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Abstract

In this thesis, we review«theinvestigations of dynamics for Lotka Volterra
models and patch models‘in mathematical ecology.“We study two open ques-
tions posed by Gourley ‘and Kuang in 2005, which are concerned with how
dispersal rates affect the'competition in two-species patch model with various
spatial distribution of their growth rate. It was conjectured that, in a high
dispersal environment, the winning strategy.for species depends on the growth
rate in a single patch. That is, the species which has the greatest growth rate
will win. On the other hand, the system may-have a globally asymptotically
stable positive equilibrium for‘a small enough dispersal rate. We have not
solved the conjectures, but have better understanding on these issues.
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1 Introduction

In this thesis, we mainly introduce some basic model in mathematical ecology and
investigate their dynamics. In 1838, Verhulst, a Belgium mathematician, presented

the logistic equation to describe the self-limiting growth of a biological population

fi—f = ra(l — %), (1.1)
where the constant r is called the intrinsic growth rate and K is the carrying ca-
pacity due to the limited resource supply, such as food, nutrients, space, and so on.
The biological meaning is that populations with interaction among individuals will
control their reproduction. Lotka derived the equation again in 1925, calling it the
law of population growth. The Lotka Volterra system, developed independently by
Lotka (1925) and Volterra (1926), which be used to model the dynamics of ecological

systems with predator-prey interactions.

d

0 8 Ly

dt (1.2)
@ =yxy — 0

= =2y = 0y,

x is the population density of prey and y is the population density of predator. With
the basic of logistic equation, the form-is similar to the Lotka Volterra equations
for predation is that equation for two similar species competing for a common lim-
ited resource. Assume that the population grew up logistically in the absence of
the other, and reduce each others growth rates and saturation population by their

competitive behavior. That is so-called Lotka Volterra competition system

d[[’l T

— =rz(l — —) — az29,

dt K, (1.3)
T2 (- 22— g |
—= = 1r9x9(l — =) — Bx1x

7 PYD) e 172,

where all parameters are positive, x; is the population of i-th competing species. The
1th species grows logistically with intrinsic rate r; in the absence of the other, K; is
the carrying capacity of x; and «, S are the interspecific competition coefficients.
In section 2, we will discuss the dynamics of the Lotka-Volterra competition
system. The stability for the coexistence of system (1.3) can be determined by the
conditions obtained by the graphical method (Rosenzweig and MacArthur 1963,
MacArthur and Wilson 1967, Pielou 1969, Slobodkin 1962)[12, 14, 16]. The graphi-

cal analysis suggests that for two competing species, its local stability can imply the



global dynamics. But this result is not necessarily true for more than two species
and two species model under other interactions. In 1968, Levins, a mathematical
ecologist, determined the local stability of the equilibrium for n species competition
model by a necessary condition that the determinant of the matrix of competition
coefficients is positive. Strobeck (1973) presented a necessary and sufficient condi-
tion for the local stability of coexistence of the n species competition model [17]. In
1975, May and Leonard studied the three competing species model, with a symmet-
ric assumption of their competing parameters, which has a special class of periodic
limit cycle solutions and a general class of non periodic oscillations of bounded am-
plitude but ever increasing cycle time [11]. And the proof of the general class had
been modified by Schuster, Sigmund and Wolff (1979) [18]. Zhang and Chen (2000)
discussed each cases of the assumption of parameters and presented some necessary
and sufficient conditions for the global dynamics of the positive equilibrium, a family
of limit cycle or a heteroclinic cycle [23]. It shows that, the systems with three or
more dimensions must have much richer'dynamical behaviors.

In addition to the competition model, we considered other types of model such
as predator-prey or mutualism(cooperation), ete. And more, we want to know the
global dynamics for n species Lotka-Volterra models. Consider the following system

dﬁi s .
di :I'i(bi‘f—jzzlaijxj),lz ]_,...,Tl, (14)

In general, system (1.4) whose nontrivial-equilibrium is locally stable may not be
globally stable. By means of Lyapunov theory, we can guarantee the global dynamics
for system (1.4). So far, most of results about the coexistence have been proposed.
In 1977, Goh presented a sufficient condition to guarantee the global stability of
positive equilibrium for the Lotka-Volterra model. Herein, the appropriate form of

Lyapunov function as follows

n

V= Z ¢ |::L‘, —xl — ln(%) . (1.5)
i=1 é
In particular, for two species interactions, the conditions can be reduced to its
local stability and both species sustain the density-dependent mortalities due to
intraspecific interactions, that is, ai1, a2 < 0. And for two species competition or
mutualism system, the conditions of local stability implies directly aii,as0 < O.

That is, the local dynamics of coexistence for two species competition or mutualism



system guarantees their global dynamics. In the end of section 2, we introduced
some interesting results between the competition and mutualism system which are
proposed by Goh(1979) [3, 4, 5].

Biological dispersal refers to that species move from one habitat patch to
another, the reasons leading to this phenomenon not only for individual fitness, but
also for population dynamics, and species distribution. To understand dispersal
and the evolutionary strategies, in section 3, we considered the dynamics of the

Lotka-Volterra system with dispersal, for short, called patch model

du k - k S Kl 1 Ik, k
d_tz = Uy (Ti"‘zaijuj)"‘ Z (D5 u; — Di*ug), (1.6)
j=1 1=1,l#k
i =1,....,n,k = 1,...,m, where uf is the population of species i in patch k,

D! describes the dispersal coefficients from patch [ to patch k. The forms like
(1.6) have been studied by Levin (1974), Chewning (1975), Segel and Levin(1976).
Hastings (1978) gave a sufficient conditions to'the global stability of the coexistence
for system (1.6). This result showed that the dymamics can not be changed for
any dispersal rate if the coexistence-always exists. In particular, in 1982, Hastings
proved that the positive equilibrium for a single species patch model is locally stable
under the sufficient large dispersal enviromment [7].' Dispersal is seem to have a
stabilizing effect. Takeuchi(1989) had proposed such problem that whether the
positive equilibrium, which the value can be changed by dispersal rate, continues
to be positive and globally stable/if we increasing the dispersal rates 7 For two
species cooperative patch model, Freedman, Rai and Waltman (1986) showed that
there is a positive equilibrium for any dispersal rates, and which is globally stable
if it is unique. Padron (2007) had proved the existence and uniqueness a positive
equilibrium for single species patch model [15].

A coupled system of a nonlinear differential equations can be used to model
a patch system with dispersal rates. Li and Shuai (2010) presented a systematic
approach to construct Lyapunov function for coupled system. Assume that, when
isolated, each vertex system has a globally stable equilibrium and a globally defined
Lyapunov function V;,7 = 1,...,n. Then, for the coupled system, a global Lyapunov

function be constructed in this form

=1



where ¢; > 0 are suitable constants chosen from some graph theory and matrix
analysis. In their article, they re-proved the similar result about single species
patch model [9)].

Gourley and Kuang (2005) studied the competition in two-species patch model
that have identical competing coefficients and with various spatial distribution of
their growth rate. They studied the dynamics of ODE system largely through the
linearized analysis, showing that the winning strategy for species with a large dis-
persal rate is that which has the greatest growth rate in a single patch. They
hypothesized that this may be a possible explanation for the evolution of grouping
behavior in many species. However, they only complete the result of local stability
and left two conjectures about the global dynamics in the end of article [2].

This thesis is organized as follows. In section 2, we review the dynamics for
Lotka-Volterra systems, such as competition, mutualism, and predator-prey system.
In Section 3, we study the dynamics for Lotka-Volterra model with diffusion, such
as single species patch model and twe species competition in two patch model. In
section 4, we give some numerically examples for two species competition in two
patch model and for other similar models with different dispersal rates. In the end,

we review some results about. above subsections, we write it in appendices.

2 Dynamics for Lotka-Volterra systems

In this section, we introduce the dynamics. of Tiotka-Volterra competition system.

First, consider the Lotka-Volterra system for two competitive species,

d[[’l T

— =nrz(l — =) — azryzs,

dt K (2.1)
dl’g (1 IQ) 5 '
— =romy(l — —=) — faix

dt 242 K2 142,

where all parameters are positive, x; is the population of ith competing species. We
consider only nonnegative initial values z1(0) > 0,25(0) > 0. If system (2.1) has a
positive equilibrium, then the stability for the coexistence can be determined by the
conditions obtained by the graphical method [12, 14, 16]. The graphical analysis
suggests that for two competing species, local stability implies global stability. This
result is not necessarily true for more than two species and two species model under
other interactions. Here the question is what conditions guarantee the local stability

of the Lotka-Volterra competition model with more than two species ? Moreover,

4



how would one conclude the the global dynamics for other types of models such as
predator-prey, amensalism or mutualism ? Does the local stability can guarantee the
global dynamics ? The answer is no. Here we give a simple example to demonstrate
that a locally stable equilibrium for a two species Lotka-Volterra model may not be

globally stable.

Example 2.0.1.

d
1 = xl(—2 +x + LEQ)

dt (2.2)

dz
d_t2 = I2(5 - 31’1 - 21’2)

The system has a positive equilibrium at (1,1). For the linearized system corre-

sponding to (2.2) , the variational matrix at (zq,z2) = (1,1) is

{ L ] . (2.3)

%‘/‘3”'. Hence we concluded that.the equilibrium (1, 1) is locally

Its eigenvalues are
stable for the model (2.2). But the-trajectory through the initial data (2,1) tends
to (00, 0).

X =X(=2+X+Y)
y'=y(-3x-2y)

25

0.5

! ! i AN ;
0 05 1 15 2 25
Cursor pasttion: (2.18, 0.807)
backuard arbit from (2, 0.5) eft the computation window.
dy
forward orbit from (2, 1.5) left the computation window.
backward orbit fram (2, 1.5) lett the computation window.
ady.

0

Figure 1: Illustrations for the dynamics of example 2.0.1.

In the following subsections, we review the results in the literature [3, 4, 5, 11,

17]. We review the local stability in n species competition system in subsection 2.1,

5



three species competition system in subsection 2.2, global stability in two species
under interaction in subsection 2.3, global stability in n species system in subsection

2.4, global stability in n species mutualism system in subsection 2.5.

2.1 n species competition systems - local stability

For n > 2, Strobeck (1973) derived the necessary and sufficient conditions to the

local stability of coexistence for the following competition systems

dl‘i T:T;

dat K

(Kl — 1Ty — Gy — ++° — Oé,ml'n),l' = 1, oo, n, (24)

where all parameters are positive, x; is the population of i-th competing species, r;
is the intrinsic rate of growth, K is the carrying capacity of the i-th species and

a;j is the competition coefficients for j-th on i-th species, where ay; = 1 for all i.

*

Assume that the system (2.4) has a positive equilibrium E* = (z7,...,z}), which

rn

must be a solution of A(x%,...,25)T = (Kp:.., K,)7T,
1 19 Q13 . o 1y
Q91 1 Gz ... Qo
A=NJ Bl RINd \ : (2.5)
Ap1  Qpot Apg ... 1

which has been called the community matrix by Levins (1968). The solution for

(z%,...,2%)T is given by Crameér’s rule :
Ky app aiz ... ai
_ K2 1 Qs ... Qgy
Z; = det . . . . e
Kn Qp2 Qp3z ... 1
(2.6)
Kl Q19 Q13 ... Kl
_ KQ 1 o3 ... KQ
Kn Opa2 Opz ... Kn
* *\1T __ 1 ~ ~ \T
and (27,...,2))" = 35x (@1, ..., %) .

The following theorem give the necessary and sufficient condition for the local
stability of E* in system (2.4).



Theorem 2.1.1 (Strobeck, 1973). System (2.4) has a positive equilibrium which is
stable if and only if 27 > 0 for all 7 and the corresponding linearized system satisfies

the Routh-Hurwitz stability criterion.

Consider a linear system

dx
— A 2.7
dt % (2.7)

A is the Jacobian matrix about the equilibrium x* and x(¢y) = xq is the initial data.
By the theory of linearization for ordinary differential equation, the solution x = 0
is linearly stable if and only if all eigenvalues of A have negative real part. Those
eigenvalues are the roots of the characteristic polynomial of A, which can be taken

in this form

PA) =N+ a X" +a X" P+ tan,a €Ri=1,... 0. (2.8)

Theorem 2.1.2 (Routh-Hurwitz stability ériterion). The real part of each root for
(2.8) is negative if and only if

aq 1 0
a1 1
A = a1, A= as  ap Az =1 az a3 a |,...,
a5 G4 0ag
and
a 1 0 0 o 0
as as aq 1 ... 0
A, = as ay as as ... O r=3,...,n,

Aor—1 A2r—2 A2r—3 QA2r—4 ... Gy

are all positive. If an element a; appears in A, with k£ > r, then it replaced by zero.

This theorem has many proofs, here we review the proof of Parks (1962)[13],
the main idea of proof is to construct a matrix B such that A and B have the same

characteristic polynomial and B satisfies the second method of Lyapunov.

