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Preface

Properties of irreducible factors of random polynomials over finite fields (similar to
properties of irreducible factors of random integers) have been intensively studied in
the mathematical literature. Such properties have applications in computer science,
cryptography, coding theory, etc.

The purpose of this thesis is three-fold. First, we want to give a survey of re-
sults which have been obtained in the literature on properties of irreducible factors of
random polynomials over finite fields. Secondly, we want to demonstrate the useful-
ness of analytic combinatorics to prove such results. Finally, we want to discuss some
applications of these properties. to polynomial factorization over finite fields. We will
provide detailed proofs of all the results (some of the proofs have been only sketched
in the literature).

We give a brief outline of the thesis. In Chapter 1, we will give a short outlook
and summarize the results we are going to prove. In Chapter 2, we will recall some
tools from analytic combinatorics with detailed proofs. In Chapter 3, we will use the
results from Chapter 2 to prove our results on random polynomials. Finally, in Chapter

4, we will discuss applications of the results from Chapter 3.
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Chapter 1

Introduction

Factorizing polynomials over the finite field IF,, where ¢ is a prime power, may make a
lot of effort in many fields such‘as eryptography-[7, 15, 17], coding theory [4], number
theory [6] and polynomial factorization over the integers [8, 13, 14, 19]. Consequently,
algorithms for factorizing polynomials have been studied by many authors, e.g., see
Bach and Shoup [2], Berlekamp [3], and Ronyai[18].

In the analysis of these algorithms properties of random polynomials over a fi-
nite field have played an important role. The-main purpose of this thesis is to survey
these properties and to show how to use generating functions and analytic combina-
torics to prove these results.

Generating functions are very helpful in this context, for instance take the prob-
lem of counting monic polynomials over a finite field F, as an example. Let P(z)
denote the corresponding generating function, i.e., the n-th coefficient of P(z) is the
number of monic polynomials over [F, of degree n. Then, monic polynomials can be

counted by the irreducible factors in their unique prime factorization. This yields

I,
P(z):H(l—i-zk—kz%—i-zgk—l—...)lk:H(l_lzk) :

k>1 k>1




where [}, is the number of monic irreducible polynomials of degree k. Of course,

monic polynomials can also be counted directly which gives

1
l—qz

P(z) =14 qz+ @2+ ¢*2° +-

Now, this simple example lends itself to many generalizations. For instance,
consider the question of counting monic polynomials excluding irreducible factors of
degree ki, ko, ks, ..., k, in their prime factorization. Similar as above, we get

- k 2k 3k Iy, 1 d e Lk
[T @+ 42540 :1_qz-H(1—zﬂ)a.

k=1 Jj=1
k#ki, - kpr

Observe that the right hand side is a meromorphic function with a simple pole at z =
1/q. Moreover, for z — 1/q,

T T

1 .

J=i j=1

Using a method called singularity analysis, which will be introduced in Section 2, the
latter asymptotic relation remains true on the coefficient level. This yields that the
number of monic polynomials excluding irreducible factors of degree k1, ko, k3, ..., k;

in their prime factorization is asymptotically equal to

r
qn H(l o q—k] 1;
j=1

(Alternatively, this result can be obtained by the Inclusion-Exclusion principle.)
Sometimes, however, generating functions in one variable are not enough. For

instance, suppose we want to count the number of monic polynomials with a fixed

number of irreducible factors in their prime factorization. Then, we need bivariate

generating functions. More precisely, consider a second variable © which counts the



number of the irreducible factors in the prime factorization of a polynomial. Then, we

have for the bivariate generating function.

I,
P(Z,U):H(1+uzk+u222k+u323k+...)lk:H< 1 )

1 —uzk
k>1 k>1

By taking partial derivative with respect to v and letting « = 1, we obtain as coefficient
of 2" the cumulative number of irreducible factors in the prime factorization of all
polynomials of degree n. We will see later that again an asymptotic expansion can be
easily derived by singularity analysis. From this, one obtains then the expected value
of the number of irreducible factors in the prime factorization of a random polynomial.
Moreover, by taking higher derivatives, higher moments can be derived as well.

We conclude by giving a sketch of the thesis. First, in Chapter 2, we will in-
troduce singularity analysis and some-other analytic methods we need for deriving our
results, such as Darboux’s method and the Hybrid method. Then, in Chapter 3, there
will be four different topics. The first topic is mainly concerned with the number of
irreducible factors of random polynomials. For instance, we will derive the probability
of a polynomial of degree n being irreducible. The second topic will be about k-free
polynomials. There are two cases. in this section, the first case is when k£ = 2 and the
second case will be the more general case. The third topic is discussing the degree of
the irreducible factors of the polynomial, such as the maximal degree of the irreducible
factors not greater than m, the maximal degree of the irreducible factors equals m and

the maximal degree DY of the irreducible factors equals m, and the second largest

degree DZ

of the irreducible factors equals m,. The fourth topic is about the degree
of the irreducible factors being distinct and related questions. Finally, in Chapter 4, we
are going to apply the results from Chaper 3 to polynomial factorization.

The results, we are going to present in Section 3 are summarized in the follow-
ing table. (X, is the number of irreducible factors in a random polynomial of degree

n and p denotes the Dickman function.)



Properties Results
Prob(X,, = 1) = I,,/q" L4+ 0(g™?)
Section
- E (X,) logn + O(1)
' Var(X,,) logn + O(1)
Prob(z € squarefree) (forn =0,1) 1
Prob(z € squarefree) (forn > 2) 1-1/q

Section | [E(degree of remaining part) > k>1 qgl,l:;_qk
3.2 Prob(x € k-free) (forn=20,1) 1
Prob(z € k-free) (for n > 2) 1—1/¢"!
[E(degree of remaining part) > i>1 %
Prob(m-smooth) p(Z) + Ok
Section Prob(Dm =m) %p ( ) ( e )
33 | Prob(DY = m,DE <m/2) ap (2” - ) O (%57)
Prob(D})| = mi; DIV = my < my) mllme e — ) +0 (T}%
Section | Prob(D} > D2 . .4) [Tis (1 + I’“)(l — ik)[’“
34 | Prob(DY > D" ) [Ton (1 + 238)(1 — 5p)™




Chapter 2

Some Tools from Analytic

Combinatorics

We first recall Landau’s O notation.
Definition 2.1. Let f(n) and g(n) be two complex-valued functions.
1. Ifthere exist constants-¢, ng & N such that
[f()li<ieslg(n)], vn = no,
then we say that f(n) is a big-O of g(n), which is denoted by f(n) = O(g(n)).
2. Iffor all constants € > 0, there exists a ng = ny(€) € N such that
) < e lgm)l, V> no,
then we say that f(n) is a small-o of g(n), which is denoted by f(n) = o(g(n)).

3. If f(n)/g(n) — 1asn — oo, then we say that f(n) is asymptotic to g(n), which
is denoted by f(n) ~ g(n).



As already mentioned in Chapter 1, in this thesis, generating functions will play
an important role. We will frequently need their n-th coefficients. Therefore, we will

recall the following standard notation from combinatorics.

Definition 2.2. Given a generating function f(z), f, = [2"]f(z) denotes the coeffi-
cient of 2" in f(z).
2.1 Singularity Analysis

In this section, we treat generating functions as analytic functions. In the sequel, we

will often encounter generating functions with a singularity at ¢ and (local) behavior

o) - 32y <1og1i§>ﬁ7

where « and [ are arbitrary.complex numbers.

For convenience, we.use a transformation to let the singularity z = ( be on the

unit circle |z| = 1. More precisely, note that by the scaling rule, we have

9(2) = f(#0)= (1 - %)"‘ <log 1 1%>B

— e (e )

So, g(z) has a singularity at z = 1, and in this way, we can get f, = [2"]|f(2) as

follows,
fo=[2"11(2) = CM"f(20) = ¢ [2"g(2) = ¢ gn,
where g, = [2"]g(z). Since all generating functions can be brought in this form,

we only need to discuss generating functions with a singularity at z = 1 and (local)

1o ()

behavior




where a and [ are arbitrary complex numbers.

First, we consider the special case (1 — 2)” ", where r € Z>;. Then,

(1—2)" = i (”*:;_ 1>z".

n=0

Consequently, the coefficients are given by

[z”](l_z)—r:(n%—;—l) m+r—1)(n+r—2)---(n+1)

) a (r—1)!
e ()

Now, for (1 — z)™“, where o € C, we expect a similar result:

2] (1= 2)® = (” T 1) o (1 +0 (%)) | @1

where c is a constant which will turn out to be related to the Gamma function I'(«)

which is defined as follows

[(a) = / e 't dt
0

for R(«) > 0. Moreover, we recall the following integral representation

1 — L S\~ a, —t
T(a) ~ 2ni i (—t) e 'dt, (2.2)

where the contour C comes from oo + ¢, goes around 0 in counterclockwise direction,
and then goes back to co — i (see [12, p. 745]).

The formula (2.1) is made precise in the following theorem.

Theorem 2.3. Given a function f(z) = (1 — z)” " with a € C\ Z<o, we have for the

n-th coefficient

fo = [1F(2) ~ % (1 2 n—) ,

k>1

where ey, is a polynomial in o of degree 2k.



Proof. We first prove the case where k£ = 1. By Cauchy’s coefficient formula, we have

fom g [

C2mi S, il

where we choose the contour C as follows:

Figure 2.1: Our contour C is the curve on the left and we separate it into

two parts, the center one and the right one.

Next, we break C into two parts C and H, where

C= {z|z=Re", R> 1, arcsin(l/aR) < 0 <27 — arcsin(1/nR) } and

H:{z

0
z:1+e—,7r/2§9§37r/2}

U{z 1ga%(z)g,/R2—%,:f(z)—i%}.

Then, we consider the integral over C and H separately.

C : Since |z| = R, 2~™ is bounded by R~". Thus, the integral over Cis exponentially

small. More precisely,

! / (1-2z) &
— —z
2mi Jg zntl

where ¢ = sup|,_p |(1 — 2) ™|,




: We are going to break H into 3 parts:

By the change of variable z = 1 + %, the integral over H becomes

1 o dz 1 t\" " 1/ndt
270 4 z 21 Jg \ n (1+t/n)

na—l t —n—1
= —t @ 1 - dt
2mi /H( ) ( * n)
with H = H° U HT U H~, where
ﬁ+:&h:w+L0§wSVMRL4—n%
ﬁ—:{qﬁzw—@ogngmwp—l—n}

) /0 . _ 0 23_71-
H-_&h_e,eeb,Q@.

