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The study of triangle-free graphs
by mterlacmg theorem for eigenvalues

Student : Hui-Wen Su Advisor : Chih-Wen Weng

Department of Applied Mathematics
National Chiao Tung University

Abstract

The thesis applies interlacing theorem for eigenvalues to study graphs without triangle.
We give a characterization of strongly regular graph srg(k? + 1, k;0, 1) in terns of eigenvalues

and the girth of a graph.
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Chapter 1

Introduction

This research is about the eigenvalues or the spectrum of the adjacency matrix of a
graph. The adjacengy matrix of-a~graphrand.its eigenvalues can be used in several areas,
for examples mathematical research, physical interpretation, chemical and so on. It was
investigated very mueh in the past. Spectrum of a graph-have appeared frequently in the
mathematical literature since a few fundamental papers, e.g. 'L Collatz and U.Sinogowitz
[8]. Theoretical chemists were alsointerested in graph spectra, although they used different
terminology.

Spectral graph theory is the study of properties of a graph in relationship to the character-
istic polynomial, eigenvalues, and eigenvectors of matrices associated to the graph, such as its
adjacency matrix or Laplacian matrix. And spectral graph theory emerged in the 1950s and
1960s. Besides graph theoretic research on the relationship between structural and spectral
properties of graphs, another major source was research in quantum chemistry (e.g. energy
of graphs ), but the connections between these two lines of work were not discovered until
much later [5].

Research papers on the bounds for whose second largest eigenvalue of the adjaceny matrix
of a graph are a lot. In [10], considering the graphs whose second largest eigenvalue at most

1, the author has almost summed up most of regular graphs with eigenvalues corresponding



to this range. And he was almost determing graphs with the second largest eigenvalue less
than or equal to 1. Even some undetermined graphs also have the second largest eigenvalue
is not more than 1, he gave examples to illustrate.

The main tool we used is interlacing theorem for eigenvalues. Eigenvalue interlacing
theorem has been applied to graphs in many papers. For instance, Brouwer and Mesner [1]
used it to prove that the connectivity of a strongly regular graph equals its degrees and in
Brouwer and Haemers [2] eigenvalue interlacing is a basic tool for their proof of the uniqueness
of Gewirtz graph. To obtain our results we use quotient matrices of the adjacency matrix of
a graph with respect to some partition of the vertices.

Finally, the graphs that we are interested in.is a connected simple graph. A simple graph
is an undirected graph without loops and multiple edges. The adjacency matrix of a simple
graph is a (0, 1)-matrix with zeros on its diagonal. If the graph is undirected, the adjacency

matrix is symmetric.



Chapter 2

Preliminaries

In this chapter we introduice basic.definitions and theorems which will be used throughout

this thesis.

2.1 Adjacent matrix

In mathematics and computer science, an adjacency matrix is a mean of representing

which vertices (or nodes) of a graph are adjacent to.which other vertices.

Definition 2.1.1. Let G be a graph with vertex set V(G) = {v1,vq,...,v,} and E(G) =
{e1,-+ ,em}. The adjacency matrix of graph G, written A(G), is the n x n matrix
defined as follows. The rows and the columns of A(G) are indexed by V(G). If i # j then
the (i, 7)-entry of A(G) is 0 for vertices ¢ and j nonadjacent, and the (i, j)-entry is 1 for ¢
and j adjacent. The (i,4)-entry of A(G) is 0 for i = 1,...,n. We often denote A(G) simply
by A.



Example 2.1.2. Consider the graph G shown below, and its adjacency matrix A(G).

—_ O = O
o = O =
—_ O = O
o = O =

where coordinates are 1,2, 3, 4.

2.2 Eigenvalue and Eigenvector

Definition 2.2.1. Let A be ann-xn matrix over R. The number A € C is an eigenvalue
of A if there exists a nonzero column vector w-such that Au = Au. The vector w is called an

eigenvector of A associated with A.

