

國 立 交 通 大 學

資訊工程系

碩 士 論 文

數位訊號處理器中位址產生單元之

位址位移配置最佳化

Address Offset Assignment Optimization

for AGU in DSP Processor

研 究 生：劉 昆 奇

指導教授：單 智 君 博士

中 華 民 國 九 十 三 年 七 月

數位訊號處理器中位址產生單元之

位址位移配置最佳化

Address Offset Assignment Optimization

for AGU in DSP Processor

研 究 生：劉 昆 奇 Student：Kun-Chi Liu

指導教授：單 智 君 博士 Advisor：Dr. Jean, Jyh-Juin Shann

國 立 交 通 大 學

資 訊 工 程 學 系

碩 士 論 文

A Thesis

Submitted to Department of
Computer Science and Information Engineering

College of Electrical Engineering and Computer Science
National Chiao Tung University

in Partial Fulfillment of the Requirements
for the Degree of

Master
In

Computer Science and Information Engineering
July 2004

Hsinchu, Taiwan, Republic of China

中華民國 九十三 年 七 月

 i

數位訊號處理器中位址產生單元之

位址位移配置最佳化

學生：劉昆奇 指導教授：單智君 博士

國立交通大學資訊工程學系碩士班

摘要

近年來，嵌入式系統由嵌入式處理器、程式唯讀記憶體、隨機存取記憶體和

特殊應用硬體組成單一電路的設計方式，在數位訊息處理的應用領域中逐漸增

加。為了達到減少系統發展的花費以及上市的時間，在這類系統下開發程式的方

式，也由組合語言轉變成使用高階的程式語言，如 C、C++和 Java。在本研究論

文中，我們針對有限制的記憶體和具備位址產生器(AGUs)的嵌入式數位訊息處

理器提出程式碼的最佳化技術。位址產生器提供間接定址模式(indirect addressing
mode)，包括自動遞增(auto-increment)、自動遞減(auto-decrement)以及自動修改

(auto-modify)的動作，而有別於之前的研究重點僅在自動遞增和自動遞減的動

作，我們提出 2 個方法：Pruning method 和基因演算法(Genetic Algorithm)，藉由

同時利用上述的間接定址模式優勢，來減少位址計算所需的程式碼。我們的方法

找出一組變數出在記憶體中的位址配置，使得需要用來明確計算變數位址的指令

達到最少。根據實驗顯示，我們的方法較之前的研究，能更進一步改善 12%到

18%的位址計算指令程式碼。

 ii

Address Offset Assignment Optimization

for AGU in DSP Processor

Student：Kun-Chi Liu Advisor：Jean, J.J Shann

Institute of Computer Science and Information Engineering
National Chiao-Tung University

Abstract

In recent years, embedded systems consist of embedded processor, program

ROM, RAM and any application-specific hardware on a single circuit are becoming

increasingly in application domains such as digital signal processing (DSP). In order

to decrease development costs and time-to-market, programming manner on such

systems is changed from assembly language to high-level languages such as C, C++

and Java. In this paper, we present code optimization techniques for embedded DSP

processors which have limited on-chip ROM and address generation units (AGUs).

AGUs provide indirect addressing modes with auto-increment, auto-decrement and

auto-modify operations. We present two approaches：Pruning method and Genetic

Algorithm that reduce address arithmetic code size by taking advantage of these

addressing modes simultaneously while previous works only focus on auto-increment

and auto-decrement operations. Our approaches find an address offset assignment for

variables in RAM such that explicit instructions for address arithmetic are minimized.

Experiment results show improvements of 12% to 18% over the previous works in

address arithmetic code size.

 iii

誌謝

 本論文得以完成，首先要感謝 單智君教授的辛勤指導與嚴格的督促，同時

感謝實驗室的另一位指導老師 鍾崇斌教授，多次提出批評與指正，使得論文更

加嚴謹。在口試時，亦要感謝 陳正教授與 盧能彬教授所提出的寶貴意見，使得

這篇論文更臻完整。

 此外，要感謝實驗室博士班馬詠程、謝萬雲、鄭哲聖與喬偉豪學長，對於我

的研究提出問題並給予建議。還有，感謝實驗室的學長姐、同學以及學弟們的幫

忙，不論是資料蒐集、程式技巧和寫作要點的討論等，都給予我莫大的助益，有

你們的陪伴，更使我的研究生活更加充實與豐富。

 最後，我要感謝我的家人與好友長期地給予我支持與鼓勵，使我在兩年的碩

士生涯中，能無後顧之憂地投入課業與研究之中。

— 謹將此論文獻給所有關心我、愛護我的師長及親朋好友

 — 謝謝你們

劉昆奇 2004/8/6

計算機系統實驗室

 iv

Table of contents

摘要 .. i

Abstract .. ii

誌謝 .. iii

List of Figures... vi

List of Tables... viii

Chapter 1 Introduction..1

1.1 Research Motivations ...2

1.2 Research Goal ...2

1.3 Design Approach...3

1.4 Organization of This Thesis ..3

Chapter 2 Backgrounds...4

2.1 Address Generation Units in DSPs ...4

2.2 The Genetic Algorithm ...9

2.3 Previous Researches Related to Address Offset Assignment Problem...14

2.3.1 Bartley’s Approach ..14

2.3.2 Other Address Offset Assignment algorithms..............................17

2.3.3 Summary..20

Chapter 3 Proposed Approaches of Address Offset Assignment........21

3.1 Problem Modeling ..22

3.2 Approach 1：Pruning Method for Address Offset Assignment26

3.3 Approach 2：Genetic Algorithm for Address Offset Assignment..........32

3.3.1 Chromosomal Representation and initialization..........................33

3.3.2 Crossover and Mutation Operators ..34

3.3.3 Object Function..37

 v

3.3.4 Stopping Criteria..38

3.3.5 Parameters Setting in Genetic Algorithm38

3.4 Discussion...39

Chapter 4 Simulation Environment and Result41

4.1 Simulation Environment ...41

4.1.1 Simulation Flow...41

4.1.2 OffsetStone Benchmarks ...43

4.1.3 Address Offset Assignment Approaches in Simulation

Environment...45

4.2 Simulation Results and Analyses..46

4.2.1 Reduction of Code Size ...46

4.2.2 Influence of Modify Registers usage ...50

Chapter 5 Conclusion and Future Work ...51

References...53

 vi

List of Figures

Figure 2-1 Generic address generation unit (AGU) model for DSPs5

Figure 2-2 Example of address arithmetic with AGU8

Figure 2-3 General scheme of a Genetic Algorithm11

Figure 2-4 Access graph model and maximum weighted Hamiltonian path

..16

Figure 2-5 Different address offset assignments and AGU operation

sequences ...17

Figure 2-6 Liao’s maximum weighted path cover heuristic algorithm........18

Figure 3-1 A Diagram of compilers for embedded systems22

Figure 3-2 Example of distance count for different address assignment.....24

Figure 3-3 Code example from [12] ..25

Figure 3-4 Different address assignment for Figure 3-3 example25

Figure 3-5 An example of access graph for pruning....................................26

Figure 3-6 The solution of maximum weight path cover for Figure 3-527

Figure 3-7 An example of pruning for DFS...29

Figure 3-8 Depth first search (DFS) for access graph30

Figure 3-9 DFS with pruning for access graph..31

Figure 3-10 Example of genotypic representation.......................................33

