Ē is also globally asymptotically stable in (3.1) for all initial conditions with

uki (0) > 0 for all i, k.

This result of Theorem 3.1.1 indicates that the global stability for the positive

equilibrium is independent to the dispersal rates under the assumption. For single

species, Takeuchi had proposed such problem that whether the positive equilibrium,

which the value can be changed by dispersal rate, continues to be positive and glob-

ally stable if the dispersal rates are increased [21]? He showed that under some

conditions, the single species patch model can have the unique globally asymptot-

ically stable positive equilibrium [10]. Li and Shuai (2010) improved the result of

[10] and proved by constructing a suitable Lyapunov function [9].

We give an example for a special case that the population of species are the

same on each pathes,

ūk1 = ūk2 = · · · = ūkn, for each k,

by constructing a suitable Lyapunov function which the idea from [9].

Example 3.1.2. Consider the competitive patch model with three species and two

patches,

du1
1

dt
= u1

1(1− u1
1 − α1u

1
2 − β1u

1
3) + d21

1 (u2
1 − u1

1),

du1
2

dt
= u1

2(1− β1u
1
1 − u1

2 − α1u
1
3) + d21

2 (u2
2 − u1

2),

du1
3

dt
= u1

3(1− α1u
1
1 − β1u

1
2 − u1

3) + d21
3 (u2

3 − u1
3),

(3.3)
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and

du2
1

dt
= u2

1(1− u2
1 − α2u

2
2 − β2u

2
3) + d12

1 (u1
1 − u2

1),

du2
2

dt
= u2

2(1− β2u
1
1 − u1

2 − α2u
1
3) + d12

2 (u1
2 − u2

2),

du2
3

dt
= u2

3(1− α2u
1
1 − β2u

1
2 − u1

3) + d12
3 (u1

3 − u2
3).

(3.4)

Without all dispersal rates, we checked that if 0 < αi, βi < 1, i = 1, 2, models (3.3)

and (3.4) have a globally asymptotically stable positive equilibria (ū1
1, ū

1
2, ū

1
3), (ū2

1, ū
2
2, ū

2
3),

respectively [23]. Note that ū1
1 = ū1

2 = ū1
3, ū

2
1 = ū2

2 = ū2
3. Defined the Lyapunov func-

tions V1 : R3
+ → R, V2 : R3

+ → R for (3.3) and (3.4), respectively, by

V1 =
3∑
i=1

c1
i [u

1
i − ū1

i − ū1
i ln(

u1
i

ū1
i

)] (3.5)

and

V2 =
3∑
i=1

c2
i [u

2
i − ū2

i − ū2
i ln(

u2
i

ū2
i

)]. (3.6)

Denote

A =

 −1 −α1 −β1

−β1 −1 −α1

−α1 −β1 1

 , B =

 −1 −α2 −β2

−β2 −1 −α2

−α2 −β2 1

 (3.7)

and choose c1
i , c

2
i = 1, i = 1, 2, 3, then

V̇1 =
1

2

 u1
1 − ū1

1

u1
2 − ū1

2

u1
3 − ū1

3

T

(A + AT )

 u1
1 − ū1

1

u1
2 − ū1

2

u1
3 − ū1

3

 ≤ 0, (3.8)

and

V̇2 =
1

2

 u2
1 − ū2

1

u2
2 − ū2

2

u2
3 − ū2

3

T

(B + BT )

 u2
1 − ū2

1

u2
2 − ū2

2

u2
3 − ū2

3

 ≤ 0 (3.9)

since A + AT and B + BT are all negative definite. Hence, the assumption holds in

Theorem 3.1.

For dkli ≥ 0, i = 1, 2, 3, k, l = 1, 2, the coupled system has a positive equi-

librium (ū1
1, ū

1
2, ū

1
3, ū

2
1, ū

2
2, ū

2
3), which the value can be changed by dispersal rates.

Now, we claim that it is globally asymptotically stable by constructing the following

Lyapunov function

V = b1V1 + b2V2. (3.10)
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Choosing b1 = ū1
1(= ū1

2 = ū1
3), b2 = ū2

1(= ū2
2 = ū2

3), then

V̇ = b1V̇1 + b2V̇2

≤ ū1
1d

21
1 ū

2
1(
u2

1

ū2
1

− u1
1

ū1
1

+ 1− ū1
1u

2
1

ū2
1u

1
1

) + ū1
1d

21
2 ū

2
2(
u2

2

ū2
2

− u1
2

ū1
2

+ 1− ū1
2u

2
2

ū2
2u

1
2

)

+ ū1
1d

21
3 ū

2
3(
u2

2

ū2
3

− u1
3

ū1
3

+ 1− ū1
3u

2
3

ū2
3u

1
3

) + ū2
1d

12
1 ū

1
1(
u1

1

ū1
1

− u2
1

ū2
1

+ 1− ū2
1u

1
1

ū1
1u

2
1

)

+ ū2
1d

12
2 ū

1
2(
u1

2

ū1
2

− u2
2

ū2
2

+ 1− ū2
2u

1
2

ū1
2u

2
2

) + ū2
1d

12
3 ū

1
3(
u1

3

ū1
3

− u2
3

ū2
3

+ 1− ū2
3u

1
3

ū1
3u

2
3

)

≤ 0.

And the equality holds for (u1
1, u

1
2, u

1
3, u

2
1, u

2
2, u

2
3) = (ū1

1, ū
1
2, ū

1
3, ū

2
1, ū

2
2, ū

2
3). Hence, by

the Lyapunov stability theory, the positive equilibrium Ē = (ū1
1, ū

1
2, ū

1
3, ū

2
1, ū

2
2, ū

2
3) is

globally asymptotically stable for the system (3.3) and (3.4).
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Figure 4: Illustrations for the dynamics of example 3.1.2 with u = u1
1, v = u1

2,
w = u1

3, x = u2
1, y = u2

2, z = u2
3, and α1 = 0.1, β1 = 0.2,α2 = 0.2, β2 = 0.3, d = 1.

3.2 Lyapunov functions for large-scaled coupled systems

Summarizing the result in [9], its important assumption is that, when isolated, each

vertex system has a globally stable equilibrium and a globally defined Lyapunov

function Vi, i = 1, . . . , n. Then, for coupled system, Li and Shuai constructed a

global Lyapunov function in this form

V =
n∑
i=1

ciVi, (3.11)
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where ci ≥ 0 are suitable constants we will describe as follows.

Given a weighted digraph G = (V,E) with n vertices and a set of directed arcs

(j, i) connected from vertex j to vertex i with weight aij. A spanning tree of G is

a subgraph H has the same vertex and a set of arcs that contains no cycle. Here,

aij > 0 if and only if there exists an arc from vertex j to vertex i. Denote w(H) of H
be the product of the weights on all its arcs. Define the weight matrix A = [aij]n×n

whose entry aij equals the weight of arc (j, i) if it exists, and 0 otherwise. A diagraph

G is strongly connected if there exists a directed path from one to the other for any

two distinct vertices. A weighted diagraph G is strongly connected if and only if A

is irreducible. We need only to consider A is irreducible since any reducible system

can be separated into irreducible components. The Laplacian matrix of A is defined

as

L =


∑

k 6=1 a1k −a12 . . . −a1n

−a21

∑
k 6=2 a2k . . . −a2n

...
...

. . .
...

−an1 −an2 . . .
∑

k 6=n ank

 .
Then constants ci in (3.11) is the cofactor of the i-th diagonal element of L. As

follows, we will introduce some results in graph theory,

Proposition 3.2.1 (Kirchhoff’s matrix tree theorem). Assume n ≥ 2. Then

ci =
∑
T ∈Ti

w(T ), i = 1, . . . , n, (3.12)

where Ti is the set of all spanning trees T of G that are rooted at vertex i, and w(T )

is the weight of T .
The proof of Proposition 3.2.1 based on the following Lemma and induction :

Lemma 3.2.2. ([22]) Let G be a graph and τ(G) denote the number of spanning

trees of graph G. If e ∈ E(G), the set of edges of G, is not a loop, then

τ(G) = τ(G− e) + τ(G · e).

τ(G− e) denote the spanning trees do not contain e, τ(G · e) denote the spanning

trees contain e.

Lemma 3.2.3.∣∣∣∣∣∣∣∣∣
a11 + b11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
a11 0 . . . 0
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣∣
b11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣
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Proposition 3.2.4 (Li and Shuai,2010). Assume n ≥ 2. Let ci be given in Propo-

sition 3.2.1 Then the following identity holds

n∑
i,j=1

ciaijFij(xi, xj) =
∑
Q∈Q

w(Q)
∑

(s,r)∈E(CQ)

Frs(xr, xs). (3.13)

Here Fij(xi, xj), 1 ≤ i, j ≤ n, are arbitrary functions, Q is the set all spanning

unicyclic graphs of G that is defined by a disjoint union of rooted trees whose roots

form a directed cycle. w(Q) is the wight of Q and CQ denotes the directed cycle of

Q.

Proposition 3.2.5 (Li and Shuai,2010). Assume n ≥ 2. Let ci be given in Propo-

sition 3.2.1. Then the following identity holds

n∑
i,j=1

ciaijGi(xi) =
n∑

i,j=1

ciaijGj(xj). (3.14)

Here Gi(xi), 1 ≤ i ≤ n, are arbitrary functions.

We consider a coupled system built on G by assigning each vertex has its own

internal dynamics and coupling term based on directed arcs in G. Then we obtain

the following coupled system on G

dui
dt

= fi(ui) +
n∑
j=1

gij(ui, uj), i = 1, . . . , n. (3.15)

We assume each vertex system has a globally stable equilibrium and a globally

defined Lyapunov function Vi, i = 1, . . . , n. Then, for the coupled system (3.15),

the following result gives a general and systematic approach for constructing the

equation (3.11).

Theorem 3.2.6 (Li and Shuai,2010). Assume the constants ci are given in Propo-

sition 3.2.1 and the following assumptions hold.

(i) There exist functions Vi(ui), Fij(ui, uj), and constants aij ≥ 0 such that

V̇i(ui) ≤
n∑
j=1

aijFij(ui, uj), t > 0, i = 1, . . . , n. (3.16)

(ii) Along each directed cycle C of the weighted digraph G,A = [aij],∑
(s,r)∈E(C)

Frs(ur, us) ≤ 0, t > 0. (3.17)
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Then the function V in (3.11) satisfies V̇ ≤ 0 for t > 0. That is, V is a Lyapunov

function for (3.15).

Conditions (3.17) of Theorem 3.2.5 can be replaced that if there exist functions

Gi(ui), i = 1, . . . , n, such that

Fij(ui, uj) ≤ Gi(ui)−Gj(uj), 1 ≤ i, j ≤ n. (3.18)

Next section, we will discuss the single species patch model with diffusion.

3.3 Single species Lotka-Volterra patch model

Consider two identical linear systems with the stable zero solution,[
ẋi
ẏi

]
=

[
−2 3
−1 1

] [
xi
yi

]
, i = 1, 2. (3.19)

For the following coupled system with only linear coupling term, then the zero

solution is unstable. 
ẋ1

ẏ1

ẋ2

ẏ2

 =


−2 3 1 0
−1 1 0 0
1 0 −3 3
0 0 −1 1



x1

y1

x2

y2

 (3.20)

Hence, the dispersal can lead the dynamics of coupled system to appear unstable.

Here we also consider the question that whether the dispersal can lead each unstable

equilibrium of isolated systems to a stable equilibrium for coupled system ? We use

the two patch model as example, when isolated,

dx1

dt
= r1x1(−1

2
+

3

2
x1 − x2

1),

dx2

dt
= r2x2(−2 + 3x2 − x2

2).

