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Preface

Properties of irreducible factors of random polynomials over finite fields (similar to

properties of irreducible factors of random integers) have been intensively studied in

the mathematical literature. Such properties have applications in computer science,

cryptography, coding theory, etc.

The purpose of this thesis is three-fold. First, we want to give a survey of re-

sults which have been obtained in the literature on properties of irreducible factors of

random polynomials over finite fields. Secondly, we want to demonstrate the useful-

ness of analytic combinatorics to prove such results. Finally, we want to discuss some

applications of these properties to polynomial factorization over finite fields. We will

provide detailed proofs of all the results (some of the proofs have been only sketched

in the literature).

We give a brief outline of the thesis. In Chapter 1, we will give a short outlook

and summarize the results we are going to prove. In Chapter 2, we will recall some

tools from analytic combinatorics with detailed proofs. In Chapter 3, we will use the

results from Chapter 2 to prove our results on random polynomials. Finally, in Chapter

4, we will discuss applications of the results from Chapter 3.
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數學領域經常研究有限體下隨機多項式質因式的性質（如整係數質因式的性質）。

而這些性質常常應用在資訊工程、密碼學、編碼理論...等方面上。 

這篇論文有三個研究動機：第一個動機是想整理參考文獻中有關有限體下

隨機多項式質因式分解的性質。第二個動機是想展現如何用解析組合來證明這 

些質因式分解性質的結果。第三個動機是想將質因式分解性質的結果應用在質 

因式分解的演算法中。這些性質大多在文獻上只有粗淺的說明，而這篇論文將 

提供這些性質的詳細的證明及結果。 

而這篇論文主要的概述：第一章，我們將給個簡短的概況並整理後面即將

證明的結果。第二章，我們會給解析組合中常用的定理及詳細的證明。第三章，

我們會用第二章中的結果來證明有限體下隨機多項式質因式的性質。最後，第

四章，我們將討論第三章結果的應用。 
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Chapter 1

Introduction

Factorizing polynomials over the finite field Fq, where q is a prime power, may make a

lot of effort in many fields such as cryptography [7, 15, 17], coding theory [4], number

theory [6] and polynomial factorization over the integers [8, 13, 14, 19]. Consequently,

algorithms for factorizing polynomials have been studied by many authors, e.g., see

Bach and Shoup [2], Berlekamp [3], and Rónyai[18].

In the analysis of these algorithms properties of random polynomials over a fi-

nite field have played an important role. The main purpose of this thesis is to survey

these properties and to show how to use generating functions and analytic combina-

torics to prove these results.

Generating functions are very helpful in this context, for instance take the prob-

lem of counting monic polynomials over a finite field Fq as an example. Let P (z)

denote the corresponding generating function, i.e., the n-th coefficient of P (z) is the

number of monic polynomials over Fq of degree n. Then, monic polynomials can be

counted by the irreducible factors in their unique prime factorization. This yields

P (z) =
∏
k≥1

(
1 + zk + z2k + z3k + · · ·

)Ik =
∏
k≥1

(
1

1− zk

)Ik
,

1



where Ik is the number of monic irreducible polynomials of degree k. Of course,

monic polynomials can also be counted directly which gives

P (z) = 1 + qz + q2z2 + q3z3 + · · · = 1

1− qz
.

Now, this simple example lends itself to many generalizations. For instance,

consider the question of counting monic polynomials excluding irreducible factors of

degree k1, k2, k3, ... , kr in their prime factorization. Similar as above, we get

∞∏
k = 1

k 6= k1, · · · , kr

(
1 + zk + z2k + z3k + · · ·

)Ik =
1

1− qz
·

r∏
j=1

(
1− zkj

)Ikj .
Observe that the right hand side is a meromorphic function with a simple pole at z =

1/q. Moreover, for z → 1/q,

1

1− qz
·

r∏
j=1

(
1− zkj

)Ikj ∼ 1

1− qz
·

r∏
j=1

(
1− q−kj

)Ikj .
Using a method called singularity analysis, which will be introduced in Section 2, the

latter asymptotic relation remains true on the coefficient level. This yields that the

number of monic polynomials excluding irreducible factors of degree k1, k2, k3, ... , kr

in their prime factorization is asymptotically equal to

qn
r∏
j=1

(1− q−kj)Ij .

(Alternatively, this result can be obtained by the Inclusion-Exclusion principle.)

Sometimes, however, generating functions in one variable are not enough. For

instance, suppose we want to count the number of monic polynomials with a fixed

number of irreducible factors in their prime factorization. Then, we need bivariate

generating functions. More precisely, consider a second variable u which counts the

2



number of the irreducible factors in the prime factorization of a polynomial. Then, we

have for the bivariate generating function.

P (z, u) =
∏
k≥1

(
1 + uzk + u2z2k + u3z3k + · · ·

)Ik =
∏
k≥1

(
1

1− uzk

)Ik
.

By taking partial derivative with respect to u and letting u = 1, we obtain as coefficient

of zn the cumulative number of irreducible factors in the prime factorization of all

polynomials of degree n. We will see later that again an asymptotic expansion can be

easily derived by singularity analysis. From this, one obtains then the expected value

of the number of irreducible factors in the prime factorization of a random polynomial.

Moreover, by taking higher derivatives, higher moments can be derived as well.

We conclude by giving a sketch of the thesis. First, in Chapter 2, we will in-

troduce singularity analysis and some other analytic methods we need for deriving our

results, such as Darboux’s method and the Hybrid method. Then, in Chapter 3, there

will be four different topics. The first topic is mainly concerned with the number of

irreducible factors of random polynomials. For instance, we will derive the probability

of a polynomial of degree n being irreducible. The second topic will be about k-free

polynomials. There are two cases in this section, the first case is when k = 2 and the

second case will be the more general case. The third topic is discussing the degree of

the irreducible factors of the polynomial, such as the maximal degree of the irreducible

factors not greater than m, the maximal degree of the irreducible factors equals m and

the maximal degree D[1]
n of the irreducible factors equals m1 and the second largest

degree D[2]
n of the irreducible factors equals m2. The fourth topic is about the degree

of the irreducible factors being distinct and related questions. Finally, in Chapter 4, we

are going to apply the results from Chaper 3 to polynomial factorization.

The results, we are going to present in Section 3 are summarized in the follow-

ing table. (Xn is the number of irreducible factors in a random polynomial of degree

n and ρ denotes the Dickman function.)

3



Properties Results

Section
Prob(Xn = 1) = In/q

n 1
n

+O(q−n/2)

3.1
E (Xn) log n+O(1)

Var(Xn) log n+O(1)

Section

Prob(x ∈ squarefree) (for n = 0, 1) 1

3.2

Prob(x ∈ squarefree) (for n ≥ 2) 1− 1/q

E(degree of remaining part)
∑

k≥1
kIk

q2k−qk

Prob(x ∈ k-free) (for n = 0, 1) 1

Prob(x ∈ k-free) (for n ≥ 2) 1− 1/qk−1

E(degree of remaining part)
∑

j≥1
jIj

qkj−q(k−1)j

Section

Prob(m-smooth) ρ
(
n
m

)
+O( logn

m
)

3.3

Prob(D[1]
n = m) 1

m
ρ
(
n
m
− 1
)

+O
(

logn
m2

)
Prob(D[1]

n = m,D
[2]
n ≤ m/2) 1

m
ρ
(

2n
m
− 2
)

+O
(

logn
m2

)
Prob(D[1]

n = m1, D
[2]
n = m2 < m1) 1

m1m2
ρ
(

n
m2
− m1

m2
− 1
)

+O
(

logn
m1m2

2

)
Section Prob(D[1]

n > D
[2]
n > · · · )

∏
k≥1(1 + Ik

qk
)(1− 1

qk
)Ik

3.4 Prob(D[1]
n > D

[2]
n > · · · )

∏
k≥1(1 + I2k

q2k
)(1− 1

q2k
)I2k

4



Chapter 2

Some Tools from Analytic

Combinatorics

We first recall Landau’s O notation.

Definition 2.1. Let f(n) and g(n) be two complex-valued functions.

1. If there exist constants c, n0 ∈ N such that

|f(n)| ≤ c · |g(n)| , ∀n ≥ n0,

then we say that f(n) is a big-O of g(n), which is denoted by f(n) = O(g(n)).

2. If for all constants ε > 0, there exists a n0 = n0(ε) ∈ N such that

|f(n)| ≤ ε · |g(n)| , ∀n ≥ n0,

then we say that f(n) is a small-o of g(n), which is denoted by f(n) = o(g(n)).

3. If f(n)/g(n)→ 1 as n→∞, then we say that f(n) is asymptotic to g(n), which

is denoted by f(n) ∼ g(n).
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As already mentioned in Chapter 1, in this thesis, generating functions will play

an important role. We will frequently need their n-th coefficients. Therefore, we will

recall the following standard notation from combinatorics.

Definition 2.2. Given a generating function f(z) , fn = [zn]f(z) denotes the coeffi-

cient of zn in f(z).

2.1 Singularity Analysis

In this section, we treat generating functions as analytic functions. In the sequel, we

will often encounter generating functions with a singularity at ζ and (local) behavior

f(z) =

(
1− z

ζ

)−α(
log

1

1− z
ζ

)β

,

where α and β are arbitrary complex numbers.

For convenience, we use a transformation to let the singularity z = ζ be on the

unit circle |z| = 1. More precisely, note that by the scaling rule, we have

g(z) ≡ f(zζ) =

(
1− zζ

ζ

)−α(
log

1

1− zζ
ζ

)β

= (1− z)−α
(

log
1

1− z

)β
.

So, g(z) has a singularity at z = 1, and in this way, we can get fn = [zn]f(z) as

follows,

fn = [zn]f(z) = ζ−n[zn]f(zζ) = ζ−n[zn]g(z) = ζ−n gn,

where gn = [zn]g(z). Since all generating functions can be brought in this form,

we only need to discuss generating functions with a singularity at z = 1 and (local)

behavior

(1− z)−α
(

log
1

1− z

)β
,

6



where α and β are arbitrary complex numbers.

First, we consider the special case (1− z)−r, where r ∈ Z≥1. Then,

(1− z)−r =
∞∑
n=0

(
n+ r − 1

n

)
zn.

Consequently, the coefficients are given by

[zn] (1− z)−r =

(
n+ r − 1

n

)
=

(n+ r − 1) (n+ r − 2) · · · (n+ 1)

(r − 1)!

=
nr−1

(r − 1)!

(
1 +O

(
1

n

))
.

Now, for (1− z)−α, where α ∈ C, we expect a similar result:

[zn] (1− z)−α =

(
n+ α− 1

α− 1

)
= cnα−1

(
1 +O

(
1

n

))
, (2.1)

where c is a constant which will turn out to be related to the Gamma function Γ(α)

which is defined as follows

Γ(α) :=

∫ ∞
0

e−ttα−1dt

for <(α) > 0. Moreover, we recall the following integral representation

1

Γ(α)
=

1

2πi

∮
C
(−t)−αe−tdt, (2.2)

where the contour C comes from∞+ i, goes around 0 in counterclockwise direction,

and then goes back to∞− i (see [12, p. 745]).

The formula (2.1) is made precise in the following theorem.

Theorem 2.3. Given a function f(z) = (1− z)−α with α ∈ C \ Z≤0, we have for the

n-th coefficient

fn = [zn]f(z) ∼ nα−1

Γ(α)

(
1 +

∑
k≥1

ek
nk

)
,

where ek is a polynomial in α of degree 2k.

7



Proof. We first prove the case where k = 1. By Cauchy’s coefficient formula, we have

fn =
1

2πi

∫
C

(1− z)−α
dz

zn+1
,

where we choose the contour C as follows:

C
R R

1
n

0 1 0 1 1

Figure 2.1: Our contour C is the curve on the left and we separate it into

two parts, the center one and the right one.

Next, we break C into two parts C̃ andH, where

C̃ =
{
z
∣∣ z = Reiθ, R > 1, arcsin(1/nR) ≤ θ ≤ 2π − arcsin(1/nR)

}
and

H =

{
z

∣∣∣∣ z = 1 +
eiθ

n
, π/2 ≤ θ ≤ 3π/2

}
∪

{
z

∣∣∣∣∣ 1 ≤ <(z) ≤
√
R2 − 1

n2
, I(z) = ± 1

n

}
.

Then, we consider the integral over C̃ andH separately.

C̃ : Since |z| = R, z−n is bounded by R−n. Thus, the integral over C̃ is exponentially

small. More precisely,∣∣∣∣ 1

2πi

∫
C̃
(1− z)−α

dz

zn+1

∣∣∣∣ ≤ cR · 1

Rn+1
= O

(
1

Rn

)
,

where c = sup|z|=R |(1− z)−α|.

8



H : We are going to breakH into 3 parts:
H+(n) =

{
z
∣∣z = ω + i

n
, 1 ≤ ω ≤

√
R2 − 1

n2

}
;

H−(n) =
{
z
∣∣z = ω − i

n
, 1 ≤ ω ≤

√
R2 − 1

n2

}
;

Ho(n) =
{
z
∣∣z = 1 + eiθ

n
, θ ∈ [π

2
, 3π

2
]
}
.

By the change of variable z = 1 + t
n

, the integral overH becomes

1

2πi

∫
H

(1− z)−α
dz

zn+1
=

1

2πi

∫
H̄

(
− t
n

)−α
1/n dt

(1 + t/n)n+1

=
nα−1

2πi

∫
H̄

(−t)−α
(

1 +
t

n

)−n−1

dt

with H̄ = H̄o ∪ H̄+ ∪ H̄−, where

H̄+ =
{
t
∣∣t = ω + i, 0 ≤ ω ≤

√
n2R2 − 1− n

}
;

H̄− =
{
t
∣∣t = ω − i, 0 ≤ ω ≤

√
n2R2 − 1− n

}
;

H̄o =

{
t
∣∣t = eiθ, θ ∈ [

π

2
,
3π

2
]

}
.

