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Mathematical Models Related to
Group Testing Algorithms

Student: Ju-Wen Tseng Advisor: Chih-Wen Weng

Department of Applied Mathematics
National Chiao Tung University

Hsinchu, Taiwan 30050

Abstract

Consider a set of n items which has at most d positive items. Our aim is to find all positive
items by using the concept of group testing. A group testing consists of a few tests, each of
them containing more than one item: The objective in the study of group testing is to reduce
the number of test times and to reduce the number of stages which partition the tests into
different time slots.

We modify and analysis a group testing algorithm, which has 2-stage for the case d=2

and the test number of this algorithm is O(3logn).
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Chapter 1

Introduction

1.1 The history of group. testing

We first give the brief history of group testing and most of them is referred to [1].

Unlike many other mathematical fields which can track back to earlier centuries, group
testing has developedronly for about 70 years.

The idea of grouptesting origins from recent event World War 1I. We usually give credit
for a single person-Robert Dorfman. During World War I1I, some economists is exhausted by
examining blood samples from millions of draftees: Someone suggested that it is economical
to pool the blood samples. We quote some paragraphs from Robert Dorfman’s recollection

in the following:

“The drabness of life in those wings was relieves by occasional bull sessions.
Group testing was first conceived in one of them, in which David Rosenblatt and I
participated. Being economists, we were all struck by the wastefulness of subject-
ing blood samples from millions of draftees to identical analysis in order to detect
a few thousand cases of syphilis. Someone suggest that it might be economical to
pool the blood samples, and the idea was batted back and forth. There was lively
give-and-take and some persiflage. I don’t recall how explicitly the problem was
formulated there. What is clear is that I took the idea seriously enough so that

in the next few days I formulated the underlying probability problem and worked

1



though the algebra (which is pretty elementary). Shortly after, I wrote it up, pre-
sented it at a meeting of the Washington Statistical Association, and submitted
the four-page note that was published in the Annals of Mathematical Statistics.
By the time the note was published, Rosenblatt and I were both overseas and out

of contact.”

Robert Dorfman also applied group testing to examine syphilis, which is intended to be used
by the United States Public Health Service and the Selective System to weep out all syphilitic
men called up for induction. Although this group testing method for syphilis screening was
not actually put to use, Dorfman’s clear account of applying group testing to screen syphilitic
individuals may have new impact to the medical world.and the health service sector.

With the end of World War II and the release of millions of millions of inductees, the
practical need of group testing disappeared, so the research related to group testing got fewer.

Two Bell Laboratories scientists, Sobel and Groll, again metivated by practical need,
applied group testingon industrial sector, and they established many new grounds for future
studies about group testing in their 74-page paper.

One of industrial application they apply is that testing condensers and resistors. This
idea can be explained clearly by the Christmas tree lighting problem. A batch of light blubs
is electrically arranged in series. If the lights are on, then whole tested subset of bulbs must
be good; if the lights are off, then at least one bulb in the subset is defective.

Notice that Dorfman, as well as Sobel and Groll, studied group testing under probabilistic
models. Katonia is the first people mentioned the combinatorial aspects of group testing.
He give a more restrictive viewpoint on combinatorial group testing (CGT) is taken by
completely deleting probability distributions on defectives. The assumption on the defective
set is that it must be a member, called a sample point, of a given family called a sample
space. For instance, the sample space can consist of all d-subsets of the n items, when the

assumption is that there are exactly d defectives among the n items.



Recently, CGT has studied in many fields like complexity theory, graph theory, learning

models, communication channels and fault tolerant computing.

1.2 Preliminaries

In this section, we will introduce the concept of group testing, then give the definition of
d-pooling design which is the main theme of this paper.
Consider a set of n items, denoted by 1,2,...,n such that each of them can be either

positive or negative. The concept of group testing is based on the following assumption:

The group testing assumption: Given any subset. S of n items, if S has at least 1
positive item, then the group testing outcome of S is pesitive; otherwise (i.e. items in S are

all negative), the group testing outcome of S is negative.

A subset S of [n] will be called a group test or a test for short. A group testing
algorithm is an organization of group testssuch that from the eutputs of these tests, one

can identify which items are positive.

Definition 1.2.1. A d-pooling design is a group testing algorithm that can identify all

positive items among items which have.at. most-d pesitive items.

