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Abstract

This thesis containstwo parts. Inthefirst part, we consider
a general ized resource budget model of ecology with a parameter
d, which was modified from Isagi {1 ] resource budget model by
Staka and Iwasa [2]. Here d is the'depletion coefficient.
Shu-Ming Chang [3] thoutht that the model was shown that the
model has Devaney s chaos on an invariant set by proving its
topological entropy is positive for d > 1.00026. We improve
their result by proving that the map had positive topological
entropy for d > 1. In‘this second part, we study the route to
chaos for another piecewise smooth map, which governs the
synchronized dynamics of the forest model of Isagi-Staka-Iwasa
[1-2]. Such map contains two parameters d and [. Here f3
denotes the coupling strength among the trees in their outcross
pollen availability. It is numerically demonstrate that the
route to chaos of such piecewise smooth map is through finite
period doubling bifurcation. We further 1llustrate such route
to chaos 1s generic for piecewise smooth maps by providing
several examples arising in application.
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1 Introduction

In this thesis, we shell investigate chaos and bifurcation of a certain piece-
wise smooth maps arising in ecology. Several explanations of the masting phe-
nomenon in a mature forest have been proposed [4-25]. They involve envi-
ronmental fluctuations, weather conditions, swamping predators, the weight of
young deer, bird populations, the reproductive success of bears, increased effi-
ciency of wind pollination, attraction to seed distributions, cue masting, and the
dispersing of animals. However, most of these hypotheses explain neither the

mechanism of masting nor the mechanism by which the timing of reproduction



varies among individuals [2]. In [1], Isagi considered the energy budget of an
individual tree describing how its energy is accumulated and used. It was later
generalized by Stake and Iwasa [2]. Such map is a nonsmooth map contain-
ing a parameter d. Such parameter d denotes the degree of energy depletion
of a tree after its reproductive year. In [3], the model was shown to have De-
vaney’s chaos on an invariant set by proving its topological entropy is positive
for d > 1.00026. We improve their result by proving that the map had positive
topological entropy for d > 1.

In [2], a couple map lattices was proposed to explain how a mature forest
mast and synchronize by comsidering outecross pollen availability among trees.
Various synchronized.reproductions such an annual réproduction, periodic and
chaotic reproductions were observed:  To understand such synchronized phe-
nomenon, we are led to study-another nonsmooth map that governs the dy-
namics on the synchronized-manifold of the map lattices. Such-map contains
two parameters d and . Here [ denotes the coupling strength among the
trees in theirloutcross pollen availability. It is numerically demonstrate that the
route to chaos-of such piecewise smooth map. is through finite period doubling
bifurcation.

Nature is full of piecewise smooth nonlinearities. ‘That is, their evolution is
characterized by periods of smooth-notion-interrupted by instantaneous cross-
ings of boundaries separating regions of phase space where different smooth
models apply. Such problems arise naturally from many kinds of engineering
systems. Examples include the stick-slip oscillations of a violin string or grating
brakes [26], the cam-follower system and the impact oscillator in mechanical ap-
plications [27], many problems in electronics [28] and neuron-firing models [29].
Much attention have been drawn to the study of their surprisingly rich (chaotic)
dynamics. Less mentioned is their routes to chaos, which are well studied for
smooth systems. In this paper we identify a route to chaos, which is termed
the finite period-doubling. The mechanism for the occurrence of such routes is

also discussed. Several examples arising in the real applications are provided



for illustration.

Transition to chaos, i.e., how a system becomes chaotic as a parameter of
the system changes, has been a fundamental and central problem [30] in the
study of nonlinear dynamical systems. In particular, the transition route to
chaos in smooth dynamical systems have been well understood. This transition
often occurs via the following four known routes: (i) the period-doubling cascade
route [31] , (ii) the intermittency transition route [32] , (iii) the crisis route [33] ,
and (iv) the route to chaos in quasi-periodically driven systems [34-35]. On the
other hand, the case that how a nonsmooth dynamical system gives rise to chaos
remains a less-studied area. By nonsmoothness, we allow a map to be continuous
but not differentiable.at some finite points. Such'systems occur naturally in the
description of physical nonsmooth processes such as impact; switching, sliding
and other discrete state transitions. Literature [36-42] that draws attention to
piecewise-smooth systems have-been focus on their qualitative and quantitative
theory. The purpose of this paper is to investigate their route to chaos. We
report that a finite period-doubling route to chaos for a class of nonsmooth
dynamical systems. Among several examples presented for /illustration arise
three models in real applications: a map model in ecology system [1-2] and two
nonsmooth continuous-time flows: the impact oscillator' (see e.g., [27,43]) and

the work cited therein) and the frietion oscillator and DC-DC converter (see

e.g., [44]) .