(3.21)

There are two logistic equations of one dimensional, x1 = 1 is a stable equilibrium in

patch 1 and x2 = 1 is an unstable equilibrium in patch 2. In the following coupled

system,

dx1

dt
= r1x1(−1

2
+

3

2
x1 − x2

1) + d(x2 − x1),

dx2

dt
= r2x2(−2 + 3x2 − x2

2) + d(x1 − x2).

(3.22)
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(1, 1) is an equilibrium of above system. We can verify that if −r1
2

+ r2 < 0 and

d sufficient large, then (1, 1) is linearly stable for the coupled system. Therefore,

we introduced a result proposed by Hastings (1982), he presented a model for a

single species on patches, and showed that the coexistence of the model, if it exist,

is locally stable for sufficient large diffusion. See the model

dx

dt
= f(x) + Dx, (3.23)

where D = [dij] is a n×n matrix of diffusion coefficients with following assumptions

(i) D is symmetric. (ii) All diagonal elements are negative and all off diagonal

elements are nonnegative. (iii) Row sums and columns sums are all zero. (iv) D is

irreducible.

Theorem 3.3.1 (Hastings,1982). If there exists an equilibrium E∗ = (x∗1, . . . , x
∗
n)

such that all the d
dxi
fi(x

∗
i ) are sufficiently small with respect to the entries in D.

Then E∗ is locally asymptotically stable if

n∑
i=1

dfi
dxi

(x∗i ) < 0

and unstable if
n∑
i=1

dfi
dxi

(x∗i ) > 0.

The result shows that the sufficiently large dispersal rates have the powerful

stabilizing role (den Boer, 1968). For the case n = 3, let B = [bij] be a diagonal

matrix where bii = dfi
dxi

(x∗i ) and ε > 0, claim that all eigenvalues of D + εB are

negative if
∑3

i=1 bii < 0, and there is a positive eigenvalue if
∑3

i=1 bii > 0. Let

D =

 −d12 − d13 d12 d13

d12 −d12 − d23 d23

d13 d23 −d23 − d23

 , d12, d13, d23 ≥ 0 (3.24)

and

B =

 b11 0 0
0 b22 0
0 0 b33

 . (3.25)
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By the Gerschgorin’s Theorem and that D has zero eigenvalue, 0 is the largest

eigenvalue of D. Since the characteristic polynomial P (λ) of D + εB is given by

det(λI− (D + εB)) =

∣∣∣∣∣∣
λ− εb11 + d12 + d13 −d12 −d13

−d12 λ− εb22 + d12 + d23 −d23

−d13 −d23 λ− εb33 + d23 + d23

∣∣∣∣∣∣
= λ3 − trace(D + εB)λ2 + · · ·+ (−1)3 det(D + εB).

If
∑3

i=1 bii < 0, then

(i). trace(D + εB) = ε(b11 + b22 + b33)− 2(d12 + d13 + d23) < 0 for ε small.

(ii).

det(D + εB)) =

∣∣∣∣∣∣
εb11 + d12 + d13 d12 d13

d12 εb22 + d12 + d23 d23

d13 d23 εb33 + d23 + d23

∣∣∣∣∣∣
= ε(b11 + b22 + b33)(d12d23 + d12d13 + d23d13) +O(ε2)

< 0.

Hence, we have P (0) = (−1)3 det(D+εB)) > 0 and thus all eigenvalues of (D+εB)

are negative. Otherwise, if
∑3

i=1 bii > 0, we have P (0) < 0. It follows that there is

an eigenvalue is positive. The proof for high dimensional system see appendix 5.4.

Consider the single species patch model among n patches (n ≥ 2),

dxi
dt

= xifi(xi) +
n∑
j=1

dij(xj − xi), i = 1, . . . , n, (3.26)

where xi is the population of the species in patch i, fi ∈ C1(R+,R) represents the

density dependent growth rate in patch i, constant dij ≥ 0 is the dispersal rate from

patch j to patch i. In [9], the global stability of coexistence has been proved by

Lyapunov function, this also improved the result in Takeuchi (1993)[10].

Theorem 3.3.2 (Li and Shuai,2010). Assume that the following assumptions hold,

(i) Dispersal matrix dij is irreducible,

(ii) f ′i(xi) ≤ 0, xi > 0, i = 1, . . . , n, and there exists k such that f ′k(xk) 6= 0 in any

open interval of R+,

(iii) system (3.26) is uniformly persistent,

(iv) solutions of (3.26) are uniformly ultimately bounded.

Then the system (3.26) has a globally asymptotically stable positive equilibrium E∗

in Rn
+.
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3.4 Two species competition in two patches

The single species patch model has been studied extensively. We are interested to

study the patch model with many species. Whether the results about single patch

model can be extended for many species? In this subsection, we consider a model

of two competing species in two patches:

u̇1 = u1(α1 − cu1 − cv1) + d(u2 − u1),

u̇2 = u2(α2 − cu2 − cv2) + d(u1 − u2),

v̇1 = v1(β1 − cv1 − cu1) + d(v2 − v1),

v̇2 = v2(β2 − cv2 − cu2) + d(v1 − v2).

(3.27)

Herein, ui and vi are the populations of species u, v in patch i, i = 1, 2. The pa-

rameters αi, βi > 0 are intrinsic growth rates of species ui, vi respectively; d ≥ 0 is

the dispersal rate between two patches. We assume that the competition coefficient

c, in each patch is the same. Certainly we only consider nonnegative initial values

ui(0) ≥ 0 and vi(0) ≥ 0, i = 1, 2.

After scaling, model (3.27) becomes the following system which is the one

studied by Gourley and Kuang [2],

du1

dt
= u1(α1 − u1 − v1) + d(u2 − u1),

du2

dt
= u2(α2 − u2 − v2) + d(u1 − u2),

dv1

dt
= v1(β1 − v1 − u1) + d(v2 − v1),

dv2

dt
= v2(β2 − v2 − u2) + d(v1 − v2).

(3.28)

First, let us present some basic properties about the positively invariant sets and

boundedness of solutions for system (3.28). The proofs of this subsection are ar-

ranged in the next subsection.

Define

R̄2×2
+ =

{
(u1, u2, v1, v2) ∈ R2×2

+ : u1, u2, v1, v2 ≥ 0
}
,

R̃2×0
+ =

{
(u1, u2, 0, 0) ∈ R̄2×2

+ : u1 + u2 > 0
}
,

R̃0×2
+ =

{
(0, 0, v1, v2) ∈ R̄2×2

+ : v1 + v2 > 0
}
.

(3.29)

Proposition 3.4.1. R̄2×2
+ , R̃2×0

+ and R̃0×2
+ are all positively invariant under the

solution flow generated by system (3.28).
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Proposition 3.4.2. System (3.28) is dissipative. In fact,

lim sup
t→∞

(u1(t) + u2(t)) ≤ 2 max{α1, α2}, lim sup
t→∞

(v1(t) + v2(t)) ≤ 2 max{β1, β2}.

Consider the subsystem obtained by setting v1, v2 = 0 in (3.28)

du1

dt
= u1(α1 − u1) + d(u2 − u1),

du2

dt
= u2(α2 − u2) + d(u1 − u2).

(3.30)

System (3.30) can be seen as a single species patch model. It can be showed that

there exists a positive equilibrium through direct computation. Padron (2007)

showed the existence and uniqueness of a positive equilibrium for a high dimen-

sional system [15]. Li and Shuai (2010) showed the positive equilibrium is globally

asymptotically stable [9]. They constructed a Lyapunov function as follow

V (u) =
n∑
i=1

ci

(
ui − u∗i − u∗1 ln(

ui
u∗i

)

)
,u = (u1, . . . , un), (3.31)

the constants ci can be chosen by a systematic approach that we introduced in

Section 3.2. Hence, we have the following result.

Proposition 3.4.3. All solutions starting from initial data in R̃2×0
+ will converge

to the semi-trivial equilibrium (ū1, ū2, 0, 0) of system (3.28).

Similar setting for u1, u2 = 0 in (3.28), then we have

Proposition 3.4.4. All solutions starting from initial data in R̃0×2
+ will converge

to the semi-trivial equilibrium (0, 0, v̄1, v̄2) of system (3.28).

When d = 0(decoupled system), system (3.28) has a trivial equilibrium E0 =

(0, 0, 0, 0) and the following possible semi-trivial equilibria: single population solu-

tions E1 = (α1, 0, 0, 0), E2 = (0, α2, 0, 0), E3 = (0, 0, β1, 0), E4 = (0, 0, 0, β2); two

population solutions E5 = (α1, α2, 0, 0), E6 = (0, 0, β1, β2), E7 = (0, α2, β1, 0) and

E8 = (α1, 0, 0, β2). And we can verify that the model has no positive equilibrium.

Then the dynamics can deduced from the corresponding linearized system clearly.

There has the following result and we can conclude that the species with larger

growth rate in the same patch will preserve and drive the other to extinction.

25



Proposition 3.4.5. For the corresponding linearized system of (3.28) with d = 0,

(i). E0, E1, E2, E3 and E4 are all unstable.

(ii). If α1 < β1 and β2 < α2, then only E7 is stable.

(iii). If α1 > β1 and β2 > α2, then only E8 is stable.

(iv). If α1 > β1 and β2 < α2, then only E5 is stable.

(v). If α1 < β1 and β2 > α2, then only E6 is stable.

When d > 0, we consider the following parameter setting: Assume u and v

have the same total sum of growth rates,

α1 + α2 = β1 + β2. (3.32)

How are the distribution of growth rates related to the species preservation or ex-

tinction ? Without loss of generality, we assumed

β1 < β2.

Gourley and Kuang (2005) studied the local stability under the distribution of

growth rates as

0 < β1 − ε = α1 < β1 < β2 < α2 = β2 + ε. (3.33)

Their study also largely through the linearized analysis. For each semi-trivial

equilibria, the Jacobian matrix has a block diagonal structure. But it is not easy

to compute and analyze the stability of coexistence equilibrium, here we study it

using the Routh-Hurwitz stability criterion and mathematical computation software

Maple. We have the following result.

Theorem 3.4.6. Under assumption (3.33), if there exists a positive equilibrium Ē,

then it is asymptotically stable in system (3.28).

Now, we introduced the main result about the local stability of two semi-trivial

equilibria (u∗1, u
∗
2, 0, 0) and (0, 0, v∗1, v

∗
2) in [2].

Theorem 3.4.7 (Gourley and Kuang, 2005). If β2 > β1 and α1 = β1−ε, α2 = β2 +ε

with 0 < ε < β1 and d is sufficiently large, then (0, 0, v∗1, v
∗
2) is unstable and

(u∗1, u
∗
2, 0, 0) is stable.

26



This result showed that, for large dispersal rate, if the growth rates for the

species v are unequal and if u increases the disparity between the birth rates but

preserving the same mean, then u will win and drive v to extinction. But we found

out that the proof in Theorem 3.4.7 seemed only true for ε small. If not, it can

not guarantee the stability of the equilibrium (0, 0, v∗1, v
∗
2). We leave the process

of calculation in the end of this paper. In [2], the authors left two conjectures

to be open problems. In conjecture 1, they supposed that the global stability for

Theorem 3.4.7 is also true. On the other hand, in conjecture 2, if the dispersal

rate is small enough, then system (3.28) has a positive equilibrium which is globally

asymptotically stable. We state these conjectures in [2] as follows :

Conjecture 1 If β2 > β1 and α1 = β1 − ε, α2 = β2 + ε with 0 < ε < β1

and d sufficient large. If initial point from R̄2×2
+ with u1(0) + u2(0) > 0, then

limt→∞(u1(t), u2(t), v1(t), v2(t)) = (u∗1, u
∗
2, 0, 0).

Conjecture 2 If β2 > β1 and α1 = β1 − ε, α2 = β2 + ε with 0 < ε < β1.

