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摘摘摘要要要

考慮一包含n個待測物，且最多有d個呈陽性的集合。我們的目的是藉由群試設計的概念找

出所有呈陽性的待測物。一個群試設計含有多個測試，每個測試都包含兩個以上的待測

物。我們探討群試設計的目的是去減少測試的個數和階段數。而在同一個階段裡的測試可

同時執行。

我們修改並且分析了一個適用於在已知最多二個陽性物的情況下的二階段群試檢驗演

算法。此演算法的測試次數是O(3 log n)。
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Mathematical Models Related to
Group Testing Algorithms

Student: Ju-Wen Tseng Advisor: Chih-Wen Weng

Department of Applied Mathematics

National Chiao Tung University

Hsinchu, Taiwan 30050

Abstract

Consider a set of n items which has at most d positive items. Our aim is to find all positive

items by using the concept of group testing. A group testing consists of a few tests, each of

them containing more than one item. The objective in the study of group testing is to reduce

the number of test times and to reduce the number of stages which partition the tests into

different time slots.

We modify and analysis a group testing algorithm, which has 2-stage for the case d=2

and the test number of this algorithm is O(3 log n).
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Chapter 1

Introduction

1.1 The history of group testing

We first give the brief history of group testing and most of them is referred to [1].

Unlike many other mathematical fields which can track back to earlier centuries, group

testing has developed only for about 70 years.

The idea of group testing origins from recent event World War II. We usually give credit

for a single person-Robert Dorfman. During World War II, some economists is exhausted by

examining blood samples from millions of draftees. Someone suggested that it is economical

to pool the blood samples. We quote some paragraphs from Robert Dorfman’s recollection

in the following:

“The drabness of life in those wings was relieves by occasional bull sessions.

Group testing was first conceived in one of them, in which David Rosenblatt and I

participated. Being economists, we were all struck by the wastefulness of subject-

ing blood samples from millions of draftees to identical analysis in order to detect

a few thousand cases of syphilis. Someone suggest that it might be economical to

pool the blood samples, and the idea was batted back and forth. There was lively

give-and-take and some persiflage. I don’t recall how explicitly the problem was

formulated there. What is clear is that I took the idea seriously enough so that

in the next few days I formulated the underlying probability problem and worked
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though the algebra (which is pretty elementary). Shortly after, I wrote it up, pre-

sented it at a meeting of the Washington Statistical Association, and submitted

the four-page note that was published in the Annals of Mathematical Statistics.

By the time the note was published, Rosenblatt and I were both overseas and out

of contact.”

Robert Dorfman also applied group testing to examine syphilis, which is intended to be used

by the United States Public Health Service and the Selective System to weep out all syphilitic

men called up for induction. Although this group testing method for syphilis screening was

not actually put to use, Dorfman’s clear account of applying group testing to screen syphilitic

individuals may have new impact to the medical world and the health service sector.

With the end of World War II and the release of millions of millions of inductees, the

practical need of group testing disappeared, so the research related to group testing got fewer.

Two Bell Laboratories scientists, Sobel and Groll, again motivated by practical need,

applied group testing on industrial sector, and they established many new grounds for future

studies about group testing in their 74-page paper.

One of industrial application they apply is that testing condensers and resistors. This

idea can be explained clearly by the Christmas tree lighting problem. A batch of light blubs

is electrically arranged in series. If the lights are on, then whole tested subset of bulbs must

be good; if the lights are off, then at least one bulb in the subset is defective.

Notice that Dorfman, as well as Sobel and Groll, studied group testing under probabilistic

models. Katonia is the first people mentioned the combinatorial aspects of group testing.

He give a more restrictive viewpoint on combinatorial group testing (CGT) is taken by

completely deleting probability distributions on defectives. The assumption on the defective

set is that it must be a member, called a sample point, of a given family called a sample

space. For instance, the sample space can consist of all d-subsets of the n items, when the

assumption is that there are exactly d defectives among the n items.
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Recently, CGT has studied in many fields like complexity theory, graph theory, learning

models, communication channels and fault tolerant computing.

1.2 Preliminaries

In this section, we will introduce the concept of group testing, then give the definition of

d-pooling design which is the main theme of this paper.

Consider a set of n items, denoted by 1, 2, . . . , n such that each of them can be either

positive or negative. The concept of group testing is based on the following assumption:

The group testing assumption: Given any subset S of n items, if S has at least 1

positive item, then the group testing outcome of S is positive; otherwise (i.e. items in S are

all negative), the group testing outcome of S is negative.

A subset S of [n] will be called a group test or a test for short. A group testing

algorithm is an organization of group tests such that from the outputs of these tests, one

can identify which items are positive.

Definition 1.2.1. A d-pooling design is a group testing algorithm that can identify all

positive items among items which have at most d positive items.