Figure 3-11 Partial match crossover (PMX) operation................................35

Figure 3-12 Mutation operation ...37

Figure 4-1 Simulation Flow...42

Figure 4-2 Cost reduction of approaches with 1AR and multiple MRs for

small instances in benchmarks...48

Figure 4-3 Relative cost of approaches compared to OFU with 1AR for

 vii

small instances in benchmarks...48

Figure 4-4 Cost reduction of approaches with 1AR and multiple MRs for all

instances in benchmarks ..49

Figure 4-5 Relative cost of approaches compared to OFU with 1AR for all

instances in benchmarks ..49

Figure 4-6 Relative cost compared to OFU with 1AR and multiple MRs for

all instances in all benchmarks on average ..50

 viii

List of Tables

Table 2-1 AGU operations and cost values..6

Table 2-2 Comparison of address offset assignment researches..................20

Table 3-1 Comparison of time complexity for offset assignment algorithms

with a single AR and multiple MRs...40

Table 4-1 Address arithmetic costs in benchmarks......................................47

 1

Chapter 1 Introduction

 In recently year, microprocessors such as microcontrollers and digital signal

processors (DSPs) are increasingly used in embedded systems. System designer

incorporate all the electronics ― microprocessor, program ROM and RAM, and

application-specific circuit components ― into a single integrated circuit. Program

code resides in on-chip ROM and program size translates directly into silicon area and

cost. Program code size exceeds on-chip ROM size may lead to redesign of the whole

system. It is an important goal of compiler for such architectures to generate compact

code to meet the constraints of the limited on-chip ROM size. Many complimentary

approaches have been employed to reduce code size including software-only

techniques that rearrange data lay-out to reduce code size and instruction set support

that allows generation of compact code [1].

 Many embedded processors and DSPs (e.g., TI TMS320C25/50/80, Motorola

DSP56k, ADSP-210x) provide address generation units (AGUs) that support indirect

addressing mode with auto-increment, auto-decrement and auto-modify operations.

AGUs allow for efficient sequential access of memory and subsume address

arithmetic instructions. Subsuming the address arithmetic into auto-increment,

auto-decrement and auto-modify modes improves both performance and code size

[1,2]. The placement of variables in storage has a significant impact on the

effectiveness of subsumption. Variables that are frequently accessed one after another

are placed into neighboring storage locations during storage assignment. Then, the

auto-increment and auto-decrement feature can be used and explicit address

arithmetic instructions to set up the contents of the address register can be avoided.

The problem of finding a storage layout which maximizes the use of

auto-increment/decrement to reduce code size using a single address register (AR) is

 2

called the Simple Offset Assignment (SOA) problem. When multiple address registers

(ARs) are exploited, this problem is called General Offset Assignment (GOA)

problem [2].

 The storage offset assignment problem was first modeled as a maximum

weighted Hamiltonian path cover (MWPC) problem by Bartley [3] and Liao et al. [1].

Further extensions have since been developed by many researchers. Leupers and

Marwedel [2,4] improved Liao’s work by proposing a tie-breaking heuristic for SOA

and a variable partitioning strategy for GOA to further reduce storage assignment

cost.

1.1 Research Motivations

 Experiment surveys indicate that about 20% - 30% (sometime even more than

50%) instructions of DSPs machine code used for address computations [5]. This is

quite significant for DSPs with limited ROM size constraints. While previous SOA

algorithms focus on auto-increment and auto-decrement operations and post-pass

assign one modify register (MR) that stores frequently modify value for AR updates.

The exploitation of auto-modify operations may lead to further reduce address

arithmetic code.

1.2 Research Goal

 In this thesis, we consider auto-increment, auto-decrement and auto-modify

operations simultaneously to reduce address arithmetic code. Since the compiler

determines the addresses of local scalar variables in the stack frame of a function. We

find a data layout (address assignment) for these local scalar variables that AGUs with

auto-increment, auto-decrement and auto-modify operations can be utilized to

 3

subsume address arithmetic instructions and decrease code size. We also explore the

influence of multiple modify registers used for auto-modify operation.

1.3 Design Approach

We provide two approaches：Pruning method and Genetic Algorithm (GA) to

solve the address offset assignment problem that considers auto-increment,

auto-decrement and auto-modify operations simultaneously. Pruning method is based

on Bartley’s access graph [3] and traces all possible paths evaluated by our cost

function in Chapter 3. Although pruning method can find optimal solution, the time

complexity is still too high to solve large problem size. Then we apply Genetic

Algorithm (GA) to solve our problem by modeling address assignment to

chromosome representation and evolution via crossover and mutation operations.

Experimental results show that our two approaches are effective.

1.4 Organization of This Thesis

 This thesis is organized as follows. Chapter 2 introduces the address generation

units feature and genetic algorithm which is an optimization technique. Then, we

discuss previous relative researches on offset assignment problem. In Chapter 3, we

describe our pruning method for finding data layout and apply genetic algorithm to

our problem in detailed. The experimental environment and out simulation results are

presented in Chapter 4. Finally, we summarize our conclusions and future work in

Chapter 5.

 4

Chapter 2 Backgrounds

 In this chapter, we introduce the address generation units (AGUs) architecture in

DSP processors. Then we introduce the Genetic Algorithm (GA) which is an

optimization technique imitating natural evolution to achieve good solutions. Finally

we discuss the previous researches related to address offset assignment problem to

achieve code size reduction.

2.1 Address Generation Units in DSPs

Address generation units (AGUs) are the special architecture for memory address

computation. DSP processors equipped with AGUs can perform indirect address

computations in parallel to the execution of other machine instructions. The AGUs

feature for indirect addressing are present in many DSP architectures (e.g., TI

TMS320C25, Motorola DSP56k, ADSP-210x) and differ mainly in the following

parameters [1,2]：

 The number k of address registers (ARs). ARs store the effective addresses

of variables in memory and can be updated by load and modify (i.e., adding

or subtracting a constant) operations.

 The number m of modify registers (MRs). MRs can be loaded with

constants and are generally used to store frequently required AR modify

values.

 5

Figure 2-1 Generic address generation unit (AGU) model for DSPs

Further differences in the detailed AGU architectures of DSPs are whether MR values

are interpreted as signed or unsigned numbers, and whether ARs and MRs are

orthogonal, i.e., whether each MR can be used to modify each AR.

We consider indirect addressing based on the genetic AGU model depicted in

Figure 2-1. The AGU contains a file of k address registers and a file of m

modify-registers. The indices for ARs and MRs are provided by two AGU inputs：

The AR pointer (ARP) and the MR pointer (MRP). The third AGU input is an

immediate value, originating from the instruction word, which can be used to load

AR[ARP] or MR[MRP], or to immediately modify AR[ARP]. Further, AR[ARP]

modification can also by adding or subtracting the contents of MR[MRP], or adding

the value +1/–1.

 6

Table 2-1 AGU operations and cost values

Operation Functionally Cost value

AR load AR[ARP] = imm 1

MR load MR[MRP] = imm 1

AR immediate modify AR[ARP] += imm 1

AR auto-increment AR[ARP] ++ 0

AR auto-decrement AR[ARP] – – 0

AR auto-modify AR[ARP] += MR[MRP] 0

ARP load ARP = imm 0

MRP load MRP = imm 0

Table 2.1 shows the AGU operations and cost values for each operation. The

functionalities are given in C-like notation, where “imm” denotes an immediate value.