Let t = ω + i =
√
ω2 + 1 eiθ where θ = arg(t). The absolute value of |(−t)−α|

is ∣∣(−t)−α∣∣ =

∣∣∣∣(√ω2 + 1 ei(θ+π)
)−<(α)−i=(α)

∣∣∣∣
=
∣∣∣√ω2 + 1

−<(α)−i=(α)
∣∣∣ ∣∣e−i(θ+π)(<(α)+i=(α))

∣∣
=
√
ω2 + 1

−<(α)
e=(α)θ+=(α)π. (2.3)

We will break H̄+ (and H̄−) into two parts according to whether <(t) ≤ log2 n

or not. Then, the integral of the part with <(t) > log2 n is at most∣∣∣∣ ∫ ∞+i

log2 n+i

(−t)−α
(

1 +
t

n

)−n−1

dt

∣∣∣∣ =

∫ ∞
log2 n

∣∣(−ω − i)−α∣∣ ∣∣∣∣1 +
ω + i

n

∣∣∣∣−n−1

dω

9



= O

(∫ ∞
log2 n

√
ω2 + 1

−<(α)
∣∣∣1 +

ω

n

∣∣∣−n−1

dω

)
= O

(∫ ∞
log2 n

√
ω2 + 1

−<(α)
e−ω−

ω
n dω

)
= O

(∫ ∞
log2 n

ω−<(α)e−ω dω

)
.

Now, if <(α) ≥ 0, it is easy to see that both ω−<(α) and e−ω will make the

integral exponentially small; on the other hand, if <(α) < 0, by integration by

parts∫ ∞
log2 n

ω−<(α)e−ω dω = −ω−<(α)e−ω
∣∣∣∣∞
log2 n

−<(α)

∫ ∞
log2 n

ω−<(α)−1e−ω dω

= · · · = O
(

(log2 n)−<(α)e− log2 n
)

= O
(
(log n)−2<(α)n− logn

)
, (2.4)

which is exponentially small, too. The same estimate holds for the corresponding

part of H̄−.

Next, for t with <(t) ≤ log2 n, we use the following asymptotic expansion for(
1 + t

n

)−n−1:(
1 +

t

n

)−n−1

= e−(n+1) log(1+t/n)

= exp

(
−(n+ 1)

[
−
(
− t
n

)
1
−
(
− t
n

)2

2
−
(
− t
n

)3

3
− · · ·

])

= exp

(
−t+

t2

2n
− t3

3n2
+ · · ·

)
exp

(
− t
n

+
t2

2n2
− t3

3n3
+ · · ·

)
= e−t · exp

(
t2 − 2t

2n
− 2t3 − 3t2

6n2
+

3t4 − 4t3

12n3
− · · ·

)
= e−t

[
1 +

t2 − 2t

2n
+
t4 − 4t3 + 4t2

8n2
− 2t3 − 3t2

6n2
+ · · ·

]
= e−t

[
1 +

t2 − 2t

2n
+

3t4 − 20t3 + 24t2

24n2
+ · · ·

]
. (2.5)

For k = 1, we only need (1 + t/n)−n−1 = e−t
(

1 +O
(

log4 n
n

))
. After plugging

this in, we can add the part with <(t) > log2 n since this part is again expo-

10



nentially small. Overall, we can let the contour become H̃ = H̃o ∪ H̃+ ∪ H̃−,

where

H̃+ =
{
t
∣∣t = ω + i, ω ≥ 0

}
;

H̃− =
{
t
∣∣t = ω − i, ω ≥ 0

}
;

H̃o =

{
t
∣∣t = eiθ, θ ∈ [

π

2
,
3π

2
]

}
.

Then,∫
H̃

(−t)−α e−tdt
(

1 +O

(
log4 n

n

))
=

1

Γ(α)

(
1 +O

(
log4 n

n

))
,

where the last line follows from (2.2).

Finally, by putting every thing together, we obtain

fn =
nα−1

Γ(α)

(
1 +O

(
log4 n

n

))
.

This concludes the proof of k = 1. For the general case, one only needs to use more

terms in (2.5). This then gives

fn ∼
nα−1

Γ(α)

(
1 +

∑
k≥1

ek
nk

)
.

Theorem 2.4. Given a function f(z) = (1− z)−α
(

1
z

log 1
1−z

)β with α ∈ C \ Z≤0,

β ∈ C, we have for the n-th coefficient

fn = [zn]f(z) ∼ nα−1

Γ(α)
(log n)β

(
1 +

∑
k≥1

dk

logk n

)
,

where dk is a polynomial in α of degree 2k.

Proof. Again by Cauchy’s coefficient formula,

fn =
1

2πi

∫
C

(1− z)−α
(

1

z
log

1

1− z

)β
dz

zn+1
,

11



where the contour C = C̃ ∪ H is as in Theorem 2.3:

C̃ =
{
z
∣∣ z = Reiθ, R > 1, arcsin(1/nR) ≤ θ ≤ 2π − arcsin(1/nR)

}
, and

H =

{
z

∣∣∣∣ z = 1 +
eiθ

n
, π/2 ≤ θ ≤ 3π/2

}
∪

{
z

∣∣∣∣∣ 1 ≤ <(z) ≤
√
R2 − 1

n2
, I(z) = ± 1

n

}
.

As in the proof of Theorem 2.3, we consider the integral over C̃ andH separately.

C̃ : Since |z| = R, z−n is bounded by R−n. Thus, the integral over C̃ is exponentially

small∣∣∣∣ 1

2πi

∫
C̃
(1− z)−α

(
1

z
log

1

1− z

)β
dz

zn+1

∣∣∣∣ ≤ cR · 1

Rn+1
= O

(
1

Rn

)
,

where c = sup|z|=R

∣∣∣(1− z)−α
(

1
z

log 1
1−z

)β∣∣∣.
H : We are going to breakH into 3 parts:

H+(n) =
{
z
∣∣z = ω + i

n
, 1 ≤ ω ≤

√
R2 − 1

n2

}
;

H−(n) =
{
z
∣∣z = ω − i

n
, 1 ≤ ω ≤

√
R2 − 1

n2

}
;

Ho(n) =
{
z
∣∣z = 1 + eiθ

n
, θ ∈ [π

2
, 3π

2
]
}
.

By the change of variable z = 1 + t
n

,

1

2πi

∫
H

(1− z)−α
(

1

z
log

1

1− z

)β
dz

zn+1
(2.6)

=
1

2πi

∫
H

(
− t
n

)−α(
1

1 + t/n
log

1

−t/n

)β
1/n dt

(1 + t/n)n+1

=
nα−1

2πi
(log n)β

∫
H̄

(−t)−α
(

1− log(−t)
log n

)β (
1 +

t

n

)−n−1−β

dt

12



with H̄ = H̄o ∪ H̄+ ∪ H̄−, where

H̄+ =
{
t
∣∣t = ω + i, 0 ≤ ω ≤

√
n2R2 − 1− n

}
;

H̄− =
{
t
∣∣t = ω − i, 0 ≤ ω ≤

√
n2R2 − 1− n

}
;

H̄o =

{
t
∣∣t = eiθ, θ ∈ [

π

2
,
3π

2
]

}
.

By (2.3), we have |(−t)−α| =
√
ω2 + 1

−<(α)
e=(α)θ. As before, we break H̄+

(and H̄−) into two parts according to whether <(t) ≤ log2 n or not. The part

with <(t) > log2 n is at most∣∣∣∣ ∫ ∞+i

log2 n+i

(−t)−α
(

1− log(−t)
log n

)β (
1 +

t

n

)−n−1−β

dt

∣∣∣∣
= O

(∫ ∞
log2 n

| − ω − i|−<(α)

∣∣∣∣1− log(−ω − i)
log n

∣∣∣∣<(β) ∣∣∣∣1 +
ω + i

n

∣∣∣∣−n−1−<(β)

dω

)

= O

(∫ ∞
log2 n

(ω2 + 1)−
<(α)

2

∣∣∣∣∣1− log(
√
ω2 + 1) + iθ

log n

∣∣∣∣∣
<(β)

·
∣∣∣∣1 +

ω + i

n

∣∣∣∣−n−1−<(β)

dω

)

= O

(∫ ∞
log2 n

|ω2 + 1|−
<(α)

2

(1− log(
√
ω2 + 1)

log n

)2

+

(
θ

log n

)2

<(β)
2

·
∣∣∣∣1 +

ω + i

n

∣∣∣∣−n−1−<(β)

dω

)

= O

(∫ ∞
log2 n

ωc
∣∣∣1 +

ω

n

∣∣∣−n−1

dω

)
,

where c is a suitable constant.

Since this integral is exponentially small, we only need to consider the part where

<(t) ≤ log2 n.
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For this part, we use the following asymptotic expansion for
(
1 + t

n

)−n−1−β:(
1 +

t

n

)−n−1−β

= e−(n+1+β) log(1+t/n)

= exp

(
−(n+ 1 + β)

[
−
(
− t
n

)
1
−
(
− t
n

)2

2
−
(
− t
n

)3

3
− · · ·

])

= exp

(
−t+

t2

2n
− t3

3n2
+ · · · − t(1 + β)

n
+
t2(1 + β)

2n2
− t3(1 + β)

3n3
+ · · ·

)
= e−t

(
1 +O

(
log4 n

n

))
.

Moreover, we have (again for <(t) ≤ log2 n)(
1− log(−t)

n

)β
∼
∑
k≥0

(
β

k

)
(−1)k

(
log(−t)

n

)k
.

Now, as in the proof of Theorem 2.3, plugging this in and adding the tail <(t) >

log2 n which is exponentially small, shows that the integral (2.6) is asymptotic

to

nα−1

2πi
(log n)β

∫
H̃

(−t)−α
(∑
k≥0

(
β

k

)(
− log(−t)

log n

)k)
e−tdt

=
∑
k≥0

nα−1

2πi
(log n)β−k(−1)k

(
β

k

)∫
H̃

(−t)−α logk(−t)e−tdt

=
∑
k≥0

nα−1

2πi
(log n)β−k

(
β

k

)
dk

dαk

[∫
H̃

(−t)−αe−tdt
]

=
∑
k≥0

dk

dαk
nα−1

Γ(α)
(log n)β−k

(
β

k

)
with H̃ = H̃o ∪ H̃+ ∪ H̃−, where

H̃+ =
{
t
∣∣t = ω + i, ω ≥ 0

}
;

H̃− =
{
t
∣∣t = ω − i, ω ≥ 0

}
;
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H̃o =

{
t
∣∣t = eiθ, θ ∈ [

π

2
,
3π

2
]

}
.

This proves the claimed result.

Definition 2.5. A domain is a ∆-domain at 1 if it can be written as

∆(R, φ) = {z | |z| < R, z 6= 1, | arg(z − 1)| > φ},

where R > 1 and 0 < φ < π/2. Moreover, if a function is analytic in some ∆-domain,

the function is called a ∆-analytic function.

Theorem 2.6. Let α , β ∈ R and f(z) be a function that is analytic in ∆ := ∆ (R, φ).

If

f(z) = O

(
(1− z)−α

(
log

1

1− z

)β)
,

where z ∈ ∆ and approaching 1, then

fn = [zn]f(z) = O
(
nα−1 (log n)β

)
.

Similarly, if

f(z) = o

(
(1− z)−α

(
log

1

1− z

)β)
,

where z ∈ ∆-domain and approaching 1, then

fn = [zn]f(z) = o(nα−1 (log n)β) .

Proof. By Cauchy’s coefficient formula, we have

fn =
1

2πi

∫
C

f(z)
dz

zn+1
,

and C is a closed contour in the unit disc. Since f(z) is not analytic at z = 1, we

change the contour C into a union of following 4 parts:
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
γ1 = {z

∣∣ |z − 1| = 1
n
, | arg (z − 1) | ≥ θ} (inner circle)

γ2 = {z
∣∣ |z − 1| ≥ 1

n
, |z| ≤ r, arg (z − 1) = θ} (top line segment)

γ3 = {z | |z| = r, | arg (z − 1) | ≥ θ} (outer circle)

γ4 = {z
∣∣ |z − 1| ≥ 1

n
, |z| ≤ r, arg (z − 1) = −θ} (bottom line segment),

where 1 < r < R, and φ < θ < π
2
, so that our contour C lies entirely inside our

∆-domain. We let f [1]
n , f [2]

n , f [3]
n , f [4]

n be the integral along γ1, γ2, γ3, γ4, i.e.,

f [i]
n =

1

2πi

∫
γi

f(z)
dz

zn+1
.

Then, we have

fn =
1

2πi

∫
C

f(z)
dz

zn+1
=

1

2πi

[
f [1]
n + f [2]

n + f [3]
n + f [4]

n

]
.

So now, we will discuss the integrals separately.

1. Inner circle (γ1):

The line integral of f [1]
n will be at most the length of γ1 times the maximum of

|f(z)|,
f [1]
n ≤ |γ1| ·max

{
|f(z)|

∣∣z ∈ γ1

}
.

Since f(z) is O
(

(1− z)−α
(
log 1

1−z

)β), there is a constant c > 0 such that

|f(z)| ≤ c · |1− z|−α
∣∣log 1

1−z

∣∣β . Hence, for the contour γ1 where |z− 1| = 1/n

and | arg (z − 1) | ≥ θ,∣∣f [1]
n

∣∣ ≤ |γ1| ·max
{
|f(z)|

∣∣z ∈ γ1

}
≤ 2π

1

n
· c
∣∣1− z∣∣−α |log 1− z|β

= O

(
1

n

)
· nα

∣∣ log |1− z|+ iφ
∣∣β

= O

(
1

n

)
· nα

(
log2 |1− z|+ φ2

)β/2
= O

(
nα−1

)
·
(
log2 n+ φ2

)β/2
,
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where φ ∈ [0, 2π). Next, observe for large n
(
log2 n+ φ2

)β/2 ≤ (log2 n+ log2 n
)β/2

= O
(
logβ n

)
, if β ≥ 0,(

log2 n+ φ2
)β/2 ≤ (log2 n

)β/2
= logβ n = O

(
logβ n

)
, if β < 0.

Consequently, f [1]
n = O

(
nα−1 logβ n

)
.