Generally, we can divide group testing algorithm into three types:



sequential algorithm: The tests are conducted one by one, and

the outcome of the previous tests are

assumed known at the time of

determining the current test.

nonadaptive algorithm: All tests are conducted simultaneously.

multistage algorithm: Tests are divided into several stages

where the stages are considered

sequential but all tests in the same

stage are treated as nonadaptive.
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1.3 Outline of each chapter

In this paper, we will first provide a 2-stage 2-pooling design in Chapter 2,and in this chapter

we also give analysis of the test times of this 2-stage 2-pooling design. We will revisit this

2-stage 2-pooling design in after chapter.

In Chapter 3 , we will talk about d-separable and d-disjunct matrices and apply them to

the 2-stage 2-pooling design in Chapter 2.

In Chapter 4 , we introduce (d, s]-disjunct matrices which can be seen as the generalization

of d-disjunct matrix and discuss the lower bound of the number of rows of (d, s]-disjunct

matrix.

4



Chapter 2

A 2-stage 2-pooling design

By modifying an idea in [4], we shall give a 2-stage 2-pooling design in this chapter. For

convenience, we assume n = ck, and represent each item as k-tuple (c1, c2, . . . , ck), where

ci ∈ {1, 2, . . . , c}. We assume that there are at most 2 positive items among these ck items.

2.1 Algorithm

The algorithm for 2-stage 2-pooling design is described as the following:

Stage 1: Simultaneously apply group testing on each of the following ck subsets of items:

Si(j) = {(c1, . . . , ci−1, j, ci+1, . . . , ck) | c` ∈ {1, 2, . . . , c}},

where 1 ≤ j ≤ c, 1 ≤ i ≤ k.

Analysis: Since there are at most 2 positive items, according to 0, 1 or 2 positive items in

the beginning, there are the following (i)-(iii) cases for the outcomes of stage 1.

(i) For all 1 ≤ j ≤ c, 1 ≤ i ≤ k, the test on Si(j) is negative: This implies that there is no

any positive item.

(ii) For all i, there exists a unique ui such that the test on Si(ui) is positive: This implies

that the k-tuple u = (u1, u2, . . . , uk) is the unique positive item.
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(iii) There are p positions d1, d2, . . . , dp ∈ {1, 2, . . . , k} such that for each position i ∈

{d1, d2, . . . , dp} among the c tests on Si(j) for 1 ≤ j ≤ c, there are exactly two positive

tests, say on Si(ni) and on Si(mi), and for each j of the remaining (k − p) positions

there is a unique positive test, say Sj(nj) : This means that there are exactly two

positive items u, v such that ui = vi = ni if i ∈ [k] − {d1, d2, . . . , dp}, and uj 6= vj and

{ui, vi} = {ni,mi} for i ∈ {d1, d2, . . . , dp}.

We have to apply stage 2 if the case (iii) happens, otherwise we stop. Let {d1, d2, . . . , dp} ⊆

{1, 2, . . . , k} and nj,mj ∈ {1, 2, . . . , c} for j ∈ {d1, d2, . . . , dp} be described in the case (iii)

above.

Stage 2 : Do the p− 1 group tests on Sd1(nd1) ∩ Si(ni) for i ∈ {d2, . . . , dp}.

Analysis: Let D ⊆ {d2, . . . , dp} such that the positive outputs in Stages 2 are Sd1(nd1) ∩

Si(ni) for i ∈ D. Since the two positive items u, v take different values nd1 , md1 on the

coordinate d1, we may assume ud1 = nd1 and vd1 = md1 . Then after Stage 2, one can identify

the positive items u and v from the following descriptions:

(a) ui = vi = ni, if i ∈ [k]− {d1, d2, . . . , dp};

(b) ui = ni and vi = mi, if i ∈ D;

(c) ui = mi and vi = ni, if i ∈ {d2, . . . , dp} \D.

(a) is clear from the output of Stage 1. We shall prove (b)-(c). Since we assume ud1 = nd1 ,

the test on Sd1(nd1) ∩ Si(ni) is positive iff ui = ni (and hence vi = mi) for i ∈ {d2, . . . , dp}.

Then (b), (c) follow.

6



2.2 Analysis of the number of tests

In this section, we shall investigate the number of tests of the algorithm described in section

2.1. The number of tests at the first stage is apparently c · k. The number of tests at the

second stage is p− 1, so the worse case is k− 1. Hence the worst case of the number of tests

of this algorithm of 2-stage 2-pooling design is ck + (k − 1) = (c + 1)k − 1.

If n is given in general situation, we choose a constant number c and an integer k such

that ck−1 < n ≤ ck. By adding more negative items if necessary, we can assume that there

are ck items and apply the 2-stage 2-pooling design. Then the lower bound and upper bound

of the number t of tests in the expression of functions of n is

−1 + (c + 1) logc n ≤ t = (c + 1)k − 1 < c + (c + 1) logc n.