Generally, we can divide group testing algorithm into three types:

(sequential algorithm: The tests are conducted one by one, and
the outcome of the previous tests are
assumed known at the time of

determining the current test.
nonadaptive algorithm: All tests are conducted simultaneously.
multistage algorithm: Tests are divided into several stages
where the stages are considered

sequential but all tests in the same

stage are treated as nonadaptive.



1.3 Outline of each chapter

In this paper, we will first provide a 2-stage 2-pooling design in Chapter 2,and in this chapter
we also give analysis of the test times of this 2-stage 2-pooling design. We will revisit this
2-stage 2-pooling design in after chapter.

In Chapter 3 , we will talk about d-separable and d-disjunct matrices and apply them to
the 2-stage 2-pooling design in Chapter 2.

In Chapter 4 , we introduce (d, s]-disjunct matrices which can be seen as the generalization
of d-disjunct matrix and discuss the lower bound of the number of rows of (d, s]-disjunct

matrix.



Chapter 2

A 2-stage 2-pooling design

By modifying an idea in [4], we shall givesa 2-stage 2-pooling design in this chapter. For

k

convenience, we assume n = c",-and-represent-each item as k-tuple (¢, co,...,c), where

¢ €{1,2,...,c}. We assume that thererare at-most 2 positive items among these c* items.

2.1 Algorithm

The algorithm for 2-stage 2-pooling design is described as the following:

Stage 1: Simultaneously apply group testing-on-each of the following ck subsets of items:

SZ(]) = {(Cl, - ,Ci_l,j,CH_l, e ,Ck) | Cy € {1,2, e ,C}},

where 1 <7 <¢, 1 <1< k.
Analysis: Since there are at most 2 positive items, according to 0, 1 or 2 positive items in

the beginning, there are the following (i)-(iii) cases for the outcomes of stage 1.

(i) Forall 1 <j <e, 1 <i <k, the test on S;(j) is negative: This implies that there is no

any positive item.

(ii) For all 7, there exists a unique w; such that the test on S;(u;) is positive: This implies

that the k-tuple u = (uy,us, ..., ux) is the unique positive item.



(iii) There are p positions dy,ds,...,d, € {1,2,...,k} such that for each position i €
{dy,ds, ... d,} among the c tests on S;(j) for 1 < j < ¢, there are exactly two positive
tests, say on S;(n;) and on S;(m;), and for each j of the remaining (k — p) positions
there is a unique positive test, say S;(n;) : This means that there are exactly two
positive items u, v such that u; = v; = n; if i € [k] — {d1,ds, ..., d,}, and u; # v; and

{UZ‘,UZ'} = {n,,mz} for 7 € {dl,dg, e ,dp}.

We have to apply stage 2 if the case (iii) happens, otherwise we stop. Let {dy,ds,...,d,} C
{1,2,...,k} and nj,m; € {1,2,...,c} for j € {dy,ds,...,d,} be described in the case (iii)

above.
Stage 2 : Do the p — 1"group tests on Sy, (14,) 0 Si(n;) ford € {ds, ..., d,}.

Analysis: Let D C {dy, ..., d,}such that the positive outputs.in Stages 2 are Sg, (ng,) N
S;i(n;) for i € D. Since the two positive items w,v take different values ng, mg, on the
coordinate d;, we may assume uy, = ng, and vy, = mg,. Then after Stage 2, one can identify

the positive items u and v from the following deseriptions:

(a) U; = V; = Ny, if 1 € [k] S {dl,dg, o ,dp};
(b) u; =mn; and v; = my, if i € D;
(¢) uy=m; and v; = n,, it i € {dy,...,dp} \ D.
(a) is clear from the output of Stage 1. We shall prove (b)-(c). Since we assume ug, = ng,,

the test on Sg, (ng,) N Si(n;) is positive iff w; = n; (and hence v; = m;) for i € {da, ..., d,}.

Then (b), (c) follow.



2.2 Analysis of the number of tests

In this section, we shall investigate the number of tests of the algorithm described in section
2.1. The number of tests at the first stage is apparently ¢ - k. The number of tests at the
second stage is p — 1, so the worse case is k — 1. Hence the worst case of the number of tests

of this algorithm of 2-stage 2-pooling design is ck + (k — 1) = (¢ + 1)k — 1.