2. Rectilinear parts (γ2,γ4):

Again, there is a constant c > 0 such that |f(z)| ≤ c · |1− z|−α
∣∣log 1

1−z

∣∣β . Then,

by the change of variable z = 1 + t
n
eiθ, our integral is

∣∣f [2]
n

∣∣ =

∣∣∣∣∣ 1

2πi

∫ r′

t=1

f

(
1 +

t

n
eiθ
) eiθ

n
dt(

1 + t
n
eiθ
)n+1

∣∣∣∣∣
≤ c

2π

∫ r′

1

∣∣∣∣∣
(
t

n

)−α(
log

1
−t
n
eiθ

)β∣∣∣∣∣ ·
∣∣∣∣1 +

t

n
eiθ
∣∣∣∣−n−1 ∣∣∣∣eiθn

∣∣∣∣ dt
=

c

2π
nα−1

∫ r′

1

t−α
∣∣∣∣log
−teiθ

n

∣∣∣∣β · ∣∣∣∣1 +
t

n
eiθ
∣∣∣∣−n−1

dt

=
c

2π
nα−1

∫ r′

1

t−α
∣∣log(−t) + log eiθ − log n

∣∣β · ∣∣∣∣1 +
t

n
eiθ
∣∣∣∣−n−1

dt

=
c

2π
nα−1 logβ n

∫ r′

1

t−α
∣∣∣∣1− log(−t) + iθ

log n

∣∣∣∣β · ∣∣∣∣1 +
t

n
eiθ
∣∣∣∣−n−1

dt

=
c

2π
nα−1 logβ n

∫ r′

1

t−α
∣∣∣∣1− log t+ i(θ + π)

log n

∣∣∣∣β · ∣∣∣∣1 +
t

n
eiθ
∣∣∣∣−n−1

dt

=
c

2π
nα−1 logβ n

∫ r′

1

t−α

[(
1− log t

log n

)2

+

(
θ + π

log n

)2
]β/2

·
∣∣∣∣1 +

t

n
eiθ
∣∣∣∣−n−1

dt,

where r′ is a constant satisfying z = 1 + r′eiθ with |z| = r. But since as in the

proof of Theorem 2.3, the integral over t ∈
[
log2 n,∞

]
is exponentially small,
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so we can change the range to 1 ≤ t ≤ log2 n. Then, obviously[(
1− log t

log n

)2

+

(
θ + π

log n

)2
]β/2

= O(1).

Consequently,

f [2]
n = O

(
nα−1(log n)β

∫ log2 n

1

t−α ·
∣∣∣∣1 +

t

n
eiθ
∣∣∣∣−n−1

dt

)
.

Since
∣∣1 + t

n
eiθ
∣∣ ≥ 1 + <

(
t
n
eiθ
)

= 1 + t
n

cos θ, we have∫ log2 n

1

t−α
∣∣∣∣1 +

t

n
eiθ
∣∣∣∣−n−1

dt ≤
∫ ∞

1

t−α
(

1 +
t cos θ

n

)−n−1

dt

≤
∫ ∞

1

t−αe−(n+1) log(1+ t cos θ
n )dt ≤

∫ ∞
1

t−αe−(n+1) t cos θ
n dt

≤
∫ ∞

1

t−αe−t cos θdt,

where this integral is finite since 0 < θ < π
2
.

This yields,

f [2]
n = O

(
nα−1(log n)β

)
.

3. Outer circle (γ3):

Since |z| = r, z−n is bounded by r−n. Thus, the integral f [3]
n is exponentially

small.

Since f [1]
n , f [2]

n , f [3]
n , f [4]

n are allO
(
nα−1 (log n)β

)
, so that gives fn = O

(
nα−1 (log n)β

)
.

The proof of the small-o part is similarly.

Definition 2.7. A log-power function at 1 is a finite sum of the form

σ(z) =
r∑

k=1

ck

(
log

(
1

1− z

))
(1− z)αk ,
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where α1 < · · · < αr and each ck(z) is a polynomial. A log-power function at a finite

set of points Z = {ζ1, · · · , ζm}, is a finite sum

Σ(z) =
m∑
j=1

σj

(
z

ζj

)
,

where each σj is a log-power function at 1.

Theorem 2.8. If a function f(z) is analytic on a ζ ·∆ domain and there exist log-power

functions σ and τ such that

f(z) = σ(z/ζ) +O (τ(z/ζ)) as z → ζ in ζ ·∆,

then fn = [zn]f(z) will be asymptotic to

fn = ζ−nσn +O
(
ζ−n τn

)
,

where σn = [zn]σ(z) and τn = [zn]τ(z).

Proof. Let g(z) = f (ζz). Then, g(z) is ∆-analytic, with a singularity at 1 and g(z) =

σ(z) +O (τ(z)) as z → 1. Now, since τ(z) is a log-power function, so

gn = [zn]g(z) = [zn]σ(z) + [zn]O (τ(z))

= [zn]σ(z) +O ([zn]τ(z))

= σn +O(τn).

Finally, since fn = ζ−ngn, we get

fn = ζ−ngn = ζ−n (σn +O(τn)) = ζ−nσn +O
(
ζ−n τn

)
.

According to the latter result, we know how to find fn when f(z) has one singu-

larity at ζ . Similarly, fn can be found if f(z) has finitely many singularities (see [12,

p. 398] for a proof).

19



Theorem 2.9. Let f(z) be analytic in |z| < ρ with a finite number of singularities

ζ1, · · · , ζk on the circle |z| = ρ. Suppose there exists a ∆-domain such that f(z) is

analytic in the domain

D =
k⋂
i=1

(ζi ·∆) ,

Moreover, we have k log-power functions σ1, · · · , σk, and a log-power function τ(z) =

(1− z)−α (log 1
1−z )β such that

f(z) = σi(z/ζi) +O (τ(z/ζi)) as z → ζi in D.

Then, the coefficients fn = [zn]f(z) satisfies

fn =
k∑
i=1

ζ−ni (σi)n +O
(
ρ−nnα−1(log n)β

)
,

where (σi)n = [zn]σi.

The last result is quite powerful and has many applications (for some of them

see Chapter 3). However, it can be only applied if f(z) is analytic in a domain which is

larger than |z| < ρ. Sometimes, however, we only know that a function is analytic on

|z| < ρ and analytic extension is either hard to prove or not possible (some examples

for this will be given in Section 3.4). Then, singularity analysis cannot be applied

and we need other methods. We are going to introduce two such methods in the next

section.

2.2 Darboux’s and Hybrid Method

First, we introduce a method called Darboux’s method. In contrast to singularity anal-

ysis, this method does not need that the function is analytically continuable beyond the

disc of convergence. However, we will need some smoothness on the disc.
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Definition 2.10. Let h(z) be a function which is analytic in |z| < 1 and s ∈ N∪{0}. If

h(k)(z) is defined for |z| < 1 and has a continuous extension on |z| ≤ 1 for all integers

from 0 to s, then we call h(z) Cs-smooth on the unit disc.

Remark 2.11. (Riemann-Lebesgue Lemma) If f(z) is L1 integrable and supported

on (0, ∞), then ∫ ∞
0

f(z)e−tzdz → 0,

as |z| → ∞ within the half-plane =(z) ≥ 0.

Theorem 2.12. (Darboux’s Method) Assume that h(z) is Cs-smooth. Then,

hn = [zn]h(z) = o

(
1

ns

)
.

Proof. By Cauchy’s coefficient formula, we have

hn =
1

2πi

∫
C
h(z)

dz

zn+1
,

where C is the unit circle. Now, let z = eiθ, so that

hn =
1

2πi

∫ 2π

0

h
(
eiθ
) ieiθdθ

(eiθ)n+1 =
1

2π

∫ 2π

0

h
(
eiθ
)
e−niθdθ.

When s = 0, we get
∫ 2π

0
h
(
eiθ
)
e−niθdθ → 0 as n → ∞ by the Riemann-Lebesgue

Lemma. When s > 0, we use integration by parts s times and obtain

hn =
1

2π

∫ 2π

0

h
(
eiθ
)
e−niθdθ

=
1

2π

∫ 2π

0

1

ni
h′
(
eiθ
)
ieiθe−niθdθ

=
1

2π

1

n

∫ 2π

0

h′
(
eiθ
)
e−i(n−1)θdθ

=
1

2π

1

n(n− 1)

∫ 2π

0

h′′
(
eiθ
)
e−(n−2)iθdθ

= · · · = 1

2π

1

n · · · (n− s+ 1)

∫ 2π

0

h(s)
(
eiθ
)
e−(n−s)iθdθ.
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Then, again by the Riemann-Lebesgue Lemma,∫ 2π

0

h(s)
(
eiθ
)
e−(n−s)iθdθ → 0.

Consequently, hn = o(n−s) as claimed.

Definition 2.13. A function f(z) which is analytic in the open unit disc is said to be of

global order a ≤ 0 if there exists a constant c such that |f(z)| ≤ c (1− |z|)a for all z

satisfying |z| < 1. In other words, for all |z| < 1, we have

f(z) = O ((1− |z|)a) .

Theorem 2.14. (Hybrid Method) Let f(z) be a function that has a finite number of

singularities Z = {ζ1, ... , ζm} with |z| = 1 and let U(z), V (z) be analytic functions

on |z| < 1 satisfying f = U · V . Assume that V (z) is Cs-smooth on the unit disc.

Moreover, assume that U(z) is of global order a ≤ 0 and that there exists a log-power

function Ũ at Z such that U = Ũ + R with R a Ct-smooth function on the unit disc.

Finally, suppose t ≥ s+a
2
≥ 0. Then, we have

fn = [zn]f(z) = [zn]Ũ(z) · V (z) + o(n−
s+a
2 ),

where V is a polynomial.

Proof. First, fix a constant c ∈ N with c ≤ s. Next, let V = V + S, where V is a

polynomial of degree c that satisfies

∂i

∂zi
V (z)

∣∣∣∣
z=ζj

=
∂i

∂zi
V (z)

∣∣∣∣
z=ζj

,

where 0 ≤ i < c and 1 ≤ j ≤ m. Then, since U = Ũ +R, we have

f = U · V =
(
Ũ +R

)
· V = Ũ · V +R · V

= Ũ · V + Ũ · S +R · V.

Now, we are going to consider Ũ · V , Ũ · S and R · V separately.
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Ũ · V :

Since Ũ is a log-power function, and V is a polynomial, we can calculate the

coefficient of Ũ · V by singularity analysis.

Ũ · S :

Since S = V − V and derivatives of order from 0 to c− 1 are the same at ζi for

V and V , we have that derivatives of S of order from 0 to c− 1 disappears at ζi.

Consequently, we can factorize S(z) into

S(z) = κ(z)
m∏
j=1

(z − ζj)c ,

where κ(z) is a Cs−c-smooth function. Then,

Ũ · S =

(
Ũ ·

m∏
j=1

(z − ζj)c
)
· κ(z).

SinceU has a global order a, so Ũ isO ((z − ζj)a) near ζj . Thus, Ũ ·
∏m

j=1 (z − ζj)c

is at least a C(a+c)-smooth. Since a Cα-smooth function times a Cβ-smooth func-

tion is at least a Cmin(α,β)-smooth function, so Ũ · S is a Cmin{a+c,s−c}-smooth

function. From this and Theorem 2.12, we get

[zn] Ũ · S = o

(
1

nu

)
,

where u = min {a+ c, s− c}.

R · V :

Since R is Ct-smooth and V is Cs-smooth, R · V is Cmin{s,t}-smooth. Set v =

min{s, t}. Then, again by Theorem 2.12,

[zn]R · V = o

(
1

nv

)
.
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Summing up the three part yields

fn = [zn] Ũ · V + [zn] Ũ · S + [zn]R · V = [zn] Ũ · V + o(n−u) + o(n−v)

= [zn] Ũ · V + o(n−min{v,u}) = [zn] Ũ · V + o(n−min{a+c,s−c,t}).

We want the minimum to be as large as possible, so we choose a + c = s − c which

gives c = s−a
2

. Then, we have

fn = [zn] P̃ ·Q+ o
(
n−(a+ s−a

2 )
)

= [zn] P̃ ·Q+ o
(
n−

s+a
2

)
.

Note that [zn]Ũ · V can be obtained with singularity analysis (as already men-

tioned in the proof). Hence, the hybrid method combines Darboux’s method with

singularity analysis. We will use this method in Section 3.4.

2.3 Useful Functions

Here, we collect some useful functions. The first is the following one.

Definition 2.15. The exponential integral E(a) is defined as

E (a) =

∫ ∞
a

e−s

s
ds,

where 0 ≤ | arg(a)| < π, a 6= 0.

Remark 2.16. One important property of the exponential integral is that e−E(z) is

bounded for all z with <(z) ≥ 0 (see [1] for a proof).

Next, we use the exponential integral to find a representation of the remainder

of the logarithmic series.

Lemma 2.17. The remainders of the logarithm series

rm(z) =
∑
k>m

zk

k
,

where |z| < 1, satisfies rm
(
e−h
)

= E (mh) +O
(

1
m

)
for all h > 0.
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Proof. First note

rm(z) =

∫ z

0

r′m (t) dt =

∫ z

0

∑
k>m

tk−1dt.

Then, by the plugging in z = e−h and using the change of variable t = e−u, we have

rm
(
e−h
)

=

∫ e−h

0

∑
k>m

tk−1dt =

∫ h

∞

(∑
k>m

e−u(k−1)

)(
−e−u

)
du

=

∫ ∞
h

∑
k>m

e−kudu =

∫ ∞
h

e−u(m+1)

1− e−u
du =

∫ ∞
h

e−mu

eu − 1
du

=

∫ ∞
h

[
e−mu

u
+

e−mu

eu − 1
− e−mu

u

]
du

=

∫ ∞
h

[
m
e−mu

mu
+ e−mu

(
1

eu − 1
− 1

u

)]
du

=

∫ ∞
mh

[
m
e−s

s
+ e−s

(
1

es/m − 1
− 1

s/m

)]
1

m
ds

=

∫ ∞
mh

[
e−s

s
+
e−s

m

(
1

es/m − 1
− 1

s/m

)]
ds

=

∫ ∞
mh

e−s

s
ds+

1

m

∫ ∞
mh

e−s
(

1

es/m − 1
− 1

s/m

)
ds

= E (mh) +
1

m

∫ ∞
mh

e−sφ
( s
m

)
ds,

where φ(z) = 1
ez−1
− 1

z
. Now, if the function φ(z) is bounded, then 1

m

∫∞
mh
e−sφ

(
s
m

)
ds

will be O(1/m). In order to show that φ(z) is bounded, note that

φ(z)→ 0 as z →∞, and φ(z)→ −1 as z → −∞.