Assume d is small enough such that system (3.28) has a positive steady state

E∗. If initial point from R̄2×2
+ with u1(0) + u2(0) > 0, v1(0) + v2(0) > 0, then

limt→∞(u1(t), u2(t), v1(t), v2(t)) = E∗.

They said that if these conjectures are true, it suggest that species that can

concentrate its growth in a single patch wins for the large dispersal rate. In short,

the winning strategy is simply to focus as much growth in a single patch as possible.

First of all, we want to know how the dispersal rate d effects the existence of

positive equilibrium for system (3.28) under assumption (3.33).

Theorem 3.4.8. Under assumption (3.33), system (3.28) has a positive equilibrium

(u∗1, u
∗
2, v
∗
1, v
∗
2) if and only if d < d̄, where

d̄ :=
(α2

2 − α2
1)−

√
(α2

2 − α2
1)2 − 16β1β2ε(β2 − α1)

8(β2 − α1)
.

Moreover, if we set

0 < β1 − ε1 = α1 < β1 < β2 < α2 = β2 + ε2, ε2 ≥ ε1 > 0, (3.34)

then the same assertion holds, and d̄ can be estimated as

α1α2ε1ε2

α2
2ε2 − α2

1ε1

< d̄ <
β1β2ε1ε2

β2
2ε2 − β2

1ε1

.
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However, it is not easy to solve d̄ under assumption (3.34). Using this result

and Theorem 3.4.6, we can deduce that system (3.28) has a asymptotically stable

equilibrium E∗ if and only if d < d̄. And Theorem 3.4.6 is true for the parameters

setting (3.34). Next, we will show that the solution flow will go into a bounded

region during a period of time. To formulate this result, we explain system (3.28)

is a monotone dynamical system first. We introduce some definition as follows.

A n × n matrix A is called a cooperative matrix if all off-diagonal entries of

A are nonnegative. A is called a type-K cooperative matrix if A has the form[
A1 −A2

−A3 A4

]
, (3.35)

where A1, A4 are k × k, (n− k)× (n− k) cooperative matrix, respectively. A2 and

A3 are nonnegative matrices. A system of differential equations ẋ = f(x) on Rn
+

is called a type-K monotone system if the Jacobian matrix Df(x) of f is type-K

cooperative at any x ∈ Rn
+. We note that system (3.28) is a type-K monotone system

since the Jacobian matrix is given by
α1 − 2u1 − v1 − d d −u1 0

d α2 − 2u2 − v2 − d 0 −u2

−v1 0 β1 − 2v1 − u1 − d d
0 −v2 d β2 − 2v2 − u2 − d

 .
Let

K = {x ∈ Rn : xi ≥ 0, 1 ≤ i ≤ k, xj ≤ 0, k + 1 ≤ j ≤ n} (3.36)

be a closed cone. We define the order relation,

x ≤K y ⇔ y − x ∈ K.

A semiflow ψ is said to be type-K monotone with respect to ordering ≤K if

ψt(x) ≤K ψt(y) whenever x ≤K y and t ≥ 0. (3.37)

Smith showed that the flow generated by a type-K monotone system is type-K mono-

tone [20]. A vector function f = (f1, . . . , fn) of a vector variable x = (x1, . . . , xn)

will be said to be of type K in a set S if for each i = 1, . . . , n, fi(a) ≤ fi(b) for any

two points a = (a1, . . . , an), b = (b1, . . . , bn) in S with ai = bi and ak ≤ bk, k 6= i.

Note that for an arbitrary scalar function is of type-K since the condition holds

for n = 1 clearly. Herein, system (3.28) is also of type-K.
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Let

ẋ = f(t,x) (3.38)

Theorem 3.4.9 (Kamke, 1932)[8]. Let f(t,x) be continuous in an open set R+×D
and of type-K for each fixed t. Let x(t) be a solution of (3.38) on an interval

[a, b]. If y(t) is continuous on [a, b] and satisfies Dry(t) ≥ f(t, y) on (a, b) and

y(a) ≥ x(a), then y(t) ≥ x(t) for a ≤ t ≤ b. If z(t) is continuous on [a, b] and

satisfies Dlz(t) ≤ f(t, z) on (a, b) and z(a) ≤ x(a), then z(t) ≤ x(t) for a ≤ t ≤ b.

By Theorem 3.4.9, we construct the upper and lower systems for (3.28) under

assumption (3.34). Let u1 + v1 = ω1 and u2 + v2 = ω2. From (3.28), we have

du1

dt
+
dv1

dt
= u1(α1 − u1 − v1) + d(u2 − u1) + v1(β1 − u1 + v1) + d(v2 − v1)

= (u1 + v1)(β1 − u1 − v1)− ε1u1 + d[(u2 + v2)− (u1 + v1)]

≤ ω1(β1 − ω1) + d(ω2 − ω1)

and

du2

dt
+
dv2

dt
= u2(α2 − u2 − v2) + d(u1 − u2) + v2(β2 − u2 − v2) + d(v1 − v2)

= (u2 + v2)(α2 − u2 − v2)− ε2v2 + d[(u1 + v1)− (u2 + v2)]

≤ ω2(α2 − ω2) + d(ω1 − ω2).

We define

dω̂1

dt
:= ω̂1(β1 − ω̂1) + d(ω̂2 − ω̂1)

dω̂2

dt
:= ω̂2(α2 − ω̂2) + d(ω̂1 − ω̂2).

(3.39)

Similarly, we have

du1

dt
+
dv1

dt
= u1(α1 − u1 − v1) + d(u2 − u1) + v1(β1 − u1 + v1) + d(v2 − v1)

= (u1 + v1)(α1 − u1 + v1) + ε1v1 + d[(u2 + v2)− (u1 + v1)]

≥ ω1(α1 − ω1) + d(ω2 − ω1)

and

du2

dt
+
dv2

dt
= u2(α2 − u2 − v2) + d(u1 − u2) + v2(β2 − u2 − v2) + d(v1 − v2)

= (u2 + v2)(β2 − u2 + v2) + ε2u2 + d[(u1 + v1)− (u2 + v2)]

≥ ω2(β2 − ω2) + d(ω1 − ω2).
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We define

dw̌1

dt
:= w̌1(α1 − w̌1) + d(w̌2 − w̌1)

dw̌2

dt
:= w̌2(β2 − w̌2) + d(w̌1 − w̌2).

(3.40)

Here we study the behavior of two systems (3.39), (3.40) and give two results

which have been proved by [9, 10, 15].

Theorem 3.4.10. The equilibrium (ˆ̄ω1, ˆ̄ω2) of system (3.39) is globally asymptoti-

cally stable among all positive initial data.

Theorem 3.4.11. The equilibrium (ˇ̄ω1, ˇ̄ω2) of system (3.40) is globally asymptoti-

cally stable among all positive initial data.

With the above results and Theorem 3.4.9, we have the following corollary to

construct the invariant set Ω̄ for system (3.28).
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1
ŵ1

w
⌣

2
ŵ
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Figure 5: The bounded above and bounded below for ω1 and ω2.

Corollary 3.4.12. Under assumption (3.34), we have following properties

(i) ˇ̄ω1 ≤ ˆ̄ω1; ˇ̄ω2 ≤ ˆ̄ω2,

(ii) β1 < ˆ̄ω1 < ˆ̄ω2 < α2;α1 < ˇ̄ω1 < ˇ̄ω2 < β2,

(iii) α1 < ˇ̄ω1, ˆ̄ω1, ˇ̄ω2, ˆ̄ω2 < α2,

(iv) ˆ̄ω1, ˆ̄ω2 →
α2 + β1

2
and ˇ̄ω1, ˇ̄ω2 →

α1 + β2

2
as d→∞.
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Define

Ω̄ =
{

(u1, u2, v1, v2) ∈ R̄2×2
+ : α1 ≤ u1 + v1 ≤ α2, α1 ≤ u2 + v2 ≤ α2

}
.

Theorem 3.4.13. Under the assumption (3.34), Ω̄ is positively invariant under the

solution flow generated by system (3.28).

This result showed that all solutions of system (3.28) will enter the bounded

region Ω̄ for a period of time. Next, we state the species synchronize in each patch

with large dispersal rate.

Theorem 3.4.14. Under assumption (3.34), then

−α2(α2 − α1)

d
+
α2(α2 − α1)

d
e−2dt + (u1(0)− u2(0))e−2dt

≤ u1(t)− u2(t) ≤ (u1(0)− u2(0))e−2dt

−β2(β2 − β1 + ε2)

d
+
β2(β2 − β1 + ε2)

d
e−2dt + (v1(0)− v2(0))e−2dt

≤ v1(t)− v2(t) ≤ ε2β2

d
− ε2β2

d
e−2dt + (v1(0)− v2(0))e−2dt

with initial point (u1(0)−u2(0)) and (v1(0)−v2(0)) start from the region Ω̄ at t = 0.

Then u1 − u2 , v1 − v2 → O(1
d
) as t→∞.

We propose similar conjectures with an assumption weaker than [2].

Conjecture 3.4.15. Under the assumption (3.34),

(i) If initial point from Ω̄ with u1(0) + u2(0) > 0, and d ≥ d̄, then system (3.28)

has no positive equilibrium and

lim
t→∞

(u1(t), u2(t), v1(t), v2(t)) = (u∗1, u
∗
2, 0, 0).

(ii) If initial point from Ω̄ with u1(0) + u2(0) > 0, v1(0) + v2(0) > 0 and d < d̄,

then system (3.28) has a positive equilibrium which is globally asymptotically stable.

Finally, we summarize an unsolved problem. We have shown that all solutions

with initial point from R̄2×2
+ will enter a bounded region Ω̄ which is positive invariant.

Next, we want to construct a Lyapunov function for system (3.28) with initial data
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starting from the positive invariant set except from R̃2×0
+ and R̃0×2

+ . For the semi-

trivial equilibrium (u∗1, u
∗
2, 0, 0), we have tried

V1 = u∗1

[
u1 + v1 − u∗1 − u∗1 ln

(
u1

u∗1

)]
+ u∗2

[
u2 + v2 − u∗2 − u∗2 ln

(
u2

u∗2

)]
, (3.41)

and for the positive equilibrium (u∗1, u
∗
2, v
∗
1, v
∗
2), we have tried

V2 = u∗1

[
u1 − u∗1 − u∗1 ln

(
u1

u∗1

)
+ v1 − v∗1 − v∗1 ln

(
v1

v∗1

)]
+ u∗2

[
u2 − u∗2 − u∗2 ln

(
u2

u∗2

)
+ v2 − v∗2 − v∗2 ln

(
v2

v∗2

)]
.

(3.42)

But it is difficult to check the time derivatives of V1, V2 are all non-positive. Whether

this two Lyapunov functions does not work to verify the global dynamics of system

(3.28) or there has more conditions in the positive invariant set we need to check

to guarantee the process of computation of V̇ . It seems to need more mathematical

analysis.

3.5 Proofs

Proof of Proposition 3.4.1. Let initial points start from R̃2×0
+ and u1(0) = 0.

Since u1(0) + u2(0) > 0, we have

du1(0)

dt
= du2(0) > 0.

Then R̃2×0
+ is positively invariant. Similarly for R̃0×2

+ . Clearly, R̃2×0
+ ⊂ R̄2×2

+ and

R̃0×2
+ ⊂ R̄2×2

+ . With initial point (u1(0), u2(0), v1(0), v2(0)) ∈ R̄2×2
+ ,

if u1(0) = 0 then
du1(0)

dt
= du2(0) ≥ 0;

if u2(0) = 0 then
du2(0)

dt
= du1(0) ≥ 0;

if v1(0) = 0 then
dv1(0)

dt
= dv2(0) ≥ 0;

if v2(0) = 0 then
dv2(0)

dt
= dv1(0) ≥ 0.

