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Abstract

In this thesis, we introduce a rumor spreading model based
on the common susceptible-infected (SI) model which is a well
known epidemiological model. We describe the maximum likeli-
hood estimators of graphs and we evaluate the detection proba-
bilities of finding the rumor source in d-regular trees. We observe
that: For paths, the detection probability of finding the rumor

source scales as t~1/2, which approaches 0 as ¢t approaches infin-
ity. For regular trees, we find an explicit bound of the detection
probabilities of finding the source in d-regular trees. As a conse-
quence, for d = 3, the detection probability approaches 1/4, this
1[“e]sult has been obtained earlier by using a random graph model
6.

i



Y >
=

ERKAWAE, AR

WA RN EEBRFERLE, ML RER A MR £,
REXEY —FIREINTHS, LHRERE, AR HF
RMESREBE, 2EHFE, ANV REELT AL, #
HERFEEANSERE: EWEHE, #HHEER. WHEER B
2. BEEER. RHEEH HEER NMBHARFSEE
H, AHNTTEENFERY LT, BREGE, HAREFH
PRAPIEY B BY 34 6 4018 SR A8 58 3 8 B 43 S

AR LA MERRTEREX, RBIAF WL E, 555
REATHY R A A B A ST IR 0 B 555 89 & 23R B3R ok B
FRRW T kR, W AL AMARERE EA MAZERARK
R A LB HOE R, M E RN AR R F R A, AH
BRAK 4% £ B B9 SR B, R BB o X F Jm B o

AR T A ka AW, B, & BL. FX.
#. DK, "k, FEFERLEHH, AL IK, EEHHN
ARAEZERARAN, BRHATRMRNALEE SR WS RS
%

R — R BRHAMAR R, B AR TR — B AR,
EMHGETRFTFER, HMEANBTRU KT RFITEAER
BOH R, RERNEEHNE,

il



Contents
Abstract (in Chinese)
Abstract (in English)
Acknowledgement
Contents

List of Figures

1 Introduction

1.1 Preliminaries . . . . . . .. ... ...
1.2 Rumor spreading (RS) model

2 Rumor Source Estimator
2.1 The ML estimator of (7, in a regular tree . . . . . . . . . ..

2.2 Rumor centrality:

3 Main Result

3.1 Detection probabilities of d-regular trees, d <3 . ... ...
3.2 Detection probabilities of d-regular trees, d>4 . ... . ..

4 Conclusion

v

ii

iii

v

ot

11
11
17

20



List of Figures

[lustration of subtree T . . . . . . .. ... ... ... ...
Network with 4 infected vertices. . . . . . . ... ... ...
Network of calculating rumor centrality. . . . . ... .. ..
Detection probabilities of regular trees . . . . . . ... . ..

=~ W N =




1 Introduction

Social network, internet and electrical power grid network are the common
networks everywhere in our life. We are surrounded by all kinds of networks
and are very easily subjected to the influence of network risks. Although
every network has its different structure, the common phenomenon is: an
isolated risk is enlarged because it can be spread by the network.

For example, in an electrical power grid network, an isolated failure can
lead to a rolling blackout. Computer viruses utilize the internet to infect
millions of computers everyday. The malicious rumors or misinformation
can be spread in the social networks quickly and the person concerned will
be deeply hurt and offended. In all of these situations, power network
operator, internet service provider or victim of a malicious rumor would
like to infer the souree of risks as quickly as possible and then blockade the
spread of risks. All of these situations can be modeled as rumors spreading
through networks, where the goal is to find the source in order to control
and prevent these network risks.based on limited information about the
network structure and the rumor infected vertices.

Prior work on rumor spreading has primarily focused on infectious dis-
eases in populations. The standard model of infectious diseases is known
as the susceptible-infected-recovered (SIR) model [1]. In this model, there
are three types of vertices: (i) susceptible vertices that are capable of being
infected; (ii) infected vertices that can spread the virus further; and (iii)
recovered vertices that are cured and can’t be infected anymore. Research

in this model has focused on the structure of the network and rates of infec-



tion/cure [2, 3, 4, 5|. However, there has no idea of identifying the source
of an epidemic. Now, a mathematical model has been developed to identify
the rumor source in a network based on rumor infected vertices [6]. But,
not much is known if the network is getting more complicate. In this thesis,

we set forth to study the networks defined on d-regular trees.