1.1 Isagi’s energy budget

Isagi [1] considered the energy budget of an individual tree. From photo-
synthesis, mature tree gains net production P, per year, which is accumulated
in the trunk or branches. When the energy reserve exceeds a critical level for
reproduction, the tree sets flowers and produces seeds and fruits. Let S(t) be
the amount of energy reserve at the beginning of year ¢t. If the sum S(t) + Ps
is the below a critical level Ly, the tree does not reproduce and saves all the

energy reserve for the following year. However, if the sum exceeds Lr, the tree



uses energy for flowering. Isagi et al [1]. assumed that the energy expenditure

for flowering is exactly the same as the excess, S(t) + Ps — L.

1.2 Satake and Iwasa’s generalized energy budget

Satake and Iwasa’s [2] generalize Isagi energy budget—the amount of energy
expenditure for flowering is proportional to the excess, a(S(t) + P; — L), in
which «a is a positive constant. Flowering plants may be pollinated and set seeds
and fruits. It is assumed that the cost for fruits is proportional to the cost of
flowers, and is expressed as R.a(S(t) + Ps — L7), in which R, is the ratio of
fruiting cost to flowering cost. After-the reproductive stage, the energy reserves

of the tree falls to S(¢)+ Ps= a(R. + 1)(S(t) + Ps— Ly). Hence, we have

St+1) = S(t)+ P, S(t)+Ps < Lr, W

S (&) +Ps—a(Re+1)(S(t)+Ps=Lz), St)+P; > Lp.

We introduce a non-dimensionalized variable Y (t) =

%P:_LT). Then equa-

tion(1) is written as

Y(t)+1,  Y(t) <0
Yi(tt') = = V/ (2)

—d ¥ (t) k17 Y (1) > 0,

in which d = a(R.+ 1) — 1. The parameter d indicates the degree of resource
depletion after a reproductive year divided by the excess amount of energy
reserve before the year. We call d the depletion coefficient, and assume d > 0.
From equation (2) , Y (¢£) < 0 holds. We also note that the quantity Y(¢) is
positive if and only if the tree invests some reproductive activity in year ¢.
After this rescaling, the dynamics of equation (2) include only a single pa-
rameter d. It is clear that Y(t+1) goes to infinity eventually at d < 0. On the
hand, Y(t+1) belongs in [—d + 1, 1] as ¢ large enough at d > 0. Satake and

Iwasa (2) illustrated trajectories for the three different of d. When d € [0, 1),



Y(t+1) quickly converges to the stable equilibrium ﬁ. There are a number of
two-point cycles corresponding to the different initial conditions when d exactly
d is equal to 1. When d > 1, Y(t+1) keeps fluctuating with a chaotic time
series.

Through this thesis, the n-fold composition of f with itself recurs repeatedly
in the sequel, f™, and it is defined as f™ = fo---o f(x), where n is the number

of iterations. The generalized resource budget model (2) can be represented as

a map f,

fz) = ; 3)

2 Preliminaries

2.1 Devaney’s chaos

The chaos of map has been defined in-several ways. Although the com-
ment “so many authors, so many definitions,” is true, a basic component of
all definitions is the unpredictability of the-behayior of the trajectory which is
determined with some certain error. (The associated phenomenon is usually
described in terms of sensitive.dependence on initial conditions). The definition
of the chaos of Devaney [45]/is considered herein because it is fundamental and

widely accepted.

Definition 2.1. Let X be a metric space. A continuous map f: X — X is said
to be chaotic on X if

(Sensitive): f has sensitive dependence on initial condition, meaning that there
0 > 0 such that, for any x € X and any neighborhood N, of x, there exists
y € N, and n € N such that | f™(z) — f™(y)| > 9.

(Density): periodic points are dense in X;

(Transitivity): f is topologically transitive. That is, for any pair of nonempty
open sets U,V C X, there exists k > 0 such that f*(U)NV # @.