Example 2.2.2. If

X

Il
o o ~
o oo
w O

then the eigenvalues of A are Ay = 3, Ay = 2, A\3 = 1, and corresponding eigenvector

T T T
u1:(0 0 1) ,uQ:(o 1 o) ,u3:(1 0 0) .

2.3 Quotient matrix

Computation of eigenvalues of a matrix can be very difficult. We now introduce a way,
which enables us to obtain information about the eigenvalues of a matrix from a smaller

matrix.



Definition 2.3.1. Consider n X n an symmetric matrix A and an m x m matrix U in block

form

Am,l e Am,m 0 1n

m

where A, ; is an n; X n; matrix, ny +ng + -+ -+ n,, = n, and 1,, is the all 1’s column vector
of size n;. Let D be the m x m diagonal matrix D := diag((y/n1) ™", (v/n2) ™, ..., (v/7m) ).
Hence S := UD satisfies STS = I,,,. Note that N = STAS and B := DND~!. The (i, )
entry b; ; = 151_141”- 1,,,/n; of B is the average row sum of A; ;. B is called a quotient matrix
of A. Moreover B is an equitable quotient-matrix of A if A;;1,, = B;;1,,. i.e. Each

row-sum of A;; has constant value B, ;.

In the following example, one cansee from the diagrams how-a quotient matrix is obtained

from a matrix.

Example 2.3.2.

(; i) — (75) (2.1)

W || N
— W | 00| W
N OU

N DN | Ot —
NG NON N T

The matrix that we are concerned with in this thesis is the adjacency matrix A = A(G) of
a graph G. The quotient matrix of A(G) has combinatorial meaning. Let 7 = C1U- - -UC), be a
partition of the vertex set V' (G), and the matrix A is partitioned according to 7 = C1U- - -UC}

in block form such that
Avg - A



where A; ; denotes the block of A formed by rows in C; and the columns in C;. Let b;;
denote the average row-sum of A; ;. If the average row-sums of each block A;; is a constant
b; ;, then the partition 7 = Cy U --- U C} is called equitable. The matrix A™ := [b;,] is a

quotient matrix B of A in the above definition.

We introduce a way to obtain a 3 x 3 quotient matrix B of a connected graph G. Pick
a vertex ¢ € V(G). Let I'; := {y € V(G)|d(z,y) =i} and I's; := {y € V(G)|d(z,y) > i},
where d(z,y) is the distance between vertices x and y. According to the partition © =

{z} Ul (z) UTs2(z) we have the following quotient matrix B = A™ of the adjacency matrix
A(G).

ap bo 0
AT=B=|c ap b
0 Cy Qa9

o=

@

Figure 2.1: quotient mattix according to d(z,y) = i.

The following example, copied from [4], provides a different way to have quotient matrix.

Example 2.3.3. (Mckay’s graph)



01100000
10100000
11010000

A_0010100073_(11>'
00010T1G00 30
000010711
00000T1O0°1
00000T1T10

Figure 2.2: Mckay’s graph

In the graph of Fig. 2.2, the partition with two cells C; = {1,2,4,5,7,8} and Cy = {3,6}

is equitable. The quotient matrix of A is B, and B is an equitable quotient of A.

2.4 Interlacing

The eigenvalues of adjacency matrix A(G) will be denoted by Ay, ---,\,. Unless we
indicate otherwise, we shall assume that \; > Xy > --- > \,. The eigenvalues or the
spectrum of a graph G is referred to the eigenvalues of A(G).

Eigenvalues of graphs have application in chemistry, and it is called Huckel theory [5].
For instance, a (carbon) molecule is chemically stable if its underlying graph has half of its
eigenvalues positive and half of its eigenvalues negative. The paper [9] consider the more
general question how to make graphs (on an even number of vertices) with A 1n > 0 and

A Int1 < 0. Their method essentially uses interlacing.



Understanding the definition of interlacing and its properties is the main tool in Chapter

3,4 to estimate the eigenvalues of a graph.