When u1(0) = 0 and du1(0)
dt

= du2(0) = 0, namely, u1(0) = u2(0) = 0, we have

already proved that {(0, 0, v1, v2)} ⊂ R̄0×2
+ is positively invariant and R̃2×0

+ ⊂ R̄2×2
+ .

Hence, R̄2×2
+ is positively invariant.
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Proof of Proposition 3.4.2.

d(u1 + u2)

dt
= u1(α1 − u1 − v1) + u2(α2 − u2 − v2)

= α1u1 + α2u2 − u2
1 − u2

2 − u1v1 − u2v2

≤ max{α1, α2}(u1 + u2)− 1

2
(u1 + u2)2

≤ (u1 + u2)

{
max{α1, α2} −

1

2
(u1 + u2)

}
.

Similarly,

d(v1 + v2)

dt
≤ (v1 + v2)

{
max{β1, β2} −

1

2
(v1 + v2)

}
.

Thus,

lim sup
t→∞

(u1 + u2) ≤ 2 max{α1, α2},

and

lim sup
t→∞

(v1 + v2) ≤ 2 max{β1, β2}.

Proof of Proposition 3.4.3. Define the Lyapunov function V : R̃2×0
+ → R by

V (u1, u2, 0, 0) = u∗1

(
u1 − u∗1 − u∗1 ln

(
u1

u∗1

))
+ u∗2

(
u2 − u∗2 − u∗2 ln

(
u2

u∗2

))
. (3.43)

With initial point (u1, u2, 0, 0) ∈ R̃2×0
+ , then

V̇ (u1, u2, 0, 0) = u∗1

[
u1(α1 − u1) + d(u2 − u1)− u∗1(α1 − u1)− du∗1

(
u2

u1

− 1

)]
+ u∗2

[
u2(α2 − u2) + d(u1 − u2)− u∗2(α2 − u2)− du∗2

(
u1

u2

− 1

)]
= u∗1

[
(u1 − u∗1)[−(u1 − u∗1) + (α1 − u∗1)] + d(u2 − u1)− du∗1

(
u2

u1

− 1

)]
+ u∗2

[
(u2 − u∗2)[−(u2 − u∗2) + (α2 − u∗2)] + d(u1 − u2)− du∗2

(
u1

u2

− 1

)]
= u∗1

[
−(u1 − u∗1)2 + (u1 − u∗1)(α1 − u∗1) + d(u2 − u1)− du∗1

(
u2

u1

− 1

)]
+ u∗2

[
−(u2 − u∗2)2 + (u2 − u∗2)(α2 − u∗2) + d(u1 − u2)− du∗2

(
u1

u2

− 1

)]
≤ u∗1

[
(u1 − u∗1)(α1 − u∗1) + d(u2 − u1)− du∗1

(
u2

u1

− 1

)]
+ u∗2

[
(u2 − u∗2)(α2 − u∗2) + d(u1 − u2)− du∗2

(
u1

u2

− 1

)]
.
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The equality holds if and only if u1 = u∗1 and u2 = u∗2. Since

α1 − u∗1 = −d
(
u2

u∗1
− 1

)
, α2 − u∗2 = −d

(
u1

u∗2
− 1

)
, (3.44)

we have

V̇ (u1, u2, 0, 0) ≤ u∗1

[
(u1 − u∗1)

[
−d
(
u∗2
u∗1
− 1

)]
+ d(u2 − u1)− du∗1

(
u2

u1

− 1

)]
+ u∗2

[
(u2 − u∗2)

[
−d
(
u∗1
u∗2
− 1

)]
+ d(u1 − u2)− du∗2

(
u1

u2

− 1

)]
= u∗1du

∗
2

(
−u1

u∗1
+ 1 +

u2

u∗2
− u∗1u2

u1u∗2

)
+ u∗2du

∗
1

(
−u2

u∗2
+ 1 +

u1

u∗1
− u1u

∗
2

u∗1u2

)
= du∗1u

∗
2

[
2−

(
u∗1u2

u1u∗2
+
u1u

∗
2

u∗1u2

)]
≤ 0

since a2 + b2 ≥ 2ab. The equality holds if and only if u∗1u2 = u1u
∗
2. Hence,

V̇ (u1, u2, 0, 0) ≤ 0 and the equality holds if and only if u1 = ū1 and u2 = ū2.

By the Lyapunov stability theory, the solutions starting from initial data in R̃2×0
+

will converge to the semi-trivial equilibrium (u∗1, u
∗
2, 0, 0) of system (3.28).

Proof of Proposition 3.4.4. The proof of Proposition 3.4.4 is similar to Proposi-

tion 3.4.3. By constructing the Lyapunov function V : R̃0×2
+ → R,

V (0, 0, v1, v2) = v∗1

(
v1 − v∗1 − v∗1 ln

(
v1

v∗1

))
+ v∗2

(
v2 − v∗2 − v∗2 ln

(
v2

v∗2

))
. (3.45)

Proof of Proposition 3.4.5. The variational matrix of corresponding linearized

system of (3.28) with d = 0 is given by

A(u1, u2, v1, v2) =


α1 − 2u1 − v1 0 −u1 0

0 α2 − 2u2 − v2 0 −u2

−v1 0 β1 − 2v1 − u1 0
0 −v2 0 β2 − 2v2 − u2


Then we have

A(E0) =


α1 0 0 0
0 α2 0 0
0 0 β1 0
0 0 0 β2

 , A(E1) =


−α1 0 −α1 0

0 α2 0 0
0 0 β1 − α1 0
0 0 0 β2

 ,
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A(E2) =


α1 0 0 0
0 −α2 0 −α2

0 0 β1 0
0 0 0 β2 − α2

 , A(E3) =


α1 − β1 0 0 0

0 α2 0 0
−β1 0 −β1 0

0 0 0 β2

 ,

A(E4) =


α1 0 0 0
0 α2 − β2 0 0
0 0 β1 0
0 −β2 0 −β2

 , A(E5) =


−α1 0 −α1 0

0 −α2 0 −α2

0 0 β1 − α1 0
0 0 0 β2 − α2

 ,

A(E6) =


α1 − β1 0 0 0

0 α2 − β2 0 0
−β1 0 −β1 0

0 −β2 0 −β2

 , A(E7) =


α1 − β1 0 0 0

0 −α2 0 −α2

−β1 0 −β1 0
0 0 0 β2 − α2

 ,
and

A(E8) =


−α1 0 −α1 0

0 α2 − β2 0 0
0 0 β1 − α1 0
0 −β2 0 −β2

 ,
We can find that the diagonal elements of each matrices are eigenvalues for the

corresponding matrices. And all parameters αi, βi > 0 and are different. Hence, we

can deduced the following results (i). E0, E1, E2, E3 and E4 are all unstable. (ii). If

α1 < β1 and β2 < α2, then only E7 is stable. (iii). If α1 > β1 and β2 > α2, then only

E8 is stable. (iv). If α1 > β1 and β2 < α2, then only E5 is stable. (v). If α1 < β1

and β2 > α2, then only E6 is stable.

Proof of Theorem 3.4.6. The system has a positive equilibrium Ē = (ū1, ū2, v̄1, v̄2)

satisfying the following system of equations

(α1 − ū1 − v̄1) + d(
ū2

ū1

− 1) = 0, (α2 − ū2 − v̄2) + d(
ū1

ū2

− 1) = 0,

(β1 − v̄1 − ū1) + d(
v̄2

v̄1

− 1) = 0, (β2 − v̄2 − ū2) + d(
v̄1

v̄2

− 1) = 0.
(3.46)

It follows that

α1 − ū1 − v̄1 = d(1− ū2

ū1

), α2 − ū2 − v̄2 = d(1− ū1

ū2

),

β1 − v̄1 − ū1 = d(1− v̄2

v̄1

), β2 − v̄2 − ū2 = d(1− v̄1

v̄2

).
(3.47)
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Now, form the linearized analysis, the variational matrix at Ē is

A(Ē) =


α1 − 2ū1 − v̄1 − d d −ū1 0

d α2 − 2ū2 − v̄2 − d 0 −ū2

−v̄1 0 β1 − 2v̄1 − ū1 − d d
0 −v̄2 d β2 − 2v̄2 − ū2 − d



=


−ū1 − dū2

ū1
d −ū1 0

d −ū2 − dū1
ū2

0 −ū2

−v̄1 0 −v̄1 − dv̄2
v̄1

d

0 −v̄2 d −v̄2 − dv̄1
v̄2


The corresponding characteristic polynomial is

P (λ) = λ4 + a1λ
3 + a2λ

2 + a3λ+ a4, (3.48)

where

a1 = ū1 + ū2 + v̄1 + v̄2 + d(
ū2

ū1

+
ū1

ū2

+
v̄2

v̄1

+
v̄1

v̄2

),

a2 =
1

M
(ū1ū2v̄

2
1 v̄

2
2 + ū2

1ū2v̄1v̄
2
2 + ū1ū

2
2v̄

2
1 v̄2 + ū2

1ū
2
2v̄1v̄2 + d(ū1ū2v̄

3
1 + ū1ū2v̄

3
2

+ ū3
1v̄1v̄2 + ū3

2v̄1v̄2) + d(ū2
1v̄1v̄

2
2 + ū2

2v̄1v̄
2
2 + ū1ū

2
2v̄

2
1 + ū2

1ū2v̄
2
1

+ ū2
2v̄1v̄

2
2 + ū2v̄

2
1 v̄2 + ū1ū

2
2v̄

2
2 + ū2

1ū2v̄
2
2) + d2(ū2

1 + ū2
2)(v̄2

1 + v̄2
2),

a3 =
d

M
{ū2

1ū
2
2(v̄2

1 + v̄2
2) + v̄2

1 v̄
2
2(ū2

1 + ū2
2) + (ū1v̄1 + ū2v̄2)(ū2

1 + v̄2
2 + ū2

2 + v̄2
1)

+ d[(ū2
1 + ū2

2)(v̄3
1 + v̄3

2) + (v̄2
1 + v̄2

2)(ū3
1 + ū3

2)]},

a4 =
d2

M
(ū1v̄2 + ū2v̄1)(ū1v̄2 − ū2v̄1)2,M = ū1ū2v̄1v̄2.

Hence, using mathematical computation software ”Maple”, we have

∆1 = a1 > 0,∆2 =

∣∣∣∣ a1 1
a3 a2

∣∣∣∣ = a1a2 − a3 > 0,

∆3 =

∣∣∣∣∣∣
a1 1 0
a3 a2 a1

0 a4 a3

∣∣∣∣∣∣ > 0,∆4 =

∣∣∣∣∣∣∣∣
a1 1 0 0
a3 a2 a1 1
0 a4 a3 a2

0 0 0 a4

∣∣∣∣∣∣∣∣ = a4∆3 > 0.

By the Routh-Hurwitz stability criterion, the real part of eigenvalues of A(Ē) are

all negative. Hence, the equilibrium Ē is stable in system (3.28).

Review the Theorem 3.4.7. The proof in [2] is to check the local stability of two

semi-trivial equilibria (u∗1, u
∗
2, 0, 0) and (0, 0, v∗1, v

∗
2). It satisfies the equations

u∗1(α1 − u∗1) + d(u∗2 − u∗1) = 0,

u∗2(α2 − u∗2) + d(u∗1 − u∗2) = 0,
(3.49)
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and

v∗1(β1 − v∗1) + d(v∗2 − v∗1) = 0,

v∗2(β2 − v∗2) + d(v∗1 − v∗2) = 0.
(3.50)

respectively. From (3.49) and (3.50), we have

u∗1 =
u∗2
d

(u∗2 − α2) + u∗2, (3.51)

and

v∗1 =
v∗2
d

(v∗2 − β2) + v∗2. (3.52)

Now, from the corresponding linearized system of (3.28), the variational matrices

at this two equilibria are

A(u∗1, u
∗
2, 0, 0) =


α1 − 2u∗1 − d d −u∗1 0

d α2 − 2u∗2 − d 0 −u∗2
0 0 β1 − u∗1 − d d
0 0 d β2 − u∗2 − d


and

A(0, 0, v∗1, v
∗
2) =


α1 − v∗1 − d d 0 0

d α2 − v∗2 − d 0 0
−v∗1 0 β1 − 2v∗1 − d d

0 −v∗2 d β2 − 2v∗2 − d

 .
Since those matrix have a block diagonal structure, we only need to check the signs

of trace and determinant for their 2 × 2 diagonal blocks matrices. That is, for d

large, we need to check

(α1 − 2u∗1)(α2 − 2u∗2)− d(α1 + α2 − 2u∗1 − 2u∗2) > 0

and

(β1 − u∗1)(β2 − u∗2)− d(β1 + β2 − u∗1 − u∗2) > 0.