Lett = w +1i = Vw? +1€% where § = atg(t). The absolute value of |(—t)~¢|
is

(0] = | (Ve Tere)
_ ‘m—m(a)—is(a)

_ /—w2+1_%(a)6%(a)9+5(a)7r‘ 2.3)

|6_i(€+7r)(§1‘:(a)+i%(a)) ‘

We will break * (and H ™) into two parts according to whether R(¢) < log®n

or not. Then, the integral of the part with 3(¢) > log®n is at most

0o+ t —n—1 00 .
/ . ‘(—t)_a (1 + ﬁ) dt‘ = / . }(—w - z)_a|
log® n+1 log“n




b “R(a —n—1
o[ VET O )
logZn n
=0 (/ Vw?+1 _m(a)e_w_% dw) =0 </ w @) g dw) )
log?n It

og?n
Now, if R(a) > 0, it is easy to see that both w™) and e~ will make the

integral exponentially small; on the other hand, if R(«) < 0, by integration by

parts
/ w R @emw gy = M@ — R(a) / wR@Lemw gy
log?n log?n log®n

= =0 ((1og2 n)—ﬂ“*(a)e—log"’") = O ((logn)~*"@p=Tem) = (2.4)
which is exponentially small, too. The same estimate holds for the corresponding
part of .

Next, for ¢ with R(t) < logn, we use the following asymptotic expansion for
(o)

t+ t2 r + t + r r +
=exp | — — 4 |Jexp| —"—F+ =+
P 2n  3n? P n  2n?2  3n3

i t2—2t 27— 32 N 3t — 4¢3
2n 6n? 12n3
» 2 =2t  tt—Ar 42 263 — 312
—e 1+ + — + -

2n 8n? 6m2
2 — 2t N 3t — 2083 + 24¢2
on 24n2 '

= et {1 + 2.5)

For k = 1, we only need (1 +1¢/n) "1 = ¢ (1 +0 <1°g4”>>. After plugging

n

this in, we can add the part with (¢) > log®n since this part is again expo-

10



nentially small. Overall, we can let the contour become ﬁ = 7220 U ﬁ* U ﬁ’,

where
ﬁ*z{ﬂt:w—l—i,wZO};
H ={tft=w—i,w>0};
170 _ 10 23_71-
H {t|te ,96[2, 2]}.
Then,

[ oreta (140 (li ")) =1 (140 (li ")),

where the last line follows from (2.2).

Finally, by putting every thing together, we obtain

Pl )

This concludes the proof of £ = 1. For the general case, one only needs to use more

terms in (2.5). This then gives

Theorem 2.4. Given a function f(z) = (1 —z) " (Llog le)ﬁ with a € C\ Z<,
B € C, we have for the n-th coefficient

Fu= [714(2) ~ o (logn)’ (1+Z o )

I'(a) =7 log"n

where dy, is a polynomial in « of degree 2k.

Proof. Again by Cauchy’s coefficient formula,

B
1 1 1 dz
n=— [ (1—2)" (-1 —_—
4 27 Je (1-2) (z BT z) Zntl

11



where the contour C = C U ‘H is as in Theorem 2.3:
C= {#|z=Re”, R>1, arcsin(1/nR) < 0 < 27 — arcsin(1/nR) }, and

n-{:

i0
z:1+€—,7r/2§0§37r/2}
n

U{Z 1§§R(z)§\/R2—%,3(z):i%}.

As in the proof of Theorem 2.3, we consider the integral over C and H separately.

C : Since |z| = R, z~™ is bounded by R~". Thus, the integral over Cis exponentially

1 1
SCR'RnJrl :O(ﬁ)’

small

B
1 1 1 dz
— [a—2— (=1
2mi /5( 2 (z & 1—2) Znad

).

where ¢ = sup|,|_p ‘(1 < 2= (L log

1—

‘H : We are going to break # into 3 parts:

iy el swr L Lo <\ [r—
i

Ho(n) = {z‘z =1+ %, RS [%,37”]}

By the change of variable z = 1 + £,

1 1 1\ dz
— 1—2)% (-1 2.6
270 Jy (1-2) (z e z) Zntl (26)

O AN A A S ’ 1/nat
~ i Jz\n T+t/n °=t/n) (A+t/n)""

no=! _ log(—t) g £\ P
2 (logn) / 7—[< 2 (1 logn ) <1 n) dat

12



with H = H° UHT U H~, where

72+:{t|t:w+i,0§w§\/n232—1—n};
ﬁfz{ﬂt:w—i,0§w§x/n2R2—1—n};

) /0 __ __ 0 23_7'('
H _{t\t_e ,86[2, 2]}.

By (2.3), we have |(—t)"%| = Vw2 +1 TR @0 A before, we break H*
(and H ™) into two parts according to whether R(¢) < log”n or not. The part
with R(¢) > log® n is at most

oco+1 1 —t B8 t —n—1-4
/ (—t) (1 - —Olg( )) (1 + —) dt‘
log? n+i ogn n

oo Tont e i) |RO) - —n—1-R(8)
_0 / | gty _ 08RG T, w i o
log? n log n n
> R(a) log(v/w? +1) + i0 )
=0 / W+ DT 71— -
log?n logn
| —n—1-R(B)
: ‘1 + vt dw)
n

R(B)

2

2
>0 o 1 211 0\’
:0/ w? 4+ 175 | losg(vw? +1) +( )
log? n logn logn
—n—1-R(B)
dw

w+1
n

i+

o0 —n—1
=0 </ w1+ o dw) ,
logZn n

where c is a suitable constant.

Since this integral is exponentially small, we only need to consider the part where
R(t) < log®n.

13



For this part, we use the following asymptotic expansion for (1 + % ) —n=1-5,

1 2 3
2 t1+p6) *(1+p8) t1+p)
_exp(—t+%—ﬁ o - om?  3nd +>

Moreover, we have (again for R(¢) < log® n)

(g e (%)

Now, as in the proof of Theorem 2.3, plugging this in and adding the tail R(¢) >

log® n which is exponentially small, shows that the integral (2.6) is asymptotic

”26;1 (log n)? /ﬁ (—£)® (Z (i) G%)k) e~tdt

k>0

to

a—1

=5 o R ) [ (- togt (e tar

H
= nzm‘ (log n)P~* (i)d% {/ﬁ(—t)_ae_tdt}
it (3)

with H = H° U H+ UH~, where

ﬁ*z{t‘t:w—l—i,wZO};
ﬁ_:{t‘t:w—i,WEO};

14



~ . w3
o=ltlt=€? 6=, =]}.
o= {de =0 e 3,51}
This proves the claimed result. 1
Definition 2.5. A domain is a A-domain at 1 if it can be written as
AR, ¢) ={z]| [2s| <R, z#1, |arg(z — 1)| > ¢},

where R > 1 and 0 < ¢ < m/2. Moreover, if a function is analytic in some A-domain,

the function is called a A-analytic function.

Theorem 2.6. Let o, 5 € R and f(z) be a function that is analytic in A := A (R, ¢).

If
f@w:O(a—zraQ%liZYj,

where z € A and approaching 1, then

Similarly, if

where z € A-domain and approaching 1, then

fo = ["1f(2) = o(n®~" (log n)") .

Proof. By Cauchy’s coefficient formula, we have

1 dz
fn__ f(z)zn+l’

21 Jo

and C' is a closed contour in the unit disc. Since f(z) is not analytic at z = 1, we

change the contour C' into a union of following 4 parts:

15



'yl:{z| |z —1] =21, |arg(z—1)| > 6} (inner circle)
v={z|lz=1 =21 |z| <r arg(z—1) =6} (top line segment)
v3={z]|lz| =r |arg(z—1)| > 0} (outer circle)

| 1= {z]|z—=1]>L |2 <r arg(z —1) = -0}  (bottom line segment),

where 1 < r < R,and ¢ < 0 < > so that our contour C lies entirely inside our

A-domain. We let fy[ll] , iy , iy , 1Y be the integral along 71, 72, V3, V4, 1.€.,

[ —
Jul = 2#2/ f(z z”+ 1

Then, we have

1 dz 1
b= | F@ s = 5 B+ 20+ £+ 11

27

So now, we will discuss the integrals separately:

1. Inner circle (7):

The line integral of f,[Ll] will be at most the length of v, times the maximum of
IF ()],

Ful < bl maxc{[f ()Hz € 1}
Since f(z) is O <(1 — 2)7% (log i)ﬁ), there is a constant ¢ > 0 such that

() <c |1 =z |log 1+ ‘5 Hence, for the contour 7; where |z — 1| = 1/n
and |arg (z — 1) | > 6,

‘fi}” < |l -max{]f(z)] |Z € ’Yl}

< 27rl e[l =z " |log1— z|”
n
=0 (l) -n®|log |1 — 2| —I—z’qb"B
n
=0 (i) -n® (log® |1 — 2| + ¢2)ﬁ/2
=0

(na 1) . (loan—l—ng)B/

16



where ¢ € [0, 27). Next, observe for large n

(1og2 n -+ ng)ﬂ/Q < (1og2 n + log? n)ﬁ/2 =0 (10g’3 n) , if >0,
(log2 n+ qbQ)ﬁ/Q < (log2 n)ﬁ/Q =log’n=0 (log’B n) , if g < 0.

Consequently, fi! = O (n*~tlog’ n).