If n is given in general situation, we choose a constant number ¢ and an integer k£ such
that ¢*~! < n < c*. By adding more negative items if necessary, we can assume that there
are c’ items and apply the 2-stage 2-pooling design. Then the lower bound and upper bound

of the number ¢ of tests in the expression of functions of n. is
—1+(e¥)logn<t=(c+Dk—1<c+(c+1)log.n.
Note that if ¢ =2 then
—14 3logyn <t <2+ 3log, ni

We shall indicate by three graphs that the values ¢ €{3,4} take smaller upper bounds

for t.

454

The graph of t = ¢+ (¢ + 1) log,n in ct-plane for n = 10° and 2 < ¢ < 5.
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2.3 The minimum number of tests for 2-pooling design

Assume there are n items and among these items there are at most 2 positive items. Let
t(n,2) denote the minimum number of tests to identify all the positive items between n items
in the worse case. We shall compare our 2-stage 2-pooling design with #(n,2). Before that,
we investigate the possible range of ¢(n, 2) first. The following lemma is about a lower bound

of t(n,2).

Lemma 2.3.1.

n*+n+2 < otn?),

Proof. Given an algorithm of group testing, we can write down the outcomes of all tests as a



binary vector v of length (n,2) such that v; = 1 iff the i-th test has been proceeded and has
a positive outcome. If the algorithm works, then the 212 possible binary vectors v must

distinguish those (3) + () 4+ (}) = (n*4+n+2)/2 possible situations. Hence (n®+n+2)/2 <

o(n.2) O
The following lemma is about an upper bound of ¢(n, 2).

Lemma 2.3.2.

t(n,2) < [2logyn].

Proof. Tf we use the divide and conquer-strategy, it takes at most [logn| steps to find 1

positive item. Since there are 2 positive items, it takes at most [2logn]| steps. O
From the above two lemmas,-we-have the following corollary.
Corollary 2.3.1. —1+ [2logyn| < t(n,2) < [2log, n]. O

Proof. This follows from the above twolemmas and

~ It logy(n* +n +2) > —1 #2logyn.

]

From the previous Corollary, there are two possible values of t(n,2), t(n,2) = —1 +
[2log, n], or t(n,2) = [2log, n].

Comparing the number ¢(n,2) with the test number ¢ of our 2-stage 2-pooling design,
our test number ¢ is about 3t(n,2)/2. Since our design has only 2 stages, it is suitable in

biological experiments, which usually need long time to wait for a test result.



Chapter 3

Matrices related to pooling designs

Given a nonadaptive pooling design, one ean construct a binary matrix M = (m;;) whose

rows are the ¢ tests and columns are the n items-such that

myj= 1 iff the-j-th item is‘econtained in thew-th test.

On the other hand, given a binary matrix M, the above line also gives a nonadaptive
group testing algorithm, possibly failingto work.

In this chapter, we will review d-separable matrix and d-disjunct matrix, which have good
properties to ensure that their.corresponding group testing algorithm works properly. We
construct the matrices corresponding to the 2-stage 2-pooling designs given in section 2.1,

and check how far for them to be d-separable or d-disjunct properties.

3.1 d-separable matrix and d-separable matrix

We first give the definition of d-separable matrix and d-separable matrix.

Definition 3.1.1. A binary matrix M is called d-separable if UD # UD’ for any two

distinct d-sets D , D" of columns.

Definition 3.1.2. A binary matrix M is called d-separable if UD # UD’ for any two

distinet sets D, D’ of columns of M with |D| , |D’'|< d.

10



From the above two definitions, we have the following remark.
Remark 3.1.1. A d-separable matrix is also a d-separable matrix.

Example 3.1. Consider the following two matrices

M =

=

I
_ o O =
O = = O
oS O O O
_ =0 O
— o O -
O = = O
_ -0 O

One can easily check that M is a 2-separable matrix but not a 2-separable matrix, and
M’ is a 2-separable matrix. This example tells us that a d-separable matrix can not contain

an all zero columns.

In the following, we show that.if there are exactly d unknown positive items we can find
all these d positive items by using the outecome and a given d-separable matrix M.

Represent a nonadaptive group testing by usinga t X n d-separable matrix M. There are
t tests. The i-th test'contains those items j € {1,2,... n} with m;; =1 for 1 <i <t.