1.1 Preliminaries

A graph G is a triple consisting of a vertex set V(G), and edge set
E(G), and a relation that associates with each edge two vertices called its
endpoints. The order of a graph G is the number of vertices in G and the
size of a graph G is the number of edges in'G. A loop is an edge whose
endpoints are equal, and multiple edges are edges having the same pair
of endpoints. A simple graph G is a graph having no loops or multiple
edges. We consider a simple graph with a ecountably infinite vertex set.

A subgraph of graph G .is a graph H such that V(H) C V(G) and
E(H) C E(G) and therassignment of endpoints to edges in H is the same
as in G. We then write H C/GG and say that “G contains H”. A path is a
simple graph whose vertices can be ordered so that two vertices are adjacent
if and only if they are consecutive in the list. A graph G is connected if
each pair of vertices in GG belongs to a path.

In a graph G, the contraction of edge e with endpoints u, v is the
replacement of v and v with a single vertex whose incident edges are the
edges other than e that were incident to u or v. The resulting graph G - e
has one less edge e than G, and the new vertex {u, v}(or {v,u}).

When u and v are the endpoints of an edge e and writing e = uv (or
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Figure 1: Illustration of subtree 7}/

e = vu), they are adjacent and are neighbors. We write u <> v for "u
is adjacent to v”. The neighborhood of v, written Ng(v) or N(v), is the
set of vertices adjacent to v. The dégree of vertex » in a graph GG, written
dg(v) or d(v), is the mumber of edges incident to v. And G is regular if the
degrees of all verticessare the same.. It is.k-regular if the common degree
is k.

A graph with no cycles is‘agyelic. A tree isa connected acyclic graph. In
this thesis, A d-regular tree is a tree where every vertex has d neighbors.
Therefore, it is an infinite graph. A rooted tree T, is a tree with one
vertex 1 chosen as root. For each vertex v, Let p(v) be the unique path
from r to v. The parent of v is its neighbor on p(v); its children are its
other neighbors. The set child(v) is the set of all children of v.

A branch of a tree is a subtree T of T, induced by v and all its de-
scendants. In addition, ¢, denotes the number of vertices in 7)]. A d-regular

tree T' can be decomposed into d subtrees (T, T ,---T" ), such that these

V1) T v2) vd



trees are branches of T, and ) . N@) tu =ty — 1. A simple example T is
shown in Figure 1. T7 is a branch of Ti; TP is a branch of T;. Clearly,
T} =TS And T can be decomposed into 6 subtrees (T3, T4, T}, T2, T3),
such that these trees are branches of T.

These definitions about graph theory are cited from the book ”Intro-
duction to Graph Theory” written by Douglas B. West. If this part is not

sufficient, please refer to the reference [8] for details.

1.2 Rumor spreading (RS) model

We consider a discrete time susceptible-infected (SI) model. Let S(¢) be a
set of people who don’t know rumors yet at time ¢ and let /() be a set of
people who have known.rumors atitime ¢.in which the number of people of
S(t) and I(t) are denoted S; and [y, respectively. Using a fixed population,

S; + I; = N. For convenience of study, we shall assume

Sty =S¢ — 1,
It+1 :]t+]—7
SO - N, IO - 0

Let each person be a vertex and the relationship between two people be an
edge, and these form the vertex set and edge set of a graph G. Let GG; be a
subgraph of order ¢ of G. This graph is compose of ¢ infected vertices which
are people who have known rumors at time t. The graph G, is a vertex
which is called rumor source and in each discrete time-step ¢t + 1, ¢t > 0,
G41 develops from Gy by adding a vertex z with an edge. We assume that

every vertex is chosen with the following probability distribution:

1
ZUEV(Gt) d(v) —2(t —1)

P (2) = for v € V(Gy). (1)



2 Rumor Source Estimator

Consider a network G and a subgraph G, of G that is a graph with n
infected vertices. The Mazimum Likelihood(ML) estimator is the vertex v
which has the maximum of P (G,|v). where P (G,|v) is the probability of

observing (z,, under the RS model if v is the source.