Note that if c = 2 then

−1 + 3 log2 n ≤ t < 2 + 3 log2 n.

We shall indicate by three graphs that the values c ∈ {3, 4} take smaller upper bounds

for t.

The graph of t = c + (c + 1) logc n in ct-plane for n = 105 and 2 ≤ c ≤ 5.
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The graph of t = c + (c + 1) logc n in ct-plane for n = 1020 and 2 ≤ c ≤ 5.

The graph of t = c + (c + 1) logc n in ct-plane for n = 10106 and 2 ≤ c ≤ 5.

2.3 The minimum number of tests for 2-pooling design

Assume there are n items and among these items there are at most 2 positive items. Let

t(n, 2) denote the minimum number of tests to identify all the positive items between n items

in the worse case. We shall compare our 2-stage 2-pooling design with t(n, 2). Before that,

we investigate the possible range of t(n, 2) first. The following lemma is about a lower bound

of t(n, 2).

Lemma 2.3.1.

n2 + n + 2

2
≤ 2t(n,2).

Proof. Given an algorithm of group testing, we can write down the outcomes of all tests as a
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binary vector v of length t(n, 2) such that vi = 1 iff the i-th test has been proceeded and has

a positive outcome. If the algorithm works, then the 2t(n,2) possible binary vectors v must

distinguish those
(
n
2

)
+
(
n
1

)
+
(
n
0

)
= (n2 +n+ 2)/2 possible situations. Hence (n2 +n+ 2)/2 ≤

2t(n,2).

The following lemma is about an upper bound of t(n, 2).

Lemma 2.3.2.

t(n, 2) ≤ d2 log2 ne.

Proof. If we use the divide and conquer strategy, it takes at most dlog ne steps to find 1

positive item. Since there are 2 positive items, it takes at most d2 log ne steps.

From the above two lemmas, we have the following corollary.

Corollary 2.3.1. −1 + d2 log2 ne ≤ t(n, 2) ≤ d2 log2 ne. �

Proof. This follows from the above two lemmas and

−1 + log2(n
2 + n + 2) > −1 + 2 log2 n.

From the previous Corollary, there are two possible values of t(n, 2), t(n, 2) = −1 +

d2 log2 ne, or t(n, 2) = d2 log2 ne.

Comparing the number t(n, 2) with the test number t of our 2-stage 2-pooling design,

our test number t is about 3t(n, 2)/2. Since our design has only 2 stages, it is suitable in

biological experiments, which usually need long time to wait for a test result.
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Chapter 3

Matrices related to pooling designs

Given a nonadaptive pooling design, one can construct a binary matrix M = (mij) whose

rows are the t tests and columns are the n items such that

mij = 1 iff the j-th item is contained in the i-th test.

On the other hand, given a binary matrix M , the above line also gives a nonadaptive

group testing algorithm, possibly failing to work.

In this chapter, we will review d-separable matrix and d-disjunct matrix, which have good

properties to ensure that their corresponding group testing algorithm works properly. We

construct the matrices corresponding to the 2-stage 2-pooling designs given in section 2.1,

and check how far for them to be d-separable or d-disjunct properties.

3.1 d-separable matrix and d-separable matrix

We first give the definition of d-separable matrix and d-separable matrix.

Definition 3.1.1. A binary matrix M is called d-separable if ∪D 6= ∪D′ for any two

distinct d-sets D , D′ of columns.

Definition 3.1.2. A binary matrix M is called d-separable if ∪D 6= ∪D′ for any two

distinct sets D , D′ of columns of M with |D| , |D′|≤ d.
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From the above two definitions, we have the following remark.

Remark 3.1.1. A d-separable matrix is also a d-separable matrix.

Example 3.1. Consider the following two matrices

M =


1 0 0 0
0 1 0 0
0 1 0 1
1 0 0 1

 , M ′ =


1 0 0
0 1 0
0 1 1
1 0 1

 .

One can easily check that M is a 2-separable matrix but not a 2-separable matrix, and

M ′ is a 2-separable matrix. This example tells us that a d-separable matrix can not contain

an all zero columns.

In the following, we show that if there are exactly d unknown positive items we can find

all these d positive items by using the outcome and a given d-separable matrix M .

Represent a nonadaptive group testing by using a t×n d-separable matrix M . There are

t tests. The i-th test contains those items j ∈ {1, 2, . . . , n} with mij = 1 for 1 ≤ i ≤ t.

Then the t outcomes can also be represented by a t-vector v = (v1, ..., vt)
t , where vi = 1

iff the outcome of test i is positive; vi = 0 otherwise. Let D be the set of positive items.

Then v is the union of those columns indexed by D.

One of the methods is by comparing v with the union of any d columns of M to find the

set D of positive items. The d-separable assumption on M ensures that D is unique, so this

method works. However, in the worst case this method needs to
(
n
d

)
times of comparison to

find D. We give a method presented in [1] to reduce the number of comparisons.