Moreover, when z is approaching 0, we have

lim
z→0

1

ez − 1
− 1

z
= lim

z→0

z − ez + 1

z (ez − 1)
= lim

z→0

1− ez

(ez − 1) + zez

= lim
z→0

−ez

ez + (ez + zez)
= lim

z→0

−ez

2ez + zez

= lim
z→0

−1

2 + z
= −1

2
.
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So, φ(z) is bounded and our claim is proved.

In Section 3, we will need another function which is very similar to φ.

Lemma 2.18. Let ψ(z) be defined as

ψ(z) =
1

1− e−z
− 1

z
.

Then ψ(z) is also bounded.

Proof. First, observe

ψ(z)→ 1 as z →∞, and ψ(z)→ 0 as z → −∞.

Next, when z is approaching 0, we have

lim
z→0

1

1− e−z
− 1

z
= lim

z→0

z − 1 + e−z

z (1− e−z)
= lim

z→0

1− e−z

(1− e−z) + ze−z

= lim
z→0

e−z

e−z + (e−z − ze−z)
= lim

z→0

e−z

2e−z − ze−z

= lim
z→0

1

2− z
=

1

2
.

Thus, ψ(z) is bounded.

Another function which will be needed later is the Dickman function.

Definition 2.19. The Dickman function ρ (u) is the unique continuous solution of the

difference-differential equation ρ (u) = 1 0 ≤ u ≤ 1,

uρ′ (u) = −ρ (u− 1) u > 1.

Lemma 2.20. The Laplace transform of the Dickman function ρ̂ (s) satisfies sρ̂ (s) =

e−E(s). Consequently, we have

ρ (u) =
1

2πi

∫ 1+i∞

1−i∞

e−E(v)

v
euvdv.

26



As a final class of functions, we will need polylogarithms (see [16] and [12,

p. 408]).

Definition 2.21. The polylogarithm Lim(z), with m ∈ N, is defined as

Lim(z) =
∑
n≥1

zn

nm
.

Remark 2.22. Note that Lim(z) is Cm−2-smooth.

Lemma 2.23. Lim(z) is analytically continuable to C \ [1,∞). Moreover, the singu-

larity expansion at z = 1 is given by

Lim(z) =
(−1)m

(m− 1)!
τm−1(log τ −Hm−1) +

∑
j≥0, j 6=m−1

(−1)j

j!
ζ(m− j)τ j,

where τ , the harmonic numbers Hm and the Riemann zeta function ζ(s) are defined as

τ = − log z =
∑
l≥1

(1− z)l

l
, Hm =

m∑
k=1

1

k
and ζ(s) =

∑
k≥1

1

ks
.
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Chapter 3

Properties of Random Polynomials

over Finite Fields

In this chapter, we will show the properties of random polynomials over finite fields

from the introduction. We will do this in four sections. More precisely, in Section

3.1, we will discuss the number of irreducible factors of a polynomial, in Section 3.2,

we will look at squarefree and k-free polynomials, in Section 3.3, we will discuss the

maximal degree of the irreducible factors, and finally in Section 3.4, we will discuss

the probability that a random polynomial has all irreducible factors of distinct degrees.

Throughout the section all polynomials will be considered to be monic.

3.1 The Number of Irreducible Factors

Definition 3.1. Let In be the number of irreducible polynomials of degree n and denote

by I(z) its generating function. Moreover, let Xn be the number of irreducible factors

in a random polynomial of degree n (counted with multiplicities).
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Theorem 3.2. The number of irreducible polynomials of degree n is

In =
qn

n
+O

(
qn/2

)
.

Proof. As already explained in the introduction, from the uniqueness of the prime

factorization, we obtain

P (z) =
∏
k≥1

(
1

1− zk

)Ik
= exp

(∑
k≥1

Ik log
1

1− zk

)
= exp

(∑
k≥1

∑
j≥1

Ik
zkj

j

)

= exp

(
I(z) +

1

2
I(z2) +

1

3
I(z3) + · · ·

)
=

1

1− qz
.

Taking logarithms on both sides of the equality in the second line gives

log
1

1− qz
=
∑
k≥1

I(zk)

k
.

Next, the right hand side can be written as∑
k≥1

I(zk)

k
=
∑
k≥1

∑
l≥1

1

k
Ilz

kl =
∑
n≥1

∑
k|n

1

k
In/kz

n.

Consequently, by Möbius inversion formula

I(z) = log
1

1− qz
+
∑
j≥2

µ(j)

j
log

1

1− qzj
.

Note that the second term is an analytic function on |z| < q−1/2. Hence, applying

singularity analysis gives

Ik =
qk

k
+O(qk/2).

Example 3.3. The distribution of Xn.

1. The expected value E(Xn):

We have P (z) = (1− qz)−1. Now, let P (z, u) be a bivariate generating function
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with the exponent of u counting the numbers of irreducible factors. Then,

P (z, u) =
∏
k≥1

1

(1− uzk)Ik
.

Next, differentiating with respect to u and letting u = 1 yields

∂

∂u
P (z, u)

∣∣∣∣
u=1

=
∏
k≥1

1

(1− zk)Ik
·
∑
k≥1

Ikz
k

1− zk
= P (z) ·

∑
k≥1

Ikz
k

1− zk

=
1

1− qz
·
∑
k≥1

zk

1− zk

(
qk

k
+O

(
qk/2

))

=
1

1− qz
·

(∑
k≥1

qk

k

zk

1− zk
+
∑
k≥1

zk

1− zk
O(qk/2)

)

=
1

1− qz
·

(∑
k≥1

qk

k

zk

1− zk
+
∑
k≥1

O

(
q
k
2 zk

1− zk

))

=
1

1− qz
·

(∑
j≥1

∑
k≥1

qk

k
zjk +

∑
k≥1

O

(
q
k
2 zk

1− zk

))

=
1

1− qz
·

(
log

1

1− qz
+
∑
j≥2

log
1

1− qzj
+
∑
k≥1

O

(
q
k
2 zk

1− zk

))
(3.1)

=
1

1− qz
log

1

1− qz
+

1

1− qz
·

(∑
j≥2

log
1

1− qzj
+ S(z)

)
,

where S(z) =
∑

k≥1O

(
q
k
2 zk

1−zk

)
. Note that the two terms in the bracket are

analytic on |z| < q−1/2. Hence, by singularity analysis, we have

E(Xn) =
1

qn
[zn]

∂

∂u
P (z, u)

∣∣∣∣
u=1

= log n+ γ + c+O(n−1),

where γ is Euler’s constant and c =
∑

j≥2 log(1− q1−j)−1 + S(1/q).

2. The variance of Xn:

Again, we start from
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P (z, u) =
∏
k≥1

1

(1− uzk)Ik
.

Now, we take the second derivative with respect to u and again set u = 1 (the

additional factor u after taking the first derivative is needed because we want to

compute the second moment).

∂

∂u

(
u · ∂

∂u
P (z, u)

) ∣∣∣∣
u=1

=
∂

∂u

(
u ·
∏
k≥1

(1− uzk)−Ik ·
∑
k≥1

Ikz
k

1− uzk

)∣∣∣∣
u=1

=
∏
k≥1

(1− uzk)−Ik
∑
k≥1

Ikz
k

1− uzk

∣∣∣∣
u=1

+ u
∏
k≥1

(1− uzk)−Ik
(∑
k≥1

Ikz
k

1− uzk

)2 ∣∣∣∣
u=1

+ u ·
∏
k≥1

(1− uzk)−Ik ·
∑
k≥1

Ikz
2k

(1− uzk)2

∣∣∣∣
u=1

=
∏
k≥1

(1− zk)−Ik ·

∑
k≥1

Ikz
k

1− zk
+

(∑
k≥1

Ikz
k

1− zk

)2

+
∑
k≥1

Ikz
2k

(1− zk)2


=

1

1− qz
·

∑
k≥1

Ikz
k

1− zk
+

(∑
k≥1

Ikz
k

1− zk

)2

+
∑
k≥1

Ikz
2k

(1− zk)2

 .
Note that the last term in the bracket is analytic on |z| < q−1/2. As for the first

two terms, we use what we already obtained in the analysis of the mean,∑
k≥1

Ikz
k

1− zk
= log

1

1− qz
+
∑
j≥2

log
1

1− qzj
+ S(z),

Plugging this in and applying singularity analysis gives

E(X2
n) =

1

qn
[zn]

1

1− qz
·
[
log

1

1− qz
+ S(z)

]
+

1

qn
[zn]

1

1− qz
· log2 1

1− qz

+
1

qn
[zn]

1

1− qz
· 2 log

1

1− qz

[∑
j≥2

log
1

1− qzj
+ S(z)

]
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+
1

qn
[zn]

1

1− qz
·

(∑
j≥2

log
1

1− qzj
+ S(z)

)2

+
1

qn
[zn]

1

1− qz
·
∑
k≥1

Ikz
2k

(1− zk)2

= log n+O(1) + log2 n+ 2γ log n+O(1) + 2c log n+O(1)

= log2 n+ (2γ + 2c+ 1) log n+O(1).

Consequently, Var(Xn) = E(X2
n)− E(Xn)2

= log2 n+ (2γ + 2c+ 1) log n+O(1)−
(
log2 n+ 2(γ + c) log n+O(1)

)
= log n+O(1).

3. The probability of Xn = 1, which is the same as the probability that a random

polynomial of degree n is irreducible, is given by

Prob (Xn = 1) =
1

qn
· In =

1

qn

(
qn

n
+O

(
qn/2

))
=

1

n
+O

(
q−n/2

)
.

4. The probability of Xn = 2, which is the probability of a random polynomial of

degree n to be a product of two irreducible factors, is obtained from the generat-

ing function

I [2](z) =
I(z) · I(z)

2!
+
I(z2)

2
=

1

2

(
log

1

1− qz
+
∑
j≥2

µ(j)

j
log

1

1− qzj

)2

+
1

2

(
log

1

1− qz2
+
∑
j≥2

µ(j)

j
log

1

1− qz2j

)
.

Since the latter term is analytic on |z| < q−1/2, singularity analysis yields

Prob (Xn = 2) =
1

qn
· [zn]I [2](z) =

log n

n
+O

(
1

n

)
.
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3.2 Squarefree Polynomials and K-free Polynomials

Definition 3.4. A polynomial is called squarefree if each of its irreducible factors ap-

pears only once.

Remark 3.5. If a polynomial f (x) is not squarefree, we can sort the irreducible factors

of the polynomial into a squarefree part g (x) and a remaining part h (x). The square-

free part g (x) gathers all of the irreducible factors only once, and the remaining part

h (x) takes the rest.

Remark 3.6. The remaining part h = f/g is not necessarily not squarefree, e.g., if

f(x) = (x + 1)2(x + 2)(x2 + x + 1)3, then g(x) = (x + 1)(x + 2)(x2 + x + 1) and

consequently h(x) = (x+ 1)(x2 + x+ 1)2.

Example 3.7. Here, we want to find the probability of a random polynomial being

squarefree and the expected value of the degree of the remaining part.

1. The probability of a random polynomial being squarefree:

The generating functions of squarefree polynomials (denoted by Q(z)) and all

polynomials are

Q(z) =
∞∏
k=1

(1 + zk)Ik ,

P (z) =
∞∏
k=1

(1− zk)−Ik =
1

1− qz
.

Now, a relation between squarefree polynomials and all polynomials is as fol-

lows: every polynomial can be factorized into a square part and a remaining part,

which is squarefree, e.g.,

f(x) = x(x+ 1)(x+ 3)7(x2 + 1)2(x2 + 5)6

= (x+ 3)6(x2 + 1)2(x2 + 5)6 · x(x+ 1)(x+ 3)
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=
[
(x+ 3)3(x2 + 1)1(x2 + 5)3

]2︸ ︷︷ ︸ ·x(x+ 1)(x+ 3)︸ ︷︷ ︸ .
square part remaining part

This yields,

P (z) = P (z2) ·Q(z).

Q(z) =
P (z)

P (z2)
=

1− q(z2)

1− qz
= (1− qz2) · (1 + qz + q2z2 + q3z3 + · · · )

=
∑
k≥0

qkzk −
∑
k≥2

qk−1zk.

Hence, the coefficient Qn of zn in Q(z) is easily obtained as

Qn =

 qn, if n = 0, 1;

qn − qn−1, if n ≥ 2.

So, the probability of a random polynomial with degree n being squarefree is 1, when n = 0, 1;

1− 1
q
, when n ≥ 2.

2. The expected value of the degree of the remaining part:

We again use a bivariate generating function P (z, u), where the second variable

counts the degree of the remaining part. Consequently,

P (z, u) =
∏
k≥1

(
1 + zk + ukz2k + u2kz3k + · · ·

)Ik =
∏
k≥1

(
1 +

zk

1− ukzk

)Ik
.

Now, differentiating with respect to u and setting u = 1 yields
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∂

∂u
P (z, u)

∣∣∣∣
u=1

=
∏
k≥1

(
1 +

zk

1− zk

)Ik
·
∑
k≥1

Ik

(
1 + zk

1−zk

)Ik−1 (
−zk

) (
1− zk

)−2 (−kzk)(
1 + zk

1−zk

)Ik
=
∏
k≥1

(
1

1− zk

)Ik
·
∑
k≥1

kIk
z2k
(
1− zk

)−2

(1− zk)−1

= P (z) ·
∑
k≥1

kIk ·
z2k

1− zk
=

1

1− qz
·
∑
k≥1

kIk ·
z2k

1− zk
.