Theorem 2.1.3. A necessary and sufficient condition for x = 0 to be an asymp-
totically stable solution of (2.7) is that the matrix equation PA + ATP = —Q has

a positive definite solution P for every positive definite matrix Q.



That is, there is a positive definite matrix P such that PB + BT P is negative
definite. See [13] for the detail.

Example 2.1.4.

d

—x:x(l—x—ay)

dy )
%:y(l—y—bx),a,b>0

As a,b < 1, the system has a positive equilibrium (z*,y*) = (=%, {=%). By the

linearization theory, the variational matrix at (z,y) = (z*,y*) is

1 -2z —ay* —az”

Chy 2y | (2.10)

l—-a 1-b

The characteristic polynomial of variational matrix at (z*,y*) = (=%, 7=43) i

2 —a=b (1—a)(1-0)
P()\) = \2 —— A 2.11
(A=A +{ I'—ab A 1—ab (2.11)
By the Routh-Hurwitz stability criterion;
2 =gl G
Al = ay = L > 0,

1'=ab (2.12)

A, | @ I _(2—a—b)(1—a)(1—b)>o ’

2710 ay |[THBT (124ab)? ’

Hence, we can deduced that all eigenvalues of A(z*, y*) have negative real parts.

2.2 Three species competition systems

Consider model (2.4) with n = 3, we have

de’l 121

% = 71([(1 — T — 022 — 0413953),

d

% = %(KZ — Q91T1 — Ty — (23%3), (2.13)
de’g T3T3

% = ?3([(3 — (311 — (3222 — x3)'

Assume r = T’i7K = Kl,l = 1,2,3 and (19 = Olgg = (317 = (¢, (g1 = (39 — (V13 — 5

We rescale the parameter by Z; = 2,7 =1,2,3 and t = rt. Substituting into (2.13)



and dropping the hat, we have

dx

d_tl = %1(1 — 1 — Ty — 6133),

dx

d_t2 :132(1—5151 _352_05173)7 (2-14)
dx

d_tg = 23(1 — ax; — fry — x3).

In 1975, May and Leonard studied system (2.14) and focused on the system
with a periodic limit cycle solution on the parameter setting o+ 3 = 2, on the other
hand, a nonperiodic population oscillations of bounded amplitude but ever increas-
ing cycle time on parameter setting a + > 2 and a < 1 [11]. (See Appendices)

System (2.14) has eight possible equilibria : (0,0,0), (1,0,0), (0,1,0), (0,0,1),
1_1aﬁ(1—a, 1-3,0), ﬁa—ﬁ,o, 1—a), ﬁ(o, l—a,1-4), ﬁu, 1,1), denoted
by E;,i=0,...,7.

Denote the corresponding linearized system for (2.14) by

dy
—=A 2.15
where the variational matrix A at (z3;x3, z3) is given by
1 — 227 — oy — B} —az] —pBx]
— B L — P07y — 2z, —ar (2.16)
—ax} 9l 1 —ax] — fxl — 225

In particular, the coexistence Fy always exists-and its local stability depends on the
sign of real part of eigenvalues for
1 1 a p

A(E;) = Tra1s g ; (iz ) (2.17)
Then we can verify that the equilibrium FE7 is stable if and only if a + 8 < 2. We
will see in section 2.3 that the local stability implies global stability in two species
competition model. But it is not true for more than two species, just as this system
(2.14), E7 is not globally stable since E;,i = 1,2, 3 are all saddle.

2.3 Global stability in two species under interaction

Consider this two species Lotka-Volterra system

dlL‘l
= x1(by + a1121 + a1222),

dt (2.18)

d[L‘Q
= l’Q(bQ + 211 + CLQQZL’Q).

dt



which the species under interaction may be the following types: (i) competition (ii)
predator-prey (iii) mutualism (iv) amensalism, commensalism or others relation.

The positive equilibrium (z7, z3), if it exists, is the solution of

2
bi+ Y ayz;=0,i=12. (2.19)
j=1
Goh (1976) proposed a sufficient conditions for the global stability of positive

equilibrium in two species model.

Theorem 2.3.1 (Goh, 1976). If system (2.18) satisfies the following condition:

(i) there exists a positive equilibrium (z7, 25) which is locally asymptotically stable,
(ii) a1, a9 < 0.

Then (27, 2%) is globally stable for system (2.18).

Note that the condition (ii) means the intraspecific interactions are all negative,
each species must be self-regulating. By the linearization theory, the necessary and

sufficient conditions for (xF, z3) tobelocally asymptotically stable are
CI,HZL"{ + (Iggl'; <0 and $T$§(0J11a22 1+ algagl) > 0. (220)
So it leads to the following result.

Corollary 2.3.2. For the cases of competition or mutualism, locally stability of the
equilibrium implies a1, as9 < 0. That is, local stability implies global stability.

proof: The variational matrix of (2.18) for (z7, z3}) is

[ a1  a127] ]
a21T5 A22T5
For the case of competition or mutualism, ajsas; > 0. From (2.20), it follows that
ajrage > 0, thus ajp,ase < 0. By Theorem 2.3.1, (z7, 2%) is globally asymptotically
stable.

Now, we give an example indicating that the argument in Theorem 2.3.1 may

not true for more than two species model of interaction.

10



Example 2.3.3 (May, 1975).

dx
d_tl =u1(1 — 21 — axs — fx3)
d
% = 29(1 — By — x93 — ax3) (2.21)
d
% =z3(1 — axy; — frg — x3),, 5 > 0.
As a4+ [ < 2, the system has a positive equilibrium E* = m(l, 1,1) which is

locally stable but not globally asymptotically stable. So, in next section, we will
introduce a result proposed by Goh (1977), it is a sufficient conditions of the global

stability of coexistence for the many-species model.

2.4 Global stability in n species systems

consider .
i + 3 ayay),i=1 (2.22)
= T;\0; AisT5), 0= 1,...,1, .
dt £ 377
The nontrivial equilibrium (xjja3;- .., 2}) for system (2.22) is the solution of the

following system of equations

bi Yy ayw =00i=120n (2.23)

=1
Denote

Theorem 2.4.1 (Goh, 1977). If there is a positive equilibrium (z7, 25, ..., z}) and

a constant positive diagonal matrix C such that CA + ATC is negative definite,

then (z7,x3,...,2%) is globally asymptotically stable for system (2.22).

In particular, the theorem is true for A is symmetric and negative definite
(May 1974) or A is not symmetric but A + A7 is negative definite (Getz 1975). In
the following example, A is not symmetric and A + AT is not negative definite, but

the system also has a globally asymptotically stable equilibrium.
Example 2.4.2.

d

M (11— 2y — 0.1zy)

dt (2.25)
de _ (4 — 3z — x9)
di 4o 1 2

11



The only one positive equilibrium (1, 1) is globally asymptotically stable if we choose

c1=1,¢0 = % in Theorem 2.4.1. Actually, we can also conclude the result by the

argument of Theorem 2.3.1.

x'=x(L1-x-0.1y)
y'=y@-3x-y)

0 0.2 0.4 0.6 0.8 1 12 14 16 18 2
Cursor pasttion: (171, 0.947) x

The backward orbit from (0.74. 0.43) > a possible eq. pi. near (3.3e 000, -6.82-015).

Ready.

The forward arbit from (0.8, 0.041) -+ a passible eq. pt. near (1, 1).

The backward orbit from (0.8, 0.041) > a passible eq. pt. near (-3 5e-011, -2Ze-018).

Ready.

Figure 2: Illustrations for the dynamics of example 2.4.2.

The following example showed that the conditions in Theorem 2.4.1 is not
necessary true for the global stabilityof system-(2.22).

X'=x(-1-x+2
y'=y(08-13x+05y)
T
4k
35
s
25
> 2r
15
1k
o5f
0 O
i i i i i i i i it
0 0.5 1 15 2 25 3 35 4
Cursor position: (3.8, 0.842) X
The backard orbft from (3.8, 45) let the compurtation window.
Ready.

The forward erbit from (3.4, 4.8) --> a possible eq. pt. near (1, 1),
The backward orbit from (3.4, 4.8 left the computation window.
Ready.

Figure 3: Illustrations for the dynamics of example 2.4.3.
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Example 2.4.3.

d
% = .1]1(—1 — T+ 2272)
t (2.26)

d
% = 25(0.8 — 1.3z; + 0.525)

The only one positive equilibrium (1,1) is globally asymptotically stable and we
can verify that there is no suitable positive constants c;, c; such that CA + ATC is

negative definite.

2.5 Global stability in n species mutualism system

Suppose that there exists a positive equilibrium (zf, 25, ..., x%) for system (2.22),
then the model can be rewritten in this form

d.flfi = -
o :xi;aij(a:j—xj),z:1,...,n. (2.27)

More generally to say, a mutualism «(commensalism) between two species means
that one species benefits (or not affected) from the/interaction with the other. Each
one species promotes the growth of-every other spéecies or unaffected under the
interaction, that is, a;; > 0 whenever ¢ # j.

Denote

A = [a;]. (2.28)
Before studying the dynamics of system (2.27), we introduce the principal minors
of a matrix. Let M be a n x n matrix, a minor of M is the determinant of some
smaller square matrix obtained by deleting some numbers of rows and columns. A
minor of order k is principal if it is obtained by deleting n — k rows and the same
n — k columns. The leading principal minor of order & is a principal minor of order

k obtained by deleting the last n — k rows and the same n — k columns.

Theorem 2.5.1 (Goh, 1979). The locally stable positive equilibrium of (2.27) in
the case of mutualism is globally asymptotically stable if and only if all the leading

principal minors of —A are positive.

Finally, we give an interesting result for the Lotka-Volterra systems, consider

system (2.27), we assume B = [b;;] = A™!, if it exists. This gives a new system

dl’i - -
o :xiZbij(xj—xj),z:1,...,n, (2.29)
j=1
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Then the following result give a relationship between systems (2.27) and (2.29).

Let Z be the set of all real square matrices whose off-diagonal elements are all

non-positive.

Theorem 2.5.2 (Goh, 1979). If (2.27) is a globally stable model of mutualism,
then (2.29) is a globally stable model of competition.

Proof. Since —A € Z and from Theorem 2.5.1, we have all the leading principal
minors of —A are positive. Equivalently, all real eigenvalues of —A are positive.
This is equivalent to the inverse (—A)~! exists and all elements of (—A)~! are
nonnegative. It follows that (A)™! = B exists and all elements of B are non-
positive. Such results had proved by Fiedler and Ptak (1962)[1]. Suppose that there
exists a positive diagonal matrix C such that CA 4+ AT C is negative definite, then
(A~HT(CA + ATC)A ! is also negative definite. It follows that BTC + CB is

negative definite. Hence, the systen1 (2.29) is‘a globally stable of competition.

Example 2.5.3. Consider the following model of mutualism among three species,

d

% == 21(0.5 — 2{ £y +0.5us),

d

% = :1;2(—3 + 5{131 T 4.1/'2 ‘|‘ 2.T3), (230)
dax-

% — 1’3(4 + X1 o 2.1'2 ! 7ZL‘3)

The positive equilibrium (1,1, 1) is globally asymptotically stable if we choose ¢; =
5,c9 = 1 and ¢3 = 1 in Theorem 2.4.1. The inverse of the interaction matrix is given
by
—6 —2 -1
B=A1=| —925 —3.375 —1.625
-3.5 —125 —0.75

Hence, this is a model of competition as follows,

dx

d—tl = 21(9 — 62y — 235 — 1x3),

d

% — 25(14.25 — 9.252; — 3.3752, — 1.625), (2.31)
d

% = 24(5.5 — 3.521 — 1.2525 — 0.75z3).
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Again the equilibrium (1,1,1) is also globally asymptotically stable by choosing
c1 =5,c0 =1 and ¢3 =1 in Theorem 2.4.1.

But the converse of Theorem 2.5.2 is not necessarily true. It means that the
inverse of the interaction matrix of a globally stable Lotka-Volterra model of com-
petition may not be an interaction matrix for mutualism. This mathematical result

suggested that in nature mutualism is less than competition and prey-predation [5].

3 Dynamics for Lotka-Volterra system with dif-
fusion

Consider the following Lotka-Volterra system with n species under dispersal in m

patches
du; k - k S Kl 1 Ik, k
j=1 1=1,1#k
wherei =1,...,n,k =1,...,m, and u¥ is the population of species i in patch k; D

describes the dispersal coefficients from patch [ to patch k. System (3.1) or its similar
form has been studied by Levin (1974), Chewning (1975), Segel and Levin(1976).
First, we recall the following result by Goh (1977), for the Lotka-Volterra

system without diffusion,

L YN En 544 (3.2)
= U; (T AiiU; )y L="d, ..., N. .
dt 7 = 79

Theorem 3.1 (Goh, 1977). If there is a positive equilibrium E* of (3.2) and a
constant positive diagonal matrix C such that CA + ATC is negative definite, then
E* is globally asymptotically stable for system (3.2).