Let MD be a tD × nD matrix obtained from M by keeping only the rows with positive

outcome and columns which represent items not appearing in any negative outcome. Let

T ′D := {i | vi = 1} be the set of these tD tests, and ND be the set of these nD items.

11



M :

ND︷︸︸︷ v

T ′D { MD

1
...
1

some 1 all 0 some 1

0
...
0

An illustration of the matrix M and its submatrix MD.

Let TD be the collection of subsets of items which are in each test in T ′(D). Then

TD = {{j | mij = 1} | vi = 1},

ND =
⋂

i:vi=0

{j | mij = 0}.

Lemma 3.1.1. D ⊆ ND.

Proof. Let j ∈ D. Then vi = 1 if mij = 1. Hence j 6∈
⋃

i:vi=0

{j | mij = 1}. Thus j ∈ ND.

Lemma 3.1.2. D ∩ T 6= ∅ for all T ∈ TD.

Proof. Fix T ∈ TD. Then T = {j | mij = 1} for some i with vi = 1. Since vi = 1, there

exists k ∈ D with mik = 1. Clearly k ∈ D ∩ T.

From the above two lemmas, the following hitting set problem is related to identifying

the unknown subset D of items.

Reduced hitting set problem: Find a minimum-cardinality subset Y of ND such that

Y ∩ T 6= ∅, for all T ∈ TD.

Proposition 3.1. Suppose that there is a set of n items with exactly d unknown positive

items. Let M be a t × n d-separable matrix. Given any test outcome vector, there exists

a unique minimum solution Y for the reduced hitting set problem. Moreover, its size is d,

except for nD = d, the size can be d− 1.
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Proof. First, note that nD ≥ d, since ND contains all positive items.

Case 1 : If nD > d.

We show that any minimum solution has size at least d.For contraction, if there exists a

hitting set H of size h < d. Then putting other d− h items from ND into H would result in

a hitting set of size d.

Since nD > d, we can find two distinct hitting sets of size d. Note that the union of

columns corresponding to any hitting set is the test outcome vector. Therefore, the two

unions corresponding to two hitting sets of size d are equal, contradicting the definition of

d-separability.

Moreover, all d positive items form a hitting set for positive pools. Therefore, the min-

imum hitting set has size exactly d. Furthermore, the hitting set of size d is unique since

existence of two distinct hitting sets of size d yields the equality of two unions of d columns,

contradicting the d-separability.

Case 2 : If nD = d. The minimum hitting set K may have size k smaller than d, which would

not result in any contradiction since ND has the unique subset of size d. Since d-separable

matrix is also (d−1)-separable. If k < d−1, then K∪{x} 6= K∪{y} for x 6= y, x, y ∈ ND−K,

contradicting the (d − 1)-separability. Hence k = d − 1. The d-separability also assures the

uniqueness of K.

From Proposition 3.1, we know that if a d-pooling design whose corresponding matrix M

is d-separable and we know that there are exactly d positive items additionally, then finding

all positive items is equal to solve the hitting set problem. More precisely,

D =

{
Y , nD > d

Nd , nD = d
.

Since for each m×n d-separable matrix M can correspond to a d-pooling design as follows:

there are n items and m tests, and mij=1 iff test i contains item j. It means each d-separable
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matrix M gives one d-pooling design which is non-adaptive.

Unfortunately, the hitting set problem is NP-hard, and it still has no good method except

checking all possible d-subsets of all items to determine the hitting set.

Note that checking all possible d-subsets of all items spends O(|Nd|d).

Now we revisit 2-stage 2-pooling design given in section 2.1 . In the following we construct

matrices corresponding to the first stage of the 2-stage 2-pooling design given in section

2.1. Recall that n = ck and the items are represented as k-tuple (c1, c2, . . . , ck), where

ci ∈ {1, 2, . . . , c}, and there are ck tests in the subsets

Si(j) = {(c1, . . . , ci−1, j, ci+1, . . . , ck) | c` ∈ {1, 2, . . . , c}},

where 1 ≤ j ≤ c, 1 ≤ i ≤ k. So the corresponding matrix M has size ck by ck. For

convenience we use the k-tuple c1, c2, . . . , ck over {1, 2, . . . , c} for the indices of columns, and

2-tuple (i, j) for the indices of rows, where 1 ≤ i ≤ k, 1 ≤ j ≤ c. Then

m(i,j),(c1,c2,...,ck) =

{
1, ci = j;
0, otherwise.

Note that the matrix M has constant rowsum ck−1 and constant columnsum k.

We give an example of corresponding matrix to the first stage of the 2-stage 2-pooling

design given in section 2.1 with c = 2 and k = 3 as following.