On the other hand,

(α1 − v∗1)(α2 − v∗2)− d(α1 + α2 − v∗1 − v∗2) < 0

or

(β1 − 2v∗1)(β2 − 2v∗2)− d(β1 + β2 − 2v∗1 − 2v∗2) < 0.
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Using (3.51) and setting (β1−u∗1)(β2−u∗2)−d(β1+β2−u∗1−u∗2) = 0, from asymptotic

analysis, we yield that

u∗1 =
α1 + α2

2
+

1

2d
[(
β2 − β1

2
)2 − (

β2 + β1

2
)(ε+

β2 − β1

2
)] +O(

1

d2
),

u∗2 =
α1 + α2

2
+

1

2d
[(
β2 − β1

2
)2 + (

β2 + β1

2
)(ε+

β2 − β1

2
)] +O(

1

d2
).

(3.53)

Similarly, use (3.52) and set (α1 − v∗1)(α2 − v∗2)− d(α1 + α2 − v∗1 − v∗2) = 0, then we

have

v∗1 =
β1 + β2

2
+

1

8d
[(β2 − β1 + 2ε)2 + (β2

1 − β2
2)] +O(

1

d2
),

v∗2 =
β1 + β2

2
+

1

8d
[(β2 − β1 + 2ε)2 − (β2

1 − β2
2)] +O(

1

d2
),

(3.54)

It seems that we need ε is small enough in order that we can get the following

formulas in [2],

u∗1 =
α1 + α2

2
− α1

4d
(α2 − α1) +O(

1

d2
),

u∗2 =
α1 + α2

2
+
α2

4d
(α2 − α1) +O(

1

d2
).

(3.55)

and

v∗1 =
β1 + β2

2
− β1

4d
(β2 − β1) +O(

1

d2
),

v∗2 =
β1 + β2

2
+
β2

4d
(β2 − β1) +O(

1

d2
).

(3.56)

Unfortunately, if ε not small, by (3.54), we get

(α1 − v∗1)(α2 − v∗2)− d(α1 + α2 − v∗1 − v∗2)

= −(
α2 − α1

8d
)(β2

1 − β2
2) +O(

1

d2
) > 0.

(3.57)

and

(β1 − 2v∗1)(β2 − 2v∗2)− d(β1 + β2 − 2v∗1 − 2v∗2)

= d(β1 + β2) +O(1) > 0.
(3.58)

Hence, we can not guarantee the equilibrium (0, 0, v∗1, v
∗
2) is unstable. Finally, the

calculation about the asymptotic analysis for u∗i and v∗i , i = 1, 2 are as follows.

1. Let u∗1 = f0 + 1
d
f1 +O( 1

d2
) and u∗2 = g0 + 1

d
g1 +O( 1

d2
), where fi, gi are the functions

38



of parameters β1, β2. Substituting into the equation (3.51) and (β1− u∗1)(β2− u∗2)−
d(β1 + β2 − u∗1 − u∗2) = 0, and then comparing the coefficient of each order, we have

f0 = g0, f1 = g0(g0− α2) + g1, f0 + g0 = β1 + β2 and f1 + g1 = −(β1− f0)(β2− g0).

After some computation, we get

f0 = g0 =
β1 + β2

2
=
α1 + α2

2

and

f1 =
1

2
[(
β2 − β1

2
)2−(

β2 + β1

2
)(ε+

β2 − β1

2
)], g1 =

1

2
[(
β2 − β1

2
)2+(

β2 + β1

2
)(ε+

β2 − β1

2
)].

Hence,

u∗1 =
α1 + α2

2
+

1

2d
[(
β2 − β1

2
)2 − (

β2 + β1

2
)(ε+

β2 − β1

2
)] +O(

1

d2
),

u∗2 =
α1 + α2

2
+

1

2d
[(
β2 − β1

2
)2 + (

β2 + β1

2
)(ε+

β2 − β1

2
)] +O(

1

d2
).

2. Let v∗1 = f0 + 1
d
f1 +O( 1

d2
) and v∗2 = g0 + 1

d
g1 +O( 1

d2
), where fi, gi are the functions

of parameters β1, β2. Substituting into the equation (3.52) and (α1− v∗1)(α2− v∗2)−
d(α1 + α2 − v∗1 − v∗2) = 0, and then comparing the coefficient of each order, we have

f0 = g0, f1 = g0(g0 − β2) + g1, f0 + g0 = α+ α2 and f1 + g1 = −(α1 − f0)(α2 − g0).

After some computation, we get

f0 = g0 =
α1 + α2

2
=
β1 + β2

2

and

f1 =
1

8
[(β2 − β1 + 2ε)2 + (β2

1 − β2
2)], g1 =

1

8
[(β2 − β1 + 2ε)2 − (β2

1 − β2
2)].

Hence,

v∗1 =
β1 + β2

2
+

1

8d
[(β2 − β1 + 2ε)2 + (β2

1 − β2
2)] +O(

1

d2
),

v∗2 =
β1 + β2

2
+

1

8d
[(β2 − β1 + 2ε)2 − (β2

1 − β2
2)] +O(

1

d2
),
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Proof of Theorem 3.4.8. System (3.28) has a positive equilibrium (u∗1, u
∗
2, v
∗
1, v
∗
2)

if and only if

(α1 − u∗1 − v∗1) + d(
u∗2
u∗1
− 1) = 0, (α2 − u∗2 − v∗2) + d(

u∗1
u∗2
− 1) = 0,

(β1 − v∗1 − u∗1) + d(
v∗2
v∗1
− 1) = 0, (β2 − v∗2 − u∗2) + d(

v∗1
v∗2
− 1) = 0,

(3.59)

is satisfied and u∗1, u
∗
2, v
∗
1, v
∗
2 > 0. Simplifying each pair of these four equations, we

get −ε1 + d(a− b) = 0 and ε2 + d( 1
a
− 1

b
) = 0, where a =

u∗2
u∗1
, b =

v∗2
v∗1
. Observe

ab =
ε1

ε2

≡ k;

thus we obtain

a =
ε1 +

√
ε2

1 + 4kd2

2d
, b =

−ε1 +
√
ε2

1 + 4kd2

2d
.

Note that a2 > k > b2. Set u∗2 = au∗1, v
∗
2 = bv∗1, and substitute them back to (3.59),

we obtain

(i) (α1 − u∗1 − v∗1) + d(a− 1) = 0, (ii) a(α2 − au∗1 − bv∗1) + d(1− a) = 0,

(iii) (β1 − v∗1 − u∗1) + d(b− 1) = 0, (iv) b(β2 − bv∗1 − au∗1) + d(1− b) = 0.

Solving (i) and (ii), we have

u∗1 =
aα2 + d− ad− k(α1 + ad− d)

a2 − k
and

v∗1 = α1 − u∗1 + ad− d.

On the other hand, solving (iii) and (iv), we have

u∗1 =
bβ2 + d− bd− b2(β1 + bd− d)

k − b2
and v∗1 = β1 − u∗1 + bd− d.

We can verify the consistency; with d(a−b) = ε1, we see that α1+ad−d = β1+bd−d
and

aα2 + d− ad− k(α1 + ad− d)

a2 − k
=
bβ2 + d− bd− b2(β1 + bd− d)

k − b2
.

Hence, the unique positive equilibrium exists for system (3.28) if and only if

α1 + ad− d > aα2 + d− ad− k(α1 + ad− d)

a2 − k
> 0, (3.60)
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or equivalently,

β1 + bd− d > bβ2 + d− bd− b2(β1 + bd− d)

k − b2
> 0. (3.61)

First, since b < 1, we have β2 − bβ1 > 0, and

bβ2 + d− bd− b2(β1 + bd− d) = b(β2 − bβ1) + d(1− b) + b2d(1− b) > 0, for all d.

Next, we shall find the condition under which the left inequalities of (3.60) and

(3.61) hold. These inequalities are equivalent to G(d) > 0 and F (d) > 0, where

F (d) := d(1 + a2)(a− 1) + α1a
2 − α2a,

G(d) := k(β1 + bd− d) + bd− d− β2b.
(3.62)

Let us study the property for functions F and G. Note that

F (d) =
a2 − k
k − b2

G(d).

We claim that G′(d) < 0, for all d > 0. Indeed, since b =
−ε1+
√
ε21+4kd2

2d
, k = ε1

ε2
, we

have

b′ =
ε1b

d
√
ε2

1 + 4kd2
> 0.

We then compute

G′(d) = k(b′d+ b− 1) + (b′d+ b− 1)− β2b
′

= (k + 1)(b′d+ b− 1)− β2b
′

= (k + 1)(
ε1b√

ε2
1 + 4kd2

+ b− 1)− β2b
′

= (k + 1)(
2kd√

ε2
1 + 4kd2

− 1)− β2b
′

< 0.

Next, we show that

F (d) > 0, for all d ≤ α1α2ε1ε2

α2
2ε2 − α2

1ε1

,

G(d) < 0, for all d ≥ β1β2ε1ε2

β2
2ε2 − β2

1ε1

.

We set b ≤ α1k
α2
, then we have a = k

b
≥ α2

α1
> 1 and

F (d) = d(1 + a2)(a− 1) + α1a
2 − α2a

= d(1 + a2)(a− 1) + a(α1a− α2) > 0.
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Moreover,

b =
−ε1 +

√
ε2

1 + 4kd2

2d
≤ α1k

α2

.

It follows that √
ε2

1 + 4kd2

2d
≤ ε1

2d
+
α1k

α2

.

Squaring both sides and after some algebra, we have

d ≤ α1α2ε1ε2

α2
2ε2 − α2

1ε1

.

On the other hand, We set b ≥ β1k
β2

and the fact that b < 1, then we have

G(d) = k(β1 + bd− d) + bd− d− β2b

= kd(b− 1) + d(b− 1) + β1k − β2b < 0.

Moreover,

b =
−ε1 +

√
ε2

1 + 4kd2

2d
≥ β1k

β2

.

It follows that √
ε2

1 + 4kd2

2d
≥ ε1

2d
+
β1k

β2

.

Similarly, we square both sides and some algebra, then we get

d ≥ β1β2ε1ε2

β2
2ε2 − β2

1ε1

.

We thus conclude that the system must have a positive equilibrium when

d ≤ α1α2ε1ε2

α2
2ε2 − α2

1ε1

and has no positive equilibrium when

d ≥ β1β2ε1ε2

β2
2ε2 − β2

1ε1

.

Since we have b′ < 0 for all d > 0, we can deduce that there is a unique point d̄ with

α1α2ε1ε2

α2
2ε2 − α2

1ε1

< d̄ <
β1β2ε1ε2

β2
2ε2 − β2

1ε1

such that F (d̄) = G(d̄) = 0.

