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出現在生物學中分段光滑映射之混沌與分裂 

研究生：鄧仁益     指導教授：莊重 教授 

國立交通大學 

應用數學系 

摘要 

本論文包含兩個部分。在第一部分中，我們考慮一個廣義生

態資源預算模型，有一個參數 d，是由一匝 [1]、沙他和岩

佐 [2]的資源模型預算來的。這裡的 d是耗盡係數。張書銘 

[3]藉由拓撲商是正的當ｄ>1.00026 來證明該模型有德瓦尼

的混亂在不變的集合上。我們改進了他們的結果藉由此模型

有正的拓撲商當ｄ>1。在第二部分，我們研究了路徑到混亂

的另一個分段光滑映射，此映射是由一匝、沙他和岩佐[1-2]

同步的森林模型來的。這樣的映射包含兩個參數 d和𝛽。這

裡的𝛽是指樹跟樹之間的交配花粉可用性的耦合強度。這是

透過數值展現，這種分段光滑映射路徑到混亂是通過有限的

兩倍週期分岔。我們藉由提供了幾個應用上的例子去進一步

說明這種路徑到混亂是通用的對於分段光滑映射。 

中華民國   一 O二  年  五  月 
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Abstract 

This thesis contains two parts. In the first part, we consider 

a generalized resource budget model of ecology with a parameter 

d, which was modified from Isagi [1] resource budget model by 

Staka and Iwasa [2]. Here d is the depletion coefficient. 

Shu-Ming Chang [3] thoutht that the model was shown that the 

model has Devaney 's chaos on an invariant set by proving its 

topological entropy is positive for d > 1.00026. We improve 

their result by proving that the map had positive topological 

entropy for d > 1. In this second part, we study the route to 

chaos for another piecewise smooth map, which governs the 

synchronized dynamics of the forest model of Isagi-Staka-Iwasa 

[1-2]. Such map contains two parameters d and 𝛽. Here 𝛽 

denotes the coupling strength among the trees in their outcross 

pollen availability. It is numerically demonstrate that the 

route to chaos of such piecewise smooth map is through finite 

period doubling bifurcation. We further illustrate such route 

to chaos is generic for piecewise smooth maps by providing 

several examples arising in application. 
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1 Introduction

In this thesis, we shell investigate chaos and bifurcation of a certain piece-

wise smooth maps arising in ecology. Several explanations of the masting phe-

nomenon in a mature forest have been proposed [4-25]. They involve envi-

ronmental fluctuations, weather conditions, swamping predators, the weight of

young deer, bird populations, the reproductive success of bears, increased effi-

ciency of wind pollination, attraction to seed distributions, cue masting, and the

dispersing of animals. However, most of these hypotheses explain neither the

mechanism of masting nor the mechanism by which the timing of reproduction
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varies among individuals [2]. In [1], Isagi considered the energy budget of an

individual tree describing how its energy is accumulated and used. It was later

generalized by Stake and Iwasa [2]. Such map is a nonsmooth map contain-

ing a parameter d. Such parameter d denotes the degree of energy depletion

of a tree after its reproductive year. In [3], the model was shown to have De-

vaney’s chaos on an invariant set by proving its topological entropy is positive

for d > 1.00026. We improve their result by proving that the map had positive

topological entropy for d > 1.

In [2], a couple map lattices was proposed to explain how a mature forest

mast and synchronize by considering outcross pollen availability among trees.

Various synchronized reproductions such an annual reproduction, periodic and

chaotic reproductions were observed. To understand such synchronized phe-

nomenon, we are led to study another nonsmooth map that governs the dy-

namics on the synchronized manifold of the map lattices. Such map contains

two parameters d and β. Here β denotes the coupling strength among the

trees in their outcross pollen availability. It is numerically demonstrate that the

route to chaos of such piecewise smooth map is through finite period doubling

bifurcation.

Nature is full of piecewise smooth nonlinearities. That is, their evolution is

characterized by periods of smooth notion interrupted by instantaneous cross-

ings of boundaries separating regions of phase space where different smooth

models apply. Such problems arise naturally from many kinds of engineering

systems. Examples include the stick-slip oscillations of a violin string or grating

brakes [26], the cam-follower system and the impact oscillator in mechanical ap-

plications [27], many problems in electronics [28] and neuron-firing models [29].

Much attention have been drawn to the study of their surprisingly rich (chaotic)

dynamics. Less mentioned is their routes to chaos, which are well studied for

smooth systems. In this paper we identify a route to chaos, which is termed

the finite period-doubling. The mechanism for the occurrence of such routes is

also discussed. Several examples arising in the real applications are provided
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for illustration.