Definition 2.4.1. For m < n, the sequence 6; > 65 > ... > 6, is said to interlace the

sequence A\ > Ay > ... > \, whenever
)\i Z ‘91 Z /\n—m—l-i for 1 S 1 S m.

The above interlacing is tight if there exists an integer ¢ such that \; = 6, for 1 < ¢ <

, and 0; = Ny for £+1 <i <m.

Example 2.4.2. The sequence 6,4, 3, 1 interlaces the sequence 6, 5,4, 3,2, 1. The interlacing
is not tight since 5 > 4 > 3. The sequence 6,5,2, 1 interlaces the sequence 6,5,4,3,2,1

tightly.
The following theorem ‘will be used in this thesis« See[3]for a proof.

Theorem 2.4.3. (Interlacing theorem ) {3]
Let A be a symmetric matrix and B-a quotient-matrix of A. Then the eigenvalues of B

interlace the eigenvalues of A.

Throughout the thesis for'an m %.m _quotient-matrix B of A, we use 1 >0, > --- >0,,

to denote its eigenvalues. The following diagram illustrates this case m = 3.

A:A1, A2, A3, ..., An-2, An-1, An.

B:061, 62, 0.

Figure 2.3: the eigenvalues of B interlace the eigenvalues of A

The following example is about the adjacency matrix A of Petersen graph G and its

quotient matrix B according to the partition 7 = {} Uy (x) Uy (x) for any = € V(G).

8



Example 2.4.4 (Petersen graph).

01 0010100O0O0
10100O0O01QO00O0
010100O0O0T1F®O0
001 0100O0O0O0°1
1001010000 030
A= , B=11 0 2
00001O0O0T1T10
01 2
10000O0O0O0T1T1
01 00O0T1O0O0O0°1
0010011000
000100.1100

Figure 2.4: Petersen graph G
The eigenvalues of matrix. A.are Ay = 3, s = LAz =1, = 1, s = 1, = 1,\7 =

—2, A8 = =2, A\g = —2, Ao = —2. The eigenvalues of matrix B are 6§, = 3,0, = 1,03 = —2.

We can check that Ay = 3 > 0, =3 > Ag = =2, o =1 >0, =1 2> X\ = =2,
A3=12>03=—-22> \g= —2, so Theorem 2.4.3 holds. Indeed the interlacing of B on A is

tight.

2.5 Diameter

The diameter of a graph G is the value max, ,d(u,v) among vertices u,v € V(G). In

other words, a graph’s diameter is the largest number of vertices which must be traversed in



order to travel from one vertex to another when paths which backtrack, detour, or loop are

excluded from consideration. The graphs in Fig. 2.5 on 10 vertices have diameters 3, 4, 5,

SRS

Figure 2.5: diameter

and 7, respectively.

Definition 2.5.1. Let G be f 1 ices. aid to be an strongly regular

10



Chapter 3

K-regular graph

In this chapter we will study. the bounds of eigenvalues on some k-regular graph with
girth at least 5. A graph is said-to-be regular if all"its vertices have the same degree. If
the degree of each vertex of G is k, then G issaid to be k-regular. Examples of regular
graphs include cycles; complete graphs and so on. The girth of a graph is the length of
a shortest cycle contained in the graph. If a graph does not contain any cycle, its girth is
defined to be infinity. For example; the Petersen graph has girth 5. We fix the notation that
A is adjacency matrix of G with eigenvalues ); in deereasing order and B is quotient matrix

of A with eigenvalues 6; in decreasing order:

3.1 Special case

Let G be a connected k-regular graph of order at least 3 and fix a vertex x € V(G). We

give the following assumptions on G throughout the Sections 3.1 and 3.2.

Assumption :
1. G has no triangle;

2. Each vertex in I'so(z) is adjacent to a unique vertex in I'y(z). (Then I'so(x) = I'y(x).)

11



Then according to the partition 7 = {x} UT';(x) U 'so(x), the quotient matrix A™ is

B=A" =

o = O
_ o

and indeed A™ is an equtable quotient of A.