2.2 Topological entropy

Definition 2.2. Let f : X — X be a continuous map on the space X which
is compact with metric d. A set S C X is called (n,e)-separated for f for n
positive integer and € > 0 provided that for every pair =,y € S, © # y, there
is at least one k with 0 < k < n such that d(f*(x), f*(y)) > €. The number of

different orbits of length n(as measured by €) is defined by
r(n, e f) =maz{(S): S C X is (n,€) — separated set for f},
where#(S) is the cardinality of elements in"S: Let

rople )= SN R8s, )

n—oo n

and define the topological entropy (46) of f as

htop(f) = hm htop(ﬁ, f)

e—0,e>0

Consider the continuous map on the compact interval, the relationship be-
tween positive topelogical entropy (hop(f) > 0) and Devaney’s chaos is equiv-

alent.

Theorem 2.1. Let f be a continuous map of a compact interval I to itself, f
has positive topological if and only if f is chaotic in the sense of Devaney on a

closed invariant set in I [47-50].

The basic result following that is used to help calculate the entropy, and

relates the entropy of a map f to a n-fold composition of f, f™.

Theorem 2.2. Assume [ : X — X is uniformly continuous or X is compact,

and n is an integer with n > 1. Then hiop(f™) =n - hiop(f) [46].

There is an another way to calculate topological entropy was defined by

Welington and Sebastian [51].



Definition 2.3. Let f : I — I be a continuous piecewise monotone map. The
lap number of f, which we defined ¢(f) is the number of, mazimal intervals on

which f is monotone. In other words, £(f) — 1 is the number of turning points

of [ [51].

Theorem 2.3. (Misiurewicz and Szlenk). Let f : I — I be a continuous,
piecewise monotone map. Then the topological entropy of f is equal to the

logarithm, of the number s(f)=lim,, o (£(f"))n [51].

3 Mathematical analysis

In this section, we will prove that the generalized resource budget model
is chaotic in the sense of Devaney on a closed invariant set in [1 — d, 1] when
the depletion coefficient d-is-greater “than'l by using the preliminaries, the

topological entropy theory.

Theorem 3.1. f is finitely renormalizable when the depletion coefficient d is

greater than 1.

Proof. We have the recursion of slope of equation 'f algebraically.

T,x, ,n.iscodd,
Tn4l =
TnYn 57 1S €ven,
TnYn s odd,
Yn+1 =
YnlYn N 1S even,
where 11 = —d, y1 = (—d)?, z,, and y,, represent the slopes of left part and

right part of function f2" in the box, respectively. Hence, by the recursion, we



can conclude that

n—1

T
an = Z 22k b, = a, + 1, where n is odd.
k=0

n_q
2

a = E 22F L b =l + 1, where n is even,
k=0

where ay,,b, are the power of slopes of left part and right part of f2" in the

/ / ja
n, 0, when n is even.

box if n is odd, respectively. It’s the same meaning to a

Assume the hump of 2" stay in the box then we have

f(Q’L“)(O) B f(2")(0)[1 F(=d)*], where n is odd.

FEU0 = FCI )1+ (—d) e wheredn is cven.

Now, we wantto express fixed point and its preimage of f2" inthe box if n is

odd or n is even. First, n is odd, solve the fixed point for the following equation:

FE M) E (<) ma + FCN(0),

where fl(sztt)(:r) means, the equation of f2" s left part in/the box. Thus z* =

(™)
% is the fixed point.of it. Moreover, solve thesolution x* ; of equation:

(=)= ut fD(0) = 2%,

log(d+1)

then a* | = (ff;):,,fojl [17(7161)% —1]. Thus, if n > % then f2""(0) >

x* . That is, fzn+1 protrudes through the top of the box. Second, for n is even.

Continuing the calculation process is like above described. Therefore, y* =

) , 2m S A S N

o the fixed point of % in the box and y*, = ™ [17(751)% 1].
oo Log(d(d+1) N N

Hence, if n > % then f +1)(O) < y*;. That is, f? ™ protrudes

through the bottom of the box. Furthermore, we want to find the exactly ng
log(d(d+1)
YT )

such that f@°7(0) > 2%, or fET(0) < y*,. Define y = X Tl )

Tog(2
loq(log(d+1)) °s(2)
and v = — log’("é’)‘i Thus, for d > 1, we have y,z > 0 and 0 < y — x =



log (155t +1)

Tog(2) < 1. There are three possibilities for choosing ny which is related

to y and x.