Transition to chaos, i.e., how a system becomes chaotic as a parameter of

the system changes, has been a fundamental and central problem [30] in the

study of nonlinear dynamical systems. In particular, the transition route to

chaos in smooth dynamical systems have been well understood. This transition

often occurs via the following four known routes: (i) the period-doubling cascade

route [31] , (ii) the intermittency transition route [32] , (iii) the crisis route [33] ,

and (iv) the route to chaos in quasi-periodically driven systems [34-35]. On the

other hand, the case that how a nonsmooth dynamical system gives rise to chaos

remains a less-studied area. By nonsmoothness, we allow a map to be continuous

but not differentiable at some finite points. Such systems occur naturally in the

description of physical nonsmooth processes such as impact, switching, sliding

and other discrete state transitions. Literature [36-42] that draws attention to

piecewise-smooth systems have been focus on their qualitative and quantitative

theory. The purpose of this paper is to investigate their route to chaos. We

report that a finite period-doubling route to chaos for a class of nonsmooth

dynamical systems. Among several examples presented for illustration arise

three models in real applications: a map model in ecology system [1-2] and two

nonsmooth continuous-time flows: the impact oscillator (see e.g., [27,43]) and

the work cited therein) and the friction oscillator and DC-DC converter (see

e.g., [44]) .

1.1 Isagi’s energy budget

Isagi [1] considered the energy budget of an individual tree. From photo-

synthesis, mature tree gains net production Ps per year, which is accumulated

in the trunk or branches. When the energy reserve exceeds a critical level for

reproduction, the tree sets flowers and produces seeds and fruits. Let S(t) be

the amount of energy reserve at the beginning of year t. If the sum S(t) + Ps

is the below a critical level LT , the tree does not reproduce and saves all the

energy reserve for the following year. However, if the sum exceeds LT , the tree
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uses energy for flowering. Isagi et al [1]. assumed that the energy expenditure

for flowering is exactly the same as the excess, S(t) + Ps − LT .

1.2 Satake and Iwasa’s generalized energy budget

Satake and Iwasa’s [2] generalize Isagi energy budget−the amount of energy

expenditure for flowering is proportional to the excess, a(S(t) + Ps − LT ), in

which a is a positive constant. Flowering plants may be pollinated and set seeds

and fruits. It is assumed that the cost for fruits is proportional to the cost of

flowers, and is expressed as Rca(S(t) + Ps − LT ), in which Rc is the ratio of

fruiting cost to flowering cost. After the reproductive stage, the energy reserves

of the tree falls to S(t) + Ps − a(Rc + 1)(S(t) + Ps − LT ). Hence, we have

S(t + 1) =


S(t) + Ps, S(t) + Ps ≤ LT ,

S(t) + Ps − a(Rc + 1)(S(t) + Ps − LT ), S(t) + Ps > LT .

(1)

We introduce a non-dimensionalized variable Y (t) = (S(t)+Ps−LT )
Ps

. Then equa-

tion(1) is written as

Y (t + 1) =


Y (t) + 1, Y (t) ≤ 0,

−dY (t) + 1, Y (t) > 0,

(2)

in which d = a(Rc + 1) − 1. The parameter d indicates the degree of resource

depletion after a reproductive year divided by the excess amount of energy

reserve before the year. We call d the depletion coefficient, and assume d > 0.

From equation (2) , Y (t) ≤ 0 holds. We also note that the quantity Y (t) is

positive if and only if the tree invests some reproductive activity in year t.

After this rescaling, the dynamics of equation (2) include only a single pa-

rameter d. It is clear that Y(t+1) goes to infinity eventually at d < 0. On the

hand, Y(t+1) belongs in [−d + 1, 1] as t large enough at d ≥ 0. Satake and

Iwasa (2) illustrated trajectories for the three different of d. When d ∈ [0, 1),
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Y(t+1) quickly converges to the stable equilibrium 1
d+1 . There are a number of

two-point cycles corresponding to the different initial conditions when d exactly

d is equal to 1. When d > 1, Y(t+1) keeps fluctuating with a chaotic time

series.

Through this thesis, the n-fold composition of f with itself recurs repeatedly

in the sequel, fn, and it is defined as fn = f ◦ · · · ◦ f(x), where n is the number

of iterations. The generalized resource budget model (2) can be represented as

a map f ,

f(x) =


x + 1, x ≤ 0,

−dx + 1, x > 0.

(3)

2 Preliminaries

2.1 Devaney’s chaos

The chaos of map has been defined in several ways. Although the com-

ment ”so many authors, so many definitions,” is true, a basic component of

all definitions is the unpredictability of the behavior of the trajectory which is

determined with some certain error. (The associated phenomenon is usually

described in terms of sensitive dependence on initial conditions). The definition

of the chaos of Devaney [45] is considered herein because it is fundamental and

widely accepted.