We review the global stability for coexistence of species in subsection 3.1, Lya-
punov functions for large-scaled coupled systems in subsection 3.2, single species
Lotka-Volterra patch model in subsection 3.3. And the model of two species com-
petition in two patches is studied in subsection 3.4, whose the results are proven in

subsection 3.5.
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3.1 Global stability for coexistence of species

Suppose that there also exists a positive equilibrium for system (3.1) with diffusion
rate DF > 0, denoted by E = (u!,u?,...,u™), where @* = (a¥,uk, ... u*), and
a¥ > 0,i = 1,...,n,k = 1,...,m. We will discuss the global stability for the

coexistence F in system (3.1). In 1978, Hastings presented a sufficient conditions

for the global stability of the coexistence E in system (3.1) as follows.

Theorem 3.1.1 (Hastings, 1978). Assume that (3.2) satisfies the hypotheses of
Theorem 3.1 and D = D% i =1,... n,k,l =1,...,m. Then the positive equilib-
rium F is also globally asymptotically stable in (3.1) for all initial conditions with
uf(0) > 0 for all 4, k.

This result of Theorem 3.1.1 indicates that the global stability for the positive
equilibrium is independent to the dispersal rates under the assumption. For single
species, Takeuchi had proposed such.problem that whether the positive equilibrium,
which the value can be changed.by dispersal rate; ¢continues to be positive and glob-
ally stable if the dispersal rates are-increased [21]7 He showed that under some
conditions, the single species pateh model can have the unique globally asymptot-
ically stable positive equilibrium [10]. Li“and Shuai (2010) improved the result of
[10] and proved by constructing a suitable Lyapunoy function [9].

We give an example for a special case that the population of species are the
same on each pathes,

_k
Uy

_ ok TRy
=Uy =--- =u,, for each k,

by constructing a suitable Lyapunov function which the idea from [9].

Example 3.1.2. Consider the competitive patch model with three species and two

patches,
du% 1 1 1 1 21/, 2 1
ar uy (1 = uy — oquy — Prug) + dy (uy — uy),
du% 1 1 1 1 21/, 2 1
It = uy(1 — Bruy —uy — 041“3) +d; (Uz — Uy), (3.3)
du% 1 1 1 1 21/ 2 1
T uz(1 — cquy — Bruy — ug) + ds (u — ug),
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and

du?

8 (1 = — i — ) + 2l — ),

du% 2 1 1 12 3.4
E:%(l_&%_uz_o@%) +d, ( _U2) (3.4)
du?

T — 31— o} — B — )+ ().

Without all dispersal rates, we checked that if 0 < oy, 5; < 1,7 = 1,2, models (3.3)
and (3.4) have a globally asymptotically stable positive equilibria (u1, 43, u3), (a3, a3, u3),
respectively [23]. Note that u = @l = u}, u? = u% = u3. Defined the Lyapunov func-
tions V; : R} — R, V5 : R? — R for (3.3) and (3.4), respectively, by

3 1
_ _ U;
Vi = ;d i —u; — 1 ln(a_g)] (3.5)
and
i u?
= Z cHlu? — u; —udln(=%)). (3.6)
7 u?
Denote
-1 =a;" —h =1l .-y —f
A= _Bl —1 — g B = —ﬁg —1 — Q9 (37)
- 1 —ap —f3 1

and choose ¢}, c? = 1,i = 1,2, 3, then

o @-@ ! ut — at
Vi==| ud—ul (A+ATY | ud—al | <o, (3.8)
2\ ul -l ub —
and
L A uf - a2
Vo=~ | u3—u2 B+BH) [ v2—u2 | <0 (3.9)
2\ k- al o —

since A + AT and B + B are all negative definite. Hence, the assumption holds in

Theorem 3.1.

For d® > 0,i = 1,2,3,k,l = 1,2, the coupled system has a positive equi-
librium (af, @, ul, u?, w3, u3), which the value can be changed by dispersal rates.
Now, we claim that it is globally asymptotically stable by constructing the following
Lyapunov function

V =0 Vi + byl (3.10)
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Choosing by = u}(= ud = @), by = u3(= u3 = 432), then

V=bVi+ bV

2 1 —=1,,2 2 1 —=1,,2

_ 9, U u U _ 9, U u UsU,
<wydi'u(o — 5 +1- D +ud'u(= -2 +1— 22)
ur W Uiy Uy U UUs

2 1 —=1,,2 1 2 —=2,,1

Uu u U U u Uu uiu

—1 721 -2 2 3 343 -2 712 -1 1 1 171
tudy (= — =7+ 1= ) Fadr oy — 3 1= =)
Uz Uz UzUs Uy Uy Uyuy

1 2 —=2.,1 1 2 —=2,,1

u u UsU u Uu usU

—2 712 -1 2 2 2%2 —2 712 -1 3 3 3%3
+udy Up( oy — =5+ 1= —5) FadyTuy (o~ —y 1= =)
Us Uy UgUs Uz Uz UzU3

<0.

And the equality holds for (ui,uj,ud, u? u3, u3) = (ui,us, uy,u?,u3, u3). Hence, by
the Lyapunov stability theory, the positive equilibrium E = (i, ul, u}, u?, u3, u3) is

globally asymptotically stable for the system (3.3) and (3.4).

0.8 -

o o
o ~
T——T

u,v,w, Xy, and z
o
@

o
=

o
w
=

N < x 5 < c

o
i
T

Figure 4: Tllustrations for the dynamics of example 3.1.2 with u = uf, v

1
= 'U/27
w=ud, x=ul, y=ui z=ui and a; = 0.1, 8 = 0.2,a5 = 0.2, 3, = 0.3, d = 1.

3.2 Lyapunov functions for large-scaled coupled systems

Summarizing the result in [9], its important assumption is that, when isolated, each
vertex system has a globally stable equilibrium and a globally defined Lyapunov

function V;,i = 1,...,n. Then, for coupled system, Li and Shuai constructed a

global Lyapunov function in this form

V=> oV, (3.11)
=1
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where ¢; > 0 are suitable constants we will describe as follows.

Given a weighted digraph G = (V, E) with n vertices and a set of directed arcs
(j,7) connected from vertex j to vertex i with weight a;;. A spanning tree of G is
a subgraph H has the same vertex and a set of arcs that contains no cycle. Here,
a;; > 0 if and only if there exists an arc from vertex j to vertex i. Denote w(H) of H
be the product of the weights on all its arcs. Define the weight matrix A = [a;;]nxn
whose entry a;; equals the weight of arc (j, 7) if it exists, and 0 otherwise. A diagraph
G is strongly connected if there exists a directed path from one to the other for any
two distinct vertices. A weighted diagraph G is strongly connected if and only if A
is irreducible. We need only to consider A is irreducible since any reducible system

can be separated into irreducible components. The Laplacian matrix of A is defined

as
Ek;ﬁl A1k —a12 R —A1n
—Qa21 Zk;ﬁQ asp ... —Qon
L= . _
_anl —an2 g2 Zk#n a/nk;

Then constants ¢; in (3.11) is.the cofactor of the i-th diagonal element of L. As

follows, we will introduce some results in‘graph theory,

Proposition 3.2.1 (Kirchhoff’s matrix tree theorem).“Assume n > 2. Then
G= Y (M= i, (3.12)
TET;
where T; is the set of all spanningtrees-7-of G that are rooted at vertex i, and w(T)
is the weight of 7.

The proof of Proposition 3.2.1 based on the following Lemma and induction :

Lemma 3.2.2. ([22]) Let G be a graph and 7(G) denote the number of spanning
trees of graph G. If e € E(G), the set of edges of G, is not a loop, then
T(G) =7(G —e)+71(G-e).

7(G — e) denote the spanning trees do not contain e, 7(G - €) denote the spanning

trees contain e.

Lemma 3.2.3.
ajy + b11 a1 ... Qin a1 0 C 0 b11 a1g ... Qin
921 aoo ... Aon as1 A2 ... QAo a91 A2 ... QAon,
= +
QAp1 Apo ... QApn ap1 Ap2 ... QApn Ap1 Ap2 ... QApn
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Proposition 3.2.4 (Li and Shuai,2010). Assume n > 2. Let ¢; be given in Propo-
sition 3.2.1 Then the following identity holds

> caFylrn ) => w(Q) Y Frlw, ). (3.13)
i,j=1 Q€eQ (s;r)€E(CQ)
Here Fj;(z;,z;),1 < i,j < n, are arbitrary functions, Q is the set all spanning
unicyclic graphs of G that is defined by a disjoint union of rooted trees whose roots

form a directed cycle. w(Q) is the wight of Q and Cg denotes the directed cycle of
Q.

Proposition 3.2.5 (Li and Shuai,2010). Assume n > 2. Let ¢; be given in Propo-
sition 3.2.1. Then the following identity holds

Z CZ'CLijGi(ZEi) = Z CZ'CLZ']‘GJ'((L’]'). (314)
i,7=1 i,7=1

Here G;(z;),1 < i < n, are arbitrary. functions:

We consider a coupled system built on G by assigning each vertex has its own
internal dynamics and coupling. term based on directed arcs in G. Then we obtain
the following coupled system on G

dui i
at

fi(ui)—l—Zgij(ui,uj),i: L...,n. (3.15)
=1

We assume each vertex system has a globally stable equilibrium and a globally
defined Lyapunov function V;,i = 1,...,n. Then, for the coupled system (3.15),
the following result gives a general and systematic approach for constructing the

equation (3.11).

Theorem 3.2.6 (Li and Shuai,2010). Assume the constants ¢; are given in Propo-
sition 3.2.1 and the following assumptions hold.

(i) There exist functions V;(u;), F;;(u;, u;), and constants a;; > 0 such that

‘/;(UZ) < Zaijﬂj(ui,uj),t > O,Z = 1, e, N (316)

j=1

(i) Along each directed cycle C of the weighted digraph G, A = [a;;],

> Fulupug) <0t > 0. (3.17)
(s,r)EE(C)
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Then the function V in (3.11) satisfies V < 0 for t > 0. That is, V is a Lyapunov
function for (3.15).

Conditions (3.17) of Theorem 3.2.5 can be replaced that if there exist functions
Gi(u;),i =1,...,n, such that

Fij(ug,uj) < Gi(ug) — Gj(uy), 1 < i, j < n. (3.18)

Next section, we will discuss the single species patch model with diffusion.

3.3 Single species Lotka-Volterra patch model

Consider two identical linear systems with the stable zero solution,

[;]:{j i’Hi]zzlz (3.19)

For the following coupled system with only linear coupling term, then the zero

solution is unstable.

j)l -2 3 1 0 T
v 40 | =11 .0 0 Y1
Toml | _ 1 0 =3 3 To (3.20)
n 0 0 -1 1 n

Hence, the dispersal can lead the dynamics-of coupled system to appear unstable.
Here we also consider the question that whether the dispersal can lead each unstable
equilibrium of isolated systems to'a stable-equilibrium for coupled system ? We use

the two patch model as example, when isolated,

dx 1 3
d_tl = 7“11‘1(—5 + 51‘1 — l’%),

(3.21)
d.CCQ

pTk roxa(—2 + 31y — 3).

There are two logistic equations of one dimensional, x; = 1 is a stable equilibrium in
patch 1 and x5 = 1 is an unstable equilibrium in patch 2. In the following coupled

system,

dx 1 3

d_tl = rlxl(—§ + 5.751 — I%) + d(l’z — $1),

s (3.22)
d_tQ = TQZEQ(—Q + 3%2 — l’%) + d(.fl - Ig).
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(1,1) is an equilibrium of above system. We can verify that if = 4 r, < 0 and
d sufficient large, then (1,1) is linearly stable for the coupled system. Therefore,
we introduced a result proposed by Hastings (1982), he presented a model for a
single species on patches, and showed that the coexistence of the model, if it exist,

is locally stable for sufficient large diffusion. See the model

Cfi_); = f(x) + Dx, (3.23)

where D = [d;;] is a n x n matrix of diffusion coefficients with following assumptions
(i) D is symmetric. (ii) All diagonal elements are negative and all off diagonal
elements are nonnegative. (iii) Row sums and columns sums are all zero. (iv) D is

irreducible.

Theorem 3.3.1 (Hastings,1982). If there exists an equilibrium E* = (z7,...,2})
such that all the - f;(2}) are sufficiently small with respect to the entries in D.

Then E* is locally asymptotically stable if

—~ dfs

— dz;

(7)) <0

)

and unstable if
— df;
d.TZ'

(xF) > 0.