2. Rectilinear parts (72,74):
Again, there is a constant ¢ > 0 such that | f(z)| < ¢-[1 — 2|~ |log iﬁ Then,

by the change of variable z = 1+ £e®, our integral is

/ 60
1 " t . dt
’fif]‘ = _/ f 1 + —610 n—H
21t )iy n (1 + %eze)”
c [T/t " -~ P e
< — — 1 . A1+ —e? — | dt
<o [ |GhAe a5
r’ ¢ 0|8 t . —n—1
= in‘“_l/ t~*|log e ol \ P2 dt
2m 1 n n
| 3 —a i0 B 7] -
=—n t |log(—t) +loge" ~log n| 1+ —e dt
2 1 n
X log(—t) + i |” ¢t
2m 1 logn n
" logt + (0 A t o
_ inafl logﬁn/ ol — 0og + 7’( + 7T) . ‘1 + _619 dt
2m 1 logn n
/ B/2
r logt\> /6 2
= i110“_1 log”? n/ (1= 08 + Rkl
2m 1 logn logn
—n—1
t .
. ‘1 + —e'? dt,
n

where 7’ is a constant satisfying z = 1 + 7’¢? with |z| = r. But since as in the

proof of Theorem 2.3, the integral over ¢ € [log” n, o] is exponentially small,

17



so we can change the range to 1 < ¢t < log® nn. Then, obviously
[( logt)2 (9+7r)2
1— +
logn logn

logZn t .
2 =0 <n°‘_1(log n)’B/ - ‘1 + —e'
1 n

B/2

= O(1).
Since |1 + %eie‘ > 1+ §R( ew) =1+ £ cos6, we have

—n—1
dt>.
3
log? n -n—1 o + 9 —n—1
/ o dt g/ t—a<1+ COS) dt
1 1 n

S / tfae—(n-l-l) log(l—i—%)dt S / t,aef(n+1)tczsedt
1 1

S / t—ae—tcosedt’
1

where this integral is finite since 0 <0 < 7.

Consequently,

t .
1+ —e®
n

This yields,
2 =0 (n*~Hlog n)B) .

3. Outer circle (73):
Since |z| = r, z7™ is bounded by r~™. Thus, the integral fr[?} is exponentially

small.

Since I, f2 2 f¥ areall O (na_l (log n)ﬁ> so that gives f,, = O (na_l (log n)5>

The proof of the small-o part is similarly. 1

Definition 2.7. A log-power function at 1 is a finite sum of the form

o) = e (1og () ) -

k=1

18



where oy < -+ < . and each ci(z) is a polynomial. A log-power function at a finite

set of points Z = {1, -+ ,(m}, is a finite sum

S =30, (2)

Jj=1

where each o; is a log-power function at 1.

Theorem 2.8. If a function f(z) is analytic on a (- A domain and there exist log-power

functions o and T such that
f(2) =0(z/Q)+ 0 (7(2/C))  asz—(in (A,
then f,, = [2"]f(z) will be asymptotic to
fam= €00 + O(CT) |
where 0,, = [2"|o(2) and T, = [2"7(2):

Proof. Let g(z) = f (Cz). Then, g(z)is A-analytic, with a singularity at 1 and g(z) =

o(z) + O (7(2)) as z — 1. Now, since 7(2)is‘alog-power function, so

gn = [2"g(2) = 2"a(z) + [z"]O (7(2))
= ["o(z) + O ([z"]7(2))
=0, + O(7).

Finally, since f,, = (""g,, we get
Jo=C"gn=0" (Un + O(Tn)) =( "o, +0 (C_n Tn) .

According to the latter result, we know how to find f,, when f(z) has one singu-
larity at ¢. Similarly, f,, can be found if f(z) has finitely many singularities (see [12,
p. 398] for a proof).
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Theorem 2.9. Let f(z) be analytic in |z| < p with a finite number of singularities
Ci, -+, Cp on the circle |z| = p. Suppose there exists a A-domain such that f(z) is

analytic in the domain
k
i=1

Moreover, we have k log-power functions oy, - - - , ok, and a log-power function T(z) =

(1 —2)"" (log 1) such that

f(2) = 0i(2/G) + O (7(2/G)) as z— G wn D.

Then, the coefficients f, = [2"]f(z) satisfies

k

fa =) G (00 (p " (logn)?)

=1

where (0;), = [2"]0;.

The last result is quite powerful and has many applications (for some of them
see Chapter 3). However, it.can be only applied if f(z)1is analytic in a domain which is
larger than |z| < p. Sometimes, however, we only know that a function is analytic on
|z| < p and analytic extension is either hard to prove or not possible (some examples
for this will be given in Section 3.4). Then, singularity analysis cannot be applied
and we need other methods. We are going to introduce two such methods in the next

section.

2.2 Darboux’s and Hybrid Method

First, we introduce a method called Darboux’s method. In contrast to singularity anal-
ysis, this method does not need that the function is analytically continuable beyond the

disc of convergence. However, we will need some smoothness on the disc.
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Definition 2.10. Let h(z) be a function which is analytic in |z| < 1 and s € NU{0}. If
h¥)(2) is defined for |z| < 1 and has a continuous extension on |z| < 1 for all integers

from 0 to s, then we call h(z) C*-smooth on the unit disc.

Remark 2.11. (Riemann-Lebesgue Lemma) If f(z) is L! integrable and supported

/ f(z)e "dz — 0,

as |z| — oo within the half-plane (z) > 0.

on (0, 00), then

Theorem 2.12. (Darboux’s Method) Assume that h(z) is C*-smooth. Then,

imzkﬂM@:o(%>.

Proof. By Cauchy’s coefficient formula, we have

hnzi. b dz

Z —_——
21t Jo Pa\ o

where C is the unit circle. Now;let z = €%, so that

_ 1 - iy 1e’df . ~ i0\ ,—nif

When s = 0, we get |, o% h (") ex™9df — O-as'n — oo by the Riemann-Lebesgue

Lemma. When s > 0, we use integration by parts s times and obtain

1 2 ) ]
hy=— [ h(e?)e™db
21 J,
1 27r1/i9-i9—m‘9
=5 i Eh (e )ze e "do
11

21
_ __/ L (6i0) e—i(n—l)ede
0

2 n
1 1

- = ) /Qﬂ- B (eie) 67(n72)i9d‘9
0

2t n(n — 1

1 1 o (s) (,i0) —(n—s)if
— = A (e”) e df.
2rn---(n—s+1) Jy
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Then, again by the Riemann-Lebesgue Lemma,
27
/ Rt (ew) e~ (=009 0.
0
Consequently, h,, = o(n™*) as claimed. |

Definition 2.13. A function f(z) which is analytic in the open unit disc is said to be of
global order a < 0 if there exists a constant c such that | f(z)| < ¢ (1 — |z|)" for all z

satisfying |z| < 1. In other words, for all |z| < 1, we have

f() =01 =12

Theorem 2.14. (Hybrid Method) Let f(z) be a function that has a finite number of
singularities Z = {(1, ..., (n} with |z| = 1 and let U(z), V(z) be analytic functions
on |z| < 1 satisfying f = U - V.« Assume that V (z) is C°-smooth on the unit disc.
Moreover, assume that U (z) is of global ordera < 0.and that there exists a log-power
function U at Z such that U:= U=+ R with R .a C'~smooth function on the unit disc.
Finally, suppose t > *£¢ =0, Then, we have

fo = WG EEITEEY () F o(n %),

where V is a polynomial.

Proof. First, fix a constant ¢ € N with ¢ < s. Next, let V = V + S, where V is a
polynomial of degree c that satisfies

o' —

o
0z Viz)

T 07 V(z)

2=(;

2=(;

where 0 <7 < cand 1 < j < m. Then, sinceU:fj—i-R,wehave
f:U-V:(ﬁ+R)-V:ﬁ-V+R-V
—U-V+U-S+R-V.

Now, we are going to consider U-V,U-SandR-V separately.
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R-

Vo

Since U is a log-power function, and Visa polynomial, we can calculate the

coefficient of U - V. by singularity analysis.

-5

Since S = V — V and derivatives of order from 0 to ¢ — 1 are the same at ¢; for
V and V, we have that derivatives of S of order from 0 to ¢ — 1 disappears at (;.
Consequently, we can factorize S(z) into

m

() =r() [[ (= - &),

Jj=1

where k(z) is a C*~“-smooth function. Then,

U8 = (ﬁ-n(z—gjy) - k(2).

Since U has a global order a, so U isO((z — ¢;)*)near ¢;. Thus, ﬁH;nzl (z—¢)°
is at least a C(@*)_smooth. Since a C%-smooth function times a C#-smooth func-
tion is at least a C™"(®B)lsmooth function s0 U/ - S is a C™in{a+es—c_gmooth

function. From this and Theorem: 2.12, we get

{zn]ﬁ.szo(%),

where © = min{a + ¢, s — c}.

Vo

Since R is Ct-smooth and V is C*-smooth, R - V is C™{st}_smooth. Set v =

min{s, ¢t}. Then, again by Theorem 2.12,

[z"]R-Vzo(%).

23



Summing up the three part yields
fo=["U-V+["U-S+["R-V =["U-V+on")+o(n")
_ [Zn] (7 vV + o(n_ min{v,u}) _ [Zn] [7 VvV + o(n_ min{a—i—c,s—c,t})'

We want the minimum to be as large as possible, so we choose a + ¢ = s — ¢ which

gives ¢ = *5%. Then, we have
fa=["1P-Q+o (nf(‘”%)) =[2"|P-Q+o0 (n_%’> |
Note that [z”]ﬁ -V can be obtained with singularity analysis (as already men-

tioned in the proof). Hence, the hybrid method combines Darboux’s method with

singularity analysis. We will use this method in Section 3.4.

2.3 Useful Functions

Here, we collect some useful functions. The first is-the following one.

Definition 2.15. The exponential integral E(a) is defined as

E(a):/ e; ds,

where 0 < |arg(a)| < m, a # 0.

Remark 2.16. One important property of the exponential integral is that e=#(*) is
bounded for all z with ®(z) > 0 (see [1] for a proof).
Next, we use the exponential integral to find a representation of the remainder

of the logarithmic series.

Lemma 2.17. The remainders of the logarithm series

rm(2) = Z%?

k>m

where |z| < 1, satisfies r,, (e™") = E (mh) + O (X) for all h > 0.

1
m
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Proof. First note

r(2) = r;n(t)dt—/ >t lat.
0 0

k>m

Then, by the plugging in z = ¢~" and using the change of variable ¢t = e~%, we have

(e = [ Ty - [ (Ze“(k1)> (ce™)du

k>m o0 k>m
%) oo —u(m+1) oo —mu
_ e €
= E e Mdy = —du = du
h h ]. —e ¥ h ev — 1
k>m

:/ {e +e e ]du
h U et —1 U

- 1 [ 1 1
= € ds + — 6_5< )ds

es/m 21 s/m

mh S M) mh
1 o
= E (mh) +—[" e "¢ (i> ds,
mJLomn m

where ¢(z) = =5 — 1. Now, if the function ¢(z) is bounded, then = [* e™*¢ (£) ds

1 m

will be O(1/m). In order to show that ¢(z) is bounded, note that

¢(z) >0 asz— oo, and ¢(z) > -1 asz— —o0.