2.1 The ML estimator of GG, in a regular tree

Continue from the paragraph above, if we want to know that what’s the
ML estimator of G,, we would like to evaluate P (G,|v) for all v € G,
and then choose v so that P (Gglu) is maximum. In general, evaluating
every vertex’s P (G,|v) is.complicated. Let us consider a simple example
as shown in Figure 2 with n =4. First, we suppose that the vertex 1 is the
source, and we would like to calculate P (G4|1): Then there are six ways
or vertex infection orders that a rumor can be spread to every vertex in
G, with vertex 1 as the source: (1,2,3;4), (1,2,4,3), (1,3,2,4), (1,3,4,2),
(1,4,2,3) and (1,4, 3,2). -However, if we suppose that the vertex 2 is the
source, infection order (2,3, 1,4)"1s not possible, since 2 +» 3 (2 and 3 are
not adjacent in G4). Therefore, in general to evaluate P (G,,|v), we need
to find all such possible n-permutations of V(G,) and their corresponding
probabilities.

Let S (v, G,,) be the set of all possible n-permutations of V(G,,) starting
with vertex v where v € V(G,), and 0 = (v; = v,v9,--- ,v,) for each o €
S (v,G,). The probability P (c|v) is the probability of observing G,, under
the RS model if v is the source in the infected order o. Let G (o) be the set

of k vertices which are in the subgraph of G,, with order (v; = v, vy, -+, V)



Figure 2: Network with 4 infected vertices.

for 1 < k <n. Then we have

n—1

1
g Y viccy (o) W) = 2(k — 1)

P (o]v) =

For d-regular trees,

P (ofv) = Hdk—Q Eo 1) (3)

From equation (3), 'we can:see that every permutation o has the same
probability and is independent of the source. Specifically, for any source v

and permutation o, P (o|v) is a constant. Thus

P(Co)= Y. Po)

c€S(v,Gn)
=15, Gn) Hdk 2 k—1)
x |S (v, Gp) |

It follows that P (G,|v) is proportional to |S (v, G,,)|. Let R(v,G,,) be the
number of distinct ways to spread a rumor to every vertex in G,, with v as

the source. Clearly, |S (v,G,,)|= R(v,G,). Then
P(G,|v) x R(v,G,,) . (4)

6



In summary, the ML estimator of GG, in a regular tree can be obtained by
finding the maximum of R (v, G,,) for all v. For the above example as shown

in Figure 2 the estimation of vertices are

P(Gyl)= >  P(d1)
O’ES(]. G4)
=P ((1,2,3,4)[1) + P ((1,2,4,3)[1)
+P((1,3,2,4)]1) + P ((1,3,4,2)]1)

+P((1,4,2,3)[1) + P((1,4,3,2)[1)
11 1 1
—6-(=-=.=2 S
(3 4 5) 10

P (C4l2) = D5 Plof2)

0€5(2,G4)
=P ((2,1,3,42) + P ((2,1,4,3)|2)

=P ((3:1,2,4)3) F P((3,1,4,2)[3)

=P ((4,1,2,3)]4) + P ((4,1,3,2)[4)

Clearly, we can now evaluate R (v, Gy) for all v. R(1,G4) =6, R(2,G,) =
R(3,G4) = R(4,G4) = 2. Thus vertex 1 is the probable rumor source in

this example.



2.2 Rumor centrality

In this paragraph, we shall explain how to calculate the rumor centrality
for each vertex in a given graph G,,. Moreover, the rumor center of GG, is a
vertex with the maximum of rumor centrality.