Further, immediate value occupies a large portion of the total instruction word-length,

so that these operations usually inhibit execution of other machine instructions in

parallel. Like all other register transfer (RT) patterns, we assume AGU operations to

be executed in a single machine cycle, so that the results are valid in the following

cycle.

“AR load”, “MR load”, and “immediate modify”, which involve immediate

value in the instruction word. These operations cannot be performed in parallel to

other operations, but introduce an extra machine instruction. Therefore, we assign the

cost value 1 to these operations. On the other hand, “auto-increment”,

“auto-decrement”, and “auto-modify” only utilize AGU resource and can be regarded

as zero-cost operations. These operations can be executed without any overhead in

code size or speed. The same hold for “ARP load” and “MRP load”： These require

 7

only “short” immediate values (of length 2 to 3), which are (in direct form) instruction

word fields, or (in indirect form) originate from registers which can be loaded in

parallel (e.g., TMS320C2x). In indirect form, the required ARP contents must be

prepared one machine cycle earlier than in direct form, but this has no impact on the

cost metric [2].

Example

 To simplify the exposition of address offset assignment, we use a simple

processor model that reflects the indirect addressing arithmetic of most DSPs. The

model is an accumulator-based machine where, for each instruction, one operand

resides in the accumulator and another operand resides in the memory. The operand

involves memory is referenced through one of the address registers (AR0, AR1 …).

ARi can point to the desired position by adding or subtracting an immediate value,

using the instructions “ADAR” and “SBAR”. Also, we use the instructions “LDAR”

and “LDMR” to load ARi and MRi.

 We use *(ARi), *(ARi)+, *(ARi)-, *(ARi)+MRi to denote indirect addressing

through ARi, indirect addressing with post-increment, indirect addressing with

post-decrement and indirect addressing with post-modify, respectively.

Consider the C code sequence shown in Figure 2-2(a). Assume that the address

offset assignment to the various variables is as shown in Figure 2-2 2-2(b). The

assembly code for the C program is shown in Figure 2-2(c). In the assembly code, the

comment after an instruction indicates which variable AR0 point to after the

instruction is executed. The instruction SBAR and ADAR are used to change AR0 to

point to the frame location accessed in the next instruction.

 8

Figure 2-2 Example of address arithmetic with AGU

 Assume that AR0 initially points to the position 1 of the frame, i.e., variable b

and MR0 is initialized by a constant 2. The value of the variable b is loaded in the

accumulator, and AR0 is modified by the value of MR0 in the first “LOAD”

instruction. In the fourth instruction “ADD”, the values in b and d are summed and

stored in the accumulator. Next, the contents of the accumulator must be stored in the

location corresponding to variable a, but AR0 point to d. Therefore, we have to

subtract 3 from the content of AR0 using an explicit instruction “SBAR AR0, 3”.

Then, the instruction “STOR” is used to store the contents of accumulator to the

location of a; futher, AR0 is incremented and points to the location of b. When the

assembly instructions corresponding to “d = b + c” are to be executed, variables

access order of variables is b, c, then d. We can see that the locations of these

variables are continuous in Figure 2-2(b). So, these address arithmetic operations can

be subsumed in “LOAD”, “ADD” or “STOR” instructions. The objective of the

solution to the address offset assignment is to find the minimal address pointer

arithmetic instructions required using proper placement of variables in memory.

LDAR AR0, 1 ; b
LDMR MR0, 2
LOAD *(AR0)+MR0 ; d
ADD *(AR0)
SBAR AR0, 3 ; a
STOR *(AR0)+ ; b
LOAD *(AR0)+ ; c
ADD *(AR0)+ ; d
STOR *(AR0)

(c) Assembly code

a = b + d ;
d = b + c ;

(a) Code sequence

a

b

c

d

 (b) Offset assignment

AR0

0

1

2

3

 9

2.2 The Genetic Algorithm

 Genetic Algorithms belong to a certain group of heuristic problem solving

techniques based on the principles of natural evolution. To this group of Evolutionary

Algorithms belong also Evolutionary Programming, Evolution Strategies, and Genetic

Programming. They share a common conceptual base of simulating the evolution of

individual structures via processes of selection, mutation, and reproduction. The

processes depend on the perceived performance of the individual structures as defined

by an environment [6, 7].

 More precisely, Evolutionary Algorithms maintain a population of structures,

that evolve according to rules of selection and other operators, that are referred to as

search operators, (or genetic operators), such as recombination and mutation. Each

individual in the population receives a measure of it’s fitness in the environment.

Reproduction focuses attention on high fitness individuals, thus exploiting the

available fitness information. Recombination and mutation perturb those individuals,

providing general heuristics for exploration. Although simplistic from a biologist’s

viewpoint, these algorithms are sufficiently complex to provide robust and powerful

adaptive search mechanisms [6, 7].

 Genetic Algorithms were devised by John Holland. The Genetic Algorithm is a

model of machine learning which derives its behavior from a metaphor of some of the

mechanisms of evolution in nature. This is done by the creation of a population of

individuals of individuals represented by chromosomes, in essence a set of character

strings that are analogous to the base-4 chromosomes that we see in our own DNA.

The individuals in the population then go through a process of simulated evolution.

Implementations typically use fixed-length character strings to represent their genetic

information, together with a population of individuals which undergo crossover and

 10

mutation in order to find interesting regions of the search space [6, 7].

Standard Formulation

 Genetic Algorithms are working on a population of individuals that undergo an

evolution. This evolution is caused by manipulating the chromosomes of the

individuals of the current generation by mutation and crossover. The Genetic

Algorithm selects those offspring individuals for the next generation that perform best

in a defined environment (that possess the highest fitness). That means that only the

fittest survive and the average fitness of the population will increase. For that reason

the population adapts itself optimally to the environment after a certain number of

generations.

 If the fitness of the individuals is chosen according to the objective function f and

the genes of the chromosomes are seen as the genome representation of optimization

variables x1, x2, …xm then a Genetic Algorithm can be used to solve the

multidimensional optimization problem [6]：

f (x1, x2, …xm) => optimum

 Figure 2-3 shows the general scheme of Genetic Algorithm. At the beginning a

population of nP individuals is created and initialized. The initialized is usually done

by filling the chromosomes of the individuals with random values. The initial

generation will then be evaluated. The fitness of the particular individuals is

calculated and the population is ordered with respect to fitness. To evaluate the fitness

of the individuals the phenotypic representation of the individual must be derived

from the genotypic one. That means in context of the considered optimization

problem the optimization variable x1, x2 …xm must be calculated from the

chromosomes which are typically fixed-length bit string.

 11

Figure 2-3 General scheme of a Genetic Algorithm

At the beginning of each cycle the current generation (parent generation) will

reproduce itself. This is performed in two steps [6]：

 First, the nE best of the current generation will be copied into the next generation.

This is also known as elitist approach because it can lead to the formation of elite in

the population. Elitist individuals can survive a long time in the population.

 Second, two of individuals in the parent generation exchange parts of their

chromosomes to create two children. This process is called crossover and occurs with

a probability px. Typical values px are in the range between 0.4 and 0.8. So nP /2 pairs

nP

nE nP

nE + nP

nP

Initialize

Best parents
Select parents
Apply crossover

Apply mutation

Evaluate fitness
Delete last

Stop?