1. ng — 1 <z < y < ng, then choose x such that f(2n0+1)(0) > x|, where

ng is odd.

2. ng —1 <z <y < ng, then choose y such that f(Q”DH)(O) < y*,, where

ng is even.

3. x <ng—1<y < ng, then choose x such that f(QHOH)(O) > ¥, where

ng is odd.

Hence, f is finitely renormalizable when the depletion: coefficient d is greater

than 1. O

Theorem 3.20hyoy(f) is no-less than ﬁ% when the depletion coefficient d is

greater than 1.

ono+1ltn *

Proof. We want to demonstrate that f has 2" ' peaks'on [x

, x4
for ng in theorems.1. Define f2n0+1 = h and the proof is by mathematical
induction on n.-The result is immediate if n = 1. Suppose that the result is
true for n = k. That is, h* has 2¥=1 peaks. Considern/=k + 1, we denote
respectively that x1, .., 2x_1.is the x-coordinate of the k — 1 peaks, and z;,,
zi, are the height of the/lowest of.the peaks with h(z;,) = h(z;,) = «*, for
1 =1,...,k—1. Moreover, we know that there are two points denoted y;,, v, of
each peak with y;, < y;, and h(y;,) = h(y:,) = %4, for i = 1,...,k — 1. Besides,
h* is continuous and monotone on each interval [z;,, 2;,], for i = 1,....k — 1.
Thus, we can find two points xi_ll € (z,, =;) and x;l € (x;, #,) such that
h(w;l) = h(x;l) = x;, for ¢ = 1,...,k — 1. Furthermore, we also can find
yful,y;; € (2, ;) such that h(y;ul) = h(y;ml) = y;, and y;ll,y;; € (Yiys Ziy)
such that h(y;ll) = h(y;gl) = y,,, for i = 1,...,k — 1. Therefore, it becomes two
peaks of h**1 on [z;,, z;,] by Intermediate Value Theorem, for i = 1,....,k — 1.

Hence, there are 2x 2¥~! peaks for function h**! on [z*, 2* ;] and so h™ has 21

peaks. On the other hand, because we get "oty = p(hm =2x 2"l =2n
ks. On the other hand, b orT



htop(f2n°+l|[m*7 z+,]) = In2 by theorem2.3. Then, htop(f2n0+l) is no less than
In2 on the compact set [1 — d,1]. Finally, the result shows that hop(f) is no

less than 51221 by theorem?2.2. O

2n0+1

Theorem 3.3. The generalized resource budget model is chaotic in the sense
of Devaney on a closed invariant set in [1 —d, 1] when the depletion coefficient

d is greater than 1.

Proof. We have hyp,(f) > 0 for d > 1 according to the theorem3.2. Therefore,
f is chaotic in the sense of Devaney on a closed invariant set in [1 — d, 1] by
theorem2.1. Hence, the result:shows that theomap f can possess Devaney’s

chaos when the depletion coefficient d is greater.than 1. O

4 Finite period doubling route to chaes

Usually the term "route to chaos” refers to formation of chaotic attractors.
In this section, we consider route from a parameter having no chaos to one with
chaotic sets, where the sets.are not necessarily attractors. To be more precise, we
require only one aspect of chaos: we say that asmap-has a chaosat a particular
w if there exist infinitely many periodic orbits; otherwise, it is said that the
map has no chaos athe particular p. For example either one of the following
conditions is sufficient for'a continuousmap to have chaos. (i) The positivity of
the topological entropy (see e.g. [52]) . (ii) The existence of a horseshoe [53] .
(iii) The existence of a nondegenerate homoclinic orbit [54] . (iv) The existence
of a periodic point with its period being not the power of two. (v) The map
is finitely renormalizable [52]. The concepts of a horseshoe and being finitely
renormalizable are to be used through out this section. The definition of the
latter, which is more complicated, is to be given at the appropriate place. If
I C R is a closed interval, f : I — R continuous, and a < ¢ < b € I, then we
say that [a.b] is a horseshoe for f if [a,b] C f([a,c]) N f([e,b]). The presence

of a horseshoe clearly produces a full two-shift as a factor of the restriction of

10



f to an invariant set. Consequently, f has periodic points of all period and its
topological entropy is no less than In 2.

For smooth dynamical systems that depend on a parameter, one of the basic
route to chaos is the period-doubling cascade. For instance, it is well-known that
for the quadratic family f,,(z) = pa(1l—x), the route to chaos is through period-
doubling. A geometric and intuitive answer to the process can be provided as
follows.