Then the ¢ outcomes can alsobe represented by at=vector v = (vq,...,v;)" , where v; = 1
iff the outcome of test i-s positive; v; = 0 otherwise. Let' D be the set of positive items.
Then v is the union of those columns indexed by D:

One of the methods is by comparing v with the union of any d columns of M to find the
set D of positive items. The d-separable assumption on M ensures that D is unique, so this
method works. However, in the worst case this method needs to (Z) times of comparison to

find D. We give a method presented in [1] to reduce the number of comparisons.

Let Mp be a tp x np matrix obtained from M by keeping only the rows with positive
outcome and columns which represent items not appearing in any negative outcome. Let

T}, :={i | v; = 1} be the set of these tp tests, and Np be the set of these np items.

11



Np
~ = v
1
Tp{ Mp
M 1
0
some 1 |all 0 | some 1| :
0

An illustration of the matrix M and its submatrix Mp.

Let Tp be the collection of subsets of items which are in each test in 77(D). Then

Tp ={{j | my =1} [w; =1

No=—() {j ['my =0},

:v;=0

Lemma 3.1.1. D C Np.

Proof. Let j € D. Then w; = 1 if mjz=1:Hence j & |J {j | m;;=1}. Thus j € Np. O

dw;=0
Lemma 3.1.2. DN T () for all T . € Th.
Proof. Fix T' € Tp. Thend = {4.| m;; = 1} for some ¢ with v; = 1. Since v; = 1, there

exists k € D with m;, = 1. Clearly kK € DN T. O

From the above two lemmas, the following hitting set problem is related to identifying
the unknown subset D of items.
Reduced hitting set problem: Find a minimum-cardinality subset Y of Np such that

YNT #0, forall T € Tp.

Proposition 3.1. Suppose that there is a set of n items with exactly d unknown positive
items. Let M be a t x n d-separable matrix. Given any test outcome vector, there exists
a unique minimum solution Y for the reduced hitting set problem. Moreover, its size is d,

except for np = d, the size can be d — 1.

12



Proof. First, note that np > d, since Np contains all positive items.
Casel: If np > d.

We show that any minimum solution has size at least d.For contraction, if there exists a
hitting set H of size h < d. Then putting other d — h items from Np into H would result in
a hitting set of size d.

Since np > d, we can find two distinct hitting sets of size d. Note that the union of
columns corresponding to any hitting set is the test outcome vector. Therefore, the two
unions corresponding to two hitting sets of size d are equal, contradicting the definition of
d-separability.

Moreover, all d positive-items form a hitting set. for pesitive pools. Therefore, the min-
imum hitting set has size exactly d. Furthermore, the hitting set of size d is unique since
existence of two distinct hitting sets-of size d yields the equality of two unions of d columns,

contradicting the d-separability.

Case 2 : If np = d. The minimum hitting set /< may have size k smaller than d, which would
not result in any contradiction since Np has the unique subset of size d. Since d-separable
matrix is also (d—1)-separable. Ifk < d—1, then KU{z} 4 KU{y} forz # y, z,y € Np—K,
contradicting the (d — 1)-separability. Henece k ='d — 1. The d-separability also assures the

uniqueness of K. O

From Proposition 3.1, we know that if a d-pooling design whose corresponding matrix M
is d-separable and we know that there are exactly d positive items additionally, then finding

all positive items is equal to solve the hitting set problem. More precisely,

D— Y ,HD>d'
Nd ,TLD:d

Since for each m xn d-separable matrix M can correspond to a d-pooling design as follows:

there are n items and m tests, and m,;j=1 iff test ¢ contains item j. It means each d-separable

13



matrix M gives one d-pooling design which is non-adaptive.
Unfortunately, the hitting set problem is NP-hard, and it still has no good method except
checking all possible d-subsets of all items to determine the hitting set.

Note that checking all possible d-subsets of all items spends O(|Ny|%).