%
=1

The result shows that the sufficiently large dispersal rates have the powerful
stabilizing role (den Boer, 1968). For the case n = 3, let B = [b;;] be a diagonal
matrix where b; = s—i(:v*) and ¢ > 0, claim that all eigenvalues of D + B are

1

negative if Z?:1 bi; < 0, and there is a positive eigenvalue if Z?:1 bi; > 0. Let

—dip — dy3 di2 di3
D = dio —dy2 — da3 das , dy2,dy3,do3 >0 (3.24)
di3 das3 —da3 — da3
and
b11 0 0
B=| 0 by 0 |. (3.25)
0 0 b33
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By the Gerschgorin’s Theorem and that D has zero eigenvalue, 0 is the largest

eigenvalue of D. Since the characteristic polynomial P()) of D 4 B is given by

A — Ebll + d12 + d13 —d12 _d13
det()\I — (D + €B)) = —d12 )\ — €b22 -+ d12 + d23 _d23
—dy3 —da3 A — ebzz + da3 + da3

= X* —trace(D + eB)A* + - - + (—1)*det(D + ¢B).

If 37 | by < 0, then
(i). trace(D + eB) = £(b11 + baga + b33) — 2(d12 + di3 + da3) < 0 for € small.
(ii).

ebyy + dia + dis dy2 dy3
det(D + EB)) = d12 Ebgg + d12 + d23 d23
di3 das ebss + dog + das

= (b1 + bag + bs3)(diadaes + dy2di3 + dasdys) + 0(52)
< 0.

Hence, we have P(0) = (—1)3 det(D + £B)).> 0-and thus all eigenvalues of (D +¢B)

are negative. Otherwise, if Y20/, b= 0, we have P(0).< 0. It follows that there is

an eigenvalue is positive. The proof for high dimensional system see appendix 5.4.
Consider the single species patch model among n. patches (n > 2),

dl’z‘ p Y
di :xzfz(xz)+zd1j<$g —IEZ'),Z = 1,...,n, (326)

=1

where ; is the population of the species in patch 7, f; € C1(R,,R) represents the
density dependent growth rate in patch ¢, constant d;; > 0 is the dispersal rate from
patch j to patch i. In [9], the global stability of coexistence has been proved by
Lyapunov function, this also improved the result in Takeuchi (1993)[10].

Theorem 3.3.2 (Li and Shuai,2010). Assume that the following assumptions hold,
(i) Dispersal matrix d;; is irreducible,

(ii) fl(x;) < 0,2; > 0,4 = 1,...,n, and there exists k such that f;(xx) # 0 in any
open interval of R,

(iii) system (3.26) is uniformly persistent,

(iv) solutions of (3.26) are uniformly ultimately bounded.

Then the system (3.26) has a globally asymptotically stable positive equilibrium E*
in R7.
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3.4 Two species competition in two patches

The single species patch model has been studied extensively. We are interested to
study the patch model with many species. Whether the results about single patch
model can be extended for many species? In this subsection, we consider a model

of two competing species in two patches:

U = uy (g — cuyp — cvy) + d(ug — uy),
Uy = ug(g — cug — cvg) + d(up — us), (3.27)
01 = v1 (B — cvr — cuq) + d(ve — vy),
Uy = v9(fa — cvgy — cuy) + d(vy — vy).

Herein, u; and v; are the populations of species u,v in patch i,7 = 1,2. The pa-
rameters «y, 3; > 0 are intrinsic growth rates of species u;, v; respectively; d > 0 is
the dispersal rate between two patches. We assume that the competition coefficient
¢, in each patch is the same. Certainly we only consider nonnegative initial values
u;(0) > 0 and v;(0) > 0,7 =1,2.

After scaling, model (3.27) becomes the following system which is the one

studied by Gourley and Kuang [2],

duy
dt

dUQ

= U1<Oél — Uy — 'Ul) + d(UQ = U1>,

% = UQ(O!Q — Uy — 'UQ) == d(u1 — "LLQ),
(3.28)

dv
d_tl = ’01(51 — U1 — Ul) -+ d(Ug — U1>,
dv
d_t2 = ’Ug(ﬁg — Vg — UQ) + d(Ul — Ug).

First, let us present some basic properties about the positively invariant sets and
boundedness of solutions for system (3.28). The proofs of this subsection are ar-
ranged in the next subsection.

Define

RZ? = {(u1, uz, v1,v2) € RY? : g, up, v1,09 >0},
RYC = {(u1,u2,0,0) € RZ® - g 4wy > 0}, (3.29)
R?r“ = {(0,0,1}1,02) € R%:(Q C U] 4+ vy > 0}.

Proposition 3.4.1. Ri“,f&ixo and R&XQ are all positively invariant under the

solution flow generated by system (3.28).
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Proposition 3.4.2. System (3.28) is dissipative. In fact,

lim sup(uy (t) + uz(t)) < 2max{aq, az}, limsup(vi(t) + v2(t)) < 2max{f;, B2}

t—o00 t—o00

Consider the subsystem obtained by setting v, vy = 0 in (3.28)

du
L. uy (g —wy) + d(ug — uy),

dt (3.30)

du
d_t2 = ug(ag — ug) + d(uy — ug).

System (3.30) can be seen as a single species patch model. It can be showed that
there exists a positive equilibrium through direct computation. Padron (2007)
showed the existence and uniqueness of a positive equilibrium for a high dimen-
sional system [15]. Li and Shuai (2010) showed the positive equilibrium is globally
asymptotically stable [9]. They constructed a Lyapunov function as follow

n

Vi =Y ¢ (u S m%)) = (... un), (3.31)

i=1 @
the constants c¢; can be chosen by a systematic approach that we introduced in

Section 3.2. Hence, we have the following result.

Proposition 3.4.3. All solutions starting -from initial data in Rixo will converge

to the semi-trivial equilibrium (%@, s, 0,0) of system (3.28).

Similar setting for uy, us = 0 in (3.28), then we have

Proposition 3.4.4. All solutions starting from initial data in R:{“ will converge

to the semi-trivial equilibrium (0,0, 71, U) of system (3.28).

When d = 0(decoupled system), system (3.28) has a trivial equilibrium Ey =
(0,0,0,0) and the following possible semi-trivial equilibria: single population solu-
tions E; = (y,0,0,0), By = (0,9,0,0), E3 = (0,0, ,0), Ey = (0,0,0, 32); two
population solutions E5 = (ay,9,0,0), Eg = (0,0, 81, 52), Er = (0,9, 51,0) and
Es = (a1,0,0, ). And we can verify that the model has no positive equilibrium.
Then the dynamics can deduced from the corresponding linearized system clearly.
There has the following result and we can conclude that the species with larger

growth rate in the same patch will preserve and drive the other to extinction.
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Proposition 3.4.5. For the corresponding linearized system of (3.28) with d = 0,
(). Eo, Er, By, E3 and E, are all unstable.

(ii). If ag < B1 and By < aw, then only E; is stable.

(iii). If a3 > By and By > ag, then only Fjg is stable.

(iv). If @y > By and By < g, then only FEj is stable.

(v). If oy < By and B2 > an, then only Ej is stable.

When d > 0, we consider the following parameter setting: Assume u and v

have the same total sum of growth rates,
ay+ag = B+ Bo. (3.32)

How are the distribution of growth rates related to the species preservation or ex-

tinction 7 Without loss of generality, we assumed

P < Bs.

Gourley and Kuang (2005) studied the loecal stability under the distribution of
growth rates as
O0<fBi—e=a1 <1 < fa<ap=p+c. (333)

Their study also largely through the linearized analysis. For each semi-trivial
equilibria, the Jacobian matrix hasa block diagonal structure. But it is not easy
to compute and analyze the stability of coexistence equilibrium, here we study it
using the Routh-Hurwitz stability criterion and mathematical computation software

Maple. We have the following result.

Theorem 3.4.6. Under assumption (3.33), if there exists a positive equilibrium £,

then it is asymptotically stable in system (3.28).

Now, we introduced the main result about the local stability of two semi-trivial
equilibria (uf,u3,0,0) and (0,0, v, v3) in [2].

Theorem 3.4.7 (Gourley and Kuang, 2005). If 3y > 8, and oy = 81 —¢, 9 = r+¢
with 0 < e < (1 and d is sufficiently large, then (0,0, v],v3) is unstable and

(uf,us,0,0) is stable.
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This result showed that, for large dispersal rate, if the growth rates for the
species v are unequal and if u increases the disparity between the birth rates but
preserving the same mean, then v will win and drive v to extinction. But we found
out that the proof in Theorem 3.4.7 seemed only true for ¢ small. If not, it can
not guarantee the stability of the equilibrium (0,0, v}, v;). We leave the process
of calculation in the end of this paper. In [2], the authors left two conjectures
to be open problems. In conjecture 1, they supposed that the global stability for
Theorem 3.4.7 is also true. On the other hand, in conjecture 2, if the dispersal
rate is small enough, then system (3.28) has a positive equilibrium which is globally

asymptotically stable. We state these conjectures in [2] as follows :

Conjecture 1 If g5 > ) and a1 = [ — e, a9 = Po+ € with 0 < ¢ < 5
and d sufficient large. If initial point from R%** with u;(0) 4+ up(0) > 0, then
limy o0 (ur (2), ua(t), v1(t), v2(t)) = (uj, us, 0,0).

Conjecture 2 If 6, > [ and ap = 8] ~g,ay = [y + ¢ with 0 < ¢ < f.
Assume d is small enough such that system (3:28) has a positive steady state
E*. If initial point from R%** avith—u,(0) + uz(0). = 0,v1(0) + v2(0) > 0, then
limy o0 (ug (8), ua(t), v1(t), va(t)) =L

They said that if these conjectures are true, it suggest that species that can
concentrate its growth in a single.patch wins for the'large dispersal rate. In short,
the winning strategy is simply to focus as-much growth in a single patch as possible.

First of all, we want to know how the dispersal rate d effects the existence of

positive equilibrium for system (3.28) under assumption (3.33).

Theorem 3.4.8. Under assumption (3.33), system (3.28) has a positive equilibrium

(uf, ub, vi,v3) if and only if d < d, where

o (a3 —a}) — /(a3 — af)? — 1681 Bae(fa — )

d:= .
8(52 - 041)
Moreover, if we set
0<B1—€1:Oé1<61<6Q<O&2:62—|—€2,52251>0, (334)

then the same assertion holds, and d can be estimated as

Q1 (p€1E9 7 B1P2e1€2
04552 - 04%51 ﬁ22€2 - 51251
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However, it is not easy to solve d under assumption (3.34). Using this result
and Theorem 3.4.6, we can deduce that system (3.28) has a asymptotically stable
equilibrium E* if and only if d < d. And Theorem 3.4.6 is true for the parameters
setting (3.34). Next, we will show that the solution flow will go into a bounded
region during a period of time. To formulate this result, we explain system (3.28)
is a monotone dynamical system first. We introduce some definition as follows.

A n x n matrix A is called a cooperative matrix if all off-diagonal entries of

A are nonnegative. A is called a type-K cooperative matrix if A has the form

Al —Ag
4 ) a9

where Ay, Ay are k X k, (n — k) X (n — k) cooperative matrix, respectively. A, and
Ag are nonnegative matrices. A system of differential equations x = f(x) on R”
is called a type-K monotone system if the Jacobian matrix D f(x) of f is type-K
cooperative at any # € R’,. We note that system (3.28) is a type-K monotone system

since the Jacobian matrix is given by

041—2u1—111—d d —Uq 0
d 062—2U2—’1)2—d 0 —U2
—U1 0 ,81—2'1}1—111—61 d
0 —~U2 d 52—21}2—U2—d
Let
K={zeR":2; >0,1<i<k;2;<0,k+1<j<n} (3.36)

be a closed cone. We define the order relation,
r<gysy—zekK.
A semiflow ¢ is said to be type-K monotone with respect to ordering <y if
U (r) <g YP(y) whenever © <y y and t > 0. (3.37)

Smith showed that the flow generated by a type-K monotone system is type-K mono-
tone [20]. A vector function f = (fi,..., f,) of a vector variable z = (z1,...,z,)
will be said to be of type K in a set S if for each i = 1,...,n, fi(a) < f;(b) for any
two points a = (ay,...,a,),b = (b1,...,b,) in S with a; = b; and ay < by, k # i.
Note that for an arbitrary scalar function is of type-K since the condition holds

for n = 1 clearly. Herein, system (3.28) is also of type-K.
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Let

x = f(t,x) (3.38)

Theorem 3.4.9 (Kamke, 1932)[8]. Let f(¢,x) be continuous in an open set R™ x D
and of type-K for each fixed t. Let x(t) be a solution of (3.38) on an interval
[a,b]. If y(t) is continuous on [a,b] and satisfies D,y(t) > f(t,y) on (a,b) and
y(a) > x(a), then y(t) > x(t) for a < t < b. If 2(¢) is continuous on [a,b] and
satisfies D;z(t) < f(t,z) on (a,b) and z(a) < x(a), then z(t) < z(t) for a <t < b.