For 0 < u < 3, f, has a globally attracting fixed point. Before f, can pos-
sibly have infinitely many periodic points with distinct periods, it must have
periodic points with all periods of the form 27 according to Sarkovskii’s Theorem
(see e.g., (54)). Thatileads to the consideration of the graph of f2 which re-
sembles the graph'of the original quadraticmap (for a different p-value). Using
graphical analysis of f,,, we may-also sketch the graphs of f 3 for various u-values.
These are depicted in Fig l.~Note that in'Fig l<¢, we say that [p, 0,p.0] is a
horseshoe for f2. Inside the box, f; has one fixed point p), o at an endpoint of
the interval [P, o, P,0] and a unique €ritical point with this interval. Note that,
as long as f, (pja) < 0 (résp.s > 0), there exists a ”partner”/p, g-for p, o in the
sense that f,(Pu0) = pu,0 and-Ppuo < Pu.o (x€SPe, Do > Puio)o As p increases,
we first expect a new fixed point p,, 1 in [P0, pu,0] for fﬁ (i.e., a period 2 point
for f,,) to be born. Eventually, this.”fixed point” will itself period-double, just

as py,0 did for f,, producing a period 4 point. Continuing the procedure, we

8

,.» etc., resemble the origi-

may find a small box in which the graphs of f;f,
nal quadratic function. Such ideas can be made precise, by using the so called
renormalization techniques. Thus we are led to expect that f, undergoes a
series of period-doublings as p increases. On the other hand, if one views this
process algebraically, then at the bifurcation value p; = 3 for the family f,,
the fixed point changes from attracting for 1 < p < p; to repelling for g > py.
For p slightly larger than py, the 2-period orbit is born and is attracting. As p

moves past o, where the period four orbit is created and is attracting. Again,

the original 2-periodic orbit changes from attracting to repelling. Such period

11



four orbit becomes repelling for p > pus and a new attracting period eight orbit
is born. This process repeats itself; at g > pf, the period 2" orbit is added.

This orbit is attracting for p, < g < pin4+1 and becomes repelling for p > 1.

(a) (b) (c)
1 1 1
*
08 08 AR
los / {os /
\ s /
lo4 ) 104 ¥
102 s 0.2 NS
s s
1 Du/ ‘1 Dn/ n om—
Pap P Puo Puo P Pro

Figure 1: The graphs of fﬁ (x) for p = 2.5, p= 3.4 and j1= 3.8, respectively.

Now, combining the geometric and algebraic view together, we have that
for p, < p & fnt1, the corresponding box containing the graph of fﬁn, ie.,
the graph of f2" ‘on [pn—1;Pumet] if n is even or on [Py 1sPp.n-1] if n is
odd, is similar to that of in Fig1-(b). Here p,,, is the 2" periodic point of f.
However, for the same range of pu, the associated box containing the graph of
fﬁnﬂ is similar to that of in'Fig 1-(a). As a result,theparameters in this range
yield no new fixed point, and hence; no-chaos: It should be mentioned that for
1 < i < fint2, the graph of fﬁnH in the corresponding box is similar to
that of in Fig 1-(b). Such sequence {u,} produces a universal constant as the
rate of convergence. For po, := nh_)n;o Hn, fu. is called infinitely renormalizable.

Geometrically speaking, this means that for any n, the graph of fﬁm on the

corresponding box has the following two properties:
(i) there exists a fixed point in (Pup—1,Pun—1) O (Pun—1,Pun—1) for fﬁ:o,
(i) the "hump” will not extend out the box.

Pictorially, this means that for any n € N, the graph of f2" in the corresponding

box resembles that in Fig 1-(b). For p > oo, there exists an n such that fﬁn

12



has a horseshoe. That is to say, the hump of fﬁn protrudes through the bottom
or the top of the box, or equivalently f is said to be finitely renormalizable.
Pictorially, the graph of fin in the corresponding box looks like that of in Fig

1-(c). This completes the process of the period-doubling route to chaos.