Note that the second term is analytic on |z| < q−1/2. Consequently, by singular-

ity analysis

[zn]
∂

∂u
P (z, u)

∣∣
u=1
∼ qn

∑
k≥1

kIk
q−2k

1− q−k
= qn

∑
k≥1

kIk
q2k − qk

.

Hence, the expected value of the degree of the remaining part is asymptotically

equal to ∑
k≥1

kIk
q2k − qk

.

A natural extension of squarefree polynomials are k-free polynomials. We will

consider them next.

Definition 3.8. A polynomial is called k-free if the multiplicity of each irreducible

factor is less than k.

Remark 3.9. If a polynomial f (x) is not k-free, we can sort the irreducible factors

of the polynomial into a k-free part g (x) and a remaining part h (x). The k-free part

g (x) gathers all of the irreducible factors at most k − 1 times and the remaining part

h (x) takes the rest.
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Example 3.10. Let us find the probability of a random polynomial being k-free and

the expected value of the degree of the remaining part. The analysis is similar to the

one from Example 3.7.

1. The probability of a random polynomial being k-free:

The generating function of k-free polynomials Q[k](z) is

Q[k](z) =
∏
j≥1

(
1 + zj + z2j + z3j + · · ·+ z(k−1)j

)Ik
.

Then, we again can find a relation between Q[k](z) and P (z). More precisely,

since every polynomial can be composed into a k-free polynomial times a poly-

nomial of power k, so

P (z) = Q[k](z) · P (zk).

Q[k](z) =
P (z)

P (zk)
=

1− qzk

1− qz
= (1− qzk) · (1 + qz + q2z2 + q3z3 + · · · )

=
∑
j≥0

qjzj −
∑
j≥0

qj+1zk+j.

Since a polynomial with degree n < k must be k-free, so the probability of a

polynomial of degree n < k being k-free is 1. Next, we consider on polynomial

of degree n ≥ k. From the above, we get for the number of k-free polynomials

(denoted by Q[k]
n ):

Q[k]
n = qn − qn−k+1.

So, the probability that a random polynomial of degree n ≥ k is k-free is 1− 1
qk−1 .

2. The expected value of the degree of the remaining part:

Similar as in Example 3.7, we find the bivariate generating function with u count-

ing the degree of the remaining part.
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Then,

P (z, u) =
∏
j≥1

(
1 + zj + z2j + · · ·+ z(k−1)j + ujzkj + u2jz(k+1)j + · · ·

)Ij
=
∏
j≥1

(
1− z(k−1)j

1− zj
+

z(k−1)j

1− ujzj

)Ij
.

Next, we differentiate with respect to u and let u = 1. This yields

∂

∂u
P (z, u)

∣∣∣∣
u=1

=
∏
j≥1

(
1

1− zj

)Ij
·
∑
j≥1

Ij
(

1
1−zj

)Ij−1 (−z(k−1)j
)

(1− zj)−2
(−jzj)(

1
1−zj

)Ij
=
∏
j≥1

(
1

1− zj

)Ij
·
∑
j≥1

(
jIj z

kj (1− zj)−2

(1− zj)−1

)

= P (z) ·
∑
j≥1

(
jIj ·

zkj

1− zj

)
=

1

1− qz
·
∑
j≥1

(
jIj ·

zkj

1− zj

)
.

Applying singularity analysis yields

[zn]
∂

∂u
P (z, u)

∣∣
u=1
∼ qn

∑
j≥1

jIj
q−kj

1− q−j
= qn

∑
j≥1

jIj
qkj − q(k−1)j

.

Hence, the expected value of the remaining part is asymptotic to∑
j≥1

jIj
qkj − q(k−1)j

.

3.3 The Degree of the Irreducible Factors

Definition 3.11. A polynomial is calledm-smooth polynomial if there is no irreducible

factor whose degree is greater than m.
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Example 3.12. First, we discuss the number of m-smooth polynomial of degree n.

Therefore, let Sm(z) be the generating function of m-smooth polynomials. Then, for

|z| < 1

Sm(z) =
m∏
k=1

(
1− zk

)−Ik = P (z) ·
∏
k>m

(
1− zk

)Ik
=

1

1− qz
· exp

(∑
k>m

Ik log
(
1− zk

))

=
1

1− qz
· exp

(∑
k>m

Ik ·
(
−zk − z2k

2
− z3k

3
− · · ·

))

=
1

1− qz
· exp

(
−
∑
k>m

∑
j≥1

Ik ·
zkj

j

)

=
1

1− qz
· exp

(
−
∑
j≥1

1

j

∑
k>m

Ikz
kj

)

=
1

1− qz
· exp

(
−
∑
j≥1

r
[j]
m (z)

j

)
,

where r[j]
m (z) =

∑
k>m Ikz

kj . Next, we need suitable estimates for r[j]
m . First, we

estimate r[1]
m (z) for |z| < 1:

r[1]
m

(
z

q

)
=
∑
k>m

Ik

(
z

q

)k
=
∑
k>m

zk

k
+O

(
q−m/2

)
.

Moreover, for r[j]
m (z) with j ≥ 2, we have

r[j]
m

(
z

q

)
=
∑
k>m

O

(
qk
zkj

qkj

)
=
∑
k>m

O

(
zkj

qk(j−1)

)
= O

(
1

qm(j−1)

)
,

for |z| < 1. Overall, we have found that the sum of the error terms of r[j]
m (z) with j ≥ 2

are bounded by the error term of r[1]
m (z) which is O

(
q−m/2

)
.
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So, the number of m-smooth polynomial of degree n (denoted by Nq(n,m)) is

Nq(n,m) =
1

2πi

∫
C
Sm(z)

dz

zn+1
=

qn

2πi

∫
C̃
Sm

(
z

q

)
dz

zn+1

=
qn

2πi

∫
C̃

1

1− q(z/q)
· exp

(
−r[1]

m

(
z

q

)
− r

[2]
m (z/q)

2
− r

[3]
m (z/q)

3
− · · ·

)
dz

zn+1

=
qn

2πi

∫
C̃

1

1− z
· exp

(
−
∑
k>m

zk

k
+O

(
q−m/2

)) dz

zn+1

=
qn

2πi

∫
C̃

1

1− z
· exp

(
−rm(z) +O

(
q−m/2

)) dz

zn+1
,

where the contour C̃ is z = eiθ−1/n with −π ≤ θ ≤ π. Next, we use the change of

variable z = e−h/n. Note that, by Lemma 2.17, we have

rm(z) = rm
(
e−h/n

)
= E (µh) +O (1/m) ,

where µ = m/n. Moreover, note that since O
(
q−m/2

)
is exponentially small, so it

will be eliminated by O (1/m) in rm(z). Consequently,

Nq (n,m) =
qn

2πi

∫
C̃

1

1− z
· exp

(
−rm(z) +O

(
q−m/2

)) dz

zn+1

=
qn

2πi

∫ 1−inπ

1+inπ

1

1− e−h/n
· exp

(
−rm

(
e−h/n

)
+O

(
q−m/2

)) − 1
n
e−h/ndh

e−h(1+1/n)

=
qn

2πi

∫ 1+inπ

1−inπ

exp (−E (µh) +O (1/m))

n (1− e−h/n)
ehdh

=
qn

2πi

∫ 1+inπ

1−inπ
e−E(µh) eO(1/m)

n (1− e−h/n)
ehdh. (3.2)

Now, set ψ(z) = 1
1−e−z −

1
z

which is analytic in |z| < 2π. We can rewrite parts of the

integrand of (3.2) into an expression of ψ.

1

n (1− e−h/n)
=

1

n

(
1

h/n
+ ψ

(
h

n

))
=

1

h
+

1

n
ψ

(
h

n

)
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eO(1/m)

n (1− e−h/n)
=

(
1

h
+

1

n
ψ

(
h

n

))
·
(

1 +O

(
1

m

))
=

1

h
+

1

n
ψ

(
h

n

)
+O

(
1

hm

)
. (3.3)

Next, substitute (3.3) into (3.2) and separate the integral into three parts

Nq (n,m) =
qn

2πi

∫ 1+inπ

1−inπ
e−E(µh) eO(1/m)

n (1− e−h/n)
ehdh

=
qn

2πi

∫ 1+inπ

1−inπ
e−E(µh)

(
1

h
+

1

n
ψ

(
h

n

)
+O

(
1

hm

))
ehdh

=
qn

2πi

∫ 1+inπ

1−inπ
e−E(µh) 1

n
ψ

(
h

n

)
ehdh+

qn

2πi

∫ 1+inπ

1−inπ

e−E(µh)

h
ehdh

+
qn

2πi

∫ 1+inπ

1−inπ
e−E(µh)O

(
1

hm

)
ehdh .

Now, we will discuss the 3 integrals separately:

1. The main term:

1

2πi

∫ 1+inπ

1−inπ

e−E(µh)

h
ehdh

=
1

2πi

∫ 1+i∞

1−i∞

e−E(µh)

h
ehdh− 1

2πi

∫
L

e−E(µh)

h
ehdh,

where L is the union of the two semi-vertical lines (1 + inπ, 1 + i∞) and (1 −
i∞, 1 − inπ). Then, by partial integration, we obtain for the L part the bound

O
(

1
n

)
. Since the proofs of the positive and negative semi-vertical line are the

same, we only consider the positive part.∫ 1+i∞

1+inπ

e−E(µh)

h
ehdh

=
e−E(µh)

h
eh
∣∣∣∣1+i∞

1+inπ

−
∫ 1+i∞

1+inπ

(
e−E(µh)

h

e−µh

h
− e−E(µh)

h2

)
ehdh

=
e−E(µh)

h
eh
∣∣∣∣1+i∞

1+inπ

+

∫ 1+i∞

1+inπ

e−E(µh)

h2

(
1− e−µh

)
ehdh.
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In order to go on, note that since e−E(z) is bounded for <(z) > 0, there exists a

constant c > 0 such that |e−E(z)| ≤ c. So the absolute value of the first term is∣∣∣∣∣ e−E(µh)

h
eh
∣∣∣∣1+i∞

1+inπ

∣∣∣∣∣ ≤ c

(
lim
x→∞

|e1+ix|
|1 + ix|

+
|e1+inπ|
|1 + inπ|

)
= ce

(
lim
x→∞

1√
x2 + 1

+
1√

n2π2 + 1

)
= O

(
1

n

)
.

Moreover, the absolute value of the second term is bounded by∣∣∣∣ ∫ 1+i∞

1+inπ

e−E(µh)

h2

(
1− e−µh

)
ehdh

∣∣∣∣
≤
∫ ∞
nπ

∣∣∣∣e−E(µ+iµx)

(1 + ix)2

(
1− e−µ−iµx

)
e1+ix

∣∣∣∣ dx ≤ ce

∫ ∞
nπ

∣∣∣∣1− e−µ−iµx(1 + ix)2

∣∣∣∣ dx
≤ ce

∫ ∞
nπ

1

|1 + ix|2
dx+ ce

∫ ∞
nπ

|e−µ−iµx|
|1 + ix|2

dx

= ce

∫ ∞
nπ

1

1 + x2
dx+ ce1−µ

∫ ∞
nπ

1

1 + x2
dx

=
(
ce+ ce1−µ) ∫ ∞

nπ

1

1 + x2
dx

≤
(
ce+ ce1−µ) ∫ ∞

nπ

1

x2
dx =

ce+ ce1−µ

nπ
= O

(
1

n

)
.

So, the main term becomes
1

2πi

∫ 1+i∞

1−i∞

e−E(µh)

h
ehdh+O

(
1

n

)
=

1

2πi

∫ 1+i∞

1−i∞

e−E(µh)

µh
(eµh)

1
µµdh+O

(
1

n

)
=

1

2πi

∫ 1+i∞

1−i∞

e−E(µh)

µh
(eµh)

1
µd(µh) +O

(
1

n

)
.

Then, by Lemma 2.20, ρ (u) = 1
2πi

∫ 1+i∞
1−i∞

e−E(v)

v
euvdv. So, our main term is

1

2πi

∫ 1+i∞

1−i∞

e−E(µh)

µh

(
eµh
) 1
µ d (µh) +O

(
1

n

)
= ρ

(
1

µ

)
+O

(
1

n

)
= ρ

( n
m

)
+O

(
1

n

)
.

41



2. The part containing 1
n
ψ
(
h
n

)
:

Integration by part gives

1

2πi

∫ 1+inπ

1−inπ
e−E(µh) 1

n
ψ

(
h

n

)
ehdh =

1

2nπi

∫ 1+inπ

1−inπ
e−E(µh) ψ

(
h

n

)
ehdh

=
1

2nπi

(
e−E(µh) ψ

(
h

n

)
eh
∣∣∣∣1+inπ

1−inπ
−
∫ 1+inπ

1−inπ

(
e−E(µh) ψ

(
h

n

))′
ehdh

)

=
1

2nπi

(
e−E(µh) ψ

(
h

n

)
eh
∣∣∣∣1+inπ

1−inπ

−
∫ 1+inπ

1−inπ

(
e−µh

h
e−E(µh) ψ

(
h

n

)
+ e−E(µh) 1

n
ψ′
(
h

n

))
ehdh

)
=

1

2nπi

(
e−E(µh) ψ

(
h

n

)
eh
∣∣∣∣1+inπ

1−inπ

−
∫ 1+inπ

1−inπ
e−E(µh)

(
e−µh

h
ψ

(
h

n

)
+

1

n
ψ′
(
h

n

))
ehdh

)
.