By Theorem 3.4.9, we construct the upper and lower systems for (3.28) under

assumption (3.34). Let u; + v; = wy and uy + v9 = wy. From (3.28), we have

duy
dt

and

d'LL2
o T

We define

o,
dt

dvz
dt

ur (g —uy —vy) +d(ug —uy) +v1 (81 — ur +v1) + d(vy — 1)
(ug +v1)(B1 — w1 — v1) — equy +df(ug + v2) — (ug + vy1)]
wl(ﬁl — CL)1> + d((.UQ | wl)

ug (g — sy — vo)F-d(uy = uz) + va(Ba — us — v9) + d(vy — v2)
(ZLQ + UQ)(OCQ — U9y — ’Ug) — &9y + d[(u1 + ’Ul) — (UQ + 1}2)]

(.UQ(OéQ — CL)Q) + d(w1 — LUQ).

do,

a (B = @) + d(wg — @1) (3.30)

dow . . . -
d_tz = (.UQ(O[Q — WQ) + d(wl — (.UQ).

Similarly, we have

duy
dt

and

dUQ

ot T

v,
dt

d’UQ
dt

v

ul(Oél — Uy — Ul) + d(UQ — Ul) + Ul(ﬁl — U + U1> + d(UQ — Ul)
(u1 + Ul)(Oél — Uy + U1> +e1v1 + d[(UQ + UQ) — (Ul + ’Ul)]

wl(al — wl) + d(C«JQ — w1>

UQ(OQ — Uy — Ug) + d(u1 — UQ) + Uz(ﬁg — U9 — ’02) + d(Ul - Ug)
(ug + va) (B2 — ug + v2) + eauy + d[(ur + v1) — (ug + v2)]
CUQ(/BQ — a)g) + d(w1 — u}g).
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We define

dw

d_tl = ’11)1(041 - u?l) + d(’d)z - Uv)l)

i (3.40)
d_t2 = ’(DQ(BQ - wg) + d(wl — 11]2)

Here we study the behavior of two systems (3.39), (3.40) and give two results
which have been proved by [9, 10, 15].

Theorem 3.4.10. The equilibrium (&, @) of system (3.39) is globally asymptoti-

cally stable among all positive initial data.

Theorem 3.4.11. The equilibrium (;,ws) of system (3.40) is globally asymptoti-

cally stable among all positive initial data.

With the above results and Theorem 3.4.9, we have the following corollary to

construct the invariant set  for systém. (3.28).

W,
| |
| |
| |
SR\ A - -
" | |
| |
| |
w, | |
T T
o - S TEIREN S -
| |
| | wy
Oy, w, %

Figure 5: The bounded above and bounded below for w; and ws.

Corollary 3.4.12. Under assumption (3.34), we have following properties

1) W) < w13 o < oo,
11) 61 <w1 <w2<a2,041 <W1 <C<J2<ﬁ2,

111) ap < wl,wl,wg,uJQ < Q,

A A Qo + . aq +
iv) Wy, wy — 2 Bland@,c@—) 1262

(
(
(
( as d — oo.
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Define

Q= {(ur,uz,v1,02) ERY? 1oy Sug+ v g0 Sug+v2 <}

Theorem 3.4.13. Under the assumption (3.34), (2 is positively invariant under the
solution flow generated by system (3.28).

This result showed that all solutions of system (3.28) will enter the bounded
region Q for a period of time. Next, we state the species synchronize in each patch

with large dispersal rate.

Theorem 3.4.14. Under assumption (3.34), then

_O{Q(O&Q —aq) i ag(og — 041)6_2dt +(
<

d d u1
< uy(t) — us(t) < (ur(0) — ug(0))e 2%

Ba(Ba — Bi +e2) | PalBs — Bi b €2) Loy
— + e
d d
€ €
<wi(t) — vt) < 2752 - 27526—20”
with initial point (u;(0) —uy(0)) and (v1(0) =ws(0)) start from the region Q at t = 0.

Then u; — uy , vy —v2—>0(5) as't — 0o.

F (01(0) — v5(0))e 2%

4 (w1(0) — v5(0))e™ 2

We propose similar conjectures with an assumption weaker than [2].

Conjecture 3.4.15. Under the assumption (3.34),
(i) If initial point from Q with u;(0) + u2(0) > 0, and d > d, then system (3.28)
has no positive equilibrium and

lim (uy (), ua(t), v1(t), v2(t)) = (uj, u3,0,0).

t—o00

(ii) If initial point from Q with u;(0) + u(0) > 0, v1(0) 4+ v2(0) > 0 and d < d,
then system (3.28) has a positive equilibrium which is globally asymptotically stable.

Finally, we summarize an unsolved problem. We have shown that all solutions
with initial point from Riﬁ will enter a bounded region 2 which is positive invariant.

Next, we want to construct a Lyapunov function for system (3.28) with initial data
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starting from the positive invariant set except from Rixo and R?r”. For the semi-

trivial equilibrium (uj, u3,0,0), we have tried

Vi =u] [ul + v, —uj —ujln (u—i)} + u5 [uz—i—vg —uy — uyln (u—i)} . (341)
u u

1 2

and for the positive equilibrium (uf, ul, vy, v3), we have tried

Uy U1
Vo =] {ul—u’{—u*{ln (—*) + v —ov] — i In (—*)}
Uy U1
Uz U2
k * * * *
+uy (ug —uy —usgIn | — ) +vp—v; —vgln | — ) |.
Uz U3

But it is difficult to check the time derivatives of V7, V5 are all non-positive. Whether

(3.42)

this two Lyapunov functions does not work to verify the global dynamics of system
(3.28) or there has more conditions in the positive invariant set we need to check

to guarantee the process of computation of V. It seems to need more mathematical
analysis.

3.5 Proofs

Proof of Proposition 3.4.1. Let initial points start from R**® and wu;(0) = 0.
Since u1(0) 4+ u2(0) > 0, we have

dul(O)
dt

= dUQ(O) > 0.

Then R2*? is positively invariant. Similarly for R}*2. Clearly, R2** ¢ R?*? and
R9*? ¢ R¥*?. With initial point (u;(0),u2(0), v1(0),v5(0)) € R2*2,

if u1(0) =0 then ducll—im = duy(0) > 0;
if up(0) =0 then d“;t(m = duy (0) > 0;
if v,(0) =0 then d”;io) = dv,(0) > 0;
if v5(0) =0 then d”;io) = dv1(0) > 0

When u;(0) = 0 and dué—t(o) = duy(0) = 0, namely, u1(0) = u2(0) = 0, we have
already proved that {(0,0,v;,vy)} C RY*? is positively invariant and Rixo C R¥*2.

Hence, R%FXQ is positively invariant.
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Proof of Proposition 3.4.2.

w = w(ag —uy — 1) + uz(ag — ug — )
= U1 + Qolug — u% — ug — ULV — UgUs
< max{aqg, agHug + ug) — %(m + ug)?
< (ug + ug) {max{al, as} — %(ul + uz)} )
Similarly,
W < (vy + v) {maX{ﬁhﬁz} — %(01 + 712)} :
Thus,
liin sup(uy + u2) < 2max{ay, as},
00
and

limsup(v; + v2) < 2max{f, 52}

t—o00

Proof of Proposition 3.4.3. Define the Lyapunov function V : Rixo — R by

V(u1,us,0,0) = uj <u1 —w; — uyn <u—1>> + us (u2 = uy —uyln (u—i)) . (3.43)
'/ Uz

With initial point (ug,us,0,0) & Rixo, then

/ U
V(ur,u,0,0) = uj fui(on — ur) A d{ug—ua) = uj(on — ur) — duj (U_2 B )]
- 1
- U
+ u; UQ(OQ - UQ) + d(u1 — uz) — U;(O{g — u2) — du, (u_l — 1)}
- 2

= uy |[(w —ui)[—(ur —uj) + (a1 —u})] + d(ug — uy) — duj

= i [=(w —u))? + (u = up)(an — ) + dug — ) — duj
+ ul | —(ug — ub)? + (ug — us) (g — ul) + d(uy — ug) — dus

| (i)
| — u5) = = 03) + (a2 — )]+ dun — o) — i (“1 - 1)}
|

|

< oy | (ug —u))(ag —uy) + d(us — uq) — duj (% — 1)]

Uy

+ ul | (ug — uy) (e — uy) + d(uy — ug) — du; (ﬂ - 1)] :

U2
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The equality holds if and only if u; = u] and uy = u3. Since

ozl—u”{:—d(%—1>, Qg — Uy = — (%—1), (3.44)
1 2

we have

V(u,u,0,0) < ul {(ul — ) {—d (ﬁ - 1)} (s — u) — du (% _ 1)}

+ou [(UQ ) [—d (Z_; - 1)1 + d(ur — up) — dut (Z—; - 1)}

* *
() U9 U U2 U9 Ui U1Ug
* * *

bl Fupduy |~ L -

* *
UL U U1U
192 1%
= dujuj |2 — -+ —

|
=
&
S
[\

IN
o

since a? + b 2ab. The equality_holds .if and only if ujus = wjuj. Hence,

>
V(ul,u2,0,0) < 0 and the equality holds if-and.only if u; = u; and uy = us.
By the Lyapunov stability theory, the solutions starting from initial data in Rixo

will converge to the semi-trivial equilibritm (uj, u3, 0,0) of system (3.28).

Proof of Proposition 3.4.4. The proof of Proposition 3.4.4 is similar to Proposi-
tion 3.4.3. By constructing the Lyapunov function V' : R?rw — R,

V(0,0,v1,v9) = vf (vl — v} —viln (U—1>) €05 <v2 — vy — vy In (U—i)) . (3.45)
U1 U3

Proof of Proposition 3.4.5. The variational matrix of corresponding linearized

system of (3.28) with d = 0 is given by

oy — 2up — Uy 0 —Uuy 0
. 0 Qg — 2U2 — Vg 0 —Ug
A(ul,UQ,UhUQ) - —vy 0 /81 —2'U1 — Uy O
0 —vy 0 B2 — 209 — uy
Then we have
aq 0 0 0 —Qq 0 —Q 0
_ 0 a 0 O 0 0 0
A(Ey) = 0 0 p 0|’ A(E) = 0 0 Bi—ayx O |7
0 0 0 pBs 0 0 0 B2
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[ aq 0 0 0 i [ ] — ﬁl 0 0 0
o 0 — Q9 0 — Q9 . 0 (6] 0 0
AE=10 0 5 o CABI= s 0 s 0 |
| 0 0 0 @2 — (9 ] | 0 0 0 62
[ aq 0 0 0 i [ — 0 —Q 0
. 0 Qg — 52 0 0 o 0 — Q9 0 —QOl9
AE)=19 "0 5 o PAB=1 0 0 goa 0 ’
L 0 — 2 0 =5 ] | 0 0 0 Pa — v
[ a1 — ﬁl 0 0 0 a1 — 51 0 0 0
0 Qg — 52 0 0 - 0 — Q9 0 — Qg
A(E6> — _61 0 _ﬁl 9 A(E'?) - _ﬁl 0 _ﬁl 0
0 —62 0 —/82 0 0 0 62 — Q9
and
—Q 0 —Q 0
. 0 g — /82 0 0
A<ES) - 0 0 ﬁl — 0 )

0 ~/3 0 —f6
We can find that the diagonal elements of each matrices are eigenvalues for the
corresponding matrices. And .all parameters a;, 3; > 0 and are different. Hence, we
can deduced the following results (i) Eg, Ly, Ea, Bs and F, are all unstable. (ii). If
a; < fy and By < ag, then only E7is stable. (iii). If a; > 1 and 5y > s, then only
Es is stable. (iv). If a3 > 1 and 8y < @, then only Ej is stable. (v). If oy <
and (B > a, then only FEj is stable.

Proof of Theorem 3.4.6. The system hasapositive equilibrium E = (uy, Uy, 0y, U2)

satisfying the following system of equations

(al—ul—@1)+d(¥—1):0, (aZ—az—ﬁz)er(?—l):O,

., . (3.46)
(Br—vr—w)+d(=—1)=0, (Bp—0p—1p)+d(——1)=
01 Vg
It follows that
al_al_ﬁl:d(l_g)a az—%—@:d(l—?),
o U2 (3.47)
51_771_1_’/1:6“1_,_2), BQ_EQ_EQZd(l—Tl).
U1 ()
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Now, form the linearized analysis, the variational matrix at F is

-&1—2@1—’171—(1 d —1_61 O
o d 042—2?7/2—172—d O —az
A(E) = o, 0 By — 20y — iy — d d
[ —ay — du—lf d —1 0
B d —Ug — % 0 —Us9
- —0; 0 —0y — dﬁ d
i 0 — 7y d —Uy — 2

The corresponding characteristic polynomial is
P(A) = M 4+ )\ + ag)? + as) + ay, (3.48)
where
a :a1+ag+@1+@2+d(@+@+2+@),
Uy Uy U Vg
ay = %(alaﬂf@; + W00 + U dlaVi0s + UV Vo + d(TUy U} + Ty U
+ U1 Vg + UsD1 Vo) + d(WV1V5 + UV V5 FUUST + U3 Uy
4+ URDLT5 + UgDi0y + Unliavs ) Ustiy) + d2 (s + u3) (0] + 03),
ag = %{a{ag(@f + 03) 2 0705 (w3 + uz) (U 0y oty (4] + U5 + U5 + 2)

+ d[(u? + u3)(v) + v3)+ (0F F o) + 13)]},

aa@, T =X dv /N
ay = M(Ulvg + ’UQ'Ul)(Ul’UQ 3 U2’U1) ,M = U3U2V1 V3.
Hence, using mathematical computation software ”Maple”, we have
a; 1
A1:CL1>O,A2: ! = aias —az > 0,
as a2
aa 1 0 0
a 10 al as a; 1
Ag =| a3 a ai | > O, A4 = 3 2 ! = CL4A3 > 0.
0 a4 az as
0 a4 as

0 0 0 a4
By the Routh-Hurwitz stability criterion, the real part of eigenvalues of A(FE) are

all negative. Hence, the equilibrium E is stable in system (3.28).