Let GG, be a rooted tree with root v and assume v has a rumor. The
next infected vertex must be one of the children of v. For all u € child(v),
there are R(u,T)!) ways to spread a rumor in the branch 70 with u as the

source. Thus

Rw,Gy)= -1y [[ 2l (5)

vl
u€Echild(v) w

To understand the above expression, the number of ways to permute n — 1
steps from different subtrees is a permutation of the multiset {t -1,t} -

2,---ty - d}. If we continue this recursion (5) until.we reach the leaves of

the tree, we obtain

R(v,G,) = (n =] R(u, T7)

v

uechald(v) U
(v — 1)! R(w,T")
= (-1 ( a1 =
u€child(v w wechild(u) w
1 R(w,T?)

Echild( ) wechild(u)

1

=(n—1) —
(n—1)! H ot
uEGp—v U

Since a leaf vertex [ has one vertex so R([,7}’) = 1. By the fact that ¢} = n,

then

R(v,G,) —n'H— (6)

ueGp



Figure 3: Network of calculating rumor centrality.

Let us consider an example as shown in Figure 3.

5!

B =5y =

8.

Indeed, there are 8 possible n-permutations of the network in Figure 4 with

vertex 1 as the source.. They are

(1,2,4,5,3), (132,4,3;5), (1,2,3,4,5), (1,3,2,4,5)
(1,2,5,4,3), (1,2,5,3,4), (1,2,3,5,4), (1,3,2,5,4)

In order to find the rumor center of a given graph G,, we have to find
the rumor centrality of every vertex. in.G,, respectively. In fact, the rumor
centrality of v can be deduced from rumor centrality of its neighbors. To

this end, consider two adjacent vertices v and v in G,,, we have
te =mn—to. (7)

And ¢ = t* for each w € G,, — {u,v}. Thus,

R(u, G,) ty

R(v,G,) T n- tv’ (®)

For example in Figure 4, we have

R2,Gs) 12 5 3
R(1,G5) 8 5—ty 2



It shows that for each vertex u, we can calculate its rumor centrality by
using its neighbor’s rumor centrality and ¢;.

The following is an important property of the rumor center:

Theorem 2.2.1. [6] Given an n vertices tree, vertex v is the rumor center

if and only if

t, <

AN

for all w # v. Furthermore, a tree can have at most 2 rumor centers.

It plays a crucial role in establishing our main results.

10



3 Main Result

In this section, we shall explain the behavior of the detection probabilities
of finding the rumor source in different graphs. Let E;(G) be the event of
correct rumor source detection under the ML rumor source estimator after
time t on a graph G. If the graph G considered is prescribed, then we use E;
to denote E;(G). Then P(E}) is the correct detection probability of finding

the rumor source in a given graph G.

3.1 Detection probabilities of d-regular trees, d < 3

In this paragraph, we shall present shorter proofs by using combinatorial
methods than the original proofs in reference [6]. We first consider the
detection probability of finding the source in a 2-regular tree. By (4), rumor

center is the ML estimator of G,, where G, is a subtree of a d-regular tree.

Theorem 3.1.1. Suppose a;rumor has spread in a 2-regular tree. Then we

have that

pim=of{z )’
Proof:

Consider a path which compose of 2n (respectively 2n+ 1) infected vertices.

By Theorem (2.2.1) and (6), v is a unique rumor center in Go,.; and we

2
R (Uv G2n+1) = < T:L> )

and there are two vertices v, v’ both are rumor centers in Gs,, then we have

have

R(v,Gan) = R (0, Gan) = (2" - 1).

n—1

11



Every graph G,, in a 2-regular tree is a path. The correct detection proba-

bility of finding the rumor source in a path is

P(Gn| source = v)P(source = v)
ZieGn P(Gn‘ source = i)P(source = z‘)'

P(source = v| G,) =

The probabilities of vertices which are rumor sources in a d-regular tree are

equal possible. Thus

P(G, | source = v)

P =v|G,) = .
(source = v] G) > icc, P(G,|source = i)

R(v,Gy)
Duiec, (i, Gn)

()
(AT ) ()
<277> -2—;, and

)

() () ()

P (source = v| G,) =

Hence

P(source = v‘ Goni1) =

P(source = v| Ga,) =

By Stirling’s formula, (

12



Thus

2

P(source = v| Gy) =/ = if ¢ is even,
Tt
P(E) =144 1 2
éP(source = v’ Gi) + §P(source = v'} Gy) = s if t is odd.
(10)
It follows that the path detection probability scales as ¢t~'/2, which ap-
proaches 0 as t approaches infinity. [ |

Now, we consider the detection probability of finding the source in a

d-regular tree, d > 3.