Definition 2.1. Let X be a metric space. A continuous map f : X → X is said

to be chaotic on X if

(Sensitive): f has sensitive dependence on initial condition, meaning that there

δ > 0 such that, for any x ∈ X and any neighborhood Nx of x, there exists

y ∈ Nx and n ∈ N such that |fn(x)− fn(y)| > δ.

(Density): periodic points are dense in X;

(Transitivity): f is topologically transitive. That is, for any pair of nonempty

open sets U, V ⊂ X, there exists k > 0 such that fk(U) ∩ V 6= ∅.
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2.2 Topological entropy

Definition 2.2. Let f : X → X be a continuous map on the space X which

is compact with metric d. A set S ⊂ X is called (n,ε)-separated for f for n

positive integer and ε > 0 provided that for every pair x,y ∈ S, x 6= y, there

is at least one k with 0 ≤ k < n such that d(fk(x), fk(y)) > ε. The number of

different orbits of length n(as measured by ε) is defined by

r(n, ε, f) = max{(S) : S ⊂ X is (n, ε)− separated set for f},

where#(S) is the cardinality of elements in S. Let

htop(ε, f) = lim sup
n→∞

log(r(n, ε, f))
n

and define the topological entropy (46) of f as

htop(f) = lim
ε→0,ε>0

htop(ε, f).

Consider the continuous map on the compact interval, the relationship be-

tween positive topological entropy (htop(f) > 0) and Devaney’s chaos is equiv-

alent.

Theorem 2.1. Let f be a continuous map of a compact interval I to itself, f

has positive topological if and only if f is chaotic in the sense of Devaney on a

closed invariant set in I [47-50].

The basic result following that is used to help calculate the entropy, and

relates the entropy of a map f to a n-fold composition of f , fn.

Theorem 2.2. Assume f : X → X is uniformly continuous or X is compact,

and n is an integer with n ≥ 1. Then htop(fn) = n · htop(f) [46].

There is an another way to calculate topological entropy was defined by

Welington and Sebastian [51].
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Definition 2.3. Let f : I → I be a continuous piecewise monotone map. The

lap number of f , which we defined `(f) is the number of, maximal intervals on

which f is monotone. In other words, `(f)− 1 is the number of turning points

of f [51].

Theorem 2.3. (Misiurewicz and Szlenk). Let f : I → I be a continuous,

piecewise monotone map. Then the topological entropy of f is equal to the

logarithm of the number s(f)=limn→∞(`(fn))
1
n [51].

3 Mathematical analysis

In this section, we will prove that the generalized resource budget model

is chaotic in the sense of Devaney on a closed invariant set in [1 − d, 1] when

the depletion coefficient d is greater than 1 by using the preliminaries, the

topological entropy theory.

Theorem 3.1. f is finitely renormalizable when the depletion coefficient d is

greater than 1.

Proof. We have the recursion of slope of equation f algebraically.

xn+1 =


xnxn , n is odd,

xnyn , n is even,

yn+1 =


xnyn , n is odd,

ynyn , n is even,

where x1 = −d, y1 = (−d)2, xn and yn represent the slopes of left part and

right part of function f2n

in the box, respectively. Hence, by the recursion, we
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can conclude that

an =

n−1
2∑

k=0

22k, bn = an + 1, where n is odd.

a′n =

n
2−1∑
k=0

22k+1, b′n = a′n + 1, where n is even,

where an, bn are the power of slopes of left part and right part of f2n

in the

box if n is odd, respectively. It’s the same meaning to a′n, b′n when n is even.

Assume the hump of f2n

stay in the box then we have

f (2n+1)(0) = f (2n)(0)[1 + (−d)an ], where n is odd.

f (2n+1)(0) = f (2n)(0)[1 + (−d)b′n ], where n is even.

Now, we want to express fixed point and its preimage of f2n

in the box if n is

odd or n is even. First, n is odd, solve the fixed point for the following equation:

f
(2n)
left (x) = (−d)anx + f (2n)(0),

where f
(2n)
left (x) means the equation of f2n

’s left part in the box. Thus x∗ =
f(2n)(0)

1−(−d)an is the fixed point of it. Moreover, solve the solution x∗−1 of equation:

(−d)an+1x + f (2n)(0) = x∗,

then x∗−1 = f(2n)(0)
(−d)an+1 [ 1

1−(−d)an − 1]. Thus, if n >
log(

log(d+1)
logd )

log(2) then f (2n+1)(0) >

x∗−1. That is, f2n+1
protrudes through the top of the box. Second, for n is even.

Continuing the calculation process is like above described. Therefore, y∗ =
f(2n)(0)

1−(−d)b′n
is the fixed point of f2n

in the box and y∗−1 = f(2n)(0)

(−d)a′n
[ 1

1−(−d)b′n
− 1].