Review the Theorem 3.4.7. The proof in [2] is to check the local stability of two
semi-trivial equilibria (uf,u5,0,0) and (0,0, v}, v3). It satisfies the equations
ui(an —ug) + d(us —uy) =0,

(3.49)

uz(ag — u3) + d(uy — uz) =0,
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and

vi (B — 7)) + d(vg —v7) =0, (3.50
vy (B2 — v3) + d(v] —v3) =0,
respectively. From (3.49) and (3.50), we have
u*
uy = i(uz — Qo) + U, (3.51)
and .
* v * *
Uy = i(“z = Ba) + vs. (3.52)

Now, from the corresponding linearized system of (3.28), the variational matrices

at this two equilibria are

ap —2ui —d d —u 0
A(ug, u3,0,0) = 0 i 0 i pr—ui—d d2
and
ap — U —d d 0 0
* 0 k\ d Oéz_vg_d 0 0
A(0707U17U2) - _UT 0 ﬁl '/ ZUT —d d
0 —U; d BQ_ZU;_d

Since those matrix have a block diagenal-structure, we only need to check the signs
of trace and determinant for their 2 x 2 diagonal blocks matrices. That is, for d

large, we need to check
(o —2ui) (g — 2u3) — d(ag + g — 2u] — 2u3) > 0

and
(B1 = up)(B2 — u3) — d(Br + B2 — uj — u3) > 0.
On the other hand,

(g —v]) (e —v3) —d(ag + g —v] —0v3) <0
or

(81— 207)(Ba — 2v3) — d(By + B2 — 2v] — 2v3) < 0.
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Using (3.51) and setting (81 —uj) (o —us) —d(51 + B2 —uj —uj) = 0, from asymptotic
analysis, we yield that

= 061‘50@ Zl[(ﬁzgﬁl)g_(52—551)(8+52;51)]+0(%)
a2 (3.53)
wy= 0y LB BBy BBy ol

Similarly, use (3.52) and set (a1 — v})(ag — v5) — d(oy + a2 — v} — v3) = 0, then we

have

v =P L, 429 4 (82 - )]+ O(),

=28 L b rep — (8- )+ O,

(3.54)

It seems that we need ¢ is small enough in order that we can get the following

formulas in [2],

. a1 + o \J CY_ J 1
BTN A (3.5
up = 20, ) KO ().
and
ot = 51;52 B1 (52 3) +O(dl)
By OBy Bz (3:56)
vy = PP G O ).

Unfortunately, if € not small, by (3.54), we get
(a1 —vp)(ae —v3) —d(on + az — Uf — 0y)

Qy — Qg (3.57)
= () 4 0() > 0

and

(81— 207)(Ba — 2v3) — d(B1 + B2 — 207 — 203)

(3.58)
=d(B1+B2) +0(1) >0

Hence, we can not guarantee the equilibrium (0,0, v, v3) is unstable. Finally, the
calculation about the asymptotic analysis for «} and v},7 = 1,2 are as follows.
1. Let uf = fo+ % f1+0(5) and uj = go+ 591+ O(5), where f;, g; are the functions
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of parameters (i, f. Substituting into the equation (3.51) and (5 — u})(fB2 — ul) —

d(B1 + P2 — uj —ul) =0, and then comparing the coefficient of each order, we have

fo =90, /1 = 90(g0 —2) + g1, fo+ g0 = f1+ B2 and fi+g1 = —(B1 — fo)(B2 — g0).

After some computation, we get

251‘1‘52 ot

Jo =90 5 5
and
1 By — _ 1 B, — _
fr= B B (B Py BBy gy B Py BBy ey
Hence,
1 — — 1
wp= Sy B (e B2y o),
1 — — 1
U;—O‘/l;—ag ﬁ[(522ﬂl)2+(62;ﬁl)<8+62251)]_’_0(@)

2. Let vf = fo+ 2 f14+0(5) and v3 = go+ 391 + O(5 ), where f;, g; are the functions
of parameters (1, 2. Substituting into the equation(3.52) and (a; — v}) (e — v5) —

d(ag + ag — v —v}) = 0, and then comparing the coefficient of each order, we have

fo =90, /1 = 90(g0o — B2) + g1, fo+ go=a+ay and  fi + g1 = —(a1 — fo)(a2 — o).

After some computation, we get

a1+ Qo :51‘1‘52

fo=g0=

2 2
and
fi= 51082 = B+ 220+ (81— Bon = £[(Bs — By + 227 — (6% — D).
Hence,
o= BT (5 B 22 (8 D) 4+ O()
=28 L prep (8- )+ 0,
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Proof of Theorem 3.4.8. System (3.28) has a positive equilibrium (uf, u3, v}, v3)

if and only if

(an —uf —v]) +d(2 —1) =0, (ay—uj—v5)+d(2—1) =0,

ﬁ ﬁ (3.59)
(Br—vi —ui) +d(22 = 1) =0, (B — v —uj) +d(-x = 1) =0,

1

V3
is satisfied and wuj,u3, vy, vs > 0. Simplifying each pair of these four equations, we
get —e1 +d(a—b) =0 and g9 + d(é — %) = 0, where a = Z—é,b = Z—i Observe

1

1

thus we obtain

G Vel + dkd? po ot Vel + dkd?
N 2d T 2d '

Note that a® > k > b%. Set u} = au},vj = bu}, and substitute them back to (3.59),

we obtain

(i) (a1 —uj —v))+d(a—=1)=0; (1)  alas —au; —bvi) +d(1 —a) =0,
(iii) (B1 — vy —ui)+d(b=1)=0, (iv) < b(Bs —bv; —aui) +d(1 —b) = 0.

Solving (i) and (ii), we have

ace +.d — ad — k(ay+ ad — d)
a>—k

uy =
and
v = o1 —uj +ad—d.
On the other hand, solving (iii) and (iv), we have

_ bBa+d—bd —b*(By + bd — d)
N k— b2

We can verify the consistency; with d(a—b) = &1, we see that oy +ad—d = f;+bd—d

*

Uq

and v] =) —uj +bd —d.

and

acy +d—ad — k(o +ad —d)  bBs+d—bd — b*(f1 + bd — d)
a2 —k B k— b2

Hence, the unique positive equilibrium exists for system (3.28) if and only if

acg +d — ad — k(ay + ad — d)
a’> —k

a;+ad—d> > 0, (3.60)
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or equivalently,

b3y + d — bd — b*(By + bd — d)
k — b?

First, since b < 1, we have 35 — b3; > 0, and

f1+bd—d> > 0. (3.61)

bBy +d —bd — b*(B1 + bd — d) = b(B2 — bB1) + d(1 — b) + b*d(1 — b) > 0, for all d.
Next, we shall find the condition under which the left inequalities of (3.60) and
(3.61) hold. These inequalities are equivalent to G(d) > 0 and F'(d) > 0, where
F(d) :=d(1+a*)(a — 1) + a1a® — asa,
G(d) == k(1 +bd — d) + bd — d — [sb.
Let us study the property for functions F' and G. Note that

a’> —k

(3.62)

F(d) = G(d).

We claim that G'(d) < 0, for all d > 0: Indeed, since b = L Vi V;C;JFW, k=2, we

have
€1 b

=i_1_. WA
dr/e2 4 dkd?

W/~
We then compute

G'(d) = B(bd £b— 1)+ Bd+b~1) — BV
— (k1) (Hd+b—1) =Ll
s+ IRy By

VT + dkd?
2kd
=k+1)(—=—1) — Bl
(1) 2+ Ak )= P2
<0
Next, we show that
1(9E1E9

F(d)>0, forall d<

adeq — adey’
51528152
52252 - 5%51

> 22 > 1 and
a1

G(d) <0, forall d>

We set b < %’“, then we have a =

SalEy

F(d)=d(1+

(1+

d a*)(a—1) + aya® — asa
d a®)(a — 1) + a(ara — ay) > 0.
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Moreover,

- + /3 + 4kd? - ark
2d g
It follows that
V&2 + 4kd? <& N a_lk;.
2d — 2 Qo
Squaring both sides and after some algebra, we have

(€1 €
dS 1¢k2c1C2

adey — adey

On the other hand, We set b > % and the fact that b < 1, then we have

G(d) = k(1 +bd — d) + bd — d — Bab
= kd(b—1) +d(b— 1)+ Bik — Bsb < 0.

Moreover,
po —ot Vet Akd _ Bik
B 2d SN
It follows that
V&5 +4kd? 1, 5_1+ @
2d —2d - P
Similarly, we square both sides and some algebra, then we get
a> pipeeies

e — BlEL
We thus conclude that the system must have a positive equilibrium when

Q1 (E1E2
d<

adey — adeg
and has no positive equilibrium when

€1€
d> 251/32 122 '
Bsea — Bier

Since we have ¥ < 0 for all d > 0, we can deduce that there is a unique point d with

Q100E1E9 N B1Bae1€2
2 5 < d < 2 2
Qp&9 — 1€ Bse2 — Bien

such that F(d) = G(d) = 0.
In particular, for the case €y = €9 = ¢, we have ab=1,a > 1 > b and

e+ Ve +4d? b — —e+Ve? +4d?
N 2d T 2d '

a
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Similarly argument as above, we have

. aag+2d—2ad -« . .
uy = 2 o L v = o —uy +ad—d.

or
b d—bd —b? bd — d

u = P2t 1_b§51+ ) vt = B bd—d.

We can also verify the consistency,

acg +2d — 2ad — o bBy +d — bd — b*(By + bd — d)
a? — 1 B 1— 02
and ay + ad — d = (1 + bd — d. Hence, the unique positive equilibrium exists for

system (3.28) if and only if

2d — 2ad —
o +ad—d> 22T g 1“ Y <o, (3.63)
CI/ J—

or equivalently

b3y + d — bd — b*(B; + bd — d)
1 =b?

First, since b < 1, we have 3 —=bp1 < 1 and

f1+bd—d> > 0. (3.64)
bBy +d — bd — b*(B1 + bd —d) = b(Bz — bB1) +d(L —b) + b*d(1 — b) > 0, for all d.

Next, we shall find the condition under which the left inequalities of (3.63) and
(3.64) hold. These inequalities are equivalent-to-G(d) > 0 and F'(d) > 0, where

F(d) :=d(1+a*)(a— 1) +ea’ — asa andG(d) := 2bd — 2d — b + 3

Let us study the property for functions F' and G. Note that

a®—1
F(d) = d).
(@) = "2 60
We claim that G'(d) < 0, for all d > 0. Indeed, since b = ==tve+ad- W, we have
o bk
dv/e? + 4d?

We then compute
G'(d)=2'd+b—1) — b

eb
=+ b—1) = Bl
( €2 + 4d? )= B2
2d
=2(——— — 1) — By}
Ve
< 0.
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Next, we show that G(d) = 0, where

aj —af) — /(03 — aF)? — 1661 52 (B2 — 1)

|
‘= 8(B2 — avy) 7

We set G(d) = 0, it follows that

2d(—e + Ve +4d?) — Ad® — fy(—e + Ve? + 4d?) + 261d
2d B

2bd — 2d — bBy + 1 = 0.
Since d > 0, we let
2d(—¢ + V2 + Ad?) — Ad? — By(—e + V2 + 4d?) + 26,d = 0.
It follows that
(—2de — 4d® + Boe + 261d)* = (By — 2d)*(? + 4d?).
After some algebra, we have
4(By — ag)d® +(af ~1a3)d + (3B = 0.
Therefore, we have two roots

(a3 — o) + §/(a3 — aP)? = 165182 (B — )
8(ﬁ2 = 041)

But actually, the graph of G(d) only intersect d-axis one time, we can check d, is

dy =

not the root of G(d) = 0 by numerical computation. Hence, the only one root such
that equation G(d) =0 is

(a3 — af) — /(03 — 0})? — 1651 B2 (B2 — 1)
8(f2 — ) ’

d_:

denoted by d. The proof of theorem is complete.