Example 3.2. Let M be the matrix corresponding to the first stage of the 2-stage 2-pooling

design given in section 2.1 with c = 2 and k = 3. Then

M =


1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1


with columns indexed by (1, 1, 1), (2, 1, 1), (1, 2, 1), (2, 2, 1), (1, 1, 2), (2, 1, 2), (1, 2, 2), (2, 2, 2)

in order, and rows indexed by (1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2) in order.
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Given any two items I1 and I2 whose representation are (a1, a2, . . . , ak) and (b1, b2, · · · , bk),

where ai 6= bi ∀i respectively. The union of two columns indexed by items I1 and I2 is the

same as the union of columns indexed by items (b1, a2, · · · , ak) and (a1, b2, · · · , bk). This

proves the following lemma.

Lemma 3.1.3. Let M be the matrix which represents the first stage of a 2-stage 2-pooling

design given in section 2.1 . Then M is not a 2-separable matrix. �

Although M is not 2-separable matrix, M still have some good properties. For example,

applying M in the first stage of a pooling design as described in section section 2.1 can

conclude a smaller set including positive items, and reduce the number of tests in the next

stage. Furthermore study of M is necessary.

3.2 s-disjunct matrix

In this section, we first give the definition of a binary matrix M to be de-disjunct and show

that if there are at most d unknown positive items we can find all these d positive items by

using the outcome and a given d-disjunct matrix M .

Definition 3.2.1. A binary matrix M is called se-disjunct if given any s+1 columns of M

with one designated, there are e+1 rows with a 1 in the designated column and 0 in each of

the other s columns.

An s0-disjunct matrix is also called s-disjunct.

Example 3.3. 
1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1


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is a 21-disjunct matrix. Note that for a 21-disjunct matrix with 3 columns, the minimum

number of row is 6.

In the following we talk about application of d-disjunct matrix on d-pooling design. Sim-

ilarly to the section 3.1, represent d-pooling design as a binary matrix M , where the columns

represent items, the rows represent tests, and mij = 1 iff item j is contained in the test i.

Suppose we have t tests. Then the t outcomes can also be represented by a t-vector

v = (v1, ..., vt)
t , where vi=1 iff the outcome of test i is positive; vi=0 otherwise.

Proposition 3.2. Suppose M is a corresponding matrix of d-pooling design which is d-

disjunct. An item is positive iff it (as a column) is contained by v.

Proof. Since a negative item (column) has at least one row not covered by the union of the

up-to-d positive items ; such a row then has a negative outcome which identifies the item as

negative.

From this Proposition, we can conclude that if a pooling design whose corresponding

matrix is d-disjunct, then it is simple to decode to find all positive items. Recall that in

the section 3.1 we have mentioned if a d-pooling design whose corresponding matrix M is d-

separable, then finding all positive items is equal to solve the hitting set problem. So finding

all positive items with one d-pooling design corresponding matrix M which is d-separable is

harder than with corresponding matrix M which is d-disjunct. This is reasonable. Since a

d-disjunct matrix is also a d-separable matrix. If the reader want to know the proof, you

may refer to [1].

We meet 2-stage 2-pooling design given in section 2.1 again.

Lemma 3.2.1. The matrix M corresponding to the first stage of the 2-stage 2-pooling design

given in section 2.1 is not a 2-disjunct matrix.
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Proof. Given any item I whose representation is (a1, a2, · · · , ak). The union of columns

indexed by items (b1, a2, · · · , ak) and (a1, b2, · · · , bk) covers the column indexed by I,where

bi 6= ai.

From Example 4.2 and Example 4.4, we know that M is neither a 2-separable matrix nor

a 2-disjunct matrix, and it seems to be impossible to modify this 2-stage algorithm to be

1-stage with small test times.

3.3 Method for constructing de-disjunct matrix

In [5], Macula gave a way of constructing disjunct matrices by the containment relation of

subsets in a finite set. Now we introduce another construction mentioned in [3], which uses

intersecting relation of subsets in a finite set. Before we give a construction, we define a

notation which will be used to construct a de-disjunct matrix.

Definition 3.3.1. For positive integers 1 ≤ d < k < n, let M(i; d, k, n) be the binary matrix

with rows indexed with
(
[n]
d

)
and columns indexed with

(
[n]
k

)
such that M(A,B) = 1 iff

|A ∩B| = i.

Let B ∈
(
[n]
k

)
and C=[n]\B. Then, for any D ∈

(
[n]
d

)
,|D ∩ B| = i iff |D ∩ C| = d − i.

Therefore,M(i; d, k, n) = M(d− i; d, n− k, n) when n > k + d− i.

Since i ≤ bd
2
c iff d− i ≥ bd+1

2
c, we always assume that i ≥ bd+1

2
c.

Theorem 3.3.1. Let 1 ≤ s ≤ i, bd+1
2
c ≤ i ≤ d < k < n and n− k − s(k + d− 2i) ≥ d − i.