We will bound this expression in three steps. In every step we will use that e−E(z)

and ψ(z) are bounded:

(a)

∣∣∣∣∣ 1
2nπi

e−E(µh)ψ
(
h
n

)
eh
∣∣∣∣1+inπ

1−inπ

∣∣∣∣∣:
Here, we have

1

2nπ

∣∣∣∣∣e−E(µh)ψ

(
h

n

)
eh
∣∣∣∣1+inπ

1−inπ

∣∣∣∣∣ =
1

2nπ

∣∣∣∣e−E(µ(1+inπ))ψ

(
1 + inπ

n

)
e1+inπ

− e−E(µ(1−inπ))ψ

(
1− inπ

n

)
e1−inπ

∣∣∣∣
≤ 1

2nπ

(∣∣∣∣e−E(µ(1+inπ))ψ

(
1 + inπ

n

)
e1+inπ

∣∣∣∣
+

∣∣∣∣e−E(µ(1−inπ))ψ

(
1− inπ

n

)
e1−inπ

∣∣∣∣)
≤ c

2nπ

(∣∣e1+inπ
∣∣+
∣∣e1−inπ∣∣) =

ce

2nπ

(∣∣einπ∣∣+
∣∣e−inπ∣∣) = O

(
1

n

)
.
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So,
∣∣∣ 1

2nπi
e−E(µh)ψ

(
h
n

)
eh
∣∣1+inπ

1−inπ

∣∣∣ = O
(

1
n

)
.

(b)
∣∣∣ 1

2nπi

∫ 1+inπ

1−inπ e
−E(µh)ψ

(
h
n

)
e(1−µ)h

h
dh
∣∣∣:

Here, we have

1

2nπ

∣∣∣∣∫ 1+inπ

1−inπ
e−E(µh)ψ

(
h

n

)
e(1−µ)h

h
dh

∣∣∣∣
≤ 1

2nπ

∫ nπ

−nπ

∣∣∣∣e−E(µ+iµx)ψ

(
1 + ix

n

)
e(1−µ)(1+ix)

1 + ix

∣∣∣∣ dx
≤ c

2nπ

∫ nπ

−nπ

∣∣∣∣e(1−µ)(1+ix)

1 + ix

∣∣∣∣ dx =
ce1−µ

2nπ

∫ nπ

−nπ

1√
1 + x2

dx

=
ce1−µ

2nπ

∫ nπ

0

2√
1 + x2

dx

=
ce1−µ

nπ

(∫ 1

0

1√
1 + x2

dx+

∫ nπ

1

1√
1 + x2

dx

)
=
ce1−µ

nπ

(
log(x+

√
1 + x2)

∣∣∣∣1
0

+

∫ nπ

1

1√
1 + x2

dx

)

=
ce1−µ

nπ

(
log(1 +

√
2) +

∫ nπ

1

1√
1 + x2

dx

)
= O

(
log n

n

)
.

Thus,
∣∣∣ 1

2nπi

∫ 1+inπ

1−inπ e
−E(µh)ψ

(
h
n

)
e(1−µ)h

h
dh
∣∣∣ = O

(
logn
n

)
.

(c)
∣∣∣ 1

2n2πi

∫ 1+inπ

1−inπ e
−E(µh)ψ′

(
h
n

)
ehdh

∣∣∣:
Note that ψ′(z) is also bounded. Hence,

1

2n2π

∣∣∣∣∫ 1+inπ

1−inπ
e−E(µh)ψ′

(
h

n

)
ehdh

∣∣∣∣
≤ 1

2n2π

∫ nπ

−nπ

∣∣∣∣e−E(µ+iµx)ψ′
(

1 + ix

n

)
e1+ix

∣∣∣∣ dx
≤ c

2n2π

∫ nπ

−nπ

∣∣e1+ix
∣∣ dx =

ce

2n2π

∫ nπ

−nπ

∣∣eix∣∣ dx = O

(
1

n

)
.

This gives
∣∣∣ 1

2n2πi

∫ 1+inπ

1−inπ e
−E(µh)ψ′

(
h
n

)
ehdh

∣∣∣ = O
(

1
n

)
.
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Overall, we obtain 1
2πi

∫ 1+inπ

1−inπ e
−E(µh) 1

n
ψ
(
h
n

)
ehdh = O

(
logn
n

)
.

3. The part containing O
(

1
hm

)
:

Since e−E(µh) is bounded, we easily get the error term:∣∣∣∣ 1

2πi

∫ 1+inπ

1−inπ
e−E(µh)O

(
1

hm

)
ehdh

∣∣∣∣ ≤ c

∫ nπ

−nπ

∣∣∣∣O( 1

(1 + ix)m

)
e1+ix

∣∣∣∣ dx
= ce

∫ nπ

−nπ
O

(
1√

1 + x2m

)
dx = O

(
log n

m

)
.

Hence, by combining the above estimates, we have

Nq (n,m) = qn ·
(
ρ
( n
m

)
+O

(
log n

m

) )
.

Next, we are going to discuss the degree of the largest irreducible factor of a

random polynomial of degree n (which we denote by D[1]
n ).

Example 3.13. Here, we consider the probability that a random polynomial has the

degree of the largest irreducible factor D[1]
n = m.

As before, we first find the generating function Lm(z) of polynomials with the

degree of the largest irreducible factor = m. By the previous example, we have the

generating function Sm(z) of m-smooth polynomials. Then, Lm(z) is given by

Lm(z) = Sm(z)− Sm−1(z) = Sm(z)
(

1− (1− zm)Im
)

= Sm(z) ·

(∑
k≥1

(
Im
k

)
(−1)k+1zkm

)

= Sm(z) ·

(
Imz

m +
∑
k≥2

(
Im
k

)
(−1)k+1zkm

)
.

Thus,

Pr
(
D[1]
n = m

)
=

1

qn
[zn]Lm(z) = [zn]Lm

(
z

q

)
=

1

2πi

∫
C
Lm

(
z

q

)
dz

zn+1

=
1

2πi

∫
C
Sm

(
z

q

)(
Im
zm

qm
+
∑
k≥2

(
Im
k

)
(−1)k+1

(
z

q

)km)
dz

zn+1
.
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Since Im = qm/m+O
(
qm/2

)
= O(qm/m), the probability becomes

Pr
(
D[1]
n = m

)
=

1

2πi

∫
C
Sm

(
z

q

)(
Im
zm

qm
+O

(
1

m2

))
dz

zn+1

=
1

2πi

∫
C
Sm

(
z

q

)(
zm

m
+O

(
q−m/2

)
+O

(
1

m2

))
dz

zn+1

=
1

2πi

∫
C
Sm

(
z

q

)
zm

m

dz

zn+1

(
1 +O

(
1

m

))
,

where the contour C is z = e−1/n+iθ with −π ≤ θ ≤ π. By the change of variable

z = e−h/n, we have

Pr
(
D[1]
n = m

)
=

1

2πi

∫
C
Sm

(
z

q

)
zm

m

dz

zn+1

(
1 +O

(
1

m

))
=

1

2πi

∫ 1−inπ

1+inπ

Sm

(
e−h/n

q

)
e−µh

m

− 1
n
e−h/ndh

e−h−h/n

(
1 +O

(
1

m

))
=

1

2πi

∫ 1+inπ

1−inπ
Sm

(
e−h/n

q

)
e(1−µ)h

nm
dh

(
1 +O

(
1

m

))
,

where µ = m/n. Now, as in Example 3.12,

Pr
(
D[1]
n = m

)
=

1

2mπi

∫ 1+inπ

1−inπ
e−E(µh) eO(1/m)

n (1− e−h/n)
e(1−µ)hdh

(
1 +O

(
1

m

))
=

1

2mπi

∫ 1+inπ

1−inπ
e−E(µh)

[
1

h
+

1

n
ψ

(
h

n

)
+O

(
1

hm

)]
e(1−µ)hdh.

As before, we break the integral into three parts and discuss the three parts separately:

1. The main term:

By Example 3.12, we know that the contour of the first part [1 − inπ, 1 + inπ]

can be replaced by (1− i∞, 1 + i∞). Then, by Lemma 2.20,

1

2mπi

∫ 1+i∞

1−i∞
e−E(µh) 1

h
e(1−µ)hdh =

1

2mπi

∫ 1+i∞

1−i∞
e−E(µh) 1

µh
eµh(

1
µ
−1)d (µh)

=
1

m
ρ

(
1

µ
− 1

)
.

45



2. The term containing 1
n
ψ
(
h
n

)
:

This term is similar as in Example 3.12. Integration by part gives

1

2mπi

∫ 1+inπ

1−inπ
e−E(µh) 1

n
ψ

(
h

n

)
e(1−µ)hdh

=
1

2nmπi

∫ 1+inπ

1−inπ
e−E(µh) ψ

(
h

n

)
e(1−µ)hdh

=
1

2nm (1− µ)πi

(
e−E(µh) ψ

(
h

n

)
e(1−µ)h

∣∣∣∣1+inπ

1−inπ

−
∫ 1+inπ

1−inπ
e−E(µh)

(
e−µh

h
ψ

(
h

n

)
+

1

n
ψ′
(
h

n

))
e(1−µ)hdh

)
.

(a)
∣∣∣ 1

2nmπi
e−E(µh)ψ

(
h
n

)
e(1−µ)h

∣∣1+inπ

1−inπ

∣∣∣:
Since e−E(z) and ψ(z) are bounded, we have

1

2nmπ

∣∣∣∣∣e−E(µh)ψ

(
h

n

)
e(1−µ)h

∣∣∣∣1+inπ

1−inπ

∣∣∣∣∣
=

1

2nmπ

∣∣∣∣e−E(µ(1+inπ))ψ

(
1 + inπ

n

)
e(1−µ)(1+inπ)

− e−E(µ(1−inπ))ψ

(
1− inπ

n

)
e(1−µ)(1−inπ)

∣∣∣∣
≤ 1

2nmπ

(∣∣∣∣e−E(µ(1+inπ))ψ

(
1 + inπ

n

)
e(1−µ)(1+inπ)

∣∣∣∣
+

∣∣∣∣e−E(µ(1−inπ))ψ

(
1− inπ

n

)
e(1−µ)(1−inπ)

∣∣∣∣)
≤ c

2nmπ

(∣∣e(1−µ)(1+inπ)
∣∣+
∣∣e(1−µ)(1−inπ)

∣∣) =
ce1−µ

nmπ
= O

(
1

nm

)
.

So,
∣∣∣ 1

2nmπi
e−E(µh)ψ

(
h
n

)
e(1−µ)h

∣∣1+inπ

1−inπ

∣∣∣ = O
(

1
nm

)
.

(b)
∣∣∣ 1

2nmπi

∫ 1+inπ

1−inπ e
−E(µh)ψ

(
h
n

)
e(1−2µ)h

h
dh
∣∣∣:

Since e−E(z) and ψ(z) are bounded, we have

46



1

2nmπ

∣∣∣∣∫ 1+inπ

1−inπ
e−E(µh)ψ

(
h

n

)
e(1−2µ)h

h
dh

∣∣∣∣
≤ 1

2nmπ

∫ nπ

−nπ

∣∣∣∣e−E(µ+iµx)ψ

(
1 + ix

n

)
e(1−2µ)(1+ix)

1 + ix

∣∣∣∣ dx
≤ c

2nmπ

∫ nπ

−nπ

∣∣∣∣e(1−2µ)(1+ix)

1 + ix

∣∣∣∣ dx =
ce1−2µ

2nmπ

∫ nπ

−nπ

1√
1 + x2

dx

=
ce1−2µ

2nmπ

∫ nπ

0

2√
1 + x2

dx

=
ce1−2µ

nmπ

(∫ 1

0

1√
1 + x2

dx+

∫ nπ

1

1√
1 + x2

dx

)
=
ce1−2µ

nmπ

(
log(x+

√
1 + x2)

∣∣∣∣1
0

+

∫ nπ

1

1√
1 + x2

dx

)

=
ce1−2µ

nmπ

(
log(1 +

√
2) +

∫ nπ

1

1√
1 + x2

dx

)
= O

(
log n

nm

)
.

This gives
∣∣∣ 1

2nmπi

∫ 1+inπ

1−inπ e
−E(µh)ψ

(
h
n

)
e(1−2µ)h

h
dh
∣∣∣ = O

(
logn
nm

)
.

(c)
∣∣∣ 1

2n2mπi

∫ 1+inπ

1−inπ e
−E(µh)ψ′

(
h
n

)
e(1−µ)hdh

∣∣∣:
We know that e−E(z) and ψ′(z) are bounded. Consequently,

1

2n2mπ

∣∣∣∣∫ 1+inπ

1−inπ
e−E(µh)ψ′

(
h

n

)
e(1−µ)hdh

∣∣∣∣
≤ 1

2n2mπ

∫ nπ

−nπ

∣∣∣∣e−E(µ+iµx)ψ′
(

1 + ix

n

)
e(1−µ)(1+ix)

∣∣∣∣ dx
≤ c

2n2mπ

∫ nπ

−nπ

∣∣e(1−µ)(1+ix)
∣∣ dx

=
ce1−µ

2n2mπ

∫ nπ

−nπ

∣∣eix(1−µ)
∣∣ dx = O

(
1

nm

)
.

This gives
∣∣∣ 1

2n2πi

∫ 1+inπ

1−inπ e
−E(µh)ψ′

(
h
n

)
ehdh

∣∣∣ = O
(

1
nm

)
.

Overall, summing up these three parts gives an error term O
(

logn
nm

)
.

47



3. The part containing O
(

1
hm

)
:

Since e−E(µh) and e(1−µ)h are bounded, we obtain the estimate∣∣∣∣ 1

2mπi

∫ 1+inπ

1−inπ
e−E(µh)O

(
1

hm

)
e(1−µ)hdh

∣∣∣∣
≤ c

2mπ

∫ nπ

−nπ

∣∣∣∣O( 1

m(1 + ix)

)
e(1−µ)(1+ix)

∣∣∣∣ dx
=
ce1−µ

2mπ

∫ nπ

−nπ
O

(
1

m
√

1 + x2

)
dx = O

(
log n

m2

)
.

Overall, we get for the probability of D[1]
n = m:

Pr
(
D[1]
n = m

)
=

1

m
ρ

(
1

µ
− 1

)
+O

(
log n

m2

)
=

1

m
ρ
( n
m
− 1
)

+O

(
log n

m2

)
.

Example 3.14. Here, we discuss the probability that a random polynomial has D[1]
n =

m and D[2]
n ≤ m/2, where D[2]

n denotes the degree of the second largest irreducible

factor.