Proof of Theorem 3.4.10. We define a Lyapunov function V' : RZ — R by

N A N ~ ~ 0211 N ~ ~ CZ)Z
V(01,w2) = ¢ (w1 —w; —wIn (T)) + Co (wz — Wy — W ln (T))
%1 %)
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where ¢; = w1 and ¢y = wy. Then

rroA ~ -A A ~ ~ ~ ~ ~ dj
Vo, ) = ¢ |01 — 1) +d(g —wy) — w1 (B —@1) — wid <T2 - )]
+ Co @2(0&2 — (;JQ) + d((i)l — @2) — (f]g(OéQ — (;.)2) — (fjgd (g — 1):|

= o [(0 —@)[=(@1 = @) + (B — Q)] + d(@02 — @) — i

+ ¢ (L:)g — (f)g)[—(djz — (sz) + (ag — (f)g)] + d(t:)l — C:)Q) — (f)gd

¥
/\A
R
[ N
|
—_
N———
| IS |

U

= —((,:)1 — 6?21)2 + ((2)1 — &}1)(61 — (f)l) + d(@g — L:Jl) — (f]l
+ Co —((222 — @2)2 + ((2)2 — (f)g)(OéQ — (flg) + d(d)l — (,:)2) — (f)gd

< o [(@1— @) (81 — @) + d(@g — @) — nd (T —1

P N T A,
+ o | (W — wo)(ag —oo) 4+ d(e —wy) — wad (Tl — 1>]

where equality holds if and only if @3 = w; and @y = w,. Then

A

V(d,@) < o {(@1 — &) {—d <g—j — 1>} + d(n = &) — d (w_1 -~ 1)}
|

W9 ]

- Wy Wy Wiy N Wo W1 WD1ws
= cdwy |—=—+ 14+ F= | +cdu |—=—+1+— — =
w1 w2 1% w2 w1 W12

~ a W1We W1l
dCU1(U2 |:2— (A — + =

W19 (I)l(;}g
< 0
since a? + b > 2ab. The equality holds if and only if W@y = O1ws.
Therefore, we obtain V(djl,d)g) — 0 if and only if & = @y, @y = Wy and
(0109 = W1ws. By the Lyapunov stability theory, The equilibrium (@1, w;) of system

(3.39) is globally asymptotically stable among all positive initial data.

Proof of Theorem 3.4.11. The proof of theorem 3.4.11 is similar to theorem
3.4.10. Defined the Lyapunov function V' : RZ — R by

V(CJl,(,JQ) = C ((Jl — (f)l — (f)l In (g)) + Co <"LZ)2 — (f)g — (f)g In (?))
w1 )
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where ¢; = @; and ¢ = Ws.

Proof of Corollary 3.4.12. We only prove the upper boundedness. (i) Clearly by

Theorem 3.4.10. (ii) The positive equilibrium (@, w,) satisfies
w1 (B — 1) +d(@y — ) =0 (3.65)
(g — o) + d(@y — &) = 0.
If &y > @9, then @y < By and ay < Wy, namely, as < wy < & < Fy. It contradicts
with 8; < au. Thus, W; < W,. Moreover, we obtain 3; < @w; and Wy < s since
W1 < @s. (iii) From (2), The results are true. (iv) Since

Wy
2 + 32(@2 — ), (3.66)

we have @, = Wy, as d — 0o. Then Wy = Wy — QQT% The same argument can proof

En

W =

the lower boundedness.

Proof of Theorem 3.4.13. With initial point from €2, we claim the solution flow

¢ (uy, ug, v1,v9) stays in Q.

Figure 6: The bounded above and bounded below for w; and w».

(I) If exists some time £y > 0 such that w;(ty) = a2 and a; < wi(ty) < ag,
then

d(u1 + Ul) . dw1 (to)

o (to) = i wi(to)(B1 — wi(to)) + d(wa(to) — wi(to)) — e1us(to)
< wi(to)(Br — wilto)) + d(wa(to) — wi(to))
= ap(f1 — ag) + d(wa(to) — )
< ap(fy — ag) +d(ay —az) < 0.
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(IT) If exists some time ¢y > 0 such that wsy(ty) = ay and a; < wi(ty) < g, then

Aot £02) ) = B0 1) (a0 — walt) + d(er (1) — () — cavalto)
< walto) (o — wa(to)) + d(wi(to) — walto))
= afay — az) +d(wi(to) — az)
< ag(ag — ag) + d(ag — ag) = 0.

(IIT) If exists some time ¢y > 0 such that w;(ty) = oy and a; < ws(ty) < g, then

W(to) _ dw(ljito) = wi(to)(ay — wi(tg)) + d(wa(ty) — wi(to)) + e1v1(to)
> wifto)(on — wi(to)) + d(wa(to) — wi(to))
= (@ — o) + d(ws(to) — )
> oo — o) +d(on — o) = 0.

(IV) If exists some time ¢, > 0 such that ws(tg). = a1 and oy < wy(ty) < g, then

d(UQ + Ug) . dw2(t0)
T W

2(to)(F2 — wa(lo)) + d(wi(to) — wa(to)) + e2uz(to)
2(to)(Ba — walto)) + dlwi (to) — wa(to))
(
(

|
g

IV
&

a1 (B —ap) + d(wi (tg) = a1)
a1 ﬂg — Oél) +d(0&1 72 041) > 0.

[V

Secondly, we focus on the two points {wy-=-as, ws = s} and {w; = a1, wy = a1 }.

Define

Sy = {(u1, 1) €RY oy <up 401 <},

SQZ {(UQ,UQ) GRE_:CH SUQ_'_’UQ SQQ}.

(I). For {w; = a,wy = an}, it indicates {u; +v; = ag, us+v9 = a}. Set n = (1, 1),
then

n-f = [UJl(ﬁl - W1) + d(b&)g - wl) - glul]|w1:a2,w2:o¢2 < 07

n-g = [Wz(az - wz) + d(wy — OJQ) — 52?)2]|w1=a2,w2=a2,v2>0 <0,

where f = (fi, fo) and f = (f1, f2) are the vector field of u;v;-plane and usve-plane,
respectively. It means that all initial point on the two line with v > 0 will go inside

the region S; x Ss.
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= = p u,
o W % o 5%, w, %2

Figure 7: The bounded above and bounded below for (a) u; and vy, (b) uy and ws.

Finally, we check the point with vy = 0 as initial data :

(i) (e, g, 0,0), the solution always stays on ujus-plane and tens to the semi-trivial
equilibrium (a4, 49,0, 0) by Proposition 3:4:3:

(il) With (uy, ug, v1,v2) = (k, ag,'as = k,0) for seme.k < oy, then

Uy = 012(052 71 042) == d(k = 042) = d(k' T CEQ) <0

@gzd(&g-/{) >0
Hence, the flow with vy > 0-alone the line ws v, = @3 next time and satisfies the
above argument. It means that all.the solution will enter the positive region Sy x Ss.

(IT) Similar argument for {w; = aq,wy =-ag}, it means {u; +v; = ay,us+ve = a1 }.
Set n = (1, 1), then

n-f = [wi(a —wi)+dws —wi1) + 101w =a1,wa=ar,m>0 > 0,
n-g = [wyBs—wy)+d(wy — ws) + €2Us|w a1 we=a; > 0,
where f = (f1, f2) and £ = (f1, f2) are the vector field of u;v;-plane and usve-plane,
respectively. It means that all initial point on the two line with v; > 0 will go inside
the region S7 x S,. Finally, we check the point with v; = 0 as initial data :
(i) (a1, a2,0,0), the solution always stays on ujus-plane and tens to the semi-trivial
equilibrium (4, @z, 0,0) by Proposition 3.4.3.
(il) With (uy, ug,v1,v2) = (a1, k,0, 1 — k) for some k < oy, then
U =ap(og —ag) +dk—aq) =d(k—ay) <0
0y =d(a; — k) >0
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Hence the flow with v; > 0 alone the line us + v9 = o next time and satisfies the
above argument. It means that all the solution will enter the positive region Sy x Ss.
Hence, we conclude that all solution flow will enter the bounded region € for

a period of time. That is, ) is positively invariant.

Proof of theorem 3.4.14. With initial point (uy(0), u2(0),v1(0),v2(0)) € Q, by
Corollary 3.4.13 (iii), we have

d
%(Ul — UQ) = U1<Oél — Uy — Ul) + d(UQ - U1> - UQ(O&Q — Uy — 'U2) — d(U1 — UQ)

aiuy — ul(ul + Ul) — QU9 + UQ(UQ + Ug) — 2d(u1 — Ug)

IN

QU] — QU] — QUg + QalUy — 2d(u1 — Ug)

= —2d(u1 — Ug).
Hence, fixed d sufficiently large, we have
uy (1) — ug(t) < (u1(0) < ug(0))e — 0 as t — oo,

with initial point (u;(0) — u(0)) from€Q at t = 0.

d
E(ul —uy) = up(ag —ug — v1) F+ dug—ur) —uz(ag —us — vy) — d(uy — us)

aq1u; — ul(ul + Ul) — Qoo+ UQ(UQ ~ U2> — 2d(’LL1 — UQ)

> QU] — QU] —QUg + QjUg — 2d(u1 — Ug)
= —(062 — al)(ul & U2) — 2d(u1 hat UQ)
> —20&2(0&2 — Ozl) - Qd(ul - u2)

Thus, fixed d sufficiently large, we have

w(t) —us(t) > —M (1= e72) + (u(0) — ua(0))e 2"

1
— O(c_l> as t — oo,
with initial point (u;(0) — u2(0)) from Q at t = 0. Therefore, we obtain

as(ag —ay) gl — 1) oy
@ T a ¢

+ (u1(0) — uz(0))e "

< wuy —ug < (ug(0) — uQ(O))e’th
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with initial point (u1(0) — u2(0)) from the region Q at ¢ = 0. Then u; — us — O(3)
as t — oo. Similarly, we have

d

—(v1 —v2) = vi(B1 —ur —v1) +d(vy —v1) — Vo(Br — ug — v2) — d(v1 — V)

dt
Brvr — v1(ug + v1) — Povg + va(ug + va) — 2d(vy — v9)

< B — vy — Bovg + aguy — 2d(vy — vy)
= (B — a1)vr + (ag — B2)va — 2d(v) — v3)
= £101 + £9v9 — 2d(v1 — v3)

< eg(v1 + vg) — 2d(v1 — vg)

< 2e905 — 2d(v1 — v3)

Thus, fixed d sufficiently large,

1
v — vy < 6%52 - %e_w + (v1(0) — v3(0))e™ 2 — O(a) as t — oo,
with initial data (v1(0) — v2(0)) from the region £ at t = 0.

i(m - 712) = Ul(ﬁl — Uy = U1) + d(U2 S Ul) . Uz(ﬁQ — Uz — UQ) - d(vl - Uz)

dt
ﬁlvl — vl(ul Bl Ul) — 521}2 -+ ’UQ(UQ =+ ’1)2) — 2d(’U1 — Ug)

> fror — Aty — Bats 4 a@qvs = 2d(v) = )

= — (B2 — fitea)vr = (Ba= P +£1)v2 — 2d(v1 — v2)
> —(Be — B1 +€2)(wn+ v2) =2d(v1 — v2)

> —205(B2 — Bi + €2) = 2d(v1 — )

Hence, fixed d sufficiently large,

v—vy > BB —d51 + &) n Ba(Ba —dﬁ1 + 62)6_2dt

1
— O(E) as t — o0,

+ (v1(0) — v2(0))e 2%

with initial data (v1(0) — v2(0)) from the region 2 at ¢ = 0. Therefore, we obtain

B2(Ba — B1 + €2) N Bo(B2 — Br+€2) oy
_ y y e
€23 %e—m

<V — Uy < —= —
>~ V] 2 = d d

with initial point (v;(0) — v5(0)) from the region  at ¢t = 0. Then v; — vy — O(

+ (01(0) — v2(0))e "
+ (01(0) — v2(0))e "

)

Ul

as t — o00.
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4 Numerical examples

Example 1 : We present the example to illustrate our results. Set g; = 1.5, 6, =
2.5,81 =£&1 = 0.5.

a,=1,0,=3,3,=1.5,3,=2.5

0 0.2 0.4 0.6 0.8 1

i
T

[
T
N

0 0.2 0.4 0.6 0.8 1
d

Figure 8: Illustrations for the dynamics f; = 1.5, 82 = 2.5,61 = 5 = 0.5.

Example 2 : We present the example toillustrate our results. Set p; = 1.5, 6, =
25,61 =0.3,e9 = 0.6.