Then M(i; d, k, n) is an se2-disjunct matrix, where e2=
(
k−s
i−s

)(
n−k−s(k+d−2i)

d−i

)
-1

Proof. Let B0, B1, ..., Bs ∈
(
[n]
k

)
be any s + 1 distinct columns of M. Let xi ∈ B0\Bi, i ∈ [s]

and X0 = {xi|i ∈ [s]}. Let A0 = {A0 |A0 ∈
(
[n]
i

)
such that X0 ⊆ A0 ⊆ B0}. Note that

|A0| =
(
k−|X0|
i−|X0|

)
= k − |X0|choosek − i and |A0| ≥

(
k−s
k−i

)
=
(
k−s
i−s

)
. Given any A0 ∈ A0. We have

|A0 ∩B0| = i, |A0 ∩Bj| < i, ∀j ∈ [s]. Also notice that for Bj, j ∈ [s]. If ∃ D ∈
(
[n]
d

)
such that

17



|D ∩ B0| = |D ∩ Bj| = i. Then |B0 ∩ Bj| ≥ 2i − d. Let Y = {j|1 ≤ j ≤ s, |D ∩ Bj| 6= i, ∀

D ∈
(
[n]
d

)
such that |D ∩B0| = i}. We have |

⋃
0≤j≤s,j /∈Y Bj| ≤ k + (s− |Y |)[k − (2i− d)]. Let

D′ = {D′|D′ ∈
(
[n]
d

)
, |D′∩B0| = i, |D′∩Bj| 6= i, ∀j ∈ [s]}. Then |D′|≥

(
k−s
i−s

)(
n−k−(s−|Y |)(k−2i+d)

d−i

)
≥
(
k−s
i−s

)(
n−k−s(k−2i+d)

d−i

)
.

We give some examples by using this construction.

Example 3.4. 1. M(3; 3, 4, 8) is a 3-disjunct matrix, which has
(
8
3

)
rows and

(
8
4

)
columns.

2. M(2; 2, 3, 6) is a 2-disjunct matrix, which has
(
6
2

)
rows and

(
6
3

)
columns.

3. M(1; 1, 2, 4) is a 1-disjunct matrix, which has
(
4
1

)
rows and

(
4
2

)
columns.

Note that the number of rows satisfies the equality of Sperner Theorem, which we will

mention in the next Chapter.
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Chapter 4

(d, s]-disjunct matrix and (d, s]-cover

In this chapter, we generalize the concept of d-disjunct matrix to (d, s]-disjunct matrix and

its relative (d, s]-cover. The study of (d, s]-disjunct matrix may inspire us to realize d-disjunct

matrix better.

4.1 (d, s]-disjunct matrix

Definition 4.1.1. A binary matrix M is called (d, s]-disjunct matrix if given any d + s

columns of M with d columns designated, there is at least 1 row with 1 in these s designated

columns and 0 in each of the other d columns.

Remark 4.1.1. From the above definition, we can observe that (d, 1]-disjunct matrix is also

a d-disjunct matrix.

Example 4.1. 
1 0 1
0 1 1
0 0 1
1 1 0


is a (1, 2]-disjunct matrix.

In the following, we provide a trivial construction for (d, s]-disjunct matrix. First we give

an example to illustrate this construction.
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Example 4.2. In this example, we construct (d, s]-disjunct matrix by trivial construction

for the case d = s = 2. Fix w, s ≤ w ≤ n− d. Let M be the
(
n
w

)
×n binary matrix with each

row consisting of the characteristic vector of each w-subset of [n].

For the case s = d = 2 and n = 4. Fix w=4. We have

M =


1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1

 .

Note that in this construction we have the number of colimns=n ≤
(
n
w

)
= the number of

rows.

Proposition 4.1. Let M be as in Example 4.2. Then M is (d, s]-disjunct.

Proof. We shall prove the incidence matrix between
(
n
w

)
and [n] with row indexed by w-subset

of [n] and column indexed by 1-subset of [n] is (d, s]-disjunct. Pick P,Q ⊆ [n] with |P | = s,

|Q| = d, and P ∩ Q = ∅. Then there exists a subset in
(
n
w

)
and in the interval [P, [n] − Q]

since s ≤ w ≤ n− d.

Definition 4.1.2. Let M be a binary matrix. The complement matrix M is defined by{
M ij = 1 if mij = 0

M ij = 0 if mij = 1
.

Corollary 4.1.1. If M is a (d, s]-disjunct matrix, then M is a (s, d]-disjunct matrix.

Proof. Given any d+ s columns with d designed, we want to find a row in M with 1 in these

d designated columns and 0 in the other s columns. Since M is (d, s]-disjunct. So we can find

a row i with 1 in these s designated columns and 0 in the other d columns. By the definition
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of complement matrix, for the matrix M row i is with 1 in these d designated columns and

0 in the other s columns.