Finish

 12

of parents will produce nP children. After reproduction the new population has size nE

+ nP. To select pairs of parents the following selection techniques are considered：

 Random parent selection (RS)： The parent is chosen randomly from the

parent generation. All individuals have the same chance to become a parent.

 Tournament parent selection (TS)： Two individuals are chosen randomly.

As parent is used that individual with the higher fitness. This guarantees

that fitter individuals become more often parents than others.

 Roulette wheel parent selection (RWS)： The parent is chosen randomly,

but its chance to be chosen as parent is proportional to its fitness. This is

done as follows： Calculate the total fitness as sum of the fitness values of

all the population members. Generate n, a random number between 0 and

total fitness. Select the first population member whose fitness, added to the

fitness of the preceding population members, is greater than or equal to n.

Note, that the fitness values must be nonnegative numbers. This selection

technique also guarantees that fitter individuals become more often parents

than others.

After the parent selection the actual crossover can take place. During the

crossover the parents exchange parts of their chromosomes. This is done in order to

be able to combine good chromosome parts in the offspring, to create better

chromosomes from good ones. There exit different ways of how parents can exchange

chromosome parts. Which crossover operator performs best depends on the problem

at hand. The following three variants can be applied to a variety of problems [6,7]：

 Single point crossover (SPX)： A random position is chosen in the

chromosome. The chromosome parts after this position are exchanged.

 Dual point crossover (DPX)： Two random positions are chosen in the

chromosome. The chromosome parts between these positions are

 13

exchanged.

 Uniform crossover (UX)： For each bit position there is a random decision

which parents contributes its bit value to which child. The exchange of

chromosome parts is controlled by a random template.

After reproduction mutation are applied to the population. This is done by flipping

bits in the chromosomes of the individuals. The bit flipping occurs with a certain

probability pM. A typical value for pM is 0.01. The purpose of the application of

mutations is to introduce a certain amount of diversity into the population.

 Then, the individual’s fitness is calculated according to the objective function f.

The population is ordered with respect to fitness and the last nE individuals are deleted

from the population. This is the second point in the algorithm where a selection

according to fitness takes place. If as parent selection technique random selection is

used then it is necessary to set the number of elitist individuals nE greater than 0.

Otherwise no directed development over the generations can occur. On the other hand,

if random parent selection is not used, then nE can be set to 0 and the time consuming

ordering of the population can be avoided.

 Until now, a new generation of nP individuals was generated and process of

reproduction, mutation, and selection can start again. If all parameter values of the

algorithm are set reasonably and crossover operator, mutation operator and

representation are chosen appropriately then the Genetic Algorithm will converge

after a certain number of generations to the solution of the considered optimization

problem.

 14

2.3 Previous Researches Related to Address Offset

Assignment Problem

 In the following subsection, we describe access graph model for Offset

Assignment problem first proposed by Bartley. Then we introduce previous researches

about Offset Assignment problem. Finally we compare these algorithms with our

research in last subsection.

2.3.1 Bartley’s Approach

Bartley was the first to address the simple offset assignment (SOA) problem that

considered a single address register (AR). He proposed the access graph model for

SOA problem and presented an approach based on finding a maximum weighted

Hamiltonian path [2, 8]..

Definition 2-1 Given a local scalar variable set },...,{ 1 nvvV = and a variable

access sequence },...,{ 1 mssS = of a function with [] Vsmi i ∈∈∀ :,1 , the access

graph is an undirected, complete, and edge-weighted graph),,(wEVG =

with },|},{{ VvvvvE jiji ∈= . The function 0: Ν→Ew assigns a weight to each

edge },{ ji vve = that denotes the number of access transitions between vi and vj in S,

i.e., the number of subsequence of S of the form (vi, vj) or (vj, vi).

Definition 2-2 For an access sequence S on variable set V, an address assignment

is a mapping }1||,...,0{: −→ VVπ , which assignment all variables in V to a unique

location within a contiguous address space of size |V|. Due to the symmetry of

auto-increment and auto-decrement, the ordering of v and w is irrelevant here.

Likewise, self-edges of the form {vi, vj} can be neglected.

 15

Definition 2-3 The distance),(ji vvπδ of two variables Vvv ji ∈, with respect

to π is)()(ji vv ππ − .

Definition 2-4 Let),,(wEVG = be the access graph for S. The cost of an

address assignment π is defined as ∑
∈=

+=
^

},{

)(1)(cos
Evve ji

ewt π with

}1),(|},{{
^

>∈= jiji vvEvvE πδ .

Simple Offset Assignment is the problem of computing a minimum cost address

assignment for an access graph G in presence of a single address register.

In Figure 2-4(a)-(b), we see an example of access graph model),,(wEVG =

for },,,{ dcbaV = and),,,,,,,,,,,,(dcadabcadcadbS = . Any access transition (vi,

vj) in S can be implemented by auto-increment, if and only if vi and vj are assigned

neighboring stack locations. In order to maximize the use of auto-increment

addressing, obviously those variable pairs {vi, vj} should be neighbors in the stack

frame, whose edge weight w({vi, vj}) in G is high, since this will save many extra

instructions for address computation. Figure 2-4(c) shows the maximum weighted

Hamiltonian path cover (MWPC) P in G, i.e. the path touching each node once with

the maximum edge weight sum. The memory layout is derived from P by assigning

those node pairs to adjacent memory locations, which are also neighboring in P (i.e.,

c-a-d-b or b-d-a-c in Figure 2-4(c)) [2, 8].

 16

Figure 2-4 Access graph model and maximum weighted Hamiltonian path

 Suppose, address space reserved for V is A = {0, 1, 2, 3} and one AR is available

to compute the address according to the sequence S. Consider an address assignment

where V is mapped to A in lexicographic order (as shown in Figure 2-5(a)).

 First, AR needs to be loaded with the address 1, so as to point to the first element

b of S. Then, AR is modified by +2 to access d which is mapped to address 3, and so

forth. The complete AGU operation sequence for S is given in Figure 2-5(a). Only 4

out of 13 AGU operations in the sequence are auto-increment/decrement operations,

so that a cost of 9 extra instructions for address computation is incurred. However,

one can find a better address offset assignment by MWPC, which leads to only five

extra instructions, due to a better utilization of zero-cost operations (as shown in

Figure 2-5(b)).

 17

Figure 2-5 Different address offset assignments and AGU operation sequences

2.3.2 Other Address Offset Assignment algorithms

Bartley’s access graph model for the SOA problem forms the baseline for most

SOA algorithms. The cost of an SOA problem P is defined as the sum of the weights

of G’s edges not covered by P. This corresponds to the number of extra address

computation instructions to be inserted into the machine code. Because the classical

Hamiltonian path problem that computing P is an NP-complete problem. Hence,

many heuristic algorithms had been proposed to solve SOA problem [2].

 Bartley proposed a greedy heuristic for finding path P. His algorithm iteratively

picks an edge e of highest weight w(e) in G and checks whether inclusion of e into a

partial path P would still allow for a valid solution. This is iterated until a complete

path with 1−V edges has been selected [2].