Hence, if n >
log(

log(d(d+1))
logd )

log(2) then f (2n+1)(0) < y∗−1. That is, f2n+1
protrudes

through the bottom of the box. Furthermore, we want to find the exactly n0

such that f (2n0+1)(0) > x∗−1 or f (2n0+1)(0) < y∗−1. Define y =
log(

log(d(d+1))
logd )

log(2)

and x =
log(

log(d+1)
logd )

log(2) . Thus, for d > 1, we have y , x > 0 and 0 < y − x =

8



log(
log(d)

log(d+1)+1)

log(2) < 1 . There are three possibilities for choosing n0 which is related

to y and x.

1. n0 − 1 < x < y < n0, then choose x such that f (2n0+1)(0) > x∗−1, where

n0 is odd.

2. n0 − 1 < x < y < n0, then choose y such that f (2n0+1)(0) < y∗−1, where

n0 is even.

3. x < n0 − 1 < y < n0, then choose x such that f (2n0+1)(0) > x∗−1, where

n0 is odd.

Hence, f is finitely renormalizable when the depletion coefficient d is greater

than 1.

Theorem 3.2. htop(f) is no less than ln 2
2n0+1 when the depletion coefficient d is

greater than 1.

Proof. We want to demonstrate that f2n0+1+n

has 2n−1 peaks on [x∗, x∗−1]

for n0 in theorem3.1. Define f2n0+1
= h and the proof is by mathematical

induction on n. The result is immediate if n = 1. Suppose that the result is

true for n = k. That is, hk has 2k−1 peaks. Consider n = k + 1, we denote

respectively that x1, ..., xk−1 is the x-coordinate of the k − 1 peaks, and zi1 ,

zi2 are the height of the lowest of the peaks with h(zi1) = h(zi2) = x∗, for

i = 1, ..., k− 1. Moreover, we know that there are two points denoted yi1 , yi2 of

each peak with yi1 < yi2 and h(yi1) = h(yi2) = x∗−1, for i = 1, ..., k−1. Besides,

hk is continuous and monotone on each interval [zi1 , zi2 ], for i = 1, ..., k − 1.

Thus, we can find two points x−1
i1

∈ (zi1 , xi) and x−1
i2

∈ (xi, zi2) such that

h(x−1
i1

) = h(x−1
i2

) = xi, for i = 1, ..., k − 1. Furthermore, we also can find

y−1
i11

, y−1
i12

∈ (zi1 , xi) such that h(y−1
i11

) = h(y−1
i12

) = yi1 and y−1
i21

, y−1
i22

∈ (yi1 , zi2)

such that h(y−1
i21

) = h(y−1
i22

) = yi2 , for i = 1, ..., k − 1. Therefore, it becomes two

peaks of hk+1 on [zi1 , zi2 ] by Intermediate Value Theorem, for i = 1, ..., k − 1.

Hence, there are 2×2k−1 peaks for function hk+1 on [x∗, x∗−1] and so hn has 2n−1

peaks. On the other hand, because we get `(f2n0+1
) = `(hn) = 2× 2n−1 = 2n,
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htop(f2n0+1 |[x∗, x∗−1]
) = ln 2 by theorem2.3. Then, htop(f2n0+1

) is no less than

ln 2 on the compact set [1 − d, 1]. Finally, the result shows that htop(f) is no

less than ln 2
2n0+1 by theorem2.2.

Theorem 3.3. The generalized resource budget model is chaotic in the sense

of Devaney on a closed invariant set in [1− d, 1] when the depletion coefficient

d is greater than 1.

Proof. We have htop(f) > 0 for d > 1 according to the theorem3.2. Therefore,

f is chaotic in the sense of Devaney on a closed invariant set in [1 − d, 1] by

theorem2.1. Hence, the result shows that the map f can possess Devaney’s

chaos when the depletion coefficient d is greater than 1.

4 Finite period doubling route to chaos

Usually the term ”route to chaos” refers to formation of chaotic attractors.

In this section, we consider route from a parameter having no chaos to one with

chaotic sets, where the sets are not necessarily attractors. To be more precise, we

require only one aspect of chaos: we say that a map has a chaos at a particular

µ if there exist infinitely many periodic orbits; otherwise, it is said that the

map has no chaos at the particular µ. For example either one of the following

conditions is sufficient for a continuous map to have chaos. (i) The positivity of

the topological entropy (see e.g. [52]) . (ii) The existence of a horseshoe [53] .

(iii) The existence of a nondegenerate homoclinic orbit [54] . (iv) The existence

of a periodic point with its period being not the power of two. (v) The map

is finitely renormalizable [52]. The concepts of a horseshoe and being finitely

renormalizable are to be used through out this section. The definition of the

latter, which is more complicated, is to be given at the appropriate place. If

I ⊂ R is a closed interval, f : I → R continuous, and a < c < b ∈ I, then we

say that [a.b] is a horseshoe for f if [a, b] ⊂ f([a, c]) ∩ f([c, b]). The presence

of a horseshoe clearly produces a full two-shift as a factor of the restriction of
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f to an invariant set. Consequently, f has periodic points of all period and its

topological entropy is no less than ln 2.