Now we revisit 2-stage 2-pooling design given in section 2.1 . In the following we construct
matrices corresponding to the first stage of the 2-stage 2-pooling design given in section
2.1. Recall that n = ¢* and the items are represented as k-tuple (ci,cs,...,c,), where

¢; €{1,2,...,c}, and there are ck tests in the subsets

Sz(j) = {(Cl, S off ,Ci_17j7CZ‘+1, Ce ,Ck> | Co € {1,2, . ,C}},

where 1 < j < ¢, 1 <4< k.-—-So-the corresponding matrix M has size ck by ck. For
convenience we use the k-tuple ¢i, s, . . ;¢ over {1,2, .., c} for the indices of columns, and
2-tuple (i, j) for the indices of rows, where 1 <7 <k, 1 < j <e¢. Then

Ml _ 17 C; = .]7
@1 comer)y = mpmpstherwise

k=1 and eonstant columnsum k.

Note that the matrix M has eonstant rowsum c
We give an example of corresponding matrix-to the first stage of the 2-stage 2-pooling

design given in section 2.1 with ¢ = 2‘and k = 3 as following.

Example 3.2. Let M be the matrix corresponding to the first stage of the 2-stage 2-pooling

design given in section 2.1 with ¢ = 2 and £ = 3. Then

10101010
01 0101QO0T1
11001100
M_00110011
11110000
00001111

with columns indexed by (1,1,1), (2,1,1), (1,2,1), (2,2,1), (1,1,2), (2,1,2), (1,2,2), (2,2,2)

in order, and rows indexed by (1,1), (1,2), (2,1), (2,2), (3,1), (3,2) in order.

14



Given any two items [; and I, whose representation are (ay, as, . .., ax) and (by, bg, - - -, by),
where a; # b; Vi respectively. The union of two columns indexed by items I; and I, is the
same as the union of columns indexed by items (by,as, -+ ,ax) and (ay, b, -+ ,b;). This

proves the following lemma.

Lemma 3.1.3. Let M be the matrix which represents the first stage of a 2-stage 2-pooling

design given in section 2.1 . Then M is not a 2-separable matrix. 0

Although M is not 2-separable matrix, M still have some good properties. For example,
applying M in the first stage ofia pooling.design ‘as described in section section 2.1 can
conclude a smaller set including positive items, and reduce the number of tests in the next

stage. Furthermore study of M is-necessary.

3.2 s-disjunct matrix

In this section, we first give the definition of a binary matrix M to be d°-disjunct and show
that if there are at most d unknown positive items we can find all these d positive items by

using the outcome and a given d-disjunct matrix M.

Definition 3.2.1. A binary matrix M is called s°-disjunct if given any s+1 columns of M
with one designated, there are e4+1 rows with a 1 in the designated column and 0 in each of
the other s columns.

An s%-disjunct matrix is also called s-disjunct.

Example 3.3.

O OO O ==
OO, R, OO
_ -0 O O O

15



is a 2!'-disjunct matrix. Note that for a 2!'-disjunct matrix with 3 columns, the minimum

number of row is 6.

In the following we talk about application of d-disjunct matrix on d-pooling design. Sim-
ilarly to the section 3.1, represent d-pooling design as a binary matrix M, where the columns
represent items, the rows represent tests, and m;; = 1 iff item j is contained in the test i.

Suppose we have t tests. Then the t outcomes can also be represented by a t-vector

v = (v1,...,u)" , where v;=1 iff the outcome of test i is positive; v;=0 otherwise.

Proposition 3.2. Suppose M is a corresponding matrix of d-pooling design which is d-

disjunct. An item is positive iff it (as a column) is contained by wv.

Proof. Since a negative. item (column) has at least one row not-covered by the union of the
up-to-d positive items:; such.a row then has.a negative outcome which identifies the item as

negative. [

From this Proposition, we can conclude that if a pooling design whose corresponding
matrix is d-disjunct, then it is simple to decode to find all positive items. Recall that in
the section 3.1 we have mentioned.if a d-pooling design - whose corresponding matrix M is d-
separable, then finding all positive items is equal to solve the hitting set problem. So finding
all positive items with one d-pooling design corresponding matrix M which is d-separable is
harder than with corresponding matrix M which is d-disjunct. This is reasonable. Since a
d-disjunct matrix is also a d-separable matrix. If the reader want to know the proof, you

may refer to [1].

We meet 2-stage 2-pooling design given in section 2.1 again.

Lemma 3.2.1. The matrix M corresponding to the first stage of the 2-stage 2-pooling design

given in section 2.1 is not a 2-disjunct matrix.