We can easily compute 6 = k,0; = (—1++v—3+4k)/2,03 = (—1 — /=3 + 4k)/2. Then

by interlacing theorem in Theorem 2.4.3,

N 3 g — —1+\/—3+4k,9 L -1 —V=3 1k -

D s 2 =

We are interested in the necessary and sufficient: conditions for the following identity

| L3R
! 5 :

A2
By the following discussion, we might guess it be a strongly regular graph.

Lemma 3.1.1 ([3]). For an equitable partition, if v is an eigenvector of B for an eigenvalue
A, then Swu is an eigenvector of A for the same eigenvalue X, where S is defined in Definition

2.3.1.

So eigenvalues of the equitable quotient matrix of an adjacency matrix are also eigenvalues

of the adjacency matrix.

Example 3.1.2. In special case with k = 2, G = Cj is a cycle of five vertices as the following

graph.

12



Spectrum (B) = 2, —% + %\/3, —% - %\/5

Note that B is a equitable quotient of A, and the eigenvalues of B interlace the eigenvalues

of A tightly.

In special case with. .k = 3. We can obtain 2 cases.. In the following, we discuss them

respectively.

Example 3.1.3. In.this example, we talk about the graph of case 1 and indeed the graph is

Petersen graph.

Case 1. G

Note that Spectrum (A) = 3,1°, (—2)*. The quotient matrix of G is

s

I
o ~ o
— o w
NN O

and Spectrum (B) = 3,1, —2.

13



In next example, we consider another example of 3-regular graph.

Example 3.1.4. The graph form 1 and form 2 are the same graph with different partitions

R

(a) form 1 (b) form 2

of the vertex set.

Let A be the adjacency matrix of the graph in case 2./ Then we obtain Spectrum(A) =
1 1 ‘ 1 1
3, —3 + 5\/ 17,1%,0551,(—2)?, g 2 17. We choose these partitions m = {z} UT'y(z) U

Fo(z) and m = {y} UT(y) U (y) UT's(y) respectively, and two quotient matrices corre-

sponding respectively as follow:

0 3 0 0

0 50 10 2 0

Bi=A"= |10 2| B=A"=| 6/5 6/5 3/5
01 2

0 0 3 0

Note that Spectrum(B;) = 3,1, —2. We check these eigenvalues 3 > 3 > —2 | (-1 +

VIT)2>1>-2,1>-2>(-1—-+17)/2.
Note that Spectrum(Bsy) = 3,1.145,—0.7,—2.24. We check that 3 > 3 > -1, (-1 +

VIT)/2 > 1145 > =2, 0> —0.7> =2, —1 > —2.24 > (=1 — V/17)/2, so Theorem 2.4.3
also holds.

14



It is easy to see 1.145 is a better lower bound of Ay than 1, and —0.7 is a better lower
bound of A3 than —2. In the part of upper bounds, 1.145 is a better upper bound of Ag than 3,

—(0.7 is a better upper bound of A\g than 1, and —2.24 is a better upper bound of Ag than —2.

From the above example, the bounds obtained from eigenvalues of 4 x 4 quotient matrices
could be better than the bounds from 3 x 3 quotient matrices, but we do not discuss it here.
Our focus is 3 x 3 quotient matrices. Note that the two graphs in Example 3.1.3 and Example

3.1.4 are all the 3-regular graphs satisfying Assumption 3.1.

There are many graphs with k = 4. We only study one of them in the following example.

Example 3.1.5. Here we only pick a case to explain. The graph has the largest vertices

with d(y, z) = 4 in special case with & = 4, where y, 2.6 V(G)

Figure 3.1: graph G from special case with k =4

We calculate the eigenvalues of the adjacency matrix of graph in Figure 3.1 and its
quotient matrix according to the partition 7 = {2} UT";(z) UT's2(z). We obtain the following
result:

Spectrum(A) = 4,3.791,1.303, (—3+3v/21)? = 0.791%,0%, —0.791, —2.303, (—2—1/21)? =

15



—3.791%, and Spectrum(B) = 4, -1 + 113 = 1.303, -1 — 1v/13 = —2.303. Then we also
check Theorem 2.4.3.
)\1 = 4 Z (91 = 4 Z )\15 == —2303,

Ao = 3.791 > 0y = 1.303 > \g = —3.791,

A3 = 1.303 > 03 = —2.303 > Ay = —3.791.