LDAR AR, 1 b
AR + = 2 d
AR – = 3 a
AR + = 2 c
AR ++ d
AR – = 3 a
AR + = 2 c
AR – – b
AR – – a
AR + = 3 d
AR – = 3 a
AR + = 2 c
AR ++ d

LDAR AR, 3 b
AR – – d
AR – – a
AR – – c
AR + = 2 d
AR – – a
AR – – c
AR + = 3 b
AR – = 2 a
AR ++ d
AR – – a
AR – – c
AR + = 2 d

c

a

d

b

0

1

2

3

a

b

c

d

0

1

2

3

Cost: 9 Cost: 5

(a) (b)

 18

 Liao proposed a more efficient implementation of Bartley’s SOA algorithm, by

temporarily neglecting edges of zero weight (which are frequent in realistic access

graphs) and using an efficient Union/Find data structure for checking for cycles.

Besides the implementation issues, Liao’s algorithms produces the same results as

Bartley’s [1,2].

Figure 2-6 Liao’s maximum weighted path cover heuristic algorithm

Leuper and Marwedel proposed a tie-break heuristic for choosing among

same-weighted edges extended from Liao’s heuristic algorithm. These same

same-weight edges are very common in access graphs, and the solution quality may

critically depend on the order in which edges are investigated during path construction.

1. // INPUT： Access Sequence, L
2. // OUTPUT： Constructed Assignment E'
3. Liao-SOA(L)
4. {
5.),(EVG ← Access-Graph(L)
6. Esort ← Sorted list of edges in E in descending order of weight
7. φ←← ',':)','(' EVVEVG

8. while (1' −< VE and Esort φ≠) {

9. choose e ← first edge in Esort
10. Esort ← Esort – e
11. if ((e does not cause a cycle in 'G) and
12. (e dose not case any node in 'V to have degree 2<))
13. add e to 'E
14. else
15. discard e from Esort
16. }
17. return Constructed-Assignment('E)
18. }

 19

An experiment evaluation for a set of random SOA problem instances indicated that

the tie-break heuristic on average gives a slight improvement over Liao’s heuristic [9].

 Atri et al. proposed an incremental SOA algorithm. It starts with an initial SOA

solution, constructed by some heuristic, and performs an iterative improvement by a

local exchange of access graph edges selected for the maximum weighted

Hamiltonian path. An experiment comparison to Liao’s heuristic for a set of random

SOA instances indicated that the initial solution can be improved in 3-8% of the cases

considered, where the average improvement is about 5% [10,11].

 The general offset assignment (GOA) problem is the generalization of SOA

towards an arbitrary number m of ARs. Lioa pointed out that GOA can be solved by

appropriately partitioning V into m subsets, thereby reducing GOA to m separate SOA

problems. Leupers and David proposed a genetic algorithm to solve GOA problem

and experimental evaluation indicated a significant improvement than previous GOA

researches [2].

 20

2.3.3 Summary

Table 2-2 Comparison of address offset assignment researches

 Problem domain Optimization Focus Target Registers

Bartley SOA Auto-increment & auto-decrement 1AR

Liao SOA Auto-increment & auto-decrement 1AR

Tie break(TB) SOA Auto-increment & auto-decrement 1AR

GOA GOA Variable set partition mAR

INC-TB SOA Auto-increment & auto-decrement 1AR

Our design SOA Auto-increment & auto-decrement

& auto-modify

1AR+mMR

 We have introduced several researches for address offset assignment problem in

subsection 2.3.2. The comparison between these researches with our design is

depicted in Table 2-1 which appear according the year they were proposed. The

problem domain is classified according to how many address registers used. Because

our design considers single address register with multiple modify registers, we

categorize our design to SOA problem. The third column specifies the optimization

focus of researches. While previous SOA researches focus on auto-increment and

auto-decrement operations and post-pass assign MR. Our design consider

auto-increment, auto-decrement and auto-modify operations simultaneously and

exploit multiple MRs to further reduce address computation code. The last column is

the target registers that researches focus on.

 21

Chapter 3 Proposed Approaches of Address Offset

Assignment

 The address offset assignment optimization is incorporated into compilers for

embedded systems. The diagram illustrates the stages of the compiler is shown in

Figure 3-1. Source program is translated into intermediate form by one Front-End that

includes error checking, lexical, syntax, and semantic analysis. Machine-independent

optimizations such as constant folding, dead code elimination…, etc. The

intermediate form is then translated into another intermediate form according to the

machine description. Instruction scheduling, address offset assignment, and register

allocation are performed on this intermediate form, along with machine-specific

dataflow analysis and related optimizations. Object code is generated from the final

code generation and peephole optimization. Code compression maximizes parallelism

of object code to increase the code density [1, 2].

In this chapter, we present our design for address offset assignment. First, we

model our address offset assignment problem that considers one address register and

multiple modify registers simultaneously. Then we proposed two approaches for

address offset assignment problem. In section 3.2, we present a pruning method

combined with depth-first search (DFS) to find optimal solution for small instances.

In section 3.3, we model our problem to apply Genetic Algorithm to solve this

problem. Finally, we discuss these two approaches with previous researches about

time complexity and usage in compiler.

 22

Figure 3-1 A Diagram of compilers for embedded systems

3.1 Problem Modeling

 In our design, we consider the usage of multiple modify registers that store

frequently modify values for AR updates. So we define the term “count” that

represents the count of distance after address assignment of variables. Then we define

the cost function via the “count”.

Definition 3-1 The distance count count(d) is the sum of w(e) where e = {vi, vj}

Front-End

 Scheduling
 Address Offset
Assignment
 Register Allocation

Machine
Independent

Optimizations

Preliminary
Code

Selection

Source
Program

Intermediate
form

Another
Intermediate

form

Machine
Description

Final Code
Generation &

Peephole
Optimization

Object Code

Dataflow
Analyses &

Optimizations

Code
Compression

 23

and 10,),(−≤≤= Vddvv jiπδ .

Definition 3-2 Consider the usage of a single address register and m modify

registers. The cost of an address assignment π is defined as

 cost(π) = 1 + n + ∑
−

=

1

2

V

k

 count (k) ∑− (the first n maximum count (d))

, where n is the number of the first n maximum count(d) that 1)(>dcount ,

mn ≤≤0 , 12 −≤≤ Vd . Because we consider the best usage of AGUs, not all the

m modify registers are used for each instance. To initialize an address register or a

modify register need the cost 1. So the cost to initialize a single address register and n

modify registers is 1+ n.

For the purpose of illusion, we give two examples to see the influence when

address assignment is assigned for modify registers. We first see the distance count

for Figure 2-5 in Figure 3-2. The modify values in Figure 3-2(a) and Figure 3-2(b) are

the distances of variables after address assignment. We calculate the number for each

distance in code sequence and establish distance count table. Figure 3-2(b) is the

result of maximum weighted Hamiltonian path cover and maximizes count of distance

1 that can be subsumed by auto-increment or auto-decrement operations. The count 3

of distance 2 is the maximal count of all distances larger than 1. Consider one modify

register is used, distance 2 is assigned to modify register and the cost is decrease to 3

in Figure 3-2(c).

Let us see a more complex example from [12] in Figure 3-3. The variable set and

access sequence are extracted from the C code, and the access graph is constructed.