Moreover, when z is approaching 0, we have

, 1 1 . z—e*+1 ) 1—e¢*
im ——=lm——— =lm——+——
=0e*—1 z 220 z(er —1) =0 (€% — 1) + ze?
—e? . _e?
= l1m = hm—
2—0 €% 4 (€% + ze?) 2—0 2e% + ze?
—1 1
= lim =——.
z—02 + 2 2

25



So, ¢(z) is bounded and our claim is proved. 1

In Section 3, we will need another function which is very similar to ¢.

Lemma 2.18. Let ¢)(2) be defined as

1 1
viz) = l—e? =z
Then 1(z) is also bounded.
Proof. First, observe
P(z) > 1 asz — oo, and P(z) >0 asz— —o0.

Next, when z is approaching 0, we have

. 1 1 R 1—e77

lim — — = lim lim

=01l —e? 2z 20 2(1l—e?) =0 (1 — e %) + ze~?

e~ _Z
z—0e=Z-fle=2 =\Ze—7) 2=02e7% — ze™?
) 1 1
= lim = —

z—0 2 — Z 2

Thus, (2) is bounded. 1

Another function which will be needed later is the Dickman function.

Definition 2.19. The Dickman function p (u) is the unique continuous solution of the

difference-differential equation

Lemma 2.20. The Laplace transform of the Dickman function p (s) satisfies sp (s) =

e EG). Consequently, we have

1 1+i00 e—E(v)
- - uUd .
i) =5 /HOO v o
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As a final class of functions, we will need polylogarithms (see [16] and [12,
p. 408]).

Definition 2.21. The polylogarithm Li,,(z), withm € N, is defined as

Lin () = Z;—;.

n>1

Remark 2.22. Note that Li,,(z) is C"™2-smooth.

Lemma 2.23. Li,,(z) is analytically continuable to C \ [1,00). Moreover, the singu-

larity expansion at z = 1 is given by

Liy,(2) = %Tml(lOgT — Hp1) + ’>Og y <_.1!)] ((m—j)r7,

where T, the harmonic numbers H,, and the Riemann zeta function ((s) are defined as

T:—logz:z(l_lz)l, Hm:i% and C(S):Z%‘

>1 k=1 E>1
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Chapter 3

Properties of Random Polynomials

over Finite Fields

In this chapter, we will show the properties of random polynomials over finite fields
from the introduction. We-will do this in four sections. More precisely, in Section
3.1, we will discuss the number of irreducible factors of a polynomial, in Section 3.2,
we will look at squarefree and k-free polynomials, in-Section 3.3, we will discuss the
maximal degree of the irreducible factors,.and finally in Section 3.4, we will discuss
the probability that a random polynomial has all irreducible factors of distinct degrees.

Throughout the section all polynomials will be considered to be monic.

3.1 The Number of Irreducible Factors

Definition 3.1. Let I, be the number of irreducible polynomials of degree n and denote
by I(z) its generating function. Moreover, let X,, be the number of irreducible factors

in a random polynomial of degree n (counted with multiplicities).
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Theorem 3.2. The number of irreducible polynomials of degree n is
I, = — +O(q"/2) .

Proof. As already explained in the introduction, from the uniqueness of the prime

factorization, we obtain

P(z) = H (1 —1z’f) k = exp (Z[klog 1 —12’“) = exp (ZZI,CZJ—])

k>1 E>1 k>1 j>1

1
1—gqz

~ exp (1(2) PS4 ST o ) -

Taking logarithms on both sides of the equality in the second line gives
1 I(2%)
log—— = —.
1—qz ;21 k
Next, the right hand side can be written as
1(29) o 1 n
> LS 515 L
k>1 k21 i1 n>1kln

Consequently, by Mdbius inversion-formula

1 4%)) 1
I(2) = log —— 1 -
(=) Ogl—qz—i_; 7 Ogl—qzﬂ

2

Note that the second term is an analytic function on |z| < ¢~'/2. Hence, applying

singularity analysis gives

¢
Example 3.3. The distribution of X,.

1. The expected value E(X,,):

We have P(z) = (1 —¢qz)~'. Now, let P(z,u) be a bivariate generating function
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with the exponent of v counting the numbers of irreducible factors. Then,

1
P(z,u) = H 0= ayi

k>1

Next, differentiating with respect to v and letting u = 1 yields

8 1 Ika Ika
gl ) _1:H(1—zk)fk'zl—zk :P(2>'Zl—zk
u=l g>1 k>1 >
1 Zk: qk
= . L 10 (g"?
1—gz ;1—zk(k+ (¢)
1 ¢ 2F 2* i
= . - O /2
1—gz kl—zk+zl—zk (")
k>1 k>1

1 & F quk
= : —wi O
1—gz kl—zk+Z (1—,2’C
k>1 ke>1

- (BN
C1—gz , kz

1 1
= 11 1
1—gqz Ogl—qz+ZOg

1 1 1 1
= 1 . 1 -+ .5
1—gqz Ogl—qz+1—qz (;Ogl—qzﬂ+ (Z)>’

k
where S(z) = > 5,0 (M) Note that the two terms in the bracket are

1—zk

analytic on |z| < ¢~/2. Hence, by singularity analysis, we have

E(X,) = [z”]%P(z, )

— =logn+vy+c+0(Mn"),
qTL

u=1

where 1 is Euler’s constant and ¢ = 3., log(1 — ¢"~7)~" + 5(1/q).

. The variance of X,,:

Again, we start from
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1
P(z,u) = H (s

k>1
Now, we take the second derivative with respect to v and again set v = 1 (the
additional factor u after taking the first derivative is needed because we want to

compute the second moment).

9, 9] 0 N I.2*
du (u 8uP(Z’u)> ‘u:l - Ou <u H(l uz’) Z 1— uzk

E>1 E>1 u=1
H(l k)—lkz Ik‘zk + H(]- k)—]k Z ]k‘zk i
= —uz — U —uz —
E>1 E>1 1—wuz u=1 E>1 E>1 1 —uz u=1
1 E\—1Ip, 12"
—H“LH( = uz") 'Z(l_uzk)z )
k>1 k>1 u
Tz Lpz Iz
_ Ey—1 k k k
-To-» P EEENESTE) 3o
E>1 k>1 k>1 E>1
2
1 Ikz Ikzk Ik22k
- [ A
E> E>1 E>1

Note that the last term in the bracket is analytic on |z| < ¢~'/2. As for the first

two terms, we use what we already obtained in the analysis of the mean,

Plugging this in and applying singularity analysis gives

1 1 1 1 1
E(X?) =—[z" 1 il PV 1
() =l [log =+ 50| + Sl ot
1 1 1 1
— 2" =21 1 -+ S
e [T s
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q
+ —[" :
q”[ ]1—(12 g(l—zw

=logn + O(1) +log®n + 2ylogn + O(1) + 2clogn + O(1)
=log’n + (2y 4+ 2c+ 1)logn + O(1).

Consequently, Var(X,,) = E(X?) — E(X,,)?

=log”n + (2y + 2c+ 1) logn + O(1) — (log>n + 2(y + ¢)logn + O(1))
= logn + O(1).

. The probability of X,, =1, which is the .same as the probability that a random

polynomial of degree. .z is itreducible, 1s given by

1 1/ q" . 1 .

. The probability of X, = 2, which is the probability of a random polynomial of
degree n to be a product of two irreducible factors, is obtained from the generat-

ing function

Jj=2
1 1 1(7) 1
= log —— 1 .
+2<og1_qz2+;2 e

Since the latter term is analytic on |z| < ¢~%/2, singularity analysis yields

1 logn 1
P X —=9)= — . [2"72(2) = +0(=).
rob( " ) q" [Z ] (Z) n (n)
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3.2 Squarefree Polynomials and K-free Polynomials

Definition 3.4. A polynomial is called squarefree if each of its irreducible factors ap-

pears only once.

Remark 3.5. If a polynomial f () is not squarefree, we can sort the irreducible factors

of the polynomial into a squarefree part g () and a remaining part & (x). The square-

free part g (x) gathers all of the irreducible factors only once, and the remaining part

h (x) takes the rest.

Remark 3.6. The remaining part h = f/g is not necessarily not squarefree, e.g., if
f(z) = (z+ 1)*(x+2)(2* + 2+ 1)3, then g(x) = (z + 1)(z + 2)(z* +  + 1) and
consequently h(z) = (z + 1)(2* + 2 + 1)*

Example 3.7. Here, we want to find the probability of a random polynomial being

squarefree and the expected value of the degree of the remaining part.

1. The probability of a random polynomial being squarefree:

The generating functions of squarefree-polynomials (denoted by (z)) and all

polynomials are

1
C1—gz

P = [J1 ="

Now, a relation between squarefree polynomials and all polynomials is as fol-
lows: every polynomial can be factorized into a square part and a remaining part,

which is squarefree, e.g.,

f(2) =z(x+1)(z+3)"(2* + 1)*(2* + 5)°
= (@ +3)%2*+1)*@* +5)° 2(zx + 1)(x +3)
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= (@3’ + D' 45 o+ )@+ 3),

square part remaining part
This yields,
P(z) = P(*) - Q(2).
P 1—q(z?
Q(Z)I (Z) _ Q(Z):(1—q22)-(1—|—qz+q222+q323+--~)

Hence, the coefficient (),, of 2" in )(z) is easily obtained as

n

q", ifn=20,1;
neegnat i > 2.

Qn:
q

So, the probability of a random polynomial with degree n being squarefree is

1, when n =0, 1;

1—%, whenn > 2.

. The expected value of the degree of the remaining part:

We again use a bivariate generating function P(z, u), where the second variable

counts the degree of the remaining part. Consequently,

k I
P(z,u):H(1+zk—|—u”‘z2k—l—u2kz3k+---)lk :H(lJrZ—) .