The generating function L̃m(z) of polynomials with D[1]
n = m and D[2]

n ≤ m/2

is given by

L̃m(z) = Sbm/2c(z) · Imz
m

1− zm
= Sbm/2c(z) · zm

1− zm
·
(
qm

m
+O

(
qm/2

))
= Sbm/2c(z) · qmzm

m(1− zm)
·
(
1 +O(mq−m/2)

)
.

Then, the probability of D[1]
n = m and D[2]

n ≤ m/2 is

Pr
(
D[1]
n = m,D[2]

n ≤ m/2
)

=
1

qn
[zn]L̃m(z) = [zn]L̃m

(
z

q

)
=

1

2πi

∫
C
L̃m

(
z

q

)
dz

zn+1

=
1

2πi

∫
C
Sbm/2c

(
z

q

)
zm

m (1− zm/qm)

dz

zn+1
(1 +O(mq−m/2))

with the contour C equal to z = e−1/n+iθ with −π ≤ θ ≤ π. Then, by the change of

variable z = e−h/n, we have
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Pr
(
D[1]
n = m,D[2]

n ≤ m/2
)

=
1

2πi

∫
C
Sbm/2c

(
z

q

)
zm

m (1− zm/qm)

dz

zn+1
(1 +O(mq−m/2))

=
1

2πi

∫ 1−inπ

1+inπ

Sbm/2c

(
e−h/n

q

)
e−µh

m (1− e−µh/qm)

− 1
n
e−h/ndh

e−h−h/n
(1 +O(mq−m/2))

=
1

2πi

∫ 1+inπ

1−inπ
Sbm/2c

(
e−h/n

q

)
e(1−µ)h

m (1− e−µh/qm)

1

n
dh(1 +O(mq−m/2))

=
1

2mπi

∫ 1+inπ

1−inπ
e−E(µh/2) eO(1/m)

n (1− e−h/n)
e(1−µ)h

(
1 +

e−µh

qm
+
e−2µh

q2m
+ · · ·

)
dh.

Here, the error term O(mq−m/2) is eliminated by the error term O(1/m). Moreover,

we can ignore
∑

k≥1

(
e−µh/qm

)k since it is exponentially small. So, the probability is

Pr
(
D[1]
n = m,D[2]

n ≤ m/2
)

=
1

2mπi

∫ 1+inπ

1−inπ
e−E(µh/2) eO(1/m)

n (1− e−h/n)
e(1−µ)hdh.

Next, by (3.3) of Example 3.12,

Pr
(
D[1]
n = m,D[2]

n ≤ m/2
)

=
1

2mπi

∫ 1+inπ

1−inπ
e−E(µh/2)

[
1

h
+

1

n
ψ

(
h

n

)
+O

(
1

hm

)]
e(1−µ)hdh.

As before, we break the integral into three parts. For the second and third part, we

again obtain O
(

logn
m2

)
.

For the first part, similar as in Example 3.12 we can replace [1− inπ, 1 + inπ]

by (1− i∞, 1 + i∞). Then, by the change of variable v = µh/2 and Lemma 2.20,

1

2mπi

∫ 1+i∞

1−i∞
e−E(µh/2) 1

h
e(1−µ)hdh =

1

2mπi

∫ 1+i∞

1−i∞
e−E(v) 1

2v/µ
e(1−µ)2v/µ 2

µ
dv

=
1

2mπi

∫ 1+i∞

1−i∞

e−E(v)

v
e2v( 1

µ
−1)dv =

1

m
ρ

(
2

µ
− 2

)
.
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Overall,

Pr
(
D[1]
n = m, D[2]

n ≤ m/2
)

=
1

m
ρ

(
2

µ
− 2

)
+O

(
log n

m2

)
=

1

m
ρ

(
2n

m
− 2

)
+O

(
log n

m2

)
.

Example 3.15. Finally, we discuss the probability that a random polynomials has

D
[1]
n = m1 and D[2]

n = m2 with m2 < m1.

The generating function Lm1,m2(z) of random polynomials with D[1]
n = m1 and

D
[2]
n = m2 is

Lm1,m2(z) = Lm2(z) · Im1z
m1

1− zm1
= Lm2(z) · zm1

1− zm1
·
(
qm1

m1

+O(qm1/2)

)
= Lm2(z) · qm1zm1

m1(1− zm1)
·
(
1 +O(m1q

−m1/2)
)
.

Then, the probability of D[1]
n = m1 and D[2]

n = m2 is

Pr
(
D[1]
n = m1, D

[2]
n = m2

)
=

1

qn
[zn]Lm1,m2(z) = [zn]Lm1,m2

(
z

q

)
=

1

2πi

∫
C
Lm1,m2

(
z

q

)
dz

zn+1

=
1

2πi

∫
C
Sm2

(
z

q

)
zm2

m2

zm1

m1 (1− zm1/qm1)

dz

zn+1

(
1 +O

(
1

m2

))
with the contour C equal to z = e−1/n+iθ with −π ≤ θ ≤ π. Then, by the change of

variable z = e−h/n, we have

Pr
(
D[1]
n = m1, D

[2]
n = m2

)
=

1

2πi

∫
C
Sm2

(
z

q

)
zm1+m2

m1m2 (1− zm1/qm1)

dz

zn+1

(
1 +O

(
1

m2

))
=

1

2πi

∫ 1−inπ

1+inπ

Sm2

(
e−h/n

q

)
e−(µ1+µ2)h

m1m2 (1− e−µ1h/qm1)

− 1
n
e−h/ndh

e−h−h/n

(
1 +O

(
1

m2

))
=

1

2πi

∫ 1+inπ

1−inπ
e−E(µ2h) eO(1/m2)

n (1− e−h/n)
· e(1−µ1−µ2)h

m1m2 (1− e−µ1h/qm1 )
dh,
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where µ1 = m1/n and µ2 = m2/n. Note that we can replace
(
1− e−µ1h/qm1

)−1 by 1

since the remainder is exponentially small. Then, as in Example 3.12, the probability

is

Pr
(
D[1]
n = m1, D

[2]
n = m2

)
=

1

2m1m2πi

∫ 1+inπ

1−inπ
e−E(µ2h)

[
1

h
+

1

n
ψ

(
h

n

)
+O

(
1

hm2

)]
e(1−µ1−µ2)hdh.

We again break this integral into three parts, where the second and third part satisfy

O
(

logn
m1m2

)
.

For the first part we replace the contour by (1− i∞, 1 + i∞). Then, by Lemma

2.20 and change of variable v = µ2h, the main term becomes

1

2m1m2πi

∫ 1+inπ

1−inπ
e−E(µ2h) 1

h
e(1−µ1−µ2)hdh

=
1

2m1m2πi

∫ 1+i∞

1−i∞
e−E(v) 1

v/µ2

e(1−µ1−µ2)v/µ2
1

µ2

dv

=
1

2m1m2πi

∫ 1+i∞

1−i∞

e−E(v)

v
e
v
(

1−µ1−µ2
µ2

)
dv =

1

m1m2

ρ

(
1− µ1 − µ2

µ2

)
.

Overall, we obtain for the probability that D[1]
n = m1 and D[2]

n = m2:

Pr
(
D[1]
n = m1, D

[2]
n = m2

)
=

1

m1m2

ρ

(
1

µ2

− µ1

µ2

− 1

)
+O

(
log n

m1m2
2

)
=

1

m1m2

ρ

(
n

m2

− m1

m2

− 1

)
+O

(
log n

m1m2
2

)
.

3.4 Other Restrictions on the Degree of Irreducible Fac-

tors

Example 3.16. Here, we will discuss the probability that a random polynomial has

irreducible factors of distinct degrees.
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Let D(z) denote the corresponding generating function. Then,

D(z) =
∏
k≥1

(
1 + Ikz

k
)
.

So, the probability of a random polynomial having irreducible factors of distinct de-

grees equals
Dn

qn
= [zn]D(z/q).

In order to find the asymptotics, we first rewrite D(z/q) as follows

D(z/q) =
∏
k≥1

(
1 + Ik

(
z

q

)k)
= exp

(∑
k≥1

log

(
1 + Ik

(
z

q

)k))

= exp

(
−
∑
k≥1

∑
m≥1

1

m

(
−Ik

zk

qk

)m)

= exp

(∑
m≥1

(−1)m+1

m

∑
k≥1

(
Ik
zk

qk

)m)
.

Observe that form = 1,
∑

k≥1 Ikz
kq−k equals to I(z/q). For convenience, set Λm(z) :=∑

k≥1

(
Ikz

kq−k
)m, for m ≥ 2. Then,

D(z/q) = eI(z/q) · exp

(∑
m≥2

(−1)m+1

m
Λm(z)

)

= exp

(
log

1

1− z
+
∑
j≥2

µ(j)

j
log

1

1− q · zj
qj

)
· exp

(∑
m≥2

(−1)m+1

m
Λm(z)

)

=
1

1− z
exp

(∑
j≥2

µ(j)

j
log

1

1− zjq1−j

)
· exp

(∑
m≥2

(−1)m+1

m
Λm(z)

)
.

Let A(z) :=
∑

j≥2
µ(j)
j

log 1
1−zjq1−j which is analytic on |z| < q1/2. Moreover, for

Λm(z), we have

Λm(z) =
∑
k≥1

(
Ikz

kq−k
)m

=
∑
k≥1

(
zk

k
+O(q−k/2)

)m
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=
∑
k≥1

zkm

km
+ Sm(z) = Lim(zm) + Sm(z),

where Sm(z) is analytic on |z| < q1/2, too.

Next, we plug this into the expression ofD(z/q) and factorD(z/q) = U(z)V (z),

where

U(z) =
1

1− z
· exp

(
M∑
m=2

(−1)m+1

m
Lim(zm)

)
and

V (z) = eA(z) · exp

(
M∑
m=2

(−1)m+1

m
Sm(z) +

∑
m≥M+1

(−1)m+1

m
Λm(z)

)
.

Choose M = 2. Then, V (z) is C1-smooth. Moreover, U(z) is of global order −1.

Next, we need to write U(z) = Ũ(z) +R(z), where Ũ(z) is a log-power function and

R(z) is smooth. Therefore, observe that U(z) has singularities at z = 1 and z = −1. In

order to find the singularity expansions, first note that by Lemma 2.23, the singularity

expansion of Li2(z) at z = 1 is

Li2(z) = τ(log τ − 1) +
∑

j≥0,j 6=1

(−1)j

j!
ζ(2− j)τ j

= ζ(2) + τ log τ − τ +
∑
j≥2

(−1)j

j!
ζ(2− j)τ j,

where τ := − log z = (1− z) +O ((1− z)2). Consequently,

Li2(z) = ζ(2) + (1− z) log(1− z) +O(1− z).

Hence, the singularity expansion of U(z) at z = 1 is

U(z) =
1

1− z
· exp

(
−ζ(2)

2
− 1− z2

2
log(1− z2) +O(1− z2)

)
=
e−ζ(2)/2

1− z
· exp (−(1− z) log(1− z) +O(1− z))

=
e−ζ(2)/2

1− z
· (1− (1− z) log(1− z) +O(1− z))
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=
e−ζ(2)/2

1− z
− e−ζ(2)/2 log(1− z) +O(1) ← where O(1) is C0-smooth.

Moreover, the singularity expansion at z = −1 is

U(z) =
1

1− z
· exp

(
−ζ(2)

2
− 1− z2

2
log(1− z2) +O(1− z2)

)
=
e−ζ(2)/2

1− z
· exp (−(1 + z) log(1 + z) +O(1 + z))

=
e−ζ(2)/2

1− z
· (1− (1 + z) log(1 + z) +O(1 + z)) = O(1) ← C0-smooth.

Combining this yields U(z) = Ũ(z) +R(z), where R(z) is C0-smooth and

Ũ(z) =
e−ζ(2)/2

1− z
− e−ζ(2)/2 log(1− z).

Consequently, by applying Theorem 2.14, we obtain

[zn]D

(
z

q

)
∼ e−ζ(2)/2V (1)[zn]

(
1

1− z
− log(1− z)

)
∼ e−ζ(2)/2V (1).

In order to make the constant explicit, note that

e−ζ(2)/2V (1) = lim
z→1

(1− z)D(z/q) = lim
z→1

D(z/q)

P (z/q)

= lim
z→1

(∏
k≥1

(
1 + Ikz

kq−k
) (

1− zkq−k
)Ik) .

Next observe,∏
k≥1

(
1 + Ikz

kq−k
) (

1− zkq−k
)Ik

=
∏
k≥1

(
1 +

1

k
+O(qk/2)

)(
1− 1

k
+O(k−2)

)
=
∏
k≥1

(
1 +O(k−2)

)
.

Since this infinite product converges, we can plug in z = 1. Then, we obtain

[zn]D

(
z

q

)
∼
∏
k≥1

(
1 + Ikq

−k) (1− q−k)Ik .
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Finally note that

lim
q→∞

∏
k≥1

(1 + Ikq
−k)(1− q−k)Ik = lim

q→∞

∏
k≥1

(
1 +

1

k
+O(q−k/2)

)
e−

1
k

+O(q−k/2)

= lim
q→∞

∏
k≥1

(
1 +

1

k

)
e−

1
k = e−γ,

where γ is Euler’s constant and the last step follows from the product representation of

the Gamma function.

Example 3.17. Here, we consider the probability of a random polynomials having

irreducible factors of even degrees distinct.

Let D[e](z) denote the generating function. Then,

D[e](z) =
∏
k≥1

(
1 + I2kz

2k
)( 1

1− z2k−1

)I2k−1

.

Consequently, the probability of a random polynomials having irreducible factors with

even degrees distinct equals

D
[e]
n

qn
= [zn]D[e](z/q).