From the Proposition 4.1 and Corollary 4.1.1, give any s, d, and n, with n ≥ s + d. If

d < s then we find integer w in [d, n− d] to obtain the minimum of
(
n
w

)
. Otherwise, we find

integer w in [s, n− s] to obtain the minimum of
(
n
w

)
.

4.2 (d, s]-cover and relation between (d, s]-disjunct ma-

trix and (d, s]-cover

(d, s]-cover has a close relation with (d, s]-disjunct matrix. Roughly speaking, (d, s]-cover

and (d, s]-disjunct matrix have the same meaning, but one uses the notation of subset the

other uses the notation of matrix.

Definition 4.2.1. For P,Q ⊆ [n], define [P,Q]={X : X is a set, P ⊆ X ⊆ Q}

Definition 4.2.2. Suppose s + d ≤ n. An (d, s]-cover of [n] is a family X of subsets of [n]

such that [P,Q] ∩X 6= ∅ for each pair P,Q ⊆ [n] with |P | = s, |Q| = d, and P ∩Q = ∅.

Proposition 4.2. Let X be a (d, s]-cover of [n]. Then the incidence matrix of X and [n] is

(d, s]-disjunct.

Note that the incidence matrix of X is a binary matrix with columns indexed with 1,2,...,n

and rows indexed with subsets in family X.

Proof. Given any d+s columns of M with s columns designed, namely a1, a2, . . . , as, we want

to find a row with 1 in these a1, a2, . . . , as columns and 0 in each of the other d columns,

namely b1, b2, . . . , bd. Let Q={x : column ai is indexed by x, 1 ≤ i ≤ d} and

P={x : column bi is indexed by x, 1 ≤ i ≤ s}. Since X is a (d, s]-cover of [n]. So there exists

D s.t. D ∈ [P,Q] ∩X. Then the row indexed by D is the row we want to find.
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In fact the converse is also true.

Proposition 4.3. If an t × n binary M matrix is (d, s]-disjunct, and for 1 ≤ i ≤ t set

Ti = {j | mij = 1}. Then {T1, T2, . . . , Tt} is an (d, s]-cover of [n].

Proof. Pick any P,Q ⊆ [n] with |P | = s and |Q| = d such that P ∩Q = ∅. Pick i ∈ [t] such

that mij = 1 for all j ∈ P and Mik = 0 for all k ∈ Q. Hence P ⊆ Ti ⊆ Q.

Combine Proposition 4.2 and Proposition 4.3, (d, s]-disjunct matrix and (d, s]-cover they

have one-to-one correspondence.

Now we go back to the 2-stage 2-pooling design given in section 2.1 again, and investigate

whether it is a (2.1]-disjunct matrix.

Consider P={(1, 1, . . . , 1)} and Q={(2, 1, 1, . . . , 1), (1, 2, 1, . . . , 1)}. Suppose P ⊆ Si(j) ⊆

Q for some (i, j) ∈ {1, 2, . . . , k}×{1, 2, . . . , c}. Then j=1 since P ⊆ Si(j). Since (2, 1, 1, . . . , 1) /∈

Si(1), i = 1. Since (1, 2, . . . , 1) /∈ Si(1), i = 2, a contradiction. Also notice that m(i,j)(c1,c2,...,ck) =

1 iff (c1, c2, . . . , ck) ∈ Si(j). Hence we have the following remark.

Remark 4.2.1. Let M be the matrix corresponding to the first stage of 2-stage 2-pooling

design given in section 2.1 with size ck × ck, and for (i, j) ∈ {1, 2, . . . , k} × {1, 2, . . . , c},

T(i,j)={(c1, c2, . . . , ck) : m(i,j)(c1,c2,...,ck) = 1}. Then T(i,j) is not an (2, 1]-cover of all items

{(q1, q2, . . . , qk) : 1 ≤ qi ≤ c, ∀1 ≤ i ≤ k}.

4.3 the minimum number of rows of (d, s]-disjunct ma-

trix

Before we discuss the minimum number of rows with fixed number of columns in a (d, s]-

disjunct matrix, we mention Sperner Theorem first, which gives the upper bound of the

number of columns with the fixed number of rows and provide a lower bound of a (1, 1]-

disjunct matrix with the fixed number of columns.

The following theorem is referred to [6].
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Theorem 4.3.1. (Sperner 1928) If M is (1, 1]-disjunct matrix then the number of columns of M ≤(
t
bt/2c

)
.

Note that for the number of columns of M =
(

t
bt/2c

)
we have the equality.

For t = 4 we have the number of columns of M =
(
4
2

)
= 6 here, but for the columns of M =

6 in the trivial construction we have t =
(
6
w

)
≥ 6.

For the rest of this section, we will discuss the minimum number of rows of (d, s]-disjunct

matrix.