1 — ukzk
E>1 k>1

Now, differentiating with respect to v and setting v = 1 yields
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0
—P
50 (z,u) .
oo\ -1
by (1) ) () (ke
- H <1 * 1— Zk) K\ 1k
k>1 k>1 (1 + 1_2k>
( 1 )Ik Z LI z?k (1 _ Zk‘)_2
= : s
k>1 -2 k>1 (1—2%)
ZQk 1 ZQk
() ; 1ok 1 ¢z ; Pk

Note that the second term is analytic on |z| < ¢~/2. Consequently, by singular-

ity analysis

0 " q_z’“ n k)]k
%P<Z>u)|u=1 =F Zklkl_q—k =4 Z

& LI
E>1 w1 4 T4

Hence, the expected-value of the degree of the remaining part is asymptotically

3/
D

2k
o1 4 q

equal to

A natural extension of squarefree polynomials are k-free polynomials. We will

consider them next.

Definition 3.8. A polynomial is called k-free if the multiplicity of each irreducible

factor is less than k.

Remark 3.9. If a polynomial f (z) is not k-free, we can sort the irreducible factors

of the polynomial into a k-free part g () and a remaining part h (x). The k-free part

g (x) gathers all of the irreducible factors at most k£ — 1 times and the remaining part

h (x) takes the rest.
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Example 3.10. Let us find the probability of a random polynomial being k-free and
the expected value of the degree of the remaining part. The analysis is similar to the
one from Example 3.7.
1. The probability of a random polynomial being k-free:
The generating function of k-free polynomials Q¥ () is
QM) =+~ +27 +2%+-- 4 z(kfl)j)lk :

Jj=1

Then, we again can find a relation between Q¥/(2) and P(z). More precisely,
since every polynomial can be composed into a k-free polynomial times a poly-

nomial of power k, so

P(z) = Q"(2) - P().

P(z 1 — gzt
Q(:) = ik S LG g+ 7+ 2+ )
— quza \X qu+lzk+y
J=0 J=0

Since a polynomial with'degree.n_< .k must be k-free, so the probability of a
polynomial of degree n < k being k-free is 1. Next, we consider on polynomial
of degree n > k. From the above, we get for the number of k-free polynomials
(denoted by Qg“ ]):

QM =g — gnHtL,

So, the probability that a random polynomial of degree n > k£ is k-free is 1— qk%l.

2. The expected value of the degree of the remaining part:

Similar as in Example 3.7, we find the bivariate generating function with v count-

ing the degree of the remaining part.
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Then,

Pzu) = (142 + 2% 4 42007 4l b 2000 )"
§>1

1 — »(k=1)j S(k=1)j \ i
H( 1—2I 1—ujzj> '

j>1

Next, we differentiate with respect to v and let u = 1. This yields

0
—P
Gl
-1
() o BT e )
] 1—2i _ ( 1 V)IJ
Jj=1 Jz1 1—27
_ ( 1 )1] Z(ﬂjzj(l—zj) 2)
= 1
RN i1 (N
2% 1 2k
Jj=21 Jj=1
Applying singularity analysis yields
ny 0 n i1
E ]%P( P ZJ 11 =4 quj_q(k—l)j'
j=1 Jj>1

Hence, the expected value of the remaining part is asymptotic to

L —
qkj —_ q(k_l)j )

3.3 The Degree of the Irreducible Factors

Definition 3.11. A polynomial is called m-smooth polynomial if there is no irreducible

factor whose degree is greater than m.
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Example 3.12. First, we discuss the number of m-smooth polynomial of degree n.
Therefore, let S,,(z) be the generating function of m-smooth polynomials. Then, for

|z] <1

Sm(z) = H (1- zk)_]k = P(2) - H (1- zk)lk

k=1 k>m
1
= exp I log (1 — 2F
1—gqz l;n ( )
1 ZQk Z3k
= . Lo =2k -2 2 ...
1—gz P ];n g ( ‘ 2 3 )
1 2k
e (TS
I—qz k=1 J
S —zlszZ’“)
1—-qz i1 9 kem
1 T7[7J1]
_1—qz.eXp _Z

7>1

where 7l (z) = Y2, Ixz". Next, we need suitable estimates for 1. First, we

estimate 7"7[71]( ) for |z| < 1:
rll G —m/2
Sa(E) =X Z o).
k>m k>m
Moreover, for 1 ]( ) with j > 2, we have
) kj kj 1
A L2 B z B
T (E) = Z O (q ng> = Z 0 (qk:(j—l)) =0 <qm(j—1)> ,
k>m k>m

for |z| < 1. Overall, we have found that the sum of the error terms of g ]( ) with j > 2

are bounded by the error term of 75 () which is O (q~™/2).
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So, the number of m-smooth polynomial of degree n (denoted by N,(n,m)) is
1 dz q" z\ dz
N, =— [ Snz)—=— [ S | -

a(n,m) 27Ti/c (2) bl 2mi Ja (q) zntl
B S R BT AN (O R () B S
2mi Je 1 —q(z/q) "™\ q 2 3 Zntt
q" 1 2k _ dz

_ 1 X o “ O m/2

" 1 d
! cexp (=rn(2) + 0 (¢7%) o

T omi Jel-z

where the contour C is z = €1/ with —x < 6 < m. Next, we use the change of

variable z = e /™, Note that, by Lemma 2.17, we have
Tm(2) = ' (e_h/”) = E(ph)+ O (1/m),

where 1 = m/n. Moreover, note that since O (q_""/%) is exponentially small, so it

will be eliminated by O (1/m) in 7, (2). Consequently,

— qn 1 <2 dz
N, (n,m) = %/51 e ) Ol mR)) S
n 1—inm 1 _—h/n
- L G (s (e gy —n€ "dh
T2 i 1 — R/ exp (=rm (€7") + 0 (¢77))
_ g [T exp(CE(h) + O (U/m))
n 1+inm O(1/m)
= q— —E(ph) € hdh 39
21 Sy i € n (1 _e—h/n)e : (3.2)

Now, set 1)(z) = —— — + which is analytic in |z| < 2. We can rewrite parts of the

integrand of (3.2) into an expression of .

mzi(ﬁw(@):%*#@
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eO1/m) 1 1 (h 1
S T A1+0 (=
iz = Gt () (o (3)
1 1 h 1
=—+—-¢ |- o(— ). 33
h+nw (n) * (hm) (3-3)
Next, substitute (3.3) into (3.2) and separate the integral into three parts

n 1+inm O(1/m)
_ 4 —E(uh) € h
N = ) —e"dh
dmm) =g [ e

n 1+inm
_ 4 e (L L ( b hdh,
270 1 i ¢ (h + nw n +0 hm ) )€

n 1+inm n 1+inm 7E(lu,h)
1 h
€ e Blh) Zy) ( > e"dh + a4 ¢ eldh
n

271 1—inm n 2mi 1—inm h
n 1+inm

+L e~ Eluh) L eldh .
278 )1 inn hm

Now, we will discuss the 3 integrals separately:

1. The main term:

1Hinm —E(uh)
= T
2mi 1—inm h
1 1+ico S=E(uh) 1 —E(ph)
— e . ehdnii_ | € ehdh,
2w s h 2ri Jp h

where L is the union of the two 'semi-vertical lines (1 + inm, 1 4 i00) and (1 —
100, 1 — inm). Then, by partial integration, we obtain for the £ part the bound
O (%) Since the proofs of the positive and negative semi-vertical line are the

same, we only consider the positive part.

/1+ioo e—E(uh) hdh
(&

1+inm h
efE 1+z<>0 Itico / o—E(uh) g—ph  ,—E(uh) .
= — 5 e"dh
1+inm 1+inm h h
G,E 1+ZOO 1+i00 7E (nh)
= + 1 e’“h) e'dh.
1+inm 1+inm




In order to go on, note that since e~#(*) is bounded for R(z) > 0, there exists a

e_E(Nh) , 14200

h e

1 — ehmine

—|d
(1+ix)? ’

(1 - ef,u,fi,uz) €1+im

constant ¢ > 0 such that [e="(*)| < ¢. So the absolute value of the first term is
1 1 1
=ce | lim + =0|—).
(””_’00 Va2 +1 \/n27r2+1> <n)
Moreover, the absolute value of the second term is bounded by
+inm h2
efE(,quiuz)
[e'e) 1 [e'e) —M—i,uq;
< ce/ +2dx+ce/ Qdm
nw |1+Z.Z" nw l1+2x|
/ Tl g + ce' / N\,
=ce T+ ce x
nmw 1 + ‘1:2 nmw 1 =+ 562
= 1=p —d
(ce—i—ce )/m 1+ 22 X
© 1 1—p 1
< (ce—i—cel_“)/ ¥ W — —a =0 (—) )

<C(hm |€1+ix’ N |61+in7r| )
Lring | \#ooo [L+dx| 1+ in|
Lioo ,—B(uh)
/ ¢ (1 — e_“h) edh
1
<) \wrar s |
> =k

So, the main term becomes

1 1+iooefE(,uh) 1 1
— dh+0 | —
270 J1ico hot N (”)
1 ico o —E(uh) 1 1
=— ———(e")ipdh + O | =
210 J1iee D (%)% pdh + (n>
1 Lico ,—E(uh)

 2mi 1—ioo ph

(") Ed(uh) + O (1> |

n

Then, by Lemma 2.20, p (u) = 5 1000 ¢ P0) v gy, So, our main term is

o2mi J1—ico v
Wi (uh) + O [ X
N 1 —
2mi )i iee ph (6 ) (uh) + (”)

o) 0(2) o) 0(2)

1 1+i00 Q*E(ﬂh)
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2. The part containing 1¢ (£):

Integration by part gives

1+inm 1+inm
L. e~ E(uh) lw ﬁ eldh = 1 / e—E(uh)w ﬁ eldh
2mi n n 2nme Jy n

l—inm —inm

1+inm 1+inmT /
_ 1 e_E(p,h) Qp E eh - / " e—E(Mh) /w E 6hdh
2nmi n 1 inm 1—inm n
1+inm
_ 1 e~ E(uh) 0 E el
2nmi n 1—inm

1+inm —uh
_ / (e B ) (E) e Bl Ly (ﬁ)) ehdh>
1—inm h n n n
1+inm
— L (e—E(uh) Y ﬁ) el
2nmi n Y

1+inm —ph
— / e B(uh) (i¢ (ﬁ) + lW <ﬁ)) ehdh) )
1—inx h n n n

We will bound this expression in three steps. In every step we will use that e~ #(*)
and 1 (z) are bounded:

1+inm
@ |game T (5) et
1—inx
Here, we have
L gy, (P W L Butinm),, (LHMTN 1
e ,l/b _ e — e o wmnm ’lp e wmnm
2nm n L inm 2nm n
_efE(,u,(lfinrr))lp 1 —anm pl—inm
n
< 1 6-E(y(1+mw))¢ L +inm pltinT
— 2nm n
+ e—E(u(l—inTr)),w 1 —anm 61—in7r
n
C . . ce . . 1
< 1+inmT 1—inm|) _ nm -ty — O Z ).
< g (e b)) = 2 (fe| 4 e =0 (1)
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So. | gume "0 (B) ' | = 0 (3).
(b) 2n7rz 11——1;?7? e_E(Hh)ﬂ] (%) @dh)

Here, we have

1+inm 1—h
b / ' ¢ Bh) W et "
2nm |1 inx n h
" ) 1—p)(1+iz
T 2nm J_ . n i
< /”7r 6(1—u)(1+ix)
B 27171' —nm 1 +zx - 2n7r m
cel=H [nm 9
- dx
2nt Jo \/m
cel =+ (/ /mr 1 >
- T ——dx
cel=H 1 .
= log(z= V1 + 22 +/
" ( i ) T
o logn
" <Og 7k / m ) ( )
1+inmT - o e(1—wh log
ThUS, 2n17ri 1—inm = E(#h)w (%) Tudh’ - O (%)

(c)

1T B (uh) (1) ehdh‘:

2n27m 1—inm

Note that ¢'(z) is also bounded. Hence,

1+inm h
/ e By (—) ehdh’
l—inm n
< ! /m ¢~ Blikin) g 0w i
— 2nPr ).

n

C nn iz ce " 4y 1
g [ =g [ =o ().

L e By (1) ehdh| = O (L),

2n 27” 1—inm

1
2n2m

dx

This gives
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Overall, we obtain =— Lo 6*E(“h)%¢ (%) e"dh = O (10%)

1
2mi J1—inm
3. The part containing O (ﬁ)

Since e~ (") is bounded, we easily get the error term:

1 1+inm Btuh 1 b nm 1 1i
— e B (= ) ehdh| < ¢ O ————)elt™
270 1 _inn hm . (1+ix)m

:ce/ O(;> dx:O(logn).
o 1+ 22m m

Hence, by combining the above estimates, we have

N, (n,m) = ¢" - (p (%) 40 (brgn”) > .

Next, we are going to discuss the degree of the largest irreducible factor of a

dx

random polynomial of degree n (which we denote by DY ]).

Example 3.13. Here, we consider the probability that a random polynomial has the
degree of the largest irreducible factor DY =m.

As before, we first find the generating function Z,,(z) of polynomials with the
degree of the largest irreducible factor = m. By the previous example, we have the

generating function S,,(z) of m-smooth polynomials. Then, L,,(z) is given by

Ln(2) = 50(2) ~ B e) (1 - (L 2m)')

—S(2) - (; ([Z) (—1)k+lzkm>

= Spu(2) ([mzm + ; (]]’;> (—1)k+! km)
Thus,
Pr(D = m) = V() =1 () = 5 [ 20 (2) 25
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2™ 1 dz
) (o (e))

i
q
A ~m/2 1Y) &
D (Eroamvo(os)) o
z
q

where the contour C is z = e V" with —1 < 0 < 7. By the change of variable

2 = e " we have
1 z\ 2™ dz 1
pr (Dl — :—/Sm—— 1+0(—=
r(Dal =m) 2mi Jeo q) m zntl * m
1 1—inm —h/n —ph 1 fh/ndh 1
- L sm<€ ) ne <1+0<—)>
2m1 14inm q m e~h=h/n m
1 14enm —h/n (L=p)h 1
e P (o)
21 Ji i q nm m
where 1 = m/n. Now, as in Example 3.12;

" 1 1+inm e eO(l/m) (1) 1

—inm

1+inm
= 1 / e~ Euh) l+l¢ E +0 L e=mhp
2mmi Ji_ine h n n hm

As before, we break the integral into three parts and discuss the three parts separately:

1. The main term:

By Example 3.12, we know that the contour of the first part [1 — inm, 1 4 in7|
can be replaced by (1 — 0o, 1 + ic0). Then, by Lemma 2.20,

14ioo 14-ico
1 / G_E(’uh)le(l_‘u)hdh _ 1 / e—E(#h)ieﬂh(i_l)d (Mh)
1 1

2mmi h 2mmi J_ oo wh

)
=—p(=-1).
m \p

—100
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2. The term containing %ZZJ (%)

This term is similar as in Example 3.12. Integration by part gives

1+inm
1 / e~ B6m) Ly (1) amim gy,
2mmi J, n n

—inT

1 1+inm h
= / e Euh) | = e=mhan
2nmmi Jy n

—inm

2nm (1 — p) mi n i

1+inm —uh
— / e~ Eph) (i¢ (E) + lw/ (E)) e(l“)hdh) )
1—inm h n n n

1+inm

_ _ 1+inm
@) | grpgmye UM (1) e T
Since e#(?) and 1)(z) are bounded, we have
1 h 1+inm
e—E(uh)¢ Z ek
2nmm n 7>
_ 1 ¢~ By, (17”'7”) o (1=)(1+inT)
2nmm n
_ e Els—inflly, (1 - ””T) o(1-p)(1-inm)
n
< 1 (eE(,u(lJrimr))w (1 +m7T> o (1=p)(1+inT)
2nmm n
e Bls=inm) y, (LT amm—inm)
n
1—
< c (|6(1—p,)(1+in7r)’ + |6(1—,u,)(1—in7r)‘) _ cerH _0 (L) '
2nmm nmm nm
_ _ 14+inm
S0, | e T () e T = 0 (1)

(b)

2nmmi J1—inm n h

1 1+inm 67E‘(,uh)¢ (ﬁ) Mdh‘

Since e~#(*) and 1)(z) are bounded, we have
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1 1+inm 5 h e(l—2u)h
—E(ph) = dh
2nmm \/l—imr ‘ ¢ (n) h
nmw . 1-2 1+ix
< 1 / o~ Elwtina), 1+ iz ell=2m(1+iz) e
~ 2nmm ), n 1+
nw | ,(1—2p)(1+iz)

< c / e . dr — ce 1 de
2nmm J_,.. 14z 2nmm J_, /1 + x2
cel=2 [T 2

= ——dx
2nmm Jo 1+ 22
cel =21 | o1

= (/ —dx +/ —dx)
nmm 0o V1+ 22 1 V14 a?
cel =2 | 5 ! n 1 J

= V1 -
nmm og(x + V1 +2%) +/ V14 2? !
cel—2m logn
nmam <0g +\/_ / 1+ 22 +x2 ) (nm

This gives anm f:.:l: e~ Ehle) (ﬁ) Mdh‘ =0 (liif)

()

2n2mm 1—inm

inT S i (L) pee hdh‘

We know that e=#(® and +//(z) are botnded. Consequently,

dzx

1+inm
1 / e‘E(“h)@b’ E e(l=mh qp
2n2mm | )1 —ine n
<1 /m e~ Blerine)yy (LHUN s
~2nPmm J_,. n
c nm )
(1w (1+iz) | g
~ 2n’mm /_m‘e | v
1— nm
_ #/ ‘em(lf“)‘daz:O 1 :
2n’mm . nm
s s e 1070900 8] =0 2.

Overall, summing up these three parts gives an error term O (lz

gn)
m )
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3. The part containing O (7):

Since e~ £(h) and e(1=m"h are bounded, we obtain the estimate

1 1+inm _B(uh) 1 1A
: e B [ — | el=whgp,
2mmi Ji i hm
< € / o (L jaemain
~2mmw J_ . m(1l +ix)
_ cel=H /mr o 1 dr = O logn ‘
2mmw . my/1 + 22 m2
Overall, we get for the probability of DI = m:
1 1 1 1 1
Pr(DM=m)=—p(=-1]+0(=2" :—p<£—1)—|—0 8T
m" \ m? m" \m m?

Example 3.14. Here, we discuss the probability that a random polynomial has D =

dx

m and D < m/2, where D,[L2 I denotes the degree of the second largest irreducible
factor.

The generating function L, (2) of polynomials with DY) = mand D <m /2

is given by
I I 2" i q" -
qmzm

= S|my2) (2) - =) (14 O(mg™™"?)).

Then, the probability of DE J — m and D,[f ] <m/2is

. N - /s 1 ~ [(z\ dz
n _ [2] = —[z" = 2" P sy q
Pr (D, =m, Dy <m/2) = " (" Em(2) = [2"]Lan (Q) - 2mi /ch (Q) Zme
1 > zm dz
1 Sm z 1 10 —m/2
omi Jp "t (Q) m(1—2m/qm) zn+1( +0(mg™™"))

with the contour C equal to z = e~'/"+% with —7 < @ < 7. Then, by the change of

—h/n

variable z = e , we have
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Pr (DE] =m, DE} < m/2)

1 2 m "
- Sm - 14+0 —m/2
omi J, "L/ (q) m (1= 27 /q™) St (L O(mg™™%)

1 1—inm efh/n ef,uh _ 1 —h/ndh
- S m n 1 O —m/2
210 Ji4ing /2] < q ) m (1 —e rh/gm) e-h=h/n (L+0Olmg )

1 1+in7rS efh/n 6(17;1,)}1 1dh ) o g2
20 e me( q >m(1—6‘“h/qm)ﬁ (1+0mg ™)

1+inm O(1/m) —ph —2uh
_ 1! / 0™ s (o N
2mmi J1_inx n(l—ehm) o Pm

Here, the error term O(mg~™/2) is eliminated by the error term O(1/m). Moreover,

we can ignore » k1 (e*“h / qm) " since itis exponentially small. So, the probability is

] 2 1 lt+inm \ 7 6O(l/m) h
Pr (D =m, D" < m/2) = : e=Bwh/2)  —  (=whgp
N 2mmi )y n(l—eh/m)

—ina

Next, by (3.3) of Example 3.12,

Pr (DY =m, D <my/2)

1+inm
_ 1! / o~ Bl e (0 o (L | sammngy,,
2mmi )i h™"n" \n hm

As before, we break the integral into three parts. For the second and third part, we
again obtain O (log").

m2

For the first part, similar as in Example 3.12 we can replace [1 — inm, 1 + inn]

by (1 —i00, 1 4 ico). Then, by the change of variable v = /2 and Lemma 2.20,

1 14+i00 _ B(uh)2 1 oh 1 1+i0c0 e 1 e )
: e~ BEuh/2) Z ;(1=p)h g7, — : e B)_—__ (I-m2v/nZ 1,
2mmi i i h 2m7i )1 oo 20/u i

1+ico —E(v)
— / ¢ Gy = lp 2 —-2]).
2mmt J, v m 7

—100
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Overall,

Pr (DY =m, D

1 2 logn
cenn=20(2-0) 0[5
1

:_p(Q_"_2>+O(IOg2n).
m m m

Example 3.15. Finally, we discuss the probability that a random polynomials has

DE] = my and DT[ZQ] = my with mqy < my.