3.2 Diameters and eigenvalues

Under the Assumption 3.1, we have.d < 4 no matter. what k is. We consider d = 2 and

3 < d < 4 separately.The following theorem characterizes the case d = 2.
Lemma 3.2.1. [7] If.an srg(k? + 1, k, 0, 1) exists, then k = 1,2,3;7,57.

Theorem 3.2.2. G.is a connected k-regular graph with diameter. 2 satisfying the Assump-

tion 3.1 if and only if.G is a strongly regular graph srg(k? +1,k;0, 1), where k = 2,3,7,57.

Proof. Let G be a srg(k*+ 1,k,0,1). Clealy G is k-regular satisfying the Assumption 3.1.
Since p # 0, G is connected with diameter 2..-On the other hand, let G be a connected
k-regular graph with d = 2 satisfying the Assumption 3.1. The number of vertices is [{x} U
[i(z) Ulso(x)| =14+ k+ (k- 1)k = k*+ 1. G is no triangle, so A = 0. Finally, we need
to check that ¢ = 1. Pick any vertex y € V(G)/{z}, then check each vertex in I'y(y) is
adjacent to a unique vertex in I'; (y). Suppose there are two vertices uy, us € I';(y) adjencent
to vy € T'y(y). The remaining edges in I'y(y) = k(k — 1) — 2 = k? — k — 2, and the number
of vertices in I'y(y)/{y} = k* — k — 1. It means there is at least one vertex in I'y(y) not
adjacnet to I'i(y). Contradict to d = 2. So, every two vertices z,y with d(x,y) = 2 have

=1 common neighbours. O

16



The following theorem gives the relation between the diameter of a graph and its eigen-

values.

Theorem 3.2.3. [[6] Chung, 1989] Let G be a k-regular graph on n > 3 vertices with
diameter d. Let A = max;~1|\;|. Then d < [%]

Consider d > 3. By Theorem 3.2.3, we have a bound of maz;~1|A;| as follows.
Theorem 3.2.4. Let GG be a connected k-regular graph of order at least 3 with diameter
d at least 3 satisfying the Assumption 3.1, and the 3 x 3 quotient matrix of the adjacency

matrix 1s

Then A > 1, where A = max;~1 ||

log (k2
Proof. Apply 3 < d and n = k* + 1 to Theorem 3.2.3. We obtain 3 < (%] Using
0og
log(k?
2 < M can regeive A > 1, so the proof is complete. n
log(k/A)

We give an exampledo check the previous theorem.

Example 3.2.5. G is consistent with. Assumption 3.1.

The eigenvalue max;~1|\;| of adjacency matrix of graph G is (=1 — 1/17)/2. We check

that
(—1-V17)

|A1o] = | 5

| = 2.5616 > 1.

17



3.3 General case with k-regular

In this section, we want to use Theorem 2.4.3 on general case with k-regular. Let GG be a

connected k-regular graph of order v with the following assumptions on G.
Assumption : The girth of G is at least 5;

Fix a vertex € V(G). Then according to the partition 7 = {z} UT';(z) U 'so(z), the

quotient matrix A™ is

0 k 0

B=A"= [ 0 k=1 1. (3.1)
A k(k=1) & vk — 2k*

v—k v k-1

We shall compute the eigenvalues of B.

Lemma 3.3.1. Let G'be a k-regular-graph of order k%<1 satisfying Assumption 3.3. Then

(G has diameter 2.