The path that edges are bold in access graph is the solution of tie-break algorithm. We

observe different address assignments：TB solution, Address assignment 1 and

Address assignment 2 in Figure 3-4. TB solution is the result from Figure 3-3,

 24

Figure 3-2 Example of distance count for different address assignment

Address assignment 1 and Address assignment 2 are the optimal solutions for 1AR

with 1 MR and 1AR with 2MRs respectively. For each address assignment, its

distance count table is also shown in Figure 3-4. We know that distance 1 can be

subsumed by auto-increment or auto-decrement operations and distance larger than 1

can be subsumed by auto-modify operation via assigning distances to modify registers.

We can see that when only one AR is considered, the minimal cost is 13 in Figure

3-4(a) (i.e. Tie-Break solution). But when MR is considered, the minimal cost is 8

with 1AR and 1MR in Figure 3-4(b) and the minimal cost is 5 with 1AR and 2MRs in

Figure 3-4(c). Therefore, the good address assignment for auto-increment and

auto-modify operations is not necessarily good when auto-modify operation is

considered.

Problem Definition

Our design for address offset assignment problem is to compute a minimum cost

 25

of address assignment for an access graph G in presence of a single address register

and multiple modify registers.

Figure 3-3 Code example from [12]

Figure 3-4 Different address assignment for Figure 3-3 example

 26

3.2 Approach 1：Pruning Method for Address Offset

Assignment

 In this section, we describe a pruning method for the address offset assignment

problem in presence a single address assignment and m modify registers. We trace

access graph and decrease search time by pruning some paths that are not possible to

be optimal solution.

Given a variable set V and a variable access sequence S of a function, the

Bartley’s access graph is constructed in Figure 3-5 and the maximum weight path

cover is shown in Figure 3-6(a). From the maximum weight path cover, the address

assignment is in Figure 3-6(b). Consider 1AR and 1MR for this example, we get the

distance count in Figure 3-6(c) derived from the address assignment in Figure 3-6(b).

The distance is 1 can be subsumed by auto-increment or auto-decrement operations,

and the distance is 3 can be subsumed by auto-modify operation via assigning 3 to

MR. Then we calculate the cost by the cost function in definition 3.5. So the total cost

is 6 in Figure 3-6(d) is the cost of initial 1AR and 1MR, and distance count that can

not be subsumed by auto-increment, auto-decrement, and auto-modify operations

(count of distance 2 or 4).

Figure 3-5 An example of access graph for pruning

 27

Figure 3-6 The solution of maximum weight path cover for Figure 3-5

 Then, we explore the access graph in Figure 3-5 using depth-first search (DFS)

that each vertex in access graph can be the original source and take the cost in Figure

3-6(d) as the cost bound to pruning some search path that cost is larger than cost

bound. The strategy followed by depth-first search is, as its name implies, to search

“deeper” in the graph whenever possible. In depth-first search, edges are explored out

of the most recently discovered vertex u that still has unexplored edges leaving it.

When all of u’s edges have been explored, the search “backtracks” to explore edges

leaving the vertex from which u was discovered. This process continues until we have

discovered all the vertices that are reachable from the original source vertex. If any

undiscovered vertices remain, then one of them is selected as a new source and the

search is repeated from that source. This entire process is repeated until all vertices

are discovered. Next, we give an example to see the pruning operation.

 Consider the example in Figure 3-7(a). The DFS start from node “a” and explore

to “c” currently (edges in bold). The current address assignment is shown in Figure

 28

3-7(b) that “a” is assigned the address “0”, “b” is “1”, and “c” is “2”. The current

distance count is shown in Figure 3-7(c) that the count of distance 1 is 2

(),(),(cbwbaw +) and the count of distance 2 is 3 (),(caw). Because the current

distances are only 1 and 2, which can be subsumed by auto-increment,

auto-decrement and auto-modify operation. So the current cost 2 is the cost of

initializing 1AR and 1MR.

Now there are two uncovered nodes “d” and “e” that are adjacent to node “c”.

First, we choose node “d” as shown in Figure 3-7(e), and the current address

assignment and distance count are shown in Figure 3-7(f) and Figure 3-7(g). And the

current cost 7 in Figure 3-7(h) is cost of 1AR and 1MR initialization and distance

count that can not be subsumed by auto-increment, auto-decrement and auto-modify

operations (count of distance 3). Here, we find that the current cost 7 is larger than

cost bound 6, so we stop search deeper from node “d” in current path and backtrack to

node “c”. Therefore, we choose another node “e” that is adjacent to node “c” in Figure

3-7(a). The results of this choice are shown in Figure 3-7(i) to Figure 3-7(l). The

current cost is not larger than cost bound, so we this search can be continue and will

not be pruned.

 Via our pruning method, we can search all possible paths to find the optimal

solution and save some search time. The algorithms of our pruning method are in

Figure 3-8 and Figure 3-9. We will discuss our pruning method with previous

searches and our genetic algorithm about the time complexity and effect in later

section and chapter.

 29

Figure 3-7 An example of pruning for DFS

 30

Consider the algorithm in Figure 3-8. This algorithm takes an access sequence

“L” which extracted from high level code as input, and produces an address offset

assignment as output. In line 3, access graph),,(wEVG is produced from the access

sequence “L”. Line 4 produces an address offset assignment 1π by Liao’s SOA

heuristic algorithm mentioned in Chap 2. We set the cost_bound via the cost function

in definition 3.5 that takes 1π as its input. Then we start to explore the access graph

),,(wEVG using depth-first search (DFS) that each vertex in G can be the original

source. The DFS-VISIT implements the DFS procedure with pruning.

Figure 3-8 Depth first search (DFS) for access graph

Consider the procedure DFS-VISIT in Figure 3-9. In each call DFS-VISIT(u),

vertex u is checked if it can be added to π_tmp that record the current unfinished

address offset assignment. Lines 2-3 add u to π_tmp in order and set u is explored.

Line 4-5 check compute the cost of π_tmp and check cost. When cost≥ cost_bound,

we prune the following process of π_tmp and leave DFS-VISIT(u). Otherwise, if

1 // INPUT： Access Sequence, L
2 // OUTPUT： Constructed Assignment to minimize the cost

function in definition 3.5.
3),,(wEVG ← Access-Graph(L)
4 1π ← Liao-SOA(L)
5 cost_bound ← count_cost(1π)
6 // Use Depth First Search (DFS) to trace),,(wEVG
7 for each vertex Vu∈ {
8 if (u is not explored)
9 DFS-VISIT(u)
10 }
11 // When finished, we get the optimal solution π

 31

Figure 3-9 DFS with pruning for access graph

cost less than cost_bound, we further check the size of current π_tmp in line 6. If

the size of current π_tmp is equal the size of variable set, this means that one

solution is found. We record the current best solution in π and reset cost_bound

from this solution in lines 7-8. If all variable are not covered, line 11 examines each

vertex v adjacent to u and recursively visit v. We say that edge (u, v) is explored by

the depth-first search. Finally, after every edge leaving u has been explored, lines

16-17 delete u in π_tmp and set u is unexplored. This causes the next search from

the predecessor of u. When all vertex u is explored, the algorithm is stopped and we

get the optimal path (i.e., the optimal address offset assignment).

1 DFS-VISIT(u) {
2 Add u to π_tmp in order
3 set u is explored
4 cost ← count_cost(π_tmp)
5 if (cost≤ cost_bound) {

6 if (Vtmp =π_) {

7 ππ _tmp←
8 cost_bound ← cost
9 }
10 else {
11 for each v adjacent to u {
12 if (v is unexplored) DFS-VISIT(v)
13 }
14 }
15 }
16 delete u in π_tmp
17 set u is unexplored
18 }

 32

3.3 Approach 2：Genetic Algorithm for Address Offset

Assignment

The Genetic Algorithm (GA) is an optimization technique that imitates natural

evolution to achieve good solutions. GA is particularly well-suited for nonlinear

optimization problems, since it can skip local extreme in the objective function and in

general come close to optimal solutions.