Ll}

The generating function L,,, ,, () of random polynomials with Dy’ = m, and

D7[12] =My 18

[m1 M1 Zm qml .
Lo () = Loy (2) - 25 _ [ 2 ~ ( o 1/2>)

1—zm 1—zm my
m1 Zml

q

g Omag ™™ %)

= Lm, (Z )
Then, the probability of D= my-and DY = mo 18

PT’ (Dg] = ml,DE] = mg)

1 2 1 z\ dz
= —" Lm mo S\ £ Lm ™m > BY/ N Lm1 mo | T
q" [Z ] 1, (Z) [Z ] 1,Mm2 <q) 711 /C ) (q) on+l
1 2z \ <z 2 dz 1
=— [ 5, |- 1+0 | —
27i Jo (q> mg mq (1 = zm /gm) zntl ( + (mg))

with the contour C equal to z = e~'/"*% with —7 < @ < 7. Then, by the change of

variable z = e /" we have

Pr (D[l] =my, DE] = mg)

1 s z Zmitma dz L+ 0 1
2w Jo "™ \q) myimg (1 — zm/gm) pntl mo

1 1—inm e—h/n e~ (ttp2)h _Le=h/ngp 1
270 J1ting q mymy (1 — e#h [gm1)  e=h=h/n o

1 1+inm O(1/m2) e(l=p1—p2)h

_ = —E(uz2h) .
¢ n(l—e M) mymy (1 — e rh/a™)

dh,

2mi 1—inm
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where 11, = my/n and py = mo/n. Note that we can replace (1 - e*‘“h/q”””)_1 by 1
since the remainder is exponentially small. Then, as in Example 3.12, the probability
is

Pr (DY = m,, DP

" =my)

1+inm
= ;/ e~ E(uzh) 1 + l¢ ﬁ +0 L e(l=mi—p2)h g1,
2mimemi J1_inx h n" \n hme

We again break this integral into three parts, where the second and third part satisfy
0 <m>
mimse
For the first part we replace the contour by (1 — ico, 1 4 ic0). Then, by Lemma
2.20 and change of variable v = ush, the main term becomes

1 1+inm 1
/ e~ Eluzh) — o (=ma=p)k o3,
1 h

2mimemt J1_ipx

1+i00
1 / e E@) ! e =p1=p2) v/l idv
1

_2m1m2m' —ico v/ o M2
1+ico ,—E(v) 7 48 o o
:;/ € ev(luﬂliz‘@)dv — 1 p (1 H1 ﬂ2> .
2mimemi Ji_g . © m1ma H2

Overall, we obtain for the probability that pl — m1 and DE I — mo:

1 1 1
PT<D£LH:m17 DE}ng): p<__&_1>+0<0gn2)

mimes M2 M2 m1ms
1 n m logn
miMo My Mo mims

3.4 Other Restrictions on the Degree of Irreducible Fac-

tors

Example 3.16. Here, we will discuss the probability that a random polynomial has

irreducible factors of distinct degrees.
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Let D(z) denote the corresponding generating function. Then,
k>1
So, the probability of a random polynomial having irreducible factors of distinct de-

grees equals
D, "
T [2"]D(z/q)-

In order to find the asymptotics, we first rewrite D(z/q) as follows

D(z/q) = g (1 + 1 (§>k> — exp (; log (1 A (g)k»

con(-X XL (n2))

k>1 m>1
(_1>m+1 zk: m
m>1 k>1

Observe that form = 1,3, I;.2"q ¥ equals to I(z/q). For convenience, set A, (z) :=

Zkzl (Ikqufﬂm, for m > 2. Then,

D(z/q) — elz/a) . exp <Z (_1—73:14—11\"1(2))

m>2

1 .
= exp (log — 4+ Z MO) log

1—1=2 =2 J 1_q_

— Tl/Zexp (; ”gﬂ log - zqul—j> - exp <Z %Am(zg .

m>2

Let A(z) = >, @log L which is analytic on |2| < ¢'/2. Moreover, for

1—29gt—J

A (2), we have

A (z) = Z (]kqu—k)m _ Z (Z_g I O(q_k/Q))

k>1 k>1
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km
=3 £ 5(2) = Lim(2™) + Sil2),
k>1

172 to0o0.

where S,,,(z) is analytic on |z| < ¢
Next, we plug this into the expression of D(z/q) and factor D(z/q) = U(z)V (2),

where

U(z) = N i " XD (Z #Lz,ﬂz"ﬁ)

m=2

and

V(z) = e - exp <Z %Wsm(z) + Z #Am(z)) .

m=2 m>M+1
Choose M = 2. Then, V(z) is C'-smooth. Moreover, U(z) is of global order —1.
Next, we need to write U(z) = U (z)+ R(#);where U(z) is a log-power function and
R(z) is smooth. Therefore, observe that U (z) has singularitiesat z = 1l and z = —1. In
order to find the singularity expansions, first note that by Lemma 2.23, the singularity
expansion of Lis(z) at z ="11is
: —1) o
Lis(z) = m(log 7'="1) + Z ( ,') (2 —j)r’
20521
=((2) + 7logt —T+Z(_—1)jg(2 — )7

j>2

where 7 := —logz = (1 — 2) + O ((1 — 2)?). Consequently,
Lis(2) = ((2) + (1 — 2)log(1 — 2) + O(1 — 2).
Hence, the singularity expansion of U(z) at z = 1 is

U(z) = L exp (—@ — 1_—22 log(1 — 2%) + O(1 — 22))

11—z 2 2
o~/

=1 cexp (—(1—2)log(l —2)+0O(1 — 2))
o~/

=1 (1= (1=2)log(l—2)+0(1—-2))
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e—C(2)/2

= — e “@21og(1 — 2) + O(1) < where O(1) is C°-smooth.
—z

Moreover, the singularity expansion at z = —1 is

U(z):liz-exp (—@ 1_22 log(1 — )—1-0(1—22))

—¢(2)/2
= e (—(1+2)log(1+2z)+O(1 + 2))
o—C(2)/2
T, (1—(142)log(l+2)+0(1+2))=0(1) <+ C’smooth.

Combining this yields U(z) = U(z) + R(z), where R(z) is C°-smooth and

~ —((2)/2
U(z) = 61 — e 2 og(1 — 2).

Consequently, by applying Theorem 2.14, we obtain

1D (2) ~ ey (G o - ) ) ~ @),

q

In order to make the constant explicit, note that

~C@/2y(1) = ,llgi(l =2)D(z/q) = z~>1 PEZZ?
= i (H et (- ) |

Next observe,

[T+ 0™ (1= 2hg )"
11 (1 T O(qk/2)> (1 ~ 2+ O(/ﬂ)) =1 +owt).

k>1 k>1

Since this infinite product converges, we can plug in z = 1. Then, we obtain

[2"|D (3> ~TT A+ L ™) (=g ™.

q k>1

54



Finally note that

) _ _ ) 1 _ _1 —k/
lim H(1+1kq k)(l —q k)Ik :thﬁloH (1+ E+O(q k/Q)) e Lio(g*/?)

Q*)OO
k>1 k>1

1 1
. - - — o
_qlirEoH(Hk)“_e ’

k>1

where v is Euler’s constant and the last step follows from the product representation of

the Gamma function.

Example 3.17. Here, we consider the probability of a random polynomials having
irreducible factors of even degrees distinct.

Let D!¥l(2) denote the generating function. Then,
e ' 1 Iok—1
D(z) = [+ 122™) (m) :
k>1
Consequently, the probability of a random polynomials having irreducible factors with

even degrees distinct equals

Dy
q’n

=D (/q):

Now, observe

D¥(2/q) = [T (1 + Ln(2/0)**) (ﬁ) h

e z/q
_ 2k 2k—1
= exp Zlog (14 Lk(2/9)**) = Ik—1log (1 — (2/q) )>
k>1
1™ ()™ (2 2km > (2k—1)m
— exp ZZ< )" (o)™ (2/4) +Z]2k—1z(/q)
k>1 m>1 m k>1 m>1 m
(=™t 2\ 2k—1)m
= exXp Z (T ngqﬂ —FEZ]Qk_l(Z/q)( ) .
m>1 k>1 k>1
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For convenience, set Al (z) = > st (L2 2F) " and O, (2) := 3,1 Lok < i i) :
For m = 1, note that

A[e] Z[% +Zfzk 1 57 prra Z k < )

E>1 k>1 E>1
Thus,

m>2
1(5) 1 )
= exp | log + — log —
( & ; J 1- ¢
(_1)m+1 2 1
exp (ﬂ; < AL (2) + —Ou(z)

i - exp (; “gj) log 1= zqul_j>
- exp (Z <(_1—72:n+1/\,[fﬂ(2) + %@m(z))> :

m>2
Let A(z) := (Zj22 # log ﬁ) which is-analytic on |z| < ¢'/2.

Next, consider A () for which we have

All(2) Z (bkz_z;:)m _ Z (Z—j +O(q"“)>m

1/2

where S,[ﬁb](z) is analytic on |z\ < ¢'/*. By a similar argument, ©,,(z) is analytic on

|2 < ¢'/?