Proof. Pick x € V(@). Note that k& +1 =wv = [{x} UT(z) UT(z)|. Hence G has diameter
2. [

Lemma 3.3.2. If the girth-of a k-regular graph G is-atleast 5, then
0>k 1,
where v is the number of vertices.

Proof. When the girth is at least 5, v > [{x} Uy (x) Uy (x)| for any vertex z € V(G). Let

G be a k-regular graph. Thus

v>1+k+(k—1Dk=kK+1

18



The entries of B follow from |I'y| = k, |I's3] = v — k — 1, and then

- k(k—1) vk — 2k?
v—k—1 v—k-—1

Let v be an eignevector corresponding to eigenvalue A, using Bv = \v to solve eigenvalues.

0k 0 " "

10 k-1 A I
k(k—1) vk — 2k

C C

v—k—1 v—k—-1
We can obtain the following equations:

bk= Aa,
a+ (k —=l)e =Ab,
k(k—1) vk — 2k?

— 1 1S R O

= Ac.

Assume a = k. Then:b = X and ¢ = % Substituting into the third equation,

Bk — 1) ) LI L 2k
N . =\ .
A\ 7 _ A A — e 1

Multiply by (v — k — 1)(k —1),
(v —k — )A® + E(2k =) X2 =(=k>§-3k" = kv)\ + k*(v — 2k) = 0. (3.2)

Because G is k-regular, its largest eigenvalue is k. (note : three eignvalues of matric B are
01 > 0y > 0s)
Since B has a eigenvalue k, we need to find another two eigenvalues of B in terms of v and

k. Note that Equation 3.2 becomes
A=E)[(v—k —1DA2 + (K* — k)A + (2k* — kv)] = 0.

Then we can obtain A = k£ and

\ —(k? = k)£ /(2 — k)2 —4(v — k — 1)(2k2 — kv)
B 2(v —k —1) ‘

19



(k2 — k) + /(2 — k)% — 4(v — k — 1)(2k2 — ko)

So, 0 =k, 0y = — o —F=T)

and

o _ —(k* — k) — /(K2 — k)2 —4(v — k — 1)(2k2 — kv)
T 2w —k—1) '

Lemma 3.3.3. If G is an srg(k* + 1,k,0,1) then G has exactly three distinct eigenvalues
~1+VIk=3 , _—1-Vak—3
2 ’ '

"o 2

A o=k Ay =

Proof. Note that B in (3.1) with v = k* + 1 is an equitable quotient of A. Then by
(k2 — k) + /(k* — k)2 — 4(v — k — 1)(2k2 — kv)

Lemma 3.1.1, 6, = k, 05 = —

2w —k—1) ’
—(K?—k)— /(K2 — k)2 —4(v—k—1)(2k%2 -k
0; = ( ) \/( ) W ) v) are eigenvalues of A. It is well-known
2(v — k =)
A has exactly three eigenvalues [4]. O

Lemma 3.3.4. If graph is girth > 5 and k-regular of orderv. (k > 2)

0 k 0
- |1 0 k—1
0 k(k=1) vk —2k*
v—k—1 v—k-1

then the following ()5 (42) holds.
—1+ 4k —3
2

(i) O9(v) > with‘equality iff v = k% + 1.

) — -k A3
) 6sv) < s~ a1

Proof. Because girth of graph G is at least 5, G has no cycle of length 4. Then |I'so| > k(k—1).

If not, it has a cycle of length 4. Contradict to girth at least 5. We can get an inequality
v>k+1=kk—-1)+k+1

We want to claim

—(K? — k) + (k2 — k)2 — 4(v — k — 1)(2k2 — kv) Lol Vak —3

0, = 3.3
2 2v—k—1) = 2 (3:3)
22
We have v > k?+ 1 and k2 +1 > w, for all £ > 2. Note that
2k + k+ 3 1 2k* +k+3 1

3(v )2 — g(kA —2k3 + k) > 3(k* +1 )2 — g(k4 —2k* + k*) = 0.