 We choose GA for solving address offset assignment problem in presence of a

single address register and multiple modify registers mainly due to three reasons：First,

GA is more robust than heuristic algorithms. If enough computation time is invested,

then a GA most likely approximates a global optimum, while heuristics in many cases

are trapped in a local optimum. Since very high compilation speed is not important for

DSP compilers, GA is more promising than heuristics, whenever a reasonable amount

of time is not exceeded. Second, since address offset assignment mainly demands for

computing a good permutation of variables w.r.t. simple cost functions, address offset

assignment has a straightforward encoding as a GA. Third, although the pruning

method mentioned in section 3.2 can find the optimal solution, it can’t deal with large

variable set. The complexity for large instance is too high for pruning method to find

the optimal solution in a reasonable time. The influence of the size of variable set for

GA is not critical.

 In this section, we present our problem the address offset assignment problem in

presence of a single address register and multiple modify registers in the form of a

GA. We describe the chromosomal representation for our solution, crossover and

mutation operators for chromosome, objection function to judge chromosome’s fitness,

the stop criteria of GA process and other parameters for GA.

 33

3.3.1 Chromosomal Representation and initialization

 In order to apply a Genetic Algorithm to the address assignment problem an

appropriate genotypic representation must be chosen. An obvious possibility is to use

chromosomes with a number of genes equal to the number of variables where each

gene represents a variable that is assigned to a memory location. This is an

order-based representation that represents any solution to our problem. Assume we

have a variable set V = {a, b, c, d, e, f, g}, Figure 3-10 shows two examples of our

genotypic representation. Chromosome 1 and chromosome 2 represent two possible

solutions to our problem. In chromosome 1, the order-based representation means an

address offset assignment for the variable set V (d → 0, a → 1, b → 2 … and so on.)

and the same in chromosome 2.

Figure 3-10 Example of genotypic representation

In our design for GA, we initialize the individuals with such chromosomes in

population. We start with Liao’s and Tie-Break’s SOA solutions which are discussed

in Chap 2. We choose the minimum cost by applying our cost function in Definition

3-2 from these two solutions. Then we translate the solution to the form of genotypic

representation and use it to initialize the first chromosome of individual. This

chromosome is the primordial genetic material from which all solutions will evolve.

b c f g eadChromosome

 34

3.3.2 Crossover and Mutation Operators

 A special property of our address offset problem and other similar combinational

problems is that the genes cannot be treated independent of each other. That’s because

each variable is allocated to one memory location and therefore, each variable may

only appear once in the chromosome. Standard crossover and mutation operators

which don’t take into account these dependencies will produce partly illegal offspring.

One approach of dealing with that fact would be to use a standard Genetic Algorithm

and to assign small or zero fitness to illegal ones. This could work in case when the

number of illegal individuals is small in comparison to the legal ones. This cannot be

expected for our problem. That’s why reproduction operators must be used that only

yield offspring with legal genotypic representations. In the following, we describe our

reproduction operators：Crossover and mutation operators in the following：

Crossover

 The crossover operator defines the procedure for generating a child from two

parent chromosomes. It should also provide the possibility of combining good pieces

from the parents into their children. In our approach, we use the standard Partial

match crossover (PMX) operation which generates two offspring individuals from

two parent individuals as follows：

1. Two random positions in the parent chromosomes are chosen. The genes in

the so determined interval are exchanged.

2. Replace all doubled variables v outside the exchange interval by the

following procedure：

2.1 Look for the position p, where the variable v is positioned in the other

parent.

2.2 Replace v with the variable which can be found at position p.

 35

Figure 3-11 Partial match crossover (PMX) operation

Figure 3-11 shows the partial match crossover in action at a particular example.

Step 1, two random gene positions in the parents’ chromosomes parent 1 and parent 2

are chosen. Step 2, the genes in the interval determined by two random positions are

exchanged in gray areas. Step 3, we fill other genes outside the interval and replace all

doubled variables. Now we fill each position of child 1’s chromosome from parent 1’s

chromosome in order. The first gene in parent 1’s chromosome is “d”, but it appears

in child 1’s chromosome in the interval. So we look for the position 3 where “d” is

b c f g ead

d g a c fbe

Parent 1

Parent 2

Step 1

d g a

b c f

Child 1

Child 2

Step 2

Interval

d g a c efb

b c f g ade

Child 1

Child 2

Step 3

 36

positioned in parent 1’s chromosome. Then we replace “d” with “b” and fill it in the

first position in child 1’s chromosome. The same in the position 2 and 6 that we

replace “a” with “f” and “g” with “c” to child 1. Finally, “e” was not appear more than

twice before, so we don’t replace it. It is the same for child 2 to fill other genes in

chromosome.

 We can see that Partial match crossover (PMX) not only preserves the good

pieces in parents to children by exchanging interval, but also generates legal children

by the replace policy.

Mutation

 The mutation operator defines the procedure for mutating each genome.

Mutation means different things for different types. For example, a typical mutation

for a binary string genome flips the bits in the string with a given probability. A

typical mutation for a tree, on the other hand, would swap subtrees with a given

probability. In general, we should define a mutation that can do both exploration and

exploitation. Mutation should be able to introduce new genetic material as well as

modify existing material.

 In our design, since any chromosome represent a permutation of variable set,

mutation operators have to be permutation preserving, i.e., they must only generate

new permutations of variable set. This can be achieved by using swap operation for

mutation of chromosomes. A swap operation denotes the exchange of the content of

two genes in a chromosome. The positions of the two genes are randomly chosen. A

swap operation can change the address offset assignment that may modify the offsets

of two variables.

 Figure 3-12 shows the example for swap mutation operation. Two random

positions are chosen in Figure 3-12(a) and the contents of these two positions are

 37

exchanged as shown in Figure 3-12(b).

Figure 3-12 Mutation operation

3.3.3 Object Function

 Genetic algorithms are often more attractive than gradient search methods

because they do not require complicated differential equations or a smooth search

space. The genetic algorithm needs only a single measure of how good a single

individual is compared to the other individuals. The objective function provides this

measure for the fitness of an individual in the population.

 In our design, for a given variable access sequence S and variable set V, object

function Z decodes a chromosome (i.e., an address offset assignment) of individual I

and calculate the distance count “count(d)” as described in Definition 3-1. We derive

our object function Z from the cost function in Definition 3-2：

∑=)(IZ (the first n maximum count(d))

, where n is the number of the first n maximum count(d) that count(d) 1> , mn ≤≤0 ,

12 −≤≤ Vd .

Our address offset assignment problem is to minimum the cost function in Definition

3-2 that means to maximum the object function Z(I) above.

b c f g ea d g c f b e ad

(a) (b)

 38

3.3.4 Stopping Criteria

 Typically, genetic algorithm will run forever. There should be some criteria to

specify when the algorithm should terminate. These include terminate upon

generation, in which it specifies a certain number of generations for which the

algorithm should run, and terminate upon convergence, in which it specifies a value to

which the best of generation score should converge. We adopt the latter and described

our method as follows：.