16



Proof. Given any item I whose representation is (ay,as, - ,ax). The union of columns
indexed by items (b1, a9, - ,ax) and (ai, by, - ,by) covers the column indexed by I,where
b; # a;.

]

From Example 4.2 and Example 4.4, we know that M is neither a 2-separable matrix nor
a 2-disjunct matrix, and it seems to be impossible to modify this 2-stage algorithm to be

1-stage with small test times.

3.3 Method for constructing d°-disjunct matrix

In [5], Macula gave a way of constructing disjunct matrices:by the containment relation of
subsets in a finite set. ‘Now we introduce another construction mentioned in [3], which uses
intersecting relation of subsets in-a finite set.. Before we give a construction, we define a

notation which will be used to construct a d°~disjunct matrix.

Definition 3.3.1. For positivedntegers 1'<d < k < m, let M (i;d, k,n) be the binary matrix
with rows indexed with ([Z]) and columns indexed “with ([Z]) such that M(A,B) = 1 iff

|AN B| =1.

Let B € ([Z]) and C=[n]\B. Then, for any D € ([’Zl]) JDNBl=4iiff [IDNC| =d—1.
Therefore, M (i;d, k,n) = M(d —i;d,n — k,n) when n >k +d — 1.

Since 7 < L%J iff d—i> L%J, we always assume that i > [%J

Theorem 3.3.1. Let 1 < s <4, |2 <i<d<k<nandn—k—s(k+d—2i)>d—i.

Then M (i;d, k,n) is an s®-disjunct matrix, where 62:(’;:5) (n_k_z(fjd_m)—l

Proof. Let By, By, ..., Bs € ([Z]) be any s + 1 distinct columns of M. Let x; € By\B;,i € [s]
and Xo = {x;|i € [s]}. Let Ay = {Ap |Ap € ([?]) such that Xy C Ay C By}. Note that
| Aol :(’;:‘I)ng'\): k — | Xo|choosek — i and |Ao| >(5-%)= (¥~%). Given any 4, € A;. We have

|Ag N Bo| =i, |Ag N B;| <4, Vj € [s]. Also notice that for B;, j € [s]. If 3 D 6([3]) such that
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IDN Byl = |DNBj| =4. Then |[ByNBj| > 2i—d. Let Y = {j|1 < j <s, |DNBj|#4,V
D E([Z]) such that |D N Bo| = i}. We have |Uy<j<, j¢y Bil < k+ (s —[Y|)[k — (2d — d)]. Let
D' = {D'|D' ("), |D'NBy| = i,|D'NB;| # i,¥j € [s]}. Then [D'|> (k%) (nh- =Y (k—2itd))
> (k—s) (n—k—s(k—2i+d)) .

i—s d—i

We give some examples by using this construction.

Example 3.4. 1. M(3;3,4,8) is a 3-disjunct matrix, which has (2) rows and (Z) columns.
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Chapter 4

(d, s]-disjunct matrix and (d, s|-cover

In this chapter, we generalize the concept of d-disjunct matrix to (d, s]-disjunct matrix and
its relative (d, s]-cover. The study-of (d; s]-disjunet. matrix may inspire us to realize d-disjunct

matrix better.
4.1 (d, s]-disjunct matrix

Definition 4.1.1. A binary matrix M is called (d, s]-disjunct matrix if given any d + s
columns of M with d eolumns designated, there is at least 1 rowwith 1 in these s designated

columns and 0 in each-of the otherd columns:

Remark 4.1.1. From the above deéfinition, we can‘observe that (d, 1]-disjunct matrix is also

a d-disjunct matrix.

Example 4.1.

_ O O =
_ o~ O
O~ =

is a (1, 2]-disjunct matrix.

In the following, we provide a trivial construction for (d, s]-disjunct matrix. First we give

an example to illustrate this construction.
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Example 4.2. In this example, we construct (d, s]-disjunct matrix by trivial construction
for the case d = s = 2. Fix w, s < w < n—d. Let M be the (Z) X n binary matrix with each
row consisting of the characteristic vector of each w-subset of [n].

For the case s =d =2 and n = 4. Fix w=4. We have

1 100
1010
1 001
M= 0110
0.1 .01
0-0 1 /1

Note that in this construction we havelthe mumber of colimns=n < (Z) = the number of

TOWS.

Proposition 4.1. et M be as in Example4.2. Then M is (d, s]-disjunct.