@,=1.2,0,=3.1,3,=1.5,3,=2.5
‘

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1
d

Figure 9: Illustrations for the dynamics g1 = 1.5, 85 = 2.5,e1 = 0.3,e5 = 0.6.
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The form of model as (3.28) with different dispersal rates as follows.

du
d_tl = Ul(Oél — Uy — 'Ul) + dUQ — €Uy,
du
d_2 = UQ(OQ — Uy — UQ) + ecur — dUQ,
t (4.1)
d?)l
E = ’Ul(ﬁl — V1 — Ul) + dUg — €evy,
dv
d—; = ’Uz(ﬁg — Vg — U/Q) + €V — d’Ug,
with the assumption of parameters
0<51—€1:O!1 <ﬁ1 <B2<(X2:ﬁ2+€2,82261 >0,€2d20. (42)

We have the similar results:

Example 3 : We present the examples to illustrate our results. Set g; = 1.5, 8 =
2.5,81 = &1 = 05, d=0.1.

a,=1,0,=3,3,=1.5,3,=2.5d = 0.1;

0 0.5 1 15 2 25 3

0 0.5 1 15 2 2.5 3
e

Figure 10: Hlustrations for the dynamics f; = 1.5, 85 = 2.5,61 = g9 = 0.5,d = 0.1.
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On the other hand, we let species with the different dispersal,

du
d_tl = Ul(Oél — Uy — Ul) + dUQ — dul,
du
d—2 = UQ<062 — Uy — UQ) + du1 — dUQ,
t (4.3)
dUl
E = Ul(ﬁl — V1 — Ul) + evy — €evy,
dv
—2 = 'UQ(/82 — Vg — UQ) “+ evy — €Va,
dt
with the assumption of parameters
0<51—€1:Oé1 <ﬁ1 <ﬁ2<0&2:ﬁg+€2,62261 >0,€Zd20. (44)

We have the following results:

Example 4 : We present the examples to illustrate our results. Set f; = 1.5, 8, =
25,61 =€, =0.5,d=0.1

a,=1,0,=3,3,=1.5,3,=2.5,d = 0.1;

3 L ——
Uy
u
S
—
=}
l -
0 ! ! ! ! !
0 0.5 1 1.5 2 2.5 3
e
1
—_ v1
- v2
>N
- 05
>
0
0 0.5 1 1.5 2 2.5 3

Figure 11: Illustrations for the dynamics $; = 1.5, 8y = 2.5,61 = 9 = 0.5,d = 0.1.
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5 Appendices

5.1 Note of Section 2.2

1. Special case a+ = 2.

dx
d_tl =x1(1 — 1 — azy — fu3), (5.1)
dx
d_t2 = x9(1 — fxy — 29 — 13), (5.2)
dx
d_tg = 23(1 — ax; — frg — x3). (5.3)

Define
l‘T(t) = l‘l(t) + l‘g(t) + Zﬁg(t)

Summing (5.1), (5.2) and (5.3), we have

dx
d_tT = (@1 + 32 + x3) — (2] + 23 #2253 H (vt B) (w122 + wox3 + T371)) (5.4)
=TT — 33%«
Hence,

Zr (0
) = mta { i:T(O))e—t
with some initial value x7(0) = %, (t)4@a(t)+x5(f). Clear, x1(t) — 1 ast — oo. That
is, the solutions of the system (2.14) approach to.theplane z(t) + zo(t) + z3(t) = 1.
Define
P(t) = x1(t)xo(t)xs(t).
Then,

d(lnP)  d(lnzizers) d(lnzy +Inxs 4 Inas)

dt dt dt
1 dxy 1 dxy 1 %

ndt o dt o db
= (1 —x1 —axy — fr3) + (1 — fr1 — 29 — ax3) + (1 — axy — frg — x3)

=3(1 —ar) = —(2r —a7)

T
3 dﬂfT

(=5)

or
d(Inx3,)
S dt
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Integrating both side, we have
In P(t) — In P(0) = Inz5(t) — In 23.(0)

with some initial value P(0) = z1(0)z2(0)x3(0) > 0. Hence,
P = POCED)

Since xp(t) — 1, we have

P(t) — P(0)( ) as t — oo.

23 (0)
That is, the solutions of the system (2.14) approaches a hyperboloid zizexs = C,
where C' = ;;T((OO)). Combining these results, the solution of (2.14) for a+ 8 = 2 tends
to a periodic limit cycle in the 3-dimensional population space. These periodic

cycles constitute a one-dimensional family, specified by the constant C' depends on

all initial values.

Figure 12: Illustrations for the dynamics ac= 0.8, 5 = 1.2. (a) time plot (b) initial
point (1,0.8,0.2) (c) initial point (0.01,0.04,0.05).

2. General case o+ > 2 and a < 1. Let F denote the union of the three orbit

closures,
3
F=os
i=1

where 0y is the orbit in the xsxs-plane form (0,0,1) to (0,1,0), 05 is the orbit in
the xyzs-plane form (1,0,0) to (0,0,1) and o3 is the orbit in the zjxs-plane form
(0,1,0) to (1,0,0).

Theorem (Schuster, Sigmund and Wolff, 1979). With the exception of the fixed
point E; and one orbit whose w-limit is E7, every orbit in the interior of Ri has F'

as w-limit.
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Note that E7 is the positive equilibrium for system (2.14). And it is a saddle
for « + 8 > 2 and a < 1 since some eigenvalues for the corresponding linearized

matrix have negative real part.

Proof: Let V =z, + 29 + 23 be a Lyapunov function, then

dV
- = (z1 + 2o+ x3) — (27 + 25 + 25 + (a + B) (w122 + Tow3 + 2371)), (5.6

. The

which is a quadric form of a two-sheeted hyperboloid with center
sheet through F; and also contains (1,0, 0), (0,1,0) and (0,0,1).

1 1 1 1
Trai5(2:2:2)

For every points on the sheet has V > and the equality holds for

3
1+a+p8
(1,9, 23) = E7. For 1 + 29 + x3 = 1, we have V =1 and

dVv
- = (21 + 29 + 23) — (2] + 25 + 235 + (0 + B) (172 + 2923 + 13771))

= (1'1 —+ i) -+ .1'3) — ((l’l -+ i) + 3:3)2 —+ (Oé + ﬁ — 2)(1’11’2 + ToX3 + xgibl))
=1-1—(a+ 8 —2)(v129 H @3+ T31;))

= (Oé + 6 — 2)(1’11’2 + ZToxz + ZE3I1)) < 0,
Hence, the solution will into.the bounded region

3
= rg)EeRES T L2y <),
Q1 = {(z15 9, x3) s ey }

Define P = x12923 be the second Lyapunov-function, then

P = T1X9X3 + X1Tox3 + T1XaT3
= r1x923(1 — 21 — axy — Pasg) + x1x0w3(1 — By — 19 — Qu3) + T1w23(1 — @y — Pas — x3)
= 212273(3 — (1 + a + B)(21 + 22 + x3))
=PB3-(14+a+p3)V)

<0
for all initial values start from (); and the equality holds for V = ﬁ or P=0.
V = ﬁ means the solution is an orbit whose w-limit is E;. With the exception

of those orbit, all other orbits start form (), approaches the set P = 0, that is, the
boundary of R? . It shows that the orbits of almost all points in R? . approaches the
set ()1 ﬂbdRi. Moreover, E1, F5 and E3 are all unstable because of 1 —a > 0. Hence,
the only remaining invariant set in )1 N bdRi is F, which must be the w-limit.

Similarly for the parameter assumption a + 3 > 2 and § < 1.

56



Figure 13: Illustrations for the dynamics a = 0.8, 5 = 1.3. (a) time plot (b) initial
point (0.8,0.6,0.2) (c) initial point (0.1,0.08,0.2).

5.2 Proof of Theorem 2.3.1.

Proof: Let V : R — R be a Lyapunov function for system (2.18), ¢1, ¢, > 0,

V(zy,z2) =1 (a:l —x] — ] ln(%)) + ¢y (xg — Xy — Xy ln(%)) ) (5.7)

1 2

Then,

V = 01(261 — f{)(bl + a7 + CL12$2) - Cz(l‘z . 3 l‘;)(bz +.a9111 + a22$2)
= ci(z1 — a})[ani (21 — 21) aaa(@a — 25)[ 4 cal@s + a3)[a21 (21 — 27) + asa(z2 — 23)]
= clan(xl — ZCT)Z + (Clalg -+ CQCLQl)(ZL’l 58 LE’T)(.CIJQ — .17;) + CQCLQQ(Z’Q — SL’;)Z

Choosing the suitable positive.constants to verify that the quadric from is a ellipse.

That is, claim that

(01G12 -+ 02a21)2 —4cic0aq1a92 < 0. (58)

For the following cases: (i) a12a91 = 0, (ii) ajeaz; > 0, (iii) a12a9 < 0,
i). W.L.O.G., assume ajy = 0, a9 # 0, then choosing ¢; = 1, ¢y < 494922 gyuch
& a
21
that

2 2
(Clalz + Czazl) —4cicaariage = 02(026121 - 4G11G22) < 0.

(ii). (5.8) can be written to
(Cla12 - C2G21)2 - 40102(a11a22 - a12a21) <0,

and holds for choosing ¢; = 1,¢5 = Zﬁ Note that aj1a00 — aj2a21 > 0 by the local
stability of positive equilibrium, which is the assumption of Theorem 2.3.1.

(iii). Choosing ¢; = 1,¢y = —o2, then
2
(cra12 + Caa91)” — 4ercaaqiag < 0.
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Hence, the quadric from is always a ellipse and it can be rewritten to be the
normal form of an ellipse

2 2
CLHXl + CL22X2 .

Since a1 < 0, a2 < 0, we have
V<o,

and the equality holds for z; = x], x5 = 3.

Recall the computation in V, we have

V= crap () — 1) + (crags + coa9)(x1 — 27) (29 — 25) + coags(z9 — 23)?

1 { Ty — T] }T [ 2c1a14 C1012 + C2021 ] [ Ty — 1] ]

2 To — JI; C1a12 + Co21 2626L22 To — ZE;
And
2c1a11 C10G12 + CaQo1
= (CA + ATC).
C10G12 + CoQo 2cpa99

Hence the proof is equivalent to claim that whether CA 4+ AT C is negative definite
for suitable positive constants ¢j;¢s. This argument also applicable for many species

model, see Theorem 2.4.1.

5.3 Proof of Theorem 2.4.1.

Proof: Let V : R} — R be the Lyapunov functionfor model (2.22) by

n

vmmmﬁgzz}%m—@—@mgo. (5.9)

i

i=1
Then,
V=3 ela—a) b+ ) ayey)
i=1 g=1
= iz =)D ay(z; — 7))
=1 J=1
— ZZCiai](ml - xz)(x] - .]7;)
i=1 j=1
1 T %
=5 (x=x")" (CA+ATC) (x—x"),
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where x = (x1,...,2,),x* = (2},...,27). Since CA + ATC is negative definite, we
have
V<o,

*

and the equality holds for (x1,...,2,) = (z7,...,2%). By the Lyapunov theory,

’rn
*

(x3,...,2%) is globally asymptotically stable for system (2.22)

rn

5.4 Proof of Theorem 3.3.1.

Proof: In general,

(1). n is odd. Since we have

P(\) = det(AI — (D +¢B))
= \" — trace(D + eB)X\"' + - .- 4 (=1)" det(D + ¢B).

If Z?:l b” < 0, then
(). trace(D +eB) = (> i, bi) =235 -di;) < 0 for £ small.

(ii).
det(D 4eB)) = g(i b= 1)=" M,

where M is the (n—1) principal minors of —D and M > 0. (Fiedler and Ptak, 1962)
So we have det(AI—(D+¢B)) < 0. Tt follows that P(0) = (—1)" det(A\I—(D+¢B)) >
0. Otherwise, if > | b; > 0, we'have-P(0) <-0-

(2). n is even.

Similar argument as above, then we also have P(0) = (—1)"det(A\I - (D +¢B)) > 0
for Y~ by < 0. And P(0) <0 for >, b; > 0.

5.5 Proof of Theorem 3.3.2.

Proof: The assumptions (iii) and (iv) implies that the system (3.26) has at least one
positive equilibrium, Padron have proved the existence and uniqueness of positive
steady state for the system (3.26)[15].

Let E* = (a%,...,2%),2f > 0 be the positive equilibrium for system (3.26),

rn

then z} satisfies the equation
ST
)+ (=1 =0.
j=1

*
Z;
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The defined Lyapunov function V : Rt — R for patch i is given by

Vi(zy) = oy — o — a} ln(%)

We can verify that V;(z;) > 0 for all z; > 0 and Vj(z;) = 0 if and only if z; = z}.

Hence,
av : -
o = 0= i) + D ey =)
= (s = @) lfie) + Y dy(2 = 1) = fiw]) = D dy (G~ 1)
j=1 ! j=1 ‘
= (e e) = )+ DG = e 1=

By assumption (ii), since f/(x;) < 0, we have (a; — xf)(fi(z;) — fi(z})) < 0. Let

a; = dijas, Fij(xs, x;) = z—j - % and Gi(z;) = — 3 + ln(%) Then we
have 7

= < ai(Gi(@i) = Gz))), (5.10)
and the equality holds for zj= x},4 =1.0.. n. Now, set

i=1

By Theorem 3.2.6 and (3.18), ¢; is the cofactor of i-th diagonal element of Laplacian
matrix corresponding to [a;;], then V' is a Lyapunov function for coupled system

(3.26). And thus,
av
— <
dt —
and the equality holds for x; = 27,7 = 1,...,n. By the Lyapunov stability theory,

0

E* is globally asymptotically stable in R}.
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