4.1 Numerical Simulations

We now turn our attention to a piecewise smooth map. Let’s begin with the

consideration of the tent map

Az,

S
IN
IN

(SIS

T () S *

IN
—

)\(1—3}), %Sx

For A < 1, 0 is the globally-attracting fixed point. For A= 1,the points in the
set [0, %} are the attracting-fixed-points. For A >1,"one considers the graph of
T?(x) in the box.
If the renormalization operator (see'e.g4 (54)) R on [px,pa] is introduced,
then
A2z,

)‘2(1 - .Z'),

=)
IA
8
IA
[

(RT)(x) =

[
IA
8
IN
—_

Specifically, RT) := Ly o T{ oL, ! (z) is topological conjugate to Ty on [y, ]

through an affine map Ly(z) = ﬁxipx (z'= py). Note that RT) resembles the

graph of the original tent map with a different A-value. In fact, A2 is in place
of A. Since A > 1, if the process is to repeat, the "hump” of T/\QH will eventually
protrude through the bottom or the top of the box at finite time. In other
words, for A > 1, there exists an n € N such that Tf" possesses a horseshoe or
T is finitely renormalizable. Thus, the route to chaos for the tent map through

finite period-doubling, or the zero period-doubling to be exact.
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These two examples motivate us to consider the following nonsmooth map

gu(@) = z =: fi(z) (1)
px(l —x) .

vl
o
IN
&
A

N[—=

[SIE
IN
8
IN
—

The map is the hybrid of the tent map, which is nonconcave, and the quadratic
map, which is concave on (%, 1). it is expected that a finite period-doubling
cascade is to occur. To see this, we compute the bifurcation diagram for the

family g,,, see Fig 2.

(a) 29<p<333 b)327 <p<33

09 08¢

08 (Fl==——— e . Wi ]
07 07t

(———

06 ne}

05 P —— {1
04 : : : A :

29 3 i 32 & SRS 32825 NP 3295 33
mn r

Figure 2: The bifurcation diagram for g,: the horizontal direction is the param-
eter 1 between 2.9 and 3.3; the vertical direction is the space variable between

0 and 1.

Indeed, our numerical calculation demonstrates that as one increases p from
one the following scenarios occurs: for 1 < p < pug = 3, g has a stable fixed point.
For py < p < po =~ 3.2361, a stable period two orbit is born while the fixed point
becomes unstable. While the process repeats itself until 4 = pg ~ 3.28876826 in
which case the 2° period point becomes neutral stable and the period-doubling
process abruptly stops. That is, as long as u > ug, the corresponding map is
finitely renormalizable and the map gff has a horseshoe. To further verify this
numerically, we consider gzs (x) on [Py.a,pual], where pus =~ 3.288757 < pu < pi6.

Note that for this range of u, p, 5 is a stable period 25 point and no period
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26 point exists, see Fig 3. For p = 3.28876826, we have that the graph of
925 extends out of the box, see Fig 4. Such finite period-doubling route is

summarized in the Table 1.

0.5005

0.5004

T

0.5003 +

0.5002

0.5001

0.5

0.500006

1

0.4599% s
[0.499209 05 0.50000145

Figure 4: The solid line is a part of the graph of gis for p = 3.28876826 near

the critical point %, and the dotted lines are a portion of the box [P, 4,pp.4] X

[P s Pp,al-
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l<p<m
stable fixed point

(11 = 3)

p1 < p < po
(1o =~ 3.2361)

stable period 2! point

p2 < p < 3
(13 ~ 3.2768)

stable period 22 point

M3 < pb < g
(114 ~ 3.28873)

stable period 23 point

Hg < p < ps5
(15 ~ 31288757)

stable period 2% point

s < < pig
(g =~ 3.28876826)

stable period 2% point

haotic attract
= W > e chaotic attractor

Table 1: Bifurcation values for g,. As u > i, the bifurcation abruptly ends

and a chaotic attractor occurs.

In fact, we also expect that if fi(z); given in 4.1 equation(1), is replaced by

another convex function.on [0, %], then the resulting map called h, has a finite
period doubling cascade to.torchaos. Intuitively; one sees that the box for hi
also is smaller than that of gi, and that their humps have the same height, see
Fig 5. Thus, if g, has a finite period-doubling cascade to chaos, then so should

have h,,. To see this numerically, let hi(z) = (1 — 2)2? + z. Define

B hi(z), 0<z
hu(z) = (2)
pr(l—z), 1<z<l1

IN
IA

N

IA
—

The bifurcation diagram for h,, summarized in Table 2, indeed shows the finite
period-doubling cascade. It is not surprising to see that as the parameter u

varies, h, generates the chaotic attractor quicker than that of g,.
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06} 7|,

o4b £

fa < p < pis

stable period 24 point
(115 ~ 3.263316)

fs < p < g
(116 ~ 3.26331703824)

stable period 2° point

> g chaotic attractor

Table 2: Bifurcation values for h,. At 1 > ug, the bifurcation comes a sudden

end and a chaotic attractor appears.