, too.
Now, after plugging every thing into D(z/q), we can factor D(z/q) = U(2)V (2)

with

U(z) = | i S " €XP (Z %Lig(f’”))
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and

i (—1)™1SH(2) + 0,.(2)

m

V(z) = e . exp <

m=2

+

m

§ CUmTARG) ¢ @m<z>>
m>M+1 .
As before, choose M = 2. Then, V(z) is C'-smooth. Moreover, U(z) is of
global order —1 with singularity at z = 1 and z = +1.
In order to find the singularity expansions, we again use the singularity expan-

sion of Lis(z) atz =1

Lis(z) =C(2) + (1 — 2)log(1l — 2) + O(1 — 2).

Then, as before, U(z) = U(z) +.R(2z) with-R(z) C°-smooth and

_ Zcusmy
U(z)= 61 =113 16_4(2)/8 log(1 — 2).

Consequently, by applying Theorem 2.14; we obtain

27 Dl (2) e~y (1) (1 : 5] 10%“4‘ 2)) @Y (1),

In order to make the constant explicit; note that

DFl(z/q)
—((2)/8 _ T _ [e] — 1 1)
OV = li(1 =)D /) = iy T
. k_—2k k_—2k\12
=zzq<k11<1+fm2><l—z2q ") )
>1

Next observe that

H (1 4 ngz%q_%) (1 _ z%q—%)fzk
k>1

_ (1 T i + O(q_k)) (1 — i + O(k:‘Q)) =[[(1+0™),

k>1
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which is convergent. Hence, the above limit can be evaluated by plugging in z = 1.

This finally gives

il (2) ~ T+ B (1= 72

k>1

Finally, for Chapter 4, we need another example which is a slight variant of

Example 3.16.

Example 3.18. The probability that a random polynomials has irreducible factors
(counted without multiplicities) of distinct degrees.

Let D*(z) denote the corresponding generating function. Then,

N Ii.2"
D (z):H(1+Ikzk+1k22k+---):H<1+1fzk).

k>1 k>1

Using a similar analysis as before.yields

"D (z/q) ~ ] (1 + q,ff 1) (@—q")".

k>1

Note that again

. ]k; kN 1x . 1 _k ,lo*% _
1 1 1— m 14 = O( ) +0(q™ %) _
i I (1 55 (=BT (1 0 (17F) oo =
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Chapter 4

Application to Polynomial

Factorization

In this chapter, we give some applications of the results of the previous chapter to
factorization of polynomials.  We first explain a three step procedure which is used by
many factorization algorithms.

The first step is the observation that it suffices to factorize square free polyno-

mials.

Step 1: Note that if there are repeated factors in the prime factorization of f(x), then
the repeated factors will also appear in the derivative of f(x). Hence, we can
obtain the repeated factors by computing the greatest common divisor of f(z)
and f’(z). Next, by dividing f(x) by ged(f(z), f'(x)), we can get rid of the re-
peated factors and turn the polynomial f(z) into a squarefree polynomial. (Note
that since the derivative of a irreducible factor whose multiplicity is a multiple
of p is 0 in the finite field F, with ¢ = p", so this procedure does not work if
f(x) contains irreducible factors whose multiplicity is a multiple of p. A slight

modification of the procedure, however, works. For the sake of simplicity, we
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will not discuss this here.) We will call the output of this step f(z).

The second step will factor f(z) into a product of bl*!(z), where bl¥/(z) contains all
irreducible factors of degree k. For this we will use a well-known fact from the theory
of finite fields, namely, 2" — 1 is the product of all irreducible polynomials of degree
< kin F,. Consequently, computing the greatest common divisor of f(z) and 27" — z
will separate the factors into two parts: one containing all irreducible factors of degree
< k and the other containing the remaining factors. Using this observation, the second

step works as follows.

Step 2: We start from & = 1 and compute the greatest common divisor of f(z) and
29" — z. This gives bl'/(z). Then we replace f(z) by f(z)/bY)(z) and continue
like this with k£ = 2, 3, - - -.to find the other factors.

After Step 2, the problem is reduced to the factorization of blkl (x). However, there is no
efficient deterministic algorithm for this factorization. Consequently, we use a random
procedure. Therefore note that since b¥/(z) is a productof irreducible factors of degree
k,ie., bH(z) = ri(z) - ro(a) s - o j(2) with- (2) irreducible and deg(r;(7)) = k,
so Fy[z]/ (b¥)(x)) is isomorphic to-the product of F,[z]/ (r;(z)). Next recall that
in F,[z]/ (ri(z)) \ {0}, half of the elements are squares and the other half are not.
Thus, if we pick a polynomial h(z) at random, then if it is a square in F,[z]/ (r;(z)),

ke e
we have h(x)qu = 1 mod ry(z), ie., ri(z)|h(z)" '

— 1. This will happen with
probability 1/2. Consequently, computing the ged of h(x)# — 1 and b*l(z) will
give the irreducible factors for which A(x) is a square. The number of these factors
will be binomially distributed with mean j/2. Using this idea, the step 3 works as

follows.

Step 3: For every bl¥l(z), if the degree of b*!(z) is greater than k, we choose a random

polynomial (z) with degree equal deg(b* (x)) — 1. Then, let v(x) be the great-
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est common divisor of b*!(z) and h(x ) — 1. After v(x) is found, we repeat

this process with v(z) and b* (2) /v () until all irreducible factors are found.

ABCDE

N

VANIAN
AN

A

Figure: A possible outcome of Step 3 if bl = ABCDE with A, B, C, D,

E irreducible factors of degree k.

Now, we are going to consider an example.-For example, consider the following poly-

nomial over F5:
f(z) = 2° 4 2254 407 ¥ 2% +-22° 4 32t 2 + 27 + 32 + 1.
Step 1: The derivative of f(x);1s
f'(z) = 42® + 27 + 32° + 22° + 22° + 3% + 22 + 3.

Consequently, ged(f, f') = x + 4, which means that the factor x + 4 is repeated.
So we divide f(z) by = + 4 and obtain

f@)=(x+4) f(2) = (x+4) - (¢ + 327 + 225 + 42° + 2" + 42° + z + 4),
where f(z) is a squarefree polynomial.

Step 2: Let £ = 1. Then, we have

p(z) = ged(f(z), 2° — x) = 2% + 2z + 2.
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Next, divide f(z) by 2% + 2x + 2 which gives 2% + 2% + 32* + 23 + 322 + 2 + 2.
Set k£ = 2. Then,

b (x) = ged <b{+f))’ % —:c> =2+ 2° + 32+ 2* + 30 + v + 2.
T

Thus, we have factorized f(z) as follows
Flx) = (z) - b2(z) = (4® + 22+ 2) - (2% + 2° + 32 + 2° + 322 + z + 2).

Step 3: Here, we have to factorize bl!l(x) and b?)(z):

1. For bl'(z):
Since the degree of bl () equals 2, we choose a random polynomial h(x)
k_1
of degree 1, e.g., h(x) = x + 1. Then, h(x)qT —1is

1

(r+1)7 L= (z+1P 1= (%420 +1)— 1 =2+ 2z

However,
v(r)y= ged®(z), 2> + 22) = 1.
So, we have to repeat this step with another random polynomial. Therefore,
pick h(x) = = + 2. Then,
(z4+2)7 —1=@+22—1=(2+40x+4)—1=2>+42+3.
Next,
v(z) = ged(bW(z), 22 + 42+ 3) =z + 3.

The other factor is

() /(x+3) =z +4.
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So, we finished the factorization of b1*!(x), having

b(z) = 22 4+ 22 + 2

7N\

1 24 2x + 2
r+3 r+4

2. For b (2):
Since its degree of bl (x) equals 6, so we choose a random polynomial

h(z) of degree 5. A similar procedure as before then yields:

28 a3t 3 322+ + 2

=%

w2+ w42 ztFa? 41

AE N

Trimda ¥ A 2 4+rx+1

Overall, we have factorized the polynomial and obtain:

fx)=(z+3)(z+4)*@* +2+ 1) (2> + 2+ 2)(2* + 42+ 1).

Next, we are going to explain the usefulness of the results of the previous chapter
when analyzing the algorithm.

First, Step 1’s purpose was to turn the random polynomial into a squarefree
polynomial. Since by Example 3.7 the probability that a random polynomial is square-
free equals 1 — 1/¢, this step is very fast since there is only a probability of 1/q that the

division is needed. Moreover, if the polynomial is not squarefree, again by Example
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3.7 the expected value of the degree of the remaining part is still small, so that the
division is not costly on average, even in this case.

Second, recall that the purpose of Step 2 was to separate the irreducible factors
according to their degrees. The most simple way to do this is by repeating this step
from & = 1 to n (we call this strategy 1). However, note that if £ > n/2, then the
remaining polynomial is either irreducible or constant. Thus, a better strategy would
be to consider k from 1 to n/2 (strategy 2). Finally, an even better strategy is based
on the following observation: if the degree of the remaining polynomial is < 2k in
the k-th step, then the remaining polynomial is again either already irreducible or a

constant. This leads to a third strategy (strategy 3) for which we repeat until
k> max {| D} /2], D} |

where Df and D!? are as in Chapter 3. The complexity of the Step 2 for these three
strategies was analyzed in 4.1. In particular, for strategy 3, the results from Section
3.3 were used. We only state the result without giving a more detailed explanation.
We need the following assumptions: let-71°-be the cost of multiplying two polyno-
mials of degree < n and reducing the result modulea polynomial of degree equal to
n. Moreover, let 7yn? be the cost of computing the greatest common divisor of two

polynomials of degree at most n. Then, in [10, p. 21] the following result was proved.

Theorem 4.1. The expected complexity of Step 2 under the three strategies mentioned

above when applied to a random polynomial of degree n is as follows

0.47n®  for strategy I;
0.31n3  for strategy 2;
0.27n®  for strategy 3.

Here, \(q) := |log, q| + v(q) — 1 and v(q) is the number of ones in the binary repre-

sentation of q.
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Finally, we consider Step 3 in which the polynomials b!¥!(x) with all irreducible
factors of equal degree £ are factorized. First note that nothing has to be done in this
step if all the bl¥l(x) are irreducible. According to Example 3.18, the probability for
this e~ when n is very large. Second, as for the complexity of this step, in [10, p. 39]
a result was proved which used a connection to random tries. For completeness, we

recall the result here.

Theorem 4.2. The expected complexity of Step 3 is O(n?log q). More precisely, the
complexity is asymptotic to
3 ¢
<Zﬁq2—_1 log, Q> (14 &)n?,

where —5 + 0(1) < &, < 5 + o(1):
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