Definition 4.3.1. 1. Let t(d, s, n) denote the minimum number of t such that a (d, s]-

disjunct matrix of size t× n exists.

2. Let t(d, s, n, w) denote the minimum number of t such that a (d, s]-disjunct matrix with

constant row sum w of size t× n exists.

3. Let tc(d, s, n) = minw∈[n] t(d, s, n, w).

Remark 4.3.1. 1. t(d, s, n) ≤ tc(d, s, n) ≤ t(d, s, n, w) for w ∈ [n].

2. t(d, s, n) is the minimal size of a (d, s]-cover of [n].

3. Sperner’s Theorem says that if n is an integer of the form
(

t
bt/2c

)
then

( t(1,1,n)
bt(1,1,n)/2c

)
= n

Sperner Theorem implies t(1, 1,
(

t
bt/2c

)
) = t. EFF proves t(1, 1, n) = n if n ≤ 4, and then

t(1, 1, 5) = 4.

Proposition 4.4. t(1, 1, n) is the least integer such that
(

t
bt/2c

)
≥ n.

Proof. First we show that t(1, 1, n) ≤ t. Let t is the least integer such that
(

t
bt/2c

)
≥ n. Given

any n ∈ N. Since t is the least integer such that
(

t
bt/2c

)
≥ n

By Sperner Theorem, we have a t×
(

t
bt/2c

)
(1, 1]-disjunct matrix M. Delete any

(
t
bt/2c

)
−n

columns from M , and let it be M ′. Then M ′ is a t × n (1, 1]-disjunct matrix . Hence

t(1, 1, n) ≤ t.
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Now, we show that t(1, 1, n) = t, By Sperner Theorem, n ≤
(

t(1,1,n)
bt(1,1,n)/2c

)
Since t is ”the least” integer such that n ≤

(
t
bt/2c

)
. So t(1, 1, n) = t.

Now we derive one lower bound for t(d, s, n.w).

Lemma 4.3.1. Suppose s ≤ w ≤ n− d. Then(
n
s

)
×
(

n− s
n− s− d

)
≤ t(d, s, n, w)×

(
n− w

n− w − d

)
×
(

w
s

)
.

Proof. Let Y = {(P,Q) : Both P and Q are subsets of [n], |P | = s, |Q| = d and P ∩Q = ∅}.

Let X be a (d, s]-cover of [n] with size t(d, s, n, w). Then given any pair (u, v) in Y , there

exists subset T ∈ X s.t. U ⊆ T ⊆ [n] \ V.

Let T ′ = {(A,B, T ) : T ∈ X,A ⊆ T,B ⊆ [n] \ T, |A| = s, |B| = d}. Then |T ′| =

t(d, s, n, w)
(
w
s

)(
n−w

n−w−d

)
. Since for each pair (U, V ) in Y , we can find a pair (U, V, T ) ∈ T ′.

Hence |Y | =
(
w
s

)(
n−w

n−w−d

)
≤ |T ′| = t(d, s, n, w)

(
w
s

)(
n−w

n−w−d

)
.

Lemma 4.3.1 gives us a lower bound for t(d, s, n, w), we write it down as Corollary 4.3.1.

Corollary 4.3.1.

t(d, s, n, w) ≥ du(w)e,

where

u(w) =

(
n
s

)(
n− s
d

)
(

n− w
d

)(
w
s

) .

We want to know when u(w) obtains minimum.

u(w)

u(w + 1)
=

(w + 1)(n− w − d)

(w + 1− s)(n− w)

{
≥ 1, if w ≤

⌊
ns−d
d+s

⌋
;

< 1, else.
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Corollary 4.3.2.

tc(d, s, n) ≥ u(

⌊
ns− d

d + s

⌋
).

In fact u(
⌊
ns−d
d+s

⌋
) tends to a constant as n → ∞. But we still can guess that the row

weight of a good (d, s]-disjunct matrix is closed to sn/(d + s).

25



Bibliography

[1] D.Z.Du and F.K.Hwang, Pooling designs and nonadaptive group testing: important tools

for DNA sequencing, World Scientific Publishong Company, 2006.

[2] D.Z.Du and F.K.Hwang, Combinatorial group testing and its applications, World Scien-

tific Publishong Company, 2nd Edition.

[3] Jun Guo and Kaishun Wang, ”A construction of pooling designs with surprisingly high

degree of error correction”Journal of Combinatorial Theory, Series A, Vol. 118, Issue 7,

pp.2056-2058, Oct., 2011.

[4] 林呈翰兩階段群試設計, 台中一中科學班專題研究報告

[5] A.J. Macula, A simple construction of d-disjunct matrices with certain constant weights,

Discrete Math. 162 (1996) 311- 312.

[6] J.H van Lint,and R.M Wilson, A course in combinatorics, Cambridge University Press,

2nd Edition.

26