In particular, for the case ε1 = ε2 = ε, we have ab = 1, a > 1 > b and

a =
ε+
√
ε2 + 4d2

2d
, b =

−ε+
√
ε2 + 4d2

2d
.
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Similarly argument as above, we have

u∗1 =
aα2 + 2d− 2ad− α1

a2 − 1
, v∗1 = α1 − u∗1 + ad− d.

or

u∗1 =
bβ2 + d− bd− b2(β1 + bd− d)

1− b2
, v∗1 = β1 − u∗1 + bd− d.

We can also verify the consistency,

aα2 + 2d− 2ad− α1

a2 − 1
=
bβ2 + d− bd− b2(β1 + bd− d)

1− b2

and α1 + ad − d = β1 + bd − d. Hence, the unique positive equilibrium exists for

system (3.28) if and only if

α1 + ad− d > aα2 + 2d− 2ad− α1

a2 − 1
> 0. (3.63)

or equivalently

β1 + bd− d > bβ2 + d− bd− b2(β1 + bd− d)

1− b2
> 0. (3.64)

First, since b < 1, we have β2 − bβ1 < 1 and

bβ2 + d− bd− b2(β1 + bd− d) = b(β2 − bβ1) + d(1− b) + b2d(1− b) > 0, for all d.

Next, we shall find the condition under which the left inequalities of (3.63) and

(3.64) hold. These inequalities are equivalent to G(d) > 0 and F (d) > 0, where

F (d) := d(1 + a2)(a− 1) + α1a
2 − α2a and G(d) := 2bd− 2d− β2b+ β1

Let us study the property for functions F and G. Note that

F (d) =
a2 − 1

1− b2
G(d).

We claim that G′(d) < 0, for all d > 0. Indeed, since b = −ε+
√
ε2+4d2

2d
, we have

b′ =
bε

d
√
ε2 + 4d2

.

We then compute

G′(d) = 2(b′d+ b− 1)− β2b
′

= 2(
εb√

ε2 + 4d2
+ b− 1)− β2b

′

= 2(
2d√

ε2 + 4d2
− 1)− β2b

′

< 0.
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Next, we show that G(d) = 0, where

d =
(α2

2 − α2
1)−

√
(α2

2 − α2
1)2 − 16β1β2ε(β2 − α1)

8(β2 − α1)
,

We set G(d) = 0, it follows that

2bd− 2d− bβ2 + β1 =
2d(−ε+

√
ε2 + 4d2)− 4d2 − β2(−ε+

√
ε2 + 4d2) + 2β1d

2d
= 0.

Since d > 0, we let

2d(−ε+
√
ε2 + 4d2)− 4d2 − β2(−ε+

√
ε2 + 4d2) + 2β1d = 0.

It follows that

(−2dε− 4d2 + β2ε+ 2β1d)2 = (β2 − 2d)2(ε2 + 4d2).

After some algebra, we have

4(β2 − α1)d2 + (α2
1 − α2

2)d+ β1β2ε = 0.

Therefore, we have two roots

d± =
(α2

2 − α2
1)±

√
(α2

2 − α2
1)2 − 16β1β2ε(β2 − α1)

8(β2 − α1)

But actually, the graph of G(d) only intersect d-axis one time, we can check d+ is

not the root of G(d) = 0 by numerical computation. Hence, the only one root such

that equation G(d) = 0 is

d− =
(α2

2 − α2
1)−

√
(α2

2 − α2
1)2 − 16β1β2ε(β2 − α1)

8(β2 − α1)
,

denoted by d̄. The proof of theorem is complete.

Proof of Theorem 3.4.10. We define a Lyapunov function V : R2
+ → R by

V (ω̂1, ω̂2) = c1

(
ω̂1 − ˆ̄ω1 − ˆ̄ω1 ln

(
ω̂1

ˆ̄ω1

))
+ c2

(
ω̂2 − ˆ̄ω2 − ˆ̄ω2 ln

(
ω̂2

ˆ̄ω2

))
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where c1 = ˆ̄ω1 and c2 = ˆ̄ω2. Then

V̇ (ω̂1, ω̂2) = c1

[
ω̂1(β1 − ω̂1) + d(ω̂2 − ω̂1)− ˆ̄ω1(β1 − ω̂1)− ˆ̄ω1d

(
ω̂2

ω̂1

− 1

)]
+ c2

[
ω̂2(α2 − ω̂2) + d(ω̂1 − ω̂2)− ˆ̄ω2(α2 − ω̂2)− ˆ̄ω2d

(
ω̂1

ω̂2

− 1

)]
= c1

[
(ω̂1 − ˆ̄ω1)[−(ω̂1 − ˆ̄ω1) + (β1 − ˆ̄ω1)] + d(ω̂2 − ω̂1)− ˆ̄ω1d

(
ω̂2

ω̂1

− 1

)]
+ c2

[
(ω̂2 − ˆ̄ω2)[−(ω̂2 − ˆ̄ω2) + (α2 − ˆ̄ω2)] + d(ω̂1 − ω̂2)− ˆ̄ω2d

(
ω̂1

ω̂2

− 1

)]
= c1

[
−(ω̂1 − ˆ̄ω1)2 + (ω̂1 − ˆ̄ω1)(β1 − ˆ̄ω1) + d(ω̂2 − ω̂1)− ˆ̄ω1d

(
ω̂2

ω̂1

− 1

)]
+ c2

[
−(ω̂2 − ˆ̄ω2)2 + (ω̂2 − ˆ̄ω2)(α2 − ˆ̄ω2) + d(ω̂1 − ω̂2)− ˆ̄ω2d

(
ω̂1

ω̂2

− 1

)]
≤ c1

[
(ω̂1 − ˆ̄ω1)(β1 − ˆ̄ω1) + d(ω̂2 − ω̂1)− ˆ̄ω1d

(
ω̂2

ω̂1

− 1

)]
+ c2

[
(ω̂2 − ˆ̄ω2)(α2 − ˆ̄ω2) + d(ω̂1 − ω̂2)− ˆ̄ω2d

(
ω̂1

ω̂2

− 1

)]
where equality holds if and only if ω̂1 = ˆ̄ω1 and ω̂2 = ˆ̄ω2. Then

V̇ (ω̂1, ω̂2) ≤ c1

{
(ω̂1 − ˆ̄ω1)

[
−d
(

ˆ̄ω2

ˆ̄ω1

− 1

)]
+ d(ω̂2 − ω̂1)− ˆ̄ω1d

(
ω̂2

ω̂1

− 1

)}
+ c2

{
(ω̂2 − ˆ̄ω2)

[
−d
(

ˆ̄ω1

ˆ̄ω2

− 1

)]
+ d(ω̂1 − ω̂2)− ˆ̄ω2d

(
ω̂1

ω̂2

− 1

)}
= c1d ˆ̄ω2

[
− ω̂1

ˆ̄ω1

+ 1 +
ω̂2

ˆ̄ω2

−
ˆ̄ω1ω̂2

ω̂1 ˆ̄ω2

]
+ c2d ˆ̄ω1

[
− ω̂2

ˆ̄ω2

+ 1 +
ω̂1

ˆ̄ω1

− ω̂1 ˆ̄ω2

ˆ̄ω1ω̂2

]
= d ˆ̄ω1 ˆ̄ω2

[
2−

(
ˆ̄ω1ω̂2

ω̂1 ˆ̄ω2

+
ω̂1 ˆ̄ω2

ˆ̄ω1ω̂2

)]
≤ 0

since a2 + b2 ≥ 2ab. The equality holds if and only if ˆ̄ω1ω̂2 = ω̂1 ˆ̄ω2.

Therefore, we obtain V̇ (ω̂1, ω̂2) = 0 if and only if ω̂1 = ˆ̄ω1, ω̂2 = ˆ̄ω2 and

ˆ̄ω1ω̂2 = ω̂1 ˆ̄ω2. By the Lyapunov stability theory, The equilibrium (ˆ̄ω1, ˆ̄ω2) of system

(3.39) is globally asymptotically stable among all positive initial data.

Proof of Theorem 3.4.11. The proof of theorem 3.4.11 is similar to theorem

3.4.10. Defined the Lyapunov function V : R2
+ → R by

V (ω̌1, ω̌2) = c1

(
ω̌1 − ˇ̄ω1 − ˇ̄ω1 ln

(
w̌1

ˇ̄ω1

))
+ c2

(
w̌2 − ˇ̄ω2 − ˇ̄ω2 ln

(
w̌2

ˇ̄ω2

))
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where c1 = ˇ̄ω1 and c2 = ˇ̄ω2.

Proof of Corollary 3.4.12. We only prove the upper boundedness. (i) Clearly by

Theorem 3.4.10. (ii) The positive equilibrium (ˆ̄ω1, ˆ̄ω2) satisfies

ˆ̄ω1(β1 − ˆ̄ω1) + d(ˆ̄ω2 − ˆ̄ω1) = 0 (3.65)

ˆ̄ω2(α2 − ˆ̄ω2) + d(ˆ̄ω1 − ˆ̄ω2) = 0.

If ˆ̄ω1 ≥ ˆ̄ω2, then ˆ̄ω1 ≤ β1 and α2 ≤ ˆ̄ω2, namely, α2 ≤ ˆ̄ω2 ≤ ˆ̄ω1 ≤ β1. It contradicts

with β1 < α2. Thus, ˆ̄ω1 < ˆ̄ω2. Moreover, we obtain β1 < ˆ̄ω1 and ˆ̄ω2 < α2 since

ˆ̄ω1 < ˆ̄ω2. (iii) From (2), The results are true. (iv) Since

ˆ̄ω1 = ˆ̄ω2 +
ˆ̄ω2

d
(ˆ̄ω2 − α2), (3.66)

we have ˆ̄ω1 = ˆ̄ω2, as d→∞. Then ˆ̄ω1 = ˆ̄ω2 → α2+β1
2

. The same argument can proof

the lower boundedness.

Proof of Theorem 3.4.13. With initial point from Ω̄, we claim the solution flow

φt(u1, u2, v1, v2) stays in Ω̄.
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Figure 6: The bounded above and bounded below for ω1 and ω2.

(I) If exists some time t0 ≥ 0 such that ω1(t0) = α2 and α1 ≤ ω2(t0) ≤ α2,

then

d(u1 + v1)

dt
(t0) =

dω1(t0)

dt
= ω1(t0)(β1 − ω1(t0)) + d(ω2(t0)− ω1(t0))− ε1u1(t0)

≤ ω1(t0)(β1 − ω1(t0)) + d(ω2(t0)− ω1(t0))

= α2(β1 − α2) + d(ω2(t0)− α2)

≤ α2(β1 − α2) + d(α2 − α2) < 0.
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(II) If exists some time t0 ≥ 0 such that ω2(t0) = α2 and α1 ≤ ω1(t0) < α2, then

d(u2 + v2)

dt
(t0) =

dω2(t0)

dt
= ω2(t0)(α2 − ω2(t0)) + d(ω1(t0)− ω2(t0))− ε2v2(t0)

≤ ω2(t0)(α2 − ω2(t0)) + d(ω1(t0)− ω2(t0))

= α2(α2 − α2) + d(ω1(t0)− α2)

< α2(α2 − α2) + d(α2 − α2) = 0.

(III) If exists some time t0 ≥ 0 such that ω1(t0) = α1 and α1 < ω2(t0) ≤ α2, then

d(u1 + v1)

dt
(t0) =

dω1(t0)

dt
= ω1(t0)(α1 − ω1(t0)) + d(ω2(t0)− ω1(t0)) + ε1v1(t0)

≥ ω1(t0)(α1 − ω1(t0)) + d(ω2(t0)− ω1(t0))

= α1(α1 − α1) + d(ω2(t0)− α1)

> α1(α1 − α1) + d(α1 − α1) = 0.