Even though the examples provided here whose nonsmooth points are all at
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turning points, such restrictions are not necessary. For instance, if the convex
piece of g, in equation(l) is defined on 0 < x < a while the concave piece is
defined on @ < x < 1, where p, 0 > a > P, 0, then the resulting g, also has a

finite period-doubling route to chaos.

4.2 Applications

How general is the above route to chaos? To address this question, we now

give three more numerical examples.

(i) Coupling forest trees with limited pollen availability [1-2]. The
dynamics on its synchronous manifold is described by fos : [-1 +d,1] —

[—1+ d, 1] of the form

~ /- +1=: fi(x), ifx <0, 3)
—dzPtl +1=: fr44(x) ifz>0.

Here d > 0 is'a depletion coefficient and § > 0 is the coupling strength. Since
fo,a,8(x) is concave down for & > 0, it behaves like a quadratic map. Like
9u(x), fa,3(x) consists of two part, one part, which is concave, has a tendency
of producing period-doubling cascade to chaos while another part, which is non-
concave, produces only simple dynamies: It is expected that fy g(z) should have
a finite period-doubling cascade to chaos. This is supported by our numerical
computation, see Table 3. In Table 3, 3 is fixed to be 1, we let d increase
from dy ~ 0.75 to d7 ~ 1.1628237. The corresponding map undertakes a finite
period-doubling. As d moves past d7, a chaotic attractor occurs. We remark
that such finite period-doubling route to chaos holds true for any arbitrary fixed

8> 0.
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0<d<dy
stable fixed point

(do ~ 0.75)

do < d < dy
stable period 2! point

(dy ~ 1.1310)

di < d<dy
stable period 22 point

(ds ~ 1.1620)

do < d < ds
stable period 23 point

d3 <d<dy . .
stable period 24 point

(dy =~ 1.162823313)

dy < d'< ds
stable period:2% point

(ds ='1.162823323)

ds < d<ds
stable period 2% point

(dg ~ 1.1628233264)

de < d < dy . .
stable period 27 point

(dv ~ 1.1628237)

d > dy chaotic attractor

Table 3: Bifurcation values for f; 1. At d > dr, the bifurcation comes a sudden

end and a chaotic attractor appears.

(ii) An impact oscillator. In [27], a method for deriving the global form of
the stroboscopic map for the impact oscillator which considers the linear dynam-
ics on either side of the grazing bifurcation was presented. The corresponding

regularized discontinuous map has the following form [27]:

filz), ifz<0,
F@A, Az, p,6) = fo(z), f0<ax<e, (4)

fa(x), ifz>e

Here fi(x) = Mix +p, fo(2) = =/ 22 + (Ao + D)z + pand f3(z) = Aoz +p— 1.
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The graphs of f, f2 and f* for Ay = 0.7, Ay = —0.9, ¢ = 1 and p = 1.2 are

shown in Fig 6.

15 T T T
p—r
1] —=:F e
—f
------- : diagonal
ok = I.-:' _
/
T i
-k .
-2 prt i
.2 1
Figure 6: The graph —0.9, p = 1.2 and
e=1.

One part o 0.7 which is
nonconvex a s. Th t of the graph,
particularly i i 5 e root map,
which is conve sition. Such
map has a stable ecreases, say, to
w = 0.795, the stable ever, a chaotic set,

. o :
ot —
- 1.1 —F
i 102
05 e 103
A i X T
- —.p
3 05 0 05 i 04 03 02 01 0

Figure 7: The graphs of (a) f, f2 and (b) f%, & for Ay = 0.7, Ay = —0.9,
p=20.795 and ¢ = 1.
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Note that in Fig 7(b), f® extends out of the box. Therefore, an invariant
cantor set whose dynamics is conjugate to the shift map of two symbols is
generated. In real applications, we are more interested in finding an attractor.
As p keeps decreasing, the stable period two and the chaotic set of measure
zero remain coexisted until u reaches around 0.772891. By then, the period two
orbit becomes unstable and f* extends out of the box By and still stays in the

box Bj, see Fig 8.