Theorem 3.1.2. Suppose arumor has spread in a reqular tree. Then we
have that

0<P(E) <

DN | =

Proof:

Consider a graph G, in a regular tree. We can regard the number of ways
to spread a rumor to every vertex in G, with v as the source as the sum of
ways that rumor can be spread from v through u, where u is the neighbor

of v. Hence
R(v,Gn) = Y R({v,u},G,-vu). (11)
ueN (v)

Given any two adjacent vertices v and v, we have

R (u,G,) = Z R ({u,w}, Gy - uw) and

wEN (u)

R(v,Gn)= Y R({v,u},G,-vu).

ueN (v)

13



Since u is adjacent to v, there is at least one common term in above two

sums on the RHS. Thus we have

R(v,Gp) < > R(i,G)

i€Gn itv

= R(v,G,) < % > R(i,G). (12)

1€Gn

Since R (v, G,,) is positive, we have

_ R(v,G,)
>, R(i,Gy)

i€Gn

0 <

1
5
This concludes that for every graph which composes of infected vertices,

the detection probability is greater than 0-and less than 1/2. |

For d-regular trees with d > 2, Theorem (3.1.2) states that the event
that positive detection probability happens is independent of the order of the
graph. In what follows, we shall evaluate the explicit detection probability
of finding the source in"a d-regular tree.

Our goal is to calculate the-detection-probability of finding the rumor
source. Recall the Theorem (2.2.1), v is the unique rumor center if and only
if ¢, < 5 for all u # v. So we consider the number of vertices of branches
of T, and these branches are rooted trees with root u, u € N(v). Without
loss of generality, we assume ¢!, > 1 for all u € N(v). Let Ay and By be two

sets such that

d
A ={(ar,az, - ag)| 1S @i < 5, @ =n— 1}, and

i=1

d
By={(b1, by, ,ba)|bi €N, by =n—1}.
=1

14



Clearly, A; € By. Moreover,

n—1—d+d-—1 n—2
|Bd|_< d—1 >_(d—1)'
Now, let S; = {(21, 22, ,24) € Bq : ; > §}. By principle of Inclusion

and Exclusion,
d d
|[Aal = [Bal = [ Si| = 1Bl = > _ISil. (13)
i=1 i=1

Letz; =y;+1,j #iand z; = [5] +y;. Eleyi =n—-1)—(d-1)— (%1 =

2
|%] — d. Then we have |S;| = (L%J;ﬁd_l) — (%:1), Hence

- (b3

For any vertex in a d-regular tree, say v, let (t3,,,,,- - ,1,,) denote the

orders of branches (15, T,,, <~ T7 ) which is the decomposition of G, in a

d-regular tree in which ZvieN(v) v; = n—1. Consider (a1, as, -+ ,aq) € Ag,
v is a unique rumor center of any graph that the orders of branches of it is

satisfied &, = a1,t;, = ag, = i t;

vg = Qg.

vo

We want to calculate the total mumber of ways to spread a rumor to n
vertices from v. In addition, the order of breaches of this form graph G, is
(to, toys -+ 5 ty,). First, assume that the vertex v had spread a rumor to u
where u € N(v), and then it can be spread to u’s descendants only. There
are d — 1 choice of the next infected vertices since u has d — 1 children.
Now, there are two vertices (u and a child of u) have rumors, then there are

2d — 3 choice of the next infected vertices. Therefore, the number of ways

to spread a rumor to m vertices in that graph 7, is

(d—2)(i—1)+1). (14)

=1

15



Hence, given (¢ ,t ,--- d), the total number of ways to spread a rumor

18

n—l'HH (2—1)—1—1) (15)

ty !

Note that the number of ways to permute n—1 steps from different subtrees
is a permutation of the multiset {¢ - 1,7 -2,-- -0 -d}.