(IV) If exists some time t0 ≥ 0 such that ω2(t0) = α1 and α1 ≤ ω1(t0) ≤ α2, then

d(u2 + v2)

dt
(t0) =

dω2(t0)

dt
= ω2(t0)(β2 − ω2(t0)) + d(ω1(t0)− ω2(t0)) + ε2u2(t0)

≥ ω2(t0)(β2 − ω2(t0)) + d(ω1(t0)− ω2(t0))

= α1(β2 − α1) + d(ω1(t0)− α1)

≥ α1(β2 − α1) + d(α1 − α1) > 0.

Secondly, we focus on the two points {w1 = α2, w2 = α2} and {w1 = α1, w2 = α1}.
Define

S1 =
{

(u1, v1) ∈ R̄2
+ : α1 ≤ u1 + v1 ≤ α2

}
,

S2 =
{

(u2, v2) ∈ R̄2
+ : α1 ≤ u2 + v2 ≤ α2

}
.

(I). For {w1 = α2, w2 = α2}, it indicates {u1 +v1 = α2, u2 +v2 = α2}. Set n = (1, 1),

then

n · f = [ω1(β1 − ω1) + d(ω2 − ω1)− ε1u1]|w1=α2,w2=α2 < 0,

n · g = [ω2(α2 − ω2) + d(ω1 − ω2)− ε2v2]|w1=α2,w2=α2,v2>0 < 0,

where f = (f1, f2) and f = (f1, f2) are the vector field of u1v1-plane and u2v2-plane,

respectively. It means that all initial point on the two line with v2 > 0 will go inside

the region S1 × S2.
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ŵ

2
w
⌣ 2

u

2
v

2
α

1
α

Figure 7: The bounded above and bounded below for (a) u1 and v1, (b) u2 and v2.

Finally, we check the point with v2 = 0 as initial data :

(i) (α2, α2, 0, 0), the solution always stays on u1u2-plane and tens to the semi-trivial

equilibrium (ū1, ū2, 0, 0) by Proposition 3.4.3.

(ii) With (u1, u2, v1, v2) = (k, α2, α2 − k, 0) for some k < α2, then

u̇2 = α2(α2 − α2) + d(k − α2) = d(k − α2) < 0

v̇2 = d(α2 − k) > 0

Hence, the flow with v2 > 0 alone the line u2 + v2 = α2 next time and satisfies the

above argument. It means that all the solution will enter the positive region S1×S2.

(II) Similar argument for {w1 = α1, w2 = α1}, it means {u1 +v1 = α1, u2 +v2 = α1}.
Set n = (1, 1), then

n · f = [w1(α1 − w1) + d(w2 − w1) + ε1v1]|w1=α1,w2=α1,v1>0 > 0,

n · g = [w2(β2 − w2) + d(w1 − w2) + ε2u2]|w1=α1,w2=α1 > 0,

where f = (f1, f2) and f = (f1, f2) are the vector field of u1v1-plane and u2v2-plane,

respectively. It means that all initial point on the two line with v1 > 0 will go inside

the region S1 × S2. Finally, we check the point with v1 = 0 as initial data :

(i) (α1, α2, 0, 0), the solution always stays on u1u2-plane and tens to the semi-trivial

equilibrium (ū1, ū2, 0, 0) by Proposition 3.4.3.

(ii) With (u1, u2, v1, v2) = (α1, k, 0, α1 − k) for some k < α1, then

u̇1 = α1(α1 − α1) + d(k − α1) = d(k − α1) < 0

v̇1 = d(α1 − k) > 0
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Hence the flow with v1 > 0 alone the line u2 + v2 = α1 next time and satisfies the

above argument. It means that all the solution will enter the positive region S1×S2.

Hence, we conclude that all solution flow will enter the bounded region Ω̄ for

a period of time. That is, Ω̄ is positively invariant.

Proof of theorem 3.4.14. With initial point (u1(0), u2(0), v1(0), v2(0)) ∈ Ω̄, by

Corollary 3.4.13 (iii), we have

d

dt
(u1 − u2) = u1(α1 − u1 − v1) + d(u2 − u1)− u2(α2 − u2 − v2)− d(u1 − u2)

= α1u1 − u1(u1 + v1)− α2u2 + u2(u2 + v2)− 2d(u1 − u2)

≤ α1u1 − α1u1 − α2u2 + α2u2 − 2d(u1 − u2)

= −2d(u1 − u2).

Hence, fixed d sufficiently large, we have

u1(t)− u2(t) ≤ (u1(0)− u2(0))e−2dt → 0 as t→∞,

with initial point (u1(0)− u2(0)) from Ω̄ at t = 0.

d

dt
(u1 − u2) = u1(α1 − u1 − v1) + d(u2 − u1)− u2(α2 − u2 − v2)− d(u1 − u2)

= α1u1 − u1(u1 + v1)− α2u2 + u2(u2 + v2)− 2d(u1 − u2)

≥ α1u1 − α2u1 − α2u2 + α1u2 − 2d(u1 − u2)

= −(α2 − α1)(u1 + u2)− 2d(u1 − u2)

≥ −2α2(α2 − α1)− 2d(u1 − u2)

Thus, fixed d sufficiently large, we have

u1(t)− u2(t) ≥ −α2(α2 − α1)

d

(
1− e−2dt

)
+ (u1(0)− u2(0))e−2dt

→ O(
1

d
) as t→∞,

with initial point (u1(0)− u2(0)) from Ω̄ at t = 0. Therefore, we obtain

−α2(α2 − α1)

d
+
α2(α2 − α1)

d
e−2dt + (u1(0)− u2(0))e−2dt

≤ u1 − u2 ≤ (u1(0)− u2(0))e−2dt
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with initial point (u1(0)− u2(0)) from the region Ω̄ at t = 0. Then u1 − u2 → O(1
d
)

as t→∞. Similarly, we have

d

dt
(v1 − v2) = v1(β1 − u1 − v1) + d(v2 − v1)− v2(β2 − u2 − v2)− d(v1 − v2)

= β1v1 − v1(u1 + v1)− β2v2 + v2(u2 + v2)− 2d(v1 − v2)

≤ β1v1 − α1v1 − β2v2 + α2v2 − 2d(v1 − v2)

= (β1 − α1)v1 + (α2 − β2)v2 − 2d(v1 − v2)

= ε1v1 + ε2v2 − 2d(v1 − v2)

≤ ε2(v1 + v2)− 2d(v1 − v2)

≤ 2ε2β2 − 2d(v1 − v2)

Thus, fixed d sufficiently large,

v1 − v2 ≤
ε2β2

d
− ε2β2

d
e−2dt + (v1(0)− v2(0))e−2dt → O(

1

d
) as t→∞,

with initial data (v1(0)− v2(0)) from the region Ω̄ at t = 0.

d

dt
(v1 − v2) = v1(β1 − u1 − v1) + d(v2 − v1)− v2(β2 − u2 − v2)− d(v1 − v2)

= β1v1 − v1(u1 + v1)− β2v2 + v2(u2 + v2)− 2d(v1 − v2)

≥ β1v1 − α2v1 − β2v2 + α1v2 − 2d(v1 − v2)

= −(β2 − β1 + ε2)v1 − (β2 − β1 + ε1)v2 − 2d(v1 − v2)

≥ −(β2 − β1 + ε2)(v1 + v2)− 2d(v1 − v2)

≥ −2β2(β2 − β1 + ε2)− 2d(v1 − v2)

Hence, fixed d sufficiently large,

v1 − v2 ≥ −β2(β2 − β1 + ε2)

d
+
β2(β2 − β1 + ε2)

d
e−2dt + (v1(0)− v2(0))e−2dt

→ O(
1

d
) as t→∞,

with initial data (v1(0)− v2(0)) from the region Ω̄ at t = 0. Therefore, we obtain

−β2(β2 − β1 + ε2)

d
+
β2(β2 − β1 + ε2)

d
e−2dt + (v1(0)− v2(0))e−2dt

≤ v1 − v2 ≤
ε2β2

d
− ε2β2

d
e−2dt + (v1(0)− v2(0))e−2dt

with initial point (v1(0)− v2(0)) from the region Ω̄ at t = 0. Then v1 − v2 → O(1
d
)

as t→∞.
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4 Numerical examples

Example 1 : We present the example to illustrate our results. Set β1 = 1.5, β1 =

2.5, ε1 = ε1 = 0.5.
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Figure 8: Illustrations for the dynamics β1 = 1.5, β2 = 2.5, ε1 = ε2 = 0.5.

Example 2 : We present the example to illustrate our results. Set β1 = 1.5, β1 =

2.5, ε1 = 0.3, ε2 = 0.6.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

d

 u
1,u

2

α
1
=1.2,α

2
=3.1,β

1
=1.5,β

2
=2.5

 

 
u

1

u
2

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

d

v 1,v
2 

 

 
v

1

v
2

Figure 9: Illustrations for the dynamics β1 = 1.5, β2 = 2.5, ε1 = 0.3, ε2 = 0.6.
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The form of model as (3.28) with different dispersal rates as follows.

du1

dt
= u1(α1 − u1 − v1) + du2 − eu1,

du2

dt
= u2(α2 − u2 − v2) + eu1 − du2,

dv1

dt
= v1(β1 − v1 − u1) + dv2 − ev1,

dv2

dt
= v2(β2 − v2 − u2) + ev1 − dv2,

(4.1)

with the assumption of parameters

0 < β1 − ε1 = α1 < β1 < β2 < α2 = β2 + ε2, ε2 ≥ ε1 > 0, e ≥ d ≥ 0. (4.2)

We have the similar results:

Example 3 : We present the examples to illustrate our results. Set β1 = 1.5, β1 =

2.5, ε1 = ε1 = 0.5, d = 0.1.
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Figure 10: Illustrations for the dynamics β1 = 1.5, β2 = 2.5, ε1 = ε2 = 0.5, d = 0.1.
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On the other hand, we let species with the different dispersal,

du1

dt
= u1(α1 − u1 − v1) + du2 − du1,

du2

dt
= u2(α2 − u2 − v2) + du1 − du2,

dv1

dt
= v1(β1 − v1 − u1) + ev2 − ev1,

dv2

dt
= v2(β2 − v2 − u2) + ev1 − ev2,

(4.3)

with the assumption of parameters

0 < β1 − ε1 = α1 < β1 < β2 < α2 = β2 + ε2, ε2 ≥ ε1 > 0, e ≥ d ≥ 0. (4.4)

We have the following results:

Example 4 : We present the examples to illustrate our results. Set β1 = 1.5, β1 =

2.5, ε1 = ε1 = 0.5, d = 0.1.
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Figure 11: Illustrations for the dynamics β1 = 1.5, β2 = 2.5, ε1 = ε2 = 0.5, d = 0.1.
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5 Appendices

5.1 Note of Section 2.2

1. Special case α + β = 2.

dx1

dt
= x1(1− x1 − αx2 − βx3), (5.1)

dx2

dt
= x2(1− βx1 − x2 − αx3), (5.2)

dx3

dt
= x3(1− αx1 − βx2 − x3). (5.3)

Define

xT (t) = x1(t) + x2(t) + x3(t).

Summing (5.1), (5.2) and (5.3), we have

dxT
dt

= (x1 + x2 + x3)−
(
x2

1 + x2
2 + x2

3 + (α + β)(x1x2 + x2x3 + x3x1)
)

= xT − x2
T .

(5.4)

Hence,

xT (t) =
xT (0)

xT (0) + (1− xT (0))e−t

with some initial value xT (0) = x1(t)+x2(t)+x3(t). Clear, xT (t)→ 1 as t→∞. That

is, the solutions of the system (2.14) approach to the plane x1(t) +x2(t) +x3(t) = 1.

Define

P (t) = x1(t)x2(t)x3(t).

Then,

d(lnP )

dt
=
d(lnx1x2x3)

dt
=
d(lnx1 + lnx2 + lnx3)

dt

=
1

x1

dx1

dt
+

1

x2

dx2

dt
+

1

x3

dx3

dt

= (1− x1 − αx2 − βx3) + (1− βx1 − x2 − αx3) + (1− αx1 − βx2 − x3)

= 3(1− xT ) =
3

xT
(xT − x2

T )

=
3

xT
(
dxT
dt

)

=
d(lnx3

T )

dt
.