—_
i
05F | . ¢ r
of |~ .
nsk -
1. Box B,
Vi [T Box B,
-1

05

Figure 8: The graphs of f, f2 and f* for A\; = 0.7, Ay = —0.9, u = 0.772 and
e=1.

Consequently, ‘a_chaotic attractor is born. This completes a finite period

doubling route to chaos; which is.summarized-in Table 4.

0.80523 < < 1.2 stable period 2
0.772891 < p < 0.805232 | stable period 2 + chaotic set
0.7 < p < 0.772891 chaotic attractor

Table 4: Bifurcation values for the piecewise linear map f( -;0.7,—0.9, u,1).

For smaller €, the corresponding f also exhibits a similar route to chaos.
The numerical computation of f(x;0.7,—0.9, u, A) as u varies from 0.2 to 0.155

is summarized in Table 5.
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o < pu < 0.2 . 3 .
stable period 4 point + chaotic set

(1o ~ 0.1613646)

p1 < p < po
(11 ~ 0.1580433)

stable period 8 point + chaotic set

0.155 < pp < g chaotic attractor

Table 5: Bifurcation values for f( -;0.7,—0.9,4,0.07). As p decreases from 0.2

to 0.155, the bifurcation comes a sudden end and a chaotic attractors appears.

(iii) Friction oscillator and'DC-DC/ buck converter (see [44]) Even
simpler than square-root. maps are those that.are .completely linear in each of
two halves of their demain. Maps of this form can be used to explain the
dynamics observed in the frietion oscillator and DC-DC converter case studies
(see e.g., [44])."Those maps,-without loss of generality, can be written in the

form

fo) = file) =ax +p  if z <0 5)
fz(w) = pPx+p, ifzx>0.

The most interesting dynamics occurs for.«v > 0.and § </0. Indeed, we let
uw=1, =04 andlet S wvary from —6 to —6.4. The system undergoes the finite
period-doubling. SeeTable 6 and Fig 9.

(a) p=-6.1 (b) =625 (c) p=-6.4

<= = : disgonal

—

0.4 0.2 0

Figure 9: The graph of f% for 3 = —6.1, 8 = —6.25 and 3 = —6.4, respectively.
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Fig 9(a) is the box where f6|[_0_570] with 8 = —6.1 stays. Stable period three
point of f is situated at the lower left corner. As 3 decreases to —6.25, a portion
of the graph of f¢ is coincide with the diagonal. Consequently, a stable period
6 is born. When ( decreases past —6.25, the slope of both pieces of segments
of f% inside the box have absolute values greater than 1. Hence, like tent map,
the chaotic dynamic instantly begins. If one further decreases the value of 3,

then the period-adding bifurcations also occur.

—6.25 < B < —6 | stable period 3 + chaotic set
6 =—-6.25 | stable period 6 + chaotic set
—6.4 < 3 <—6.25 chaotic attractor

Table 6: Bifurcation values for the piecewise linear map f.

5 Coneclusion

Satake and-Iwasa proved that the generalized budget resource model is
chaotic when d > 1 by computing the Lyapunov exponent. In [3], the model was
shown to have Devaney’s chaos on an invariant set by proving its topological
entropy is positive for d»>:1.00026. In this thesis; we clearly point out that
the generalized resource budget model is chaoetic in the sense of Devaney as the
depletion coefficient d > 1 on an invariant set.

The second part of thesis, we present a finite period-doubling route to chaos
for a class of nonsmooth maps. Those maps are piecewise smooth functions,
which consists of nonconvex and nonconcave parts. Each part may generate a
certain type of dynamics as a parameter of the system changes so that when
combined together a finite period doubling route to chaos is created. For in-
stance, it could have that one piece of the function, as the system parameter
varies, tends to chaos through period-doubling cascades while the other piece
produces chaos without transition. The maps defined in (1) and (2) fit into

the combination described above. Both maps (4) and (5) has a nonconcave
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piece, which is capable of generating chaos without transition, and a noncon-
vex part yielding only simple dynamics. The third possibility comes from map
(3), for which its nonconvex part’s route to chaos is through period-doubling.
Note that its nonconcave piece produces a simple dynamics. The competition
between these two pieces seems to be the mechanism for producing a finite
period-doubling route to chaos. No one seems to win out. The numerical com-
putation seems also suggest that the finite period doubling route to chaos for

nonsmooth maps is generic.
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