Proof. We shall prove'the incidence matrix between (Z) and [n] with row indexed by w-subset
of [n] and column indexed by 1-subset of [n] is (d, s]-digjunet. Pick P,Q C [n] with |P| = s,
|Q| = d, and PN Q = 0. Then there exists-a-subset in (”) and in the interval [P, [n] — Q)]

since s < w <n—d. O

Definition 4.1.2. Let M be a binary matrix. The complement matrix M is defined by

Corollary 4.1.1. If M is a (d, s]-disjunct matrix, then M is a (s, d]-disjunct matrix.

Proof. Given any d + s columns with d designed, we want to find a row in M with 1 in these
d designated columns and 0 in the other s columns. Since M is (d, s]-disjunct. So we can find

a row ¢ with 1 in these s designated columns and 0 in the other d columns. By the definition
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of complement matrix, for the matrix M row 4 is with 1 in these d designated columns and

0 in the other s columns.

]

From the Proposition 4.1 and Corollary 4.1.1, give any s, d, and n, with n > s+ d. If
d < s then we find integer w in [d,n — d] to obtain the minimum of (). Otherwise, we find

integer w in [s,n — s] to obtain the minimum of (7).

4.2 (d,s|-cover and relation between (d, s|]-disjunct ma-
trix and (d, s]-cover

(d, s]-cover has a close relation with (d, s|-disjunct matrix... Roughly speaking, (d, s]-cover
and (d, s|-disjunct matrix have the same meaning, but one usés the notation of subset the

other uses the notation of matrix:
Definition 4.2.1. For P, Q C [n], define [P,Q]={X : X isaset, P C X C Q}

Definition 4.2.2. Suppose s + d < neAn(dys]=cover of [n] is a family X of subsets of [n]
such that [P, Q] N X # () for.eachpair P,Q C [n] with |P|=s, |Q| =d, and PN Q = 0.

Proposition 4.2. Let X be‘a (d,s|-cover-of-[n]. Then the incidence matrix of X and [n] is
(d, s]-disjunct.
Note that the incidence matrix of X is a binary matrix with columns indexed with 1,2,....n

and rows indexed with subsets in family X.

Proof. Given any d+ s columns of M with s columns designed, namely ay, as, ..., as, we want
to find a row with 1 in these aq,as,...,as columns and 0 in each of the other d columns,
namely by, by, ..., bg. Let Q={z : column q; is indexed by z, 1 <14 < d} and

P={z : column b; is indexed by z, 1 <1i < s}. Since X is a (d, s]-cover of [n]. So there exists

D s.t. D € [P,Q]N X. Then the row indexed by D is the row we want to find. O
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In fact the converse is also true.

Proposition 4.3. If an ¢t x n binary M matrix is (d, s]-disjunct, and for 1 < ¢ < t set

T, ={j | miyj = 1}. Then {T3,T5,...,T;} is an (d, s]-cover of [n].

Proof. Pick any P,Q C [n] with |P| = s and |@Q| = d such that PN Q = (). Pick 7 € [t] such

that m;; = 1 for all j € P and M, = 0 for all k € Q. Hence P C T; C Q. n

Combine Proposition 4.2 and Proposition 4.3, (d, s]-disjunct matrix and (d, s]-cover they
have one-to-one correspondence.

Now we go back to the 2-stage 2-pooling design given in section 2.1 again, and investigate
whether it is a (2.1]-disjunct matrix.

Consider P={(1,1,s.., 1)} and- Q={(2,1,1,...,1),(1,2,1,.«.,1)}. Suppose P C S;(j) C
Q for some (i,7) € {152, ..., k}x{1,2;... je}. Then j=1lsince P.C S;(j). Since (2,1,1,...,1) ¢
Si(1),1 = 1. Since (152, ...,1) & Si(1), ¢ = 2, a.contradiction. Alsonotice that m; j)(c,,cz,..cr) =

Liff (¢, ¢9,...,c) €8i(j). Hence we have the following remark.