Now, observe

D[e](z/q) =
∏
k≥1

(
1 + I2k(z/q)

2k
)( 1

1− (z/q)2k−1

)I2k−1

= exp

(∑
k≥1

log
(
1 + I2k(z/q)

2k
)
− I2k−1 log

(
1− (z/q)2k−1

))

= exp

(∑
k≥1

∑
m≥1

(−1)m−1(I2k)
m(z/q)2km

m
+
∑
k≥1

I2k−1

∑
m≥1

(z/q)(2k−1)m

m

)

= exp

(∑
m≥1

(
(−1)m+1

m

∑
k≥1

(
I2k

z2k

q2k

)m
+

1

m

∑
k≥1

I2k−1(z/q)(2k−1)m

))
.
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For convenience, set Λ
[e]
m (z) :=

∑
k≥1

(
I2kz

2kq−2k
)m and Θm(z) :=

∑
k≥1 I2k−1

(
z2k−1

q2k−1

)m
.

For m = 1, note that

Λ
[e]
1 (z) + Θ1(z) =

∑
k≥1

I2k
z2k

q2k
+
∑
k≥1

I2k−1
z2k−1

q2k−1
=
∑
k≥1

Ik
zk

qk
= I

(
z

q

)
.

Thus,

D[e](z/q) = eI(z/q) · exp

(∑
m≥2

(
(−1)m+1

m
Λ[e]
m (z) +

1

m
Θm(z)

))

= exp

(
log

1

1− z
+
∑
j≥2

µ(j)

j
log

1

1− q · zj
qj

)

· exp

(∑
m≥2

(
(−1)m+1

m
Λ[e]
m (z) +

1

m
Θm(z)

))

=
1

1− z
exp

(∑
j≥2

µ(j)

j
log

1

1− zjq1−j

)

· exp

(∑
m≥2

(
(−1)m+1

m
Λ[e]
m (z) +

1

m
Θm(z)

))
.

Let A(z) :=
(∑

j≥2
µ(j)
j

log 1
1−zjq1−j

)
which is analytic on |z| < q1/2.

Next, consider Λ
[e]
m (z) for which we have

Λ[e]
m (z) =

∑
k≥1

(
I2k

z2k

q2k

)m
=
∑
k≥1

(
z2k

2k
+O(q−k)

)m
=

1

2m

∑
k≥1

(z2m)k

km
+ S[e]

m (z) =
1

2m
Lim(z2m) + S[e]

m (z),

where S[e]
m (z) is analytic on |z| < q1/2. By a similar argument, Θm(z) is analytic on

|z| < q1/2, too.

Now, after plugging every thing intoD(z/q), we can factorD(z/q) = U(z)V (z)

with

U(z) =
1

1− z
· exp

(
M∑
m=2

(−1)m+1

m2m
Li2(z2m)

)
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and

V (z) = eA(z) · exp

(
M∑
m=2

(−1)m+1S
[e]
m (z) + Θm(z)

m

+
∑

m≥M+1

(−1)m+1Λ
[e]
m (z) + Θm(z)

m

)
.

As before, choose M = 2. Then, V (z) is C1-smooth. Moreover, U(z) is of

global order −1 with singularity at z = ±1 and z = ±i.
In order to find the singularity expansions, we again use the singularity expan-

sion of Li2(z) at z = 1

Li2(z) = ζ(2) + (1− z) log(1− z) +O(1− z).

Then, as before, U(z) = Ũ(z) +R(z) with R(z) C0-smooth and

Ũ(z) =
e−ζ(2)/8

1− z
− 1

4
e−ζ(2)/8 log(1− z).

Consequently, by applying Theorem 2.14, we obtain

[zn]D[e]

(
z

q

)
∼ e−ζ(2)/8V (1)[zn]

(
1

1− z
− log(1− z)

4

)
∼ e−ζ(2)/8V (1).

In order to make the constant explicit, note that

e−ζ(2)/8V (1) = lim
z→1

(1− z)D[e](z/q) = lim
z→1

D[e](z/q)

P (z/q)

= lim
z→1

(∏
k≥1

(
1 + I2kz

2kq−2k
) (

1− z2kq−2k
)I2k) .

Next observe that∏
k≥1

(
1 + I2kz

2kq−2k
) (

1− z2kq−2k
)I2k

=
∏
k≥1

(
1 +

1

2k
+O(q−k)

)(
1− 1

2k
+O(k−2)

)
=
∏
k≥1

(
1 +O(k−2)

)
,
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which is convergent. Hence, the above limit can be evaluated by plugging in z = 1.

This finally gives

[zn]D[e]

(
z

q

)
∼
∏
k≥1

(
1 + I2kq

−2k
) (

1− q−2k
)I2k .

Finally, for Chapter 4, we need another example which is a slight variant of

Example 3.16.

Example 3.18. The probability that a random polynomials has irreducible factors

(counted without multiplicities) of distinct degrees.

Let D?(z) denote the corresponding generating function. Then,

D?(z) =
∏
k≥1

(
1 + Ikz

k + Ikz
2k + · · ·

)
=
∏
k≥1

(
1 +

Ikz
k

1− zk

)
.

Using a similar analysis as before yields

[zn]D?(z/q) ∼
∏
k≥1

(
1 +

Ik
qk − 1

)(
1− q−k

)Ik .
Note that again

lim
q→∞

∏
k≥1

(
1 +

Ik
qk − 1

)(
1− q−k

)Ik = lim
q→∞

∏
k≥1

(
1 +

1

k
+O

(
q−

k
2

))
e−

1
k

+O(q−
k
2 ) = e−γ.
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Chapter 4

Application to Polynomial

Factorization

In this chapter, we give some applications of the results of the previous chapter to

factorization of polynomials. We first explain a three step procedure which is used by

many factorization algorithms.

The first step is the observation that it suffices to factorize square free polyno-

mials.

Step 1: Note that if there are repeated factors in the prime factorization of f(x), then

the repeated factors will also appear in the derivative of f(x). Hence, we can

obtain the repeated factors by computing the greatest common divisor of f(x)

and f ′(x). Next, by dividing f(x) by gcd(f(x), f ′(x)), we can get rid of the re-

peated factors and turn the polynomial f(x) into a squarefree polynomial. (Note

that since the derivative of a irreducible factor whose multiplicity is a multiple

of p is 0 in the finite field Fq with q = pn, so this procedure does not work if

f(x) contains irreducible factors whose multiplicity is a multiple of p. A slight

modification of the procedure, however, works. For the sake of simplicity, we
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will not discuss this here.) We will call the output of this step f̃(z).

The second step will factor f̃(z) into a product of b[k](x), where b[k](x) contains all

irreducible factors of degree k. For this we will use a well-known fact from the theory

of finite fields, namely, xqk − x is the product of all irreducible polynomials of degree

≤ k in Fq. Consequently, computing the greatest common divisor of f̃(z) and xqk − x
will separate the factors into two parts: one containing all irreducible factors of degree

≤ k and the other containing the remaining factors. Using this observation, the second

step works as follows.

Step 2: We start from k = 1 and compute the greatest common divisor of f̃(z) and

xq
k − x. This gives b[1](x). Then we replace f̃(z) by f̃(z)/b[1](x) and continue

like this with k = 2, 3, · · · to find the other factors.

After Step 2, the problem is reduced to the factorization of b[k](x). However, there is no

efficient deterministic algorithm for this factorization. Consequently, we use a random

procedure. Therefore note that since b[k](x) is a product of irreducible factors of degree

k, i.e., b[k](x) = r1(x) · r2(x) · · · · rj(x) with ri(x) irreducible and deg(ri(x)) = k,

so Fq[x]/
(
b[k](x)

)
is isomorphic to the product of Fq[x]/ (ri(x)). Next recall that

in Fq[x]/ (ri(x)) \ {0}, half of the elements are squares and the other half are not.

Thus, if we pick a polynomial h(x) at random, then if it is a square in Fq[x]/ (ri(x)),

we have h(x)
qk−1

2 ≡ 1 mod ri(x), i.e., ri(x)
∣∣h(x)

qk−1
2 − 1. This will happen with

probability 1/2. Consequently, computing the gcd of h(x)
qk−1

2 − 1 and b[k](x) will

give the irreducible factors for which h(x) is a square. The number of these factors

will be binomially distributed with mean j/2. Using this idea, the step 3 works as

follows.

Step 3: For every b[k](x), if the degree of b[k](x) is greater than k, we choose a random

polynomial h(x) with degree equal deg(b[k](x))− 1. Then, let v(x) be the great-
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est common divisor of b[k](x) and h(x)
qk−1

2 − 1. After v(x) is found, we repeat

this process with v(x) and b[k](x)/v(x) until all irreducible factors are found.

ABCDE

AD BCE

1 AD C BE

A D B E
Figure: A possible outcome of Step 3 if b[k] = ABCDE with A, B, C, D,

E irreducible factors of degree k.

Now, we are going to consider an example. For example, consider the following poly-

nomial over F5:

f(x) = x9 + 2x8 + 4x7 + 2x6 + 2x5 + 3x4 + x3 + x2 + 3x+ 1.

Step 1: The derivative of f(x), is

f ′(x) = 4x8 + x7 + 3x6 + 2x5 + 2x3 + 3x2 + 2x+ 3.

Consequently, gcd(f, f ′) = x+ 4, which means that the factor x+ 4 is repeated.

So we divide f(x) by x+ 4 and obtain

f(x) = (x+ 4) · f̃(x) = (x+ 4) · (x8 + 3x7 + 2x6 + 4x5 + x4 + 4x3 + x+ 4),

where f̃(x) is a squarefree polynomial.

Step 2: Let k = 1. Then, we have

b[1](x) = gcd(f̃(x), x5 − x) = x2 + 2x+ 2.
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Next, divide f̃(x) by x2 + 2x+ 2 which gives x6 +x5 + 3x4 +x3 + 3x2 +x+ 2.

Set k = 2. Then,

b[2](x) = gcd

(
f̃(x)

b[1](x)
, x25 − x

)
= x6 + x5 + 3x4 + x3 + 3x2 + x+ 2.

Thus, we have factorized f̃(x) as follows

f̃(x) = b[1](x) · b[2](x) = (x2 + 2x+ 2) · (x6 + x5 + 3x4 + x3 + 3x2 + x+ 2).

Step 3: Here, we have to factorize b[1](x) and b[2](x):

1. For b[1](x):

Since the degree of b[1](x) equals 2, we choose a random polynomial h(x)

of degree 1, e.g., h(x) = x+ 1. Then, h(x)
qk−1

2 − 1 is

(x+ 1)
51−1

2 − 1 = (x+ 1)2 − 1 = (x2 + 2x+ 1)− 1 = x2 + 2x.

However,

v(x) = gcd(b[1](x), x2 + 2x) = 1.

So, we have to repeat this step with another random polynomial. Therefore,

pick h(x) = x+ 2. Then,

(x+ 2)
51−1

2 − 1 = (x+ 2)2 − 1 = (x2 + 4x+ 4)− 1 = x2 + 4x+ 3.

Next,

v(x) = gcd(b[1](x), x2 + 4x+ 3) = x+ 3.

The other factor is

b[1](x)/(x+ 3) = x+ 4.
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So, we finished the factorization of b[1](x), having

b[1](x) = x2 + 2x+ 2

1 x2 + 2x+ 2

x+ 3 x+ 4

2. For b[2](x):

Since its degree of b[2](x) equals 6, so we choose a random polynomial

h(x) of degree 5. A similar procedure as before then yields:

x6 + x5 + 3x4 + x3 + 3x2 + x+ 2

x2 + x+ 2 x4 + x2 + 1

x2 + 4x+ 1 x2 + x+ 1

Overall, we have factorized the polynomial and obtain:

f(x) = (x+ 3)(x+ 4)2(x2 + x+ 1)(x2 + x+ 2)(x2 + 4x+ 1).

Next, we are going to explain the usefulness of the results of the previous chapter

when analyzing the algorithm.

First, Step 1’s purpose was to turn the random polynomial into a squarefree

polynomial. Since by Example 3.7 the probability that a random polynomial is square-

free equals 1−1/q, this step is very fast since there is only a probability of 1/q that the

division is needed. Moreover, if the polynomial is not squarefree, again by Example
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3.7 the expected value of the degree of the remaining part is still small, so that the

division is not costly on average, even in this case.

Second, recall that the purpose of Step 2 was to separate the irreducible factors

according to their degrees. The most simple way to do this is by repeating this step

from k = 1 to n (we call this strategy 1). However, note that if k > n/2, then the

remaining polynomial is either irreducible or constant. Thus, a better strategy would

be to consider k from 1 to n/2 (strategy 2). Finally, an even better strategy is based

on the following observation: if the degree of the remaining polynomial is < 2k in

the k-th step, then the remaining polynomial is again either already irreducible or a

constant. This leads to a third strategy (strategy 3) for which we repeat until

k > max
{
bD[1]

n /2c, D[2]
n

}
,

where D[1]
n and D[2]

n are as in Chapter 3. The complexity of the Step 2 for these three

strategies was analyzed in 4.1. In particular, for strategy 3, the results from Section

3.3 were used. We only state the result without giving a more detailed explanation.

We need the following assumptions: let τ1n
2 be the cost of multiplying two polyno-

mials of degree < n and reducing the result module a polynomial of degree equal to

n. Moreover, let τ2n
2 be the cost of computing the greatest common divisor of two

polynomials of degree at most n. Then, in [10, p. 21] the following result was proved.

Theorem 4.1. The expected complexity of Step 2 under the three strategies mentioned

above when applied to a random polynomial of degree n is as follows
0.47n3 for strategy 1;

0.31n3 for strategy 2;

0.27n3 for strategy 3.

Here, λ(q) := blog2 qc+ ν(q)− 1 and ν(q) is the number of ones in the binary repre-

sentation of q.
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Finally, we consider Step 3 in which the polynomials b[k](x) with all irreducible

factors of equal degree k are factorized. First note that nothing has to be done in this

step if all the b[k](x) are irreducible. According to Example 3.18, the probability for

this e−γ when n is very large. Second, as for the complexity of this step, in [10, p. 39]

a result was proved which used a connection to random tries. For completeness, we

recall the result here.

Theorem 4.2. The expected complexity of Step 3 is O(n2 log q). More precisely, the

complexity is asymptotic to(
3

4
τ1

q2

q2 − 1
log2 q

)
(1 + ξn)n2,

where −1
3

+ o(1) ≤ ξn ≤ 1
3

+ o(1).
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