3 3
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Let

_2k2+k:+3 1

fv) =3(v 3 )2 — 5(1{54 —2k% + k%) > 0. (3.4)

Simplifying f(v) = 3v% — 2(2k? + k + 3)v + k* + 2k® + 4k? + 2k + 3. We split into two parts

of left and right sides of the Inequality 3.4, and we can obtain
4kv® — 4k(3k + v + (K + 6K% 4+ 9k?) > (4k — 3)v? — 2(4k — 3)(k + 1)v + (4k — 3)(k + 1)2.
Simplifying again,

(* — k) — 4(v — ke"1)(2k% = kv) S A4k — 3)(v — k — 1) > 0.

Taking square root on both sides,

V(2= K)? — dlo—F — 1)(2k% = ko) > V4k = 3w — k — 1). (3.5)
Because (k% +1—=v) < 0, for all v > k* +1, we can get
Viak = 3@ —k — 1) >V4k —3(v—k— 1)+ (K4 = v)
=VAk=3(v—k— 1) $(k+1 — v) + (k* — k)
(=L VAE=3)(0 —k — 1) + (k* — k).

Then

Vk2 = k)2 —4(v—k—1)(2k2 — kv) > (=1 +V4k = 3)(v — k — 1) + (k* — k).

Since (v —k —1) > 0, as k > 2. We divide by 2(v — k — 1) on the both sides to obtain

—(k* = k) + /(k? — k)2 —4(v — k — 1)(2k2 — kv) s Viak =3
2(v —k — 1) - 2 ‘

—(k? -k k2 — k)2 —4(v—k—1)(2k*2 -k
Finally, substitute v = k? + 1 into 6, = ( )+ \/( ) (v ) U),

2v—k—1)
-1 \/4]{]—3 —]{]2—]{; k2_k2_4 _k—l 2k2_k
then we can get 6, = i 5 . Solving ( )+ VI 2(0)_ . _(71)) )( v) _
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—1+ 4k —
+ 5 3, we can obtain v = k% + 1. So, the Inequality 3.3 holds iff v = k? + 1. From

Inequality 3.5, we obtain

~(W k) VA3 —k—1) (K k) — V(K k)~ 40—k~ 1)(2k — k)
20—k —1) =T 20—k —1)

The proof is complete.
O

Theorem 3.3.5. Let G be a k-regular graph (k > 2) of order v with girth at least 5 and let

the eigenvalues of adjacency matrix be

Then

(i) d = 2;
(iv) v=k?+ 1.

Proof. By above lemma and Theorem 2.4.3.

N 3 Oy > —1+\2/4I<:—3, (36)
—(K*—k) 4k -3
< — . .
’\”—93—2(v—k—1) 2 (3.7)



Then we can obtain

)\22—1+\/4k:—37
2
\ < —(K*—k) 4k -3
T2 —k—1) 2

(i7) = (¢) This is clear by Lemma 3.3.3.

(1ii) = (ii) Note that the Assumption 3.3 holds for some vertex x. So, (ii) follows from
Theorem 3.2.2.

(iv) = (i4i) Note that Assumption 3.1 holds for some vertex x. Therefore (iii) follows from
Lemma 3.3.1.

(1) = (iv) From (3.6) and Lemma 3.3.4. O

Example 3.3.6. These graphs are k-regular and girth >5.0 =10,12,12 and k£ = 3.

P

—14+v4k -3
Aa(left) = 1, Ag(center) = 1.56 , Ay(right) = 1.53. These eigenvalues are all > i 5 =
—(kK*—k Viak — 3
1. Note that Ajp(left) = —2 < O5(left) = =2 < 2 ( ? )1) - 5 = —2, A\jz(center)
U — —
—(k2 — k A4k —
= —2.56 < fO3(center)= —1.92 < (k ) — k=3 = —1.875, and Ajp(right) = —2.3 <
200 —k—1) 2
05(right)= —1.92 < —1.875. Moreover, the graph on the left side is srg(10, 3,0, 1), its diam-

14V —3
’ -

eter is 2 and Ay = 1.
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