Remark 4.2.1. Let M be the matrix corresponding to the first stage of 2-stage 2-pooling
design given in section 2.1 with size ck x c*, and for(isj).€ {1,2,...,k} x {1,2,...,c},
Tupn={(c1,ca, . - k) M j)erdes ey = LfThen T(;;) is not an (2,1]-cover of all items

{(‘ha(h;---,%) 1 SQZ §67V1 SZSI{:}

4.3 the minimum number of rows of (d, s|-disjunct ma-
trix

Before we discuss the minimum number of rows with fixed number of columns in a (d, s]-
disjunct matrix, we mention Sperner Theorem first, which gives the upper bound of the
number of columns with the fixed number of rows and provide a lower bound of a (1,1]-
disjunct matrix with the fixed number of columns.

The following theorem is referred to [6].
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Theorem 4.3.1. (Sperner 1928) If M is (1, 1]-disjunct matrix then the number of columns of M <
t
(Lt/Q j)'

Note that for the number of columns of M = (Lt;2 j) we have the equality.
For t = 4 we have the number of columns of M = (;1) = 6 here, but for the columns of M =

6 in the trivial construction we have t = (Z) > 6.

For the rest of this section, we will discuss the minimum number of rows of (d, s]-disjunct

matrix.

Definition 4.3.1. 1. Let t(d, s, n)dénote the aminimum number of ¢ such that a (d, s-

disjunct matrix of size t x n exists.

2. Let t(d, s,n,w) denoteé the minimum number of ¢ such that a (d, s|-disjunct matrix with

constant row sum w of sizetxn exists.
3. Let t.(d, s,n) =miny,cp, t(d, s,n, w).
Remark 4.3.1.  lot(d, s,n) <t.(d;s,n) < t(d,s;n,w) for w & [n].

2. t(d, s,n) is the minimal size of a (d, s|-cover of [n].

3. Sperner’s Theorem says that if n is-an integer of the form (Lt;2J) then (Lt(t1(1171ﬁ7)1}2j) =n

Sperner Theorem implies #(1, 1, (Lt;%)) = t. EFF proves t(1,1,n) = n if n < 4, and then
#(1,1,5) = 4.

Proposition 4.4. ¢(1,1,n) is the least integer such that (Lt;ZJ) > n.

Proof. First we show that ¢(1,1,n) < t. Let ¢ is the least integer such that ( ) > n. Given

¢
[t/2]

any n € N. Since ¢ is the least integer such that (Lt;QJ) >n

') (1,1]-disjunct matrix M. Delete any (Wt%) -n

t/2]

columns from M, and let it be M’. Then M’ is a t x n (1,1]-disjunct matrix . Hence

By Sperner Theorem, we have a t x (L

t(1,1,n) <t
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Now, we show that ¢(1,1,n) = ¢, By Sperner Theorem, n < (Lt(tl(lflﬁ?}%)

Since t is "the least” integer such that n < (Lt;ZJ)‘ So t(1,1,n) =t.

Now we derive one lower bound for ¢(d, s, n.w).

Lemma 4.3.1. Suppose s < w < n —d. Then

(Z)x (nﬁ;id)gt(d,s,n,w)x(nﬁ;lid) x(f)
Proof. Let Y = {(P,Q) : Both P and @ are subsets of [n], |P| =s,|Q| =d and PNQ = (}.
Let X be a (d, s]-cover of [n] with size t(d, s,n,w). Then given any pair (u,v) in Y, there
exists subset T € X s.t. U C T Cn) \ V.
Let T" = {(A,B,T) : T X;A C T,B C [n|\\T}JA} = s,|B| = d}. Then |T'| =
t(d,s,n,w)(¥)( " )aSince for-each-pair (U, V) in Y, we can find a pair (U,V,T) € T".

Hence Y] = () (") < |T'| =#(d;s, n,w)(Y) ("3 1)

n—w—d. n—w-—d

]

Lemma 4.3.1 gives us a lower bound for ¢(d, s, n, w), we write it down as Corollary 4.3.1.

Corollary 4.3.1.

t(d, s,n,w) > [u(w)]

where
d
u(w) = i :
n—uw w
We want to know when u(w) obtains minimum. O

u(w) _(w—i—l)(n—w—d){Zl, ifng“S*dJ;
w(w+1) (w+1-=s)(n—w)

d+s
<1, else.
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Corollary 4.3.2.

£(d, 5,m) > ul V;;jJ )

In fact u( L’if;sdj) tends to a constant as n — oco. But we still can guess that the row

weight of a good (d, s]-disjunct matrix is closed to sn/(d + s).
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