Terminate upon convergence：We compare the average score in the current population

with the score of the best individual in the current population. If the ratio of these

exceeds a specified threshold, the GA should stop. Basically this means that the entire

population has converged to a “good” score. The formula of the ratio is described as

follow：

3.3.5 Parameters Setting in Genetic Algorithm

 Here, we give our parameter setting in genetic algorithm：

 Population size：50 individuals

 Crossover probability for two individuals：0.6

 Mutation probability per gene：0.01

 Replacement rate：1/2 of the population size

 Termination condition：The ratio more than 0.99

Ratio =
The average score in the current population

The score of the best individual in the current population

 39

3.4 Discussion

In Table 3-1, we give a comparison of time complexity for offset algorithms with

a single AR and multiple MRs, including previous researches and our approaches. N

is the number of variables, L is the length of the access sequence, and E is the number

of edges in the access graph. The time complexities of Bartley’s, Tie Break (TB)

and INC-TB approaches are)(3 LNO + and Liao’s approach is)log(LEEO + . We

compare these approaches to our two approaches：The pruning method descried in

section 3.2 and the genetic algorithm in section 3.3. Although the pruning method can

find the optimal address offset assignment, it’s complexity of worst case

is)!(NO which is too high to run the problem with large variable set size. For genetic

algorithm, we initialize first chromosome from Liao’s and Tie Break’s results, and the

crossover, mutation and terminate check operations are finished in linearly time. The

time complexity of genetic algorithm here is)log(3 LEENO ++ .

Although the time complexities of our approaches are higher than previous

researches, we know that compilation time is not very critical for embedded system.

Address offset assignment optimization can both reduce code size and improve

performance. In order to get a high code quality in a reason time, we suggest that

choose pruning for small problem size to get optimal solution and run GA for large

problem to find good solution. We will show the address arithmetic code reduction of

GA that is approximate to the result of pruning method in small problem size and

superior to other approaches in Chap 4.

 40

Table 3-1 Comparison of time complexity for offset assignment algorithms with a

single AR and multiple MRs

 Approach Time complexity

Bartley)(3 LNO +

Liao)log(LEEO +

Tie break (TB))(3 LNO +

INC-TB)(3 LNO +

Pruning Method)!(LNO +

Genetic Algorithm (GA))log(3 LEENO ++

 41

Chapter 4 Simulation Environment and Result

 In this chapter, we discuss the simulation environment for analyzing the

benchmark programs and evaluate the reduction of address arithmetic cost with

different proposed methods. First, the simulation environment and the benchmarks

suite are described. Then we present the simulation results obtained from evaluating

the reduction of address arithmetic code reduction, and compare the reduction effect

of different proposed methods.

4.1 Simulation Environment

 In this section, we discuss the OffsetStone suite [11] which is designed for

address offset assignment problem. We describe the simulation flow, the benchmarks

program, and the proposed approaches that we will compare with in the OffsetStone

suite.

4.1.1 Simulation Flow

 The experimental flow in Figure 4-1, we show how each application program is

extracted for address offset assignment problem instances by means of several steps

and the relation among address offset assignment algorithm execution and other

execution stages.

 42

Figure 4-1 Simulation Flow

The complete simulation flow is described as follows：

1. The ANSI C sources of the application are translated into a three address code

intermediate representation (IR) by means of the LANCE C Front-End, in order

to make the variable access sequences explicit. Additionally, this step inserts

temporary variables for intermediate results that a compiler would normally

generate. The IR is optimized by standard techniques used in most compilers,

including common sub-expression elimination, dead code elimination, constant

LANCE
Frond-End

C Program

LANCE IR

Access Sequence
Extraction

Access
Sequences

Address Offset
Algorithm Execution

Address Arithmetic
Cost Calculator

Address
Assignment

 43

folding, jump optimization, etc. This step ensures that the IR does not contain

superfluous variables and computations, which a compiler would eliminate

anyway.

2. From the optimized IR, the detailed variable access sequence is extracted from

each basic block. Since any offset assignment is valid throughout an entire C

function, on global access graph is constructed per function by merging the local

access graphs of the basic blocks. In this way, all local access sequences are

represented in a single graph. Each global access graph forms one instance of the

address offset assignment problem.

3. In this step, address offset assignment algorithm is executed. For all access

sequence instances extracted from application program, they are taken as input to

all address offset assignment algorithms. Then each address offset assignment

algorithm outputs an address assignment solution.

4. In the last step, we calculate the total address arithmetic cost for application

program. Here, we have two inputs：Access sequence and address assignment

solution, then we calculate the cost by our cost function defined in Definition

3-2.

4.1.2 OffsetStone Benchmarks

OffsetStone suite is composed of a large suite of SOA problem instances

extracted from 31 complex real-world application programs written in ANSI C. These

include computation-intensive DSP applications and control-dominated standard

applications [11]. We take computation-intensive DSP applications to evaluate our

design compare to related work. Here, we give a description of these DSP application

as follow：

 ADPCM：

 44

Adaptive Differential Pulse Code Modulation (ADPCM) is a technique for

converting sound or analog information to binary information by taking

frequent samples of the sound and expressing the value of the samples of

the sound modulation in binary terms.

 DSPSTONE：

The DSPstone benchmark consists of the following three suites：

1. Application benchmarks are complete program widely employed by

the DSP user community.

2. DSP – kernel benchmarks consist of code fragments or functions

which cover the most often used DSP algorithms.

3. C – kernel benchmarks consist of typical C statements (loops,

function calls, etc).

 FFT：

Fast Fourier Transform (FFT) is an algorithm which converts a sampled

complex-valued function of time to a sampled complex-valued function of

frequency. It is suited to analyze digital audio recordings or synthesize

sounds.

 GSM：

The Global System for Mobile communication (GSM) is a world-wide

standard for digital wireless mobile phones. European GSM 06.10 is a

provisional standard for full-rate speech transcoding, prI-ETS 300 036,

which uses residual pulse excitation/long term prediction coding at 13Kbit/s.

GSM 06.10 compresses frames of 160 13-bit samples (8 KHz sampling rate,

i.e. a frame rate of 50 KHz) into 260 bits.

 JPEG：

JPEG is standardized compression method for full-color and gray-scale

 45

images. JPEG is lossy, meaning that the output image is not exactly

identical to the input image. Two application are derived from the JPEG

source code： cjpeg, which does image compression, and djpeg, which does

decompression.

 MP3：

MPEG Audio Layer 3 (MP3) s a compression algorithm developed by the

Motion Picture Experts Group. Very generally, the algorithm takes a digital

audio file and reduces its size, while maintaining the quality of the

recording.

 MPEG2：

MPEG-2 is the designation for a group of audio and video coding standards

agreed upon by MPEG (Moving Picture Experts Group. MPEG-2 is

typically used to encode audio and video for broadcast signals, including

digital satellite and Cable TV.

 VITERBI：

The Viterbi algorithm is a way to find the most likely sequence of hidden

states (or causes) that result in a sequence of observed events. It is

commonly used in information theory, speech recognition and computation

linguistics.

4.1.3 Address Offset Assignment Approaches in Simulation

Environment

 We evaluate our two approaches and other three offset assignment algorithms for

the extracted benchmarks. Let us review these approaches as following：

1. OFU：A trivial offset assignment, where variables are