For smooth dynamical systems that depend on a parameter, one of the basic

route to chaos is the period-doubling cascade. For instance, it is well-known that

for the quadratic family fµ(x) = µx(1−x), the route to chaos is through period-

doubling. A geometric and intuitive answer to the process can be provided as

follows.

For 0 ≤ µ ≤ 3, fµ has a globally attracting fixed point. Before fµ can pos-

sibly have infinitely many periodic points with distinct periods, it must have

periodic points with all periods of the form 2j according to Sarkovskii’s Theorem

(see e.g., (54)). That leads to the consideration of the graph of f2
µ which re-

sembles the graph of the original quadratic map (for a different µ-value). Using

graphical analysis of fµ, we may also sketch the graphs of f2
µ for various µ-values.

These are depicted in Fig 1. Note that in Fig 1-c, we say that [p̂µ,0, pµ,0] is a

horseshoe for f2. Inside the box, f2
µ has one fixed point pµ,0 at an endpoint of

the interval [p̂µ,0, pµ,0] and a unique critical point with this interval. Note that,

as long as f ′µ(pµ,0) < 0 (resp., > 0), there exists a ”partner” p̂µ,0 for pµ,0 in the

sense that fµ(p̂µ,0) = pµ,0 and p̂µ,0 < pµ,0 (resp., p̂µ,0 > pµ,0). As µ increases,

we first expect a new fixed point pµ,1 in [p̂µ,0, pµ,0] for f2
µ (i.e., a period 2 point

for fµ) to be born. Eventually, this ”fixed point” will itself period-double, just

as pµ,0 did for fµ, producing a period 4 point. Continuing the procedure, we

may find a small box in which the graphs of f4
µ, f8

µ, etc., resemble the origi-

nal quadratic function. Such ideas can be made precise, by using the so called

renormalization techniques. Thus we are led to expect that fµ undergoes a

series of period-doublings as µ increases. On the other hand, if one views this

process algebraically, then at the bifurcation value µ1 = 3 for the family fµ,

the fixed point changes from attracting for 1 < µ < µ1 to repelling for µ > µ1.

For µ slightly larger than µ1, the 2-period orbit is born and is attracting. As µ

moves past µ2, where the period four orbit is created and is attracting. Again,

the original 2-periodic orbit changes from attracting to repelling. Such period

11



four orbit becomes repelling for µ > µ3 and a new attracting period eight orbit

is born. This process repeats itself; at µ > µ+
n , the period 2n orbit is added.

This orbit is attracting for µn < µ < µn+1 and becomes repelling for µ > µn+1.

Figure 1: The graphs of f2
µ(x) for µ = 2.5, µ = 3.4 and µ = 3.8, respectively.

Now, combining the geometric and algebraic view together, we have that

for µn < µ < µn+1, the corresponding box containing the graph of f2n

µ , i.e.,

the graph of f2n

µ on [pµ,n−1, p̂µ,n−1] if n is even or on [p̂µ,n−1, pµ,n−1] if n is

odd, is similar to that of in Fig 1-(b). Here pµ,n is the 2n periodic point of f .

However, for the same range of µ, the associated box containing the graph of

f2n+1

µ is similar to that of in Fig 1-(a). As a result, the parameters in this range

yield no new fixed point, and hence, no chaos. It should be mentioned that for

µn+1 < µ < µn+2, the graph of f2n+1

µ in the corresponding box is similar to

that of in Fig 1-(b). Such sequence {µn} produces a universal constant as the

rate of convergence. For µ∞ := lim
n→∞

µn, fµ∞ is called infinitely renormalizable.

Geometrically speaking, this means that for any n, the graph of f2n

µ∞ on the

corresponding box has the following two properties:

(i) there exists a fixed point in (p̂µ,n−1, pµ,n−1) or (pµ,n−1, p̂µ,n−1) for f2n

µ∞ ;

(ii) the ”hump” will not extend out the box.

Pictorially, this means that for any n ∈ N, the graph of f2n

in the corresponding

box resembles that in Fig 1-(b). For µ > µ∞, there exists an n such that f2n

µ

12



has a horseshoe. That is to say, the hump of f2n

µ protrudes through the bottom

or the top of the box, or equivalently f is said to be finitely renormalizable.

Pictorially, the graph of f2n

µ in the corresponding box looks like that of in Fig

1-(c). This completes the process of the period-doubling route to chaos.

4.1 Numerical Simulations

We now turn our attention to a piecewise smooth map. Let’s begin with the

consideration of the tent map

Tλ(x) =

 λx, 0 ≤ x ≤ 1
2 ,

λ(1− x), 1
2 ≤ x ≤ 1.

For λ < 1, 0 is the globally attracting fixed point. For λ = 1, the points in the

set [0, 1
2 ] are the attracting fixed points. For λ > 1, one considers the graph of

T 2
λ(x) in the box.

If the renormalization operator (see e.g., (54)) R on [p̂λ, pλ] is introduced,

then

(RTλ)(x) =

 λ2x, 0 ≤ x ≤ 1
2 ,

λ2(1− x), 1
2 ≤ x ≤ 1.

Specifically, RTλ := Lλ ◦ T 2
λ ◦ L−1

λ (x) is topological conjugate to Tλ on [p̂λ, pλ]

through an affine map Lλ(x) = 1
p̂λ−pλ

(x − pλ). Note that RTλ resembles the

graph of the original tent map with a different λ-value. In fact, λ2 is in place

of λ. Since λ > 1, if the process is to repeat, the ”hump” of T 2n

λ will eventually

protrude through the bottom or the top of the box at finite time. In other

words, for λ > 1, there exists an n ∈ N such that T 2n

λ possesses a horseshoe or

Tλ is finitely renormalizable. Thus, the route to chaos for the tent map through

finite period-doubling, or the zero period-doubling to be exact.
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These two examples motivate us to consider the following nonsmooth map

gµ(x) =


µ
2 x =: f1(x) 0 ≤ x ≤ 1

2

µx(1− x) 1
2 ≤ x ≤ 1.

(1)

The map is the hybrid of the tent map, which is nonconcave, and the quadratic

map, which is concave on ( 1
2 , 1). it is expected that a finite period-doubling

cascade is to occur. To see this, we compute the bifurcation diagram for the

family gµ, see Fig 2.

Figure 2: The bifurcation diagram for gµ: the horizontal direction is the param-

eter µ between 2.9 and 3.3; the vertical direction is the space variable between

0 and 1.

Indeed, our numerical calculation demonstrates that as one increases µ from

one the following scenarios occurs: for 1 < µ < µ1 ≈ 3, g has a stable fixed point.

For µ1 < µ < µ2 ≈ 3.2361, a stable period two orbit is born while the fixed point

becomes unstable. While the process repeats itself until µ = µ6 ≈ 3.28876826 in

which case the 25 period point becomes neutral stable and the period-doubling

process abruptly stops. That is, as long as µ > µ6, the corresponding map is

finitely renormalizable and the map g26

µ has a horseshoe. To further verify this

numerically, we consider g25

µ (x) on [p̂µ,4, pµ,4], where µ5 ≈ 3.288757 < µ < µ6.

Note that for this range of µ, pµ,5 is a stable period 25 point and no period
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26 point exists, see Fig 3. For µ = 3.28876826, we have that the graph of

g25
extends out of the box, see Fig 4. Such finite period-doubling route is

summarized in the Table 1.

Figure 3: The graphs of g25

µ and g26

µ for µ = 3.28876.

Figure 4: The solid line is a part of the graph of g25

µ for µ = 3.28876826 near

the critical point 1
2 , and the dotted lines are a portion of the box [p̂µ,4, pµ,4] ×

[p̂µ,4, pµ,4].
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1 < µ < µ1

(µ1 ≈ 3)
stable fixed point

µ1 < µ < µ2

(µ2 ≈ 3.2361)
stable period 21 point

µ2 < µ < µ3

(µ3 ≈ 3.2768)
stable period 22 point

µ3 < µ < µ4

(µ4 ≈ 3.28873)
stable period 23 point

µ4 < µ < µ5

(µ5 ≈ 3.288757)
stable period 24 point

µ5 < µ < µ6

(µ6 ≈ 3.28876826)
stable period 25 point

µ > µ6 chaotic attractor

Table 1: Bifurcation values for gµ. As µ ≥ µ6, the bifurcation abruptly ends

and a chaotic attractor occurs.

In fact, we also expect that if f1(x), given in 4.1 equation(1), is replaced by

another convex function on [0, 1
2 ], then the resulting map called hµ has a finite

period doubling cascade to to chaos. Intuitively, one sees that the box for h2
µ

also is smaller than that of g2
µ, and that their humps have the same height, see

Fig 5. Thus, if gµ has a finite period-doubling cascade to chaos, then so should

have hµ. To see this numerically, let h1(x) = (µ− 2)x2 + x. Define

hµ(x) =

 h1(x), 0 ≤ x ≤ 1
2 ,

µx(1− x), 1
2 ≤ x ≤ 1.

(2)

The bifurcation diagram for hµ, summarized in Table 2, indeed shows the finite

period-doubling cascade. It is not surprising to see that as the parameter µ

varies, hµ generates the chaotic attractor quicker than that of gµ.
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Figure 5: The solid line is the graph of gµ with µ = 3. Its corresponding box is
represented by solid lines. The dotted curve is the graph of the convex function
h1(x). Part of its corresponding box is denoted by dotted lines.

1 < µ < µ1

(µ1 ≈ 3)
stable fixed point

µ1 < µ < µ2

(µ2 ≈ 3.2361)
stable period 21 point

µ2 < µ < µ3

(µ3 ≈ 3.2569)
stable period 22 point

µ3 < µ < µ4

(µ4 ≈ 3.26331)
stable period 23 point

µ4 < µ < µ5

(µ5 ≈ 3.263316)
stable period 24 point

µ5 < µ < µ6

(µ6 ≈ 3.26331703824)
stable period 25 point

µ > µ6 chaotic attractor

Table 2: Bifurcation values for hµ. At µ > µ6, the bifurcation comes a sudden

end and a chaotic attractor appears.

Even though the examples provided here whose nonsmooth points are all at
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turning points, such restrictions are not necessary. For instance, if the convex

piece of gµ in equation(1) is defined on 0 ≤ x ≤ a while the concave piece is

defined on a ≤ x ≤ 1, where pµ,0 > a > p̂µ,0, then the resulting gµ also has a

finite period-doubling route to chaos.

4.2 Applications

How general is the above route to chaos? To address this question, we now

give three more numerical examples.

(i) Coupling forest trees with limited pollen availability [1-2]. The

dynamics on its synchronous manifold is described by fd,β : [−1 + d, 1] →

[−1 + d, 1] of the form

fd,β(x) =

 x + 1 =: f1(x), if x ≤ 0,

−dxβ+1 + 1 =: f2,d,β(x) if x > 0.
(3)

Here d > 0 is a depletion coefficient and β ≥ 0 is the coupling strength. Since

f2,d,β(x) is concave down for x > 0, it behaves like a quadratic map. Like

gµ(x), fd,β(x) consists of two part, one part, which is concave, has a tendency

of producing period-doubling cascade to chaos while another part, which is non-

concave, produces only simple dynamics. It is expected that fd,β(x) should have

a finite period-doubling cascade to chaos. This is supported by our numerical

computation, see Table 3. In Table 3, β is fixed to be 1, we let d increase

from d0 ≈ 0.75 to d7 ≈ 1.1628237. The corresponding map undertakes a finite

period-doubling. As d moves past d7, a chaotic attractor occurs. We remark

that such finite period-doubling route to chaos holds true for any arbitrary fixed

β > 0.
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0 < d < d0

(d0 ≈ 0.75)
stable fixed point

d0 < d < d1

(d1 ≈ 1.1310)
stable period 21 point

d1 < d < d2

(d2 ≈ 1.1620)
stable period 22 point

d2 < d < d3

(d3 ≈ 1.1626)
stable period 23 point

d3 < d < d4

(d4 ≈ 1.162823313)
stable period 24 point

d4 < d < d5

(d5 ≈ 1.162823323)
stable period 25 point

d5 < d < d6

(d6 ≈ 1.1628233264)
stable period 26 point

d6 < d < d7

(d7 ≈ 1.1628237)
stable period 27 point

d > d7 chaotic attractor

Table 3: Bifurcation values for fd,1. At d > d7, the bifurcation comes a sudden

end and a chaotic attractor appears.

(ii) An impact oscillator. In [27], a method for deriving the global form of

the stroboscopic map for the impact oscillator which considers the linear dynam-

ics on either side of the grazing bifurcation was presented. The corresponding

regularized discontinuous map has the following form [27]:

f(x;λ1, λ2, µ, ε) =


f1(x), if x < 0,

f2(x), if 0 ≤ x < ε,

f3(x), if x ≥ ε.

(4)

Here f1(x) = λ1x + µ, f2(x) = −
√

4x
ε + (λ2 + 1

ε )x + µ and f3(x) = λ2x + µ− 1.
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The graphs of f , f2 and f4 for λ1 = 0.7, λ2 = −0.9, ε = 1 and µ = 1.2 are

shown in Fig 6.

Figure 6: The graphs of f , f2 and f4 for λ1 = 0.7, λ2 = −0.9, µ = 1.2 and
ε = 1.

One part of the graph y = f1(x) is a line segment with slope 0.7 which is

nonconvex and yields only simple dynamics. The remaining part of the graph,

particularly near the turning point x = 0, is described by a square root map,

which is convex and capable of generating a chaos set without transition. Such

map has a stable period two orbit and no chaotic set. As µ decreases, say, to

µ = 0.795, the stable period two orbit is still preserved. However, a chaotic set,

a cantor set of measure zero, is created, see Fig 7.

Figure 7: The graphs of (a) f , f2 and (b) f4, f8 for λ1 = 0.7, λ2 = −0.9,
µ = 0.795 and ε = 1.
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Note that in Fig 7(b), f8 extends out of the box. Therefore, an invariant

cantor set whose dynamics is conjugate to the shift map of two symbols is

generated. In real applications, we are more interested in finding an attractor.

As µ keeps decreasing, the stable period two and the chaotic set of measure

zero remain coexisted until µ reaches around 0.772891. By then, the period two

orbit becomes unstable and f4 extends out of the box B2 and still stays in the

box B1, see Fig 8.

Figure 8: The graphs of f , f2 and f4 for λ1 = 0.7, λ2 = −0.9, µ = 0.772 and
ε = 1.

Consequently, a chaotic attractor is born. This completes a finite period

doubling route to chaos, which is summarized in Table 4.

0.80523 < µ < 1.2 stable period 2
0.772891 < µ < 0.805232 stable period 2 + chaotic set

0.7 < µ < 0.772891 chaotic attractor

Table 4: Bifurcation values for the piecewise linear map f( · ; 0.7,−0.9, µ, 1).

For smaller ε, the corresponding f also exhibits a similar route to chaos.

The numerical computation of f(x; 0.7,−0.9, µ, λ) as µ varies from 0.2 to 0.155

is summarized in Table 5.
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µ0 < µ < 0.2

(µ0 ≈ 0.1613646)
stable period 4 point + chaotic set

µ1 < µ < µ0

(µ1 ≈ 0.1580433)
stable period 8 point + chaotic set

0.155 < µ < µ1 chaotic attractor

Table 5: Bifurcation values for f( · ; 0.7,−0.9, µ, 0.07). As µ decreases from 0.2

to 0.155, the bifurcation comes a sudden end and a chaotic attractors appears.

(iii) Friction oscillator and DC-DC buck converter (see [44]) Even

simpler than square-root maps are those that are completely linear in each of

two halves of their domain. Maps of this form can be used to explain the

dynamics observed in the friction oscillator and DC-DC converter case studies

(see e.g., [44]). Those maps, without loss of generality, can be written in the

form

f(x) =

 f1(x) = αx + µ if x ≤ 0,

f2(x) = βx + µ, if x > 0.
(5)

The most interesting dynamics occurs for α > 0 and β < 0. Indeed, we let

µ = 1, α = 0.4 and let β vary from −6 to −6.4. The system undergoes the finite

period-doubling. See Table 6 and Fig 9.

Figure 9: The graph of f6 for β = −6.1, β = −6.25 and β = −6.4, respectively.
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Fig 9(a) is the box where f6|[−0.5,0] with β = −6.1 stays. Stable period three

point of f is situated at the lower left corner. As β decreases to −6.25, a portion

of the graph of f6 is coincide with the diagonal. Consequently, a stable period

6 is born. When β decreases past −6.25, the slope of both pieces of segments

of f6 inside the box have absolute values greater than 1. Hence, like tent map,

the chaotic dynamic instantly begins. If one further decreases the value of β,

then the period-adding bifurcations also occur.

−6.25 < β < −6 stable period 3 + chaotic set
β = −6.25 stable period 6 + chaotic set

−6.4 < β < −6.25 chaotic attractor

Table 6: Bifurcation values for the piecewise linear map f .

5 Conclusion

Satake and Iwasa proved that the generalized budget resource model is

chaotic when d > 1 by computing the Lyapunov exponent. In [3], the model was

shown to have Devaney’s chaos on an invariant set by proving its topological

entropy is positive for d > 1.00026. In this thesis, we clearly point out that

the generalized resource budget model is chaotic in the sense of Devaney as the

depletion coefficient d > 1 on an invariant set.

The second part of thesis, we present a finite period-doubling route to chaos

for a class of nonsmooth maps. Those maps are piecewise smooth functions,

which consists of nonconvex and nonconcave parts. Each part may generate a

certain type of dynamics as a parameter of the system changes so that when

combined together a finite period doubling route to chaos is created. For in-

stance, it could have that one piece of the function, as the system parameter

varies, tends to chaos through period-doubling cascades while the other piece

produces chaos without transition. The maps defined in (1) and (2) fit into

the combination described above. Both maps (4) and (5) has a nonconcave
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piece, which is capable of generating chaos without transition, and a noncon-

vex part yielding only simple dynamics. The third possibility comes from map

(3), for which its nonconvex part’s route to chaos is through period-doubling.

Note that its nonconcave piece produces a simple dynamics. The competition

between these two pieces seems to be the mechanism for producing a finite

period-doubling route to chaos. No one seems to win out. The numerical com-

putation seems also suggest that the finite period doubling route to chaos for

nonsmooth maps is generic.
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