Let Py(n) be the ratio of the number of ways to spread a rumor to n

vertices such that (¢ ,t,,,--- ,t, ) € A, to the number of ways to spread a
rumor to n vertices such that (t, ,t,,,--- ,t, ) € B,. Thus Py(t) = P (E}).
We have
d ty .
> (H g ((d=2) (i=1)+ 1))
tv !
(8, 5, ity )eA k=1 Uk
Piln) = — : (16)

I (d=2)(i—1)+1)
y" (HH_(( tg;( >+>>

(tgl 7t:ll)]27“. 7t}})d)eBd k=1

Theorem 3.1.3. If G is a 3-reqular graph, then we-have that

t—o00

Proof:

Let the source be v. By (16),

t'u

(I

d
=1
d

1

(tg1 th th,) €A

H: K 1
H vl (t3, tv Y. )EBs
)e
n
2

|A3|_<";2) - (120 ):1 (151-0051-2)

"B (n;Q) (n—2)(n—3)

Ps(n) _ v1 v v3

(ty tv Y )EA3
B3

t”t

16



This implies that

§(n —4) if n is even,
- 4(n—3
Py(n) = St — 5 (17)
1—- if n is odd.
4(n—2)
Hence, the proof follows. |

3.2 Detection probabilities of d-regular trees, d > 4

In what follows, we use (16) to calculate the detection probability of finding
the source in a d-regular tree, d > 4. Let v be the source and let wg, =

[T, ((d—2) (i —1)+1) (14). We can rewrite it by (13).

d
Z Z Wz, Wz, o Wdg,
1‘1! LEQ! Qfd!

=1 (21,22, ,24)ES;

Z (wdtgl Wagy, . Wy,
i | tv |
(t}tj)lrtgz?""tgd)eBd @ 2 vd
Let Ty > %,

d Z wd:pl wdz’g . wdxd

LE1! $2! ﬂfd!

p (n) 1 (21,22,,24)€ESq
g =1 =

Z (wdtgl Wary, wdt;jd)
v v v
ty !ty ty !

(tgl 7t52 )t ytgd)eBd
Let f(z) be the exponential generating function for the sequence {wg, }2 ;.

And we have

(]_ — aq;)_% = Z (7,5) (—ax)" =14 Z Hz:l(a(zn‘_ 1) + 1)1,77, (18)

n=0

17



From (18), we immediately know f(z) = (1 — az)"» — 1 where a = d — 2.
Let Fi,(z) = (f(z))". We have

x 22 g 1 k
Fi(z) wdlﬂ+wd2§+~- = ((1 —ax) e — 1)

Let [2"]F(x) be theeoefficient of 2™ in F(z). Then;

ARG =D )

n!
I=1

. . . Wy wy wq .
The coefficient of ™ in F/(z)ds S=E—# -+ -k whose degree is n = n; +

ng + - - - +ng. Therefore, Let a = d — 2, the detection probability of finding

the source in a d-regular tree is

d%n&mwwﬂ>

- (1" Faa (@)

Pyn)=1—- —= o1 Fala) . (20)

18



Clearly, this is too complicate to simplify the right side of (20). In Figure

5, we use computer to obtain the general behavior of this term for several

d’s and n < 100,000. As a matter of fact, we have % > Py(n) > Py(n) > i

ifd>d >3

Figure

19

—d=1
—d=5
—d=a
—d=3

—d=2




4 Conclusion

In this thesis, we have obtained a mathematical model for finding the cul-
prit who spreads rumors in a network defined on a d-regular tree (countably
infinite graph). We are concerned with the detection probabilities of finding
the culprit. By using this model, we are able to give a shorter and more
explicit proof for the cases when d < 3. See [6] for a comparison. Further-
more, we can estimate the detection probabilities of finding the source in
d-regular trees for d > 3 by an explicit formula, though it is quite com-
plicate. It will be better if we can simplify the formula by using certain
combinatorial identities. Moreover, if we can reduce the estimation error
for general graphs, and generalize the estimatorto networks with different
rumor spreading rate, then we have a much better result than the known

works in [6].
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