(5.5)
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Integrating both side, we have

lnP (t)− lnP (0) = ln x3
T (t)− lnx3

T (0)

with some initial value P (0) = x1(0)x2(0)x3(0) > 0. Hence,

P (t) = P (0)(
x3
T (t)

x3
T (0)

).

Since xT (t)→ 1, we have

P (t)→ P (0)(
1

x3
T (0)

) as t→∞.

That is, the solutions of the system (2.14) approaches a hyperboloid x1x2x3 = C,

where C = P (0)

x3T (0)
. Combining these results, the solution of (2.14) for α+β = 2 tends

to a periodic limit cycle in the 3-dimensional population space. These periodic

cycles constitute a one-dimensional family, specified by the constant C depends on

all initial values.
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Figure 12: Illustrations for the dynamics α = 0.8, β = 1.2. (a) time plot (b) initial
point (1,0.8,0.2) (c) initial point (0.01,0.04,0.05).

2. General case α+ β > 2 and α < 1. Let F denote the union of the three orbit

closures,

F =
3⋃
i=1

oi,

where o1 is the orbit in the x2x3-plane form (0, 0, 1) to (0, 1, 0), o2 is the orbit in

the x1x3-plane form (1, 0, 0) to (0, 0, 1) and o3 is the orbit in the x1x2-plane form

(0, 1, 0) to (1, 0, 0).

Theorem (Schuster, Sigmund and Wolff, 1979). With the exception of the fixed

point E7 and one orbit whose w-limit is E7, every orbit in the interior of R3
+ has F

as w-limit.
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Note that E7 is the positive equilibrium for system (2.14). And it is a saddle

for α + β > 2 and α < 1 since some eigenvalues for the corresponding linearized

matrix have negative real part.

Proof: Let V = x1 + x2 + x3 be a Lyapunov function, then

dV

dt
= (x1 + x2 + x3)− (x2

1 + x2
2 + x2

3 + (α + β)(x1x2 + x2x3 + x3x1)), (5.6)

which is a quadric form of a two-sheeted hyperboloid with center 1
1+α+β

(1
2
, 1

2
, 1

2
). The

sheet through E7 and also contains (1, 0, 0), (0, 1, 0) and (0, 0, 1).

For every points on the sheet has V ≥ 3
1+α+β

and the equality holds for

(x1, x2, x3) = E7. For x1 + x2 + x3 = 1, we have V = 1 and

dV

dt
= (x1 + x2 + x3)− (x2

1 + x2
2 + x2

3 + (α + β)(x1x2 + x2x3 + x3x1))

= (x1 + x2 + x3)− ((x1 + x2 + x3)2 + (α + β − 2)(x1x2 + x2x3 + x3x1))

= 1− 1− (α + β − 2)(x1x2 + x2x3 + x3x1))

= (α + β − 2)(x1x2 + x2x3 + x3x1)) < 0,

Hence, the solution will into the bounded region

Q1 = {(x1, x2, x3) ∈ R3
+ :

3

1 + α + β
≤ V ≤ 1}.

Define P = x1x2x3 be the second Lyapunov function, then

Ṗ = ẋ1x2x3 + x1ẋ2x3 + x1x2ẋ3

= x1x2x3(1− x1 − αx2 − βx3) + x1x2x3(1− βx1 − x2 − αx3) + x1x2x3(1− αx1 − βx2 − x3)

= x1x2x3(3− (1 + α + β)(x1 + x2 + x3))

= P (3− (1 + α + β)V )

≤ 0

for all initial values start from Q1 and the equality holds for V = 3
1+α+β

or P = 0.

V = 3
1+α+β

means the solution is an orbit whose w-limit is E7. With the exception

of those orbit, all other orbits start form Q1 approaches the set P = 0, that is, the

boundary of R3
+. It shows that the orbits of almost all points in R3

+. approaches the

set Q1∩bdR3
+. Moreover, E1, E2 and E3 are all unstable because of 1−α > 0. Hence,

the only remaining invariant set in Q1 ∩ bdR3
+ is F, which must be the w-limit.

Similarly for the parameter assumption α + β > 2 and β < 1.
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Figure 13: Illustrations for the dynamics α = 0.8, β = 1.3. (a) time plot (b) initial
point (0.8,0.6,0.2) (c) initial point (0.1,0.08,0.2).

5.2 Proof of Theorem 2.3.1.

Proof: Let V : R2
+ → R be a Lyapunov function for system (2.18), c1, c2 > 0,

V (x1, x2) = c1

(
x1 − x∗1 − x∗1 ln(

x1

x∗1
)

)
+ c2

(
x2 − x∗2 − x∗2 ln(

x2

x∗2
)

)
. (5.7)

Then,

V̇ = c1(x1 − x∗1)(b1 + a11x1 + a12x2) + c2(x2 − x∗2)(b2 + a21x1 + a22x2)

= c1(x1 − x∗1)[a11(x1 − x∗1) + a12(x2 − x∗2)] + c2(x2 − x∗2)[a21(x1 − x∗1) + a22(x2 − x∗2)]

= c1a11(x1 − x∗1)2 + (c1a12 + c2a21)(x1 − x∗1)(x2 − x∗2) + c2a22(x2 − x∗2)2

Choosing the suitable positive constants to verify that the quadric from is a ellipse.

That is, claim that

(c1a12 + c2a21)2 − 4c1c2a11a22 < 0. (5.8)

For the following cases: (i) a12a21 = 0, (ii) a12a21 > 0, (iii) a12a21 < 0,

(i). W.L.O.G., assume a12 = 0, a21 6= 0, then choosing c1 = 1, c2 <
4a11a22
a221

such

that

(c1a12 + c2a21)2 − 4c1c2a11a22 = c2(c2a
2
21 − 4a11a22) < 0.

(ii). (5.8) can be written to

(c1a12 − c2a21)2 − 4c1c2(a11a22 − a12a21) < 0,

and holds for choosing c1 = 1, c2 = a12
a21
. Note that a11a22 − a12a21 > 0 by the local

stability of positive equilibrium, which is the assumption of Theorem 2.3.1.

(iii). Choosing c1 = 1, c2 = −a12
a21
, then

(c1a12 + c2a21)2 − 4c1c2a11a22 < 0.
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Hence, the quadric from is always a ellipse and it can be rewritten to be the

normal form of an ellipse

a11X
2
1 + a22X

2
2 .

Since a11 < 0, a22 < 0, we have

V̇ ≤ 0,

and the equality holds for x1 = x∗1, x2 = x∗2.

Recall the computation in V̇ , we have

V̇ = c1a11(x1 − x∗1)2 + (c1a12 + c2a21)(x1 − x∗1)(x2 − x∗2) + c2a22(x2 − x∗2)2

=
1

2

[
x1 − x∗1
x2 − x∗2

]T [
2c1a11 c1a12 + c2a21

c1a12 + c2a21 2c2a22

] [
x1 − x∗1
x2 − x∗2

]
.

And [
2c1a11 c1a12 + c2a21

c1a12 + c2a21 2c2a22

]
= (CA + ATC).

Hence the proof is equivalent to claim that whether CA + ATC is negative definite

for suitable positive constants c1, c2. This argument also applicable for many species

model, see Theorem 2.4.1.

5.3 Proof of Theorem 2.4.1.

Proof: Let V : Rn
+ → R be the Lyapunov function for model (2.22) by

V (x1, . . . , xn) =
n∑
i=1

ci

(
xi − x∗i − x∗i ln(

xi
x∗i

)

)
. (5.9)

Then,

V̇ =
n∑
i=1

ci(xi − x∗i )(bi +
n∑
j=1

aijxj)

=
n∑
i=1

ci(xi − x∗i )(
n∑
j=1

aij(xj − x∗j))

=
n∑
i=1

n∑
j=1

ciaij(xi − x∗i )(xj − x∗j)

=
1

2

(
x− x∗

)T (
CA + ATC

) (
x− x∗

)
,

58



where x = (x1, . . . , xn),x∗ = (x∗1, . . . , x
∗
n). Since CA + ATC is negative definite, we

have

V̇ ≤ 0,

and the equality holds for (x1, . . . , xn) = (x∗1, . . . , x
∗
n). By the Lyapunov theory,

(x∗1, . . . , x
∗
n) is globally asymptotically stable for system (2.22)

5.4 Proof of Theorem 3.3.1.

Proof: In general,

(1). n is odd. Since we have

P (λ) = det(λI− (D + εB))

= λn − trace(D + εB)λn−1 + · · ·+ (−1)n det(D + εB).

If
∑n

i=1 bii < 0, then

(i). trace(D + εB) = ε(
∑n

i=1 bii)− 2(
∑n

i<j dij) < 0 for ε small.

(ii).

det(D + εB)) = ε(
n∑
i=1

bii)(−1)n−1M,

where M is the (n−1) principal minors of −D and M > 0. (Fiedler and Ptak, 1962)

So we have det(λI−(D+εB)) < 0. It follows that P (0) = (−1)n det(λI−(D+εB)) >

0. Otherwise, if
∑n

i=1 bii > 0, we have P (0) < 0.

(2). n is even.

Similar argument as above, then we also have P (0) = (−1)n det(λI− (D + εB)) > 0

for
∑n

i=1 bii < 0. And P (0) < 0 for
∑n

i=1 bii > 0.

5.5 Proof of Theorem 3.3.2.

Proof: The assumptions (iii) and (iv) implies that the system (3.26) has at least one

positive equilibrium, Padron have proved the existence and uniqueness of positive

steady state for the system (3.26)[15].

Let E∗ = (x∗1, . . . , x
∗
n), x∗i > 0 be the positive equilibrium for system (3.26),

then x∗i satisfies the equation

fi(x
∗
i ) +

n∑
j=1

(
x∗j
x∗i
− 1) = 0.
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The defined Lyapunov function V : R+ → R for patch i is given by

Vi(xi) = xi − x∗i − x∗i ln(
xi
x∗i

).

We can verify that Vi(xi) > 0 for all xi > 0 and Vi(xi) = 0 if and only if xi = x∗i .

Hence,

dV

dt
= (1− x∗i

xi
)[xifi(xi) +

n∑
j=1

dij(xj − xi)]

= (xi − x∗i )[fi(xi) +
n∑
j=1

dij(
xj
xi
− 1)− fi(x∗i )−

n∑
j=1

dij(
x∗j
x∗i
− 1)]

= (xi − x∗i )(fi(xi)− fi(x∗i )) +
n∑
j=1

dijx
∗
j(
xj
x∗j
− xi
x∗i

+ 1− x∗ixj
x∗jxi

)

By assumption (ii), since f ′i(xi) ≤ 0, we have (xi − x∗i )(fi(xi) − fi(x
∗
i )) ≤ 0. Let

aij = dijx
∗
j , Fij(xi, xj) =

xj
x∗j
− xi

x∗i
+ 1 − x∗i xj

x∗jxi
and Gi(xi) = − xi

x∗i
+ ln(

x∗i xj
x∗jxi

). Then we

have
dV

dt
≤ aij(Gi(xi)−Gj(xj)), (5.10)

and the equality holds for xi = x∗i , i = 1, . . . , n. Now, set

V =
n∑
i=1

ciVi.

By Theorem 3.2.6 and (3.18), ci is the cofactor of i-th diagonal element of Laplacian

matrix corresponding to [aij], then V is a Lyapunov function for coupled system

(3.26). And thus,
dV

dt
≤ 0

and the equality holds for xi = x∗i , i = 1, . . . , n. By the Lyapunov stability theory,

E∗ is globally asymptotically stable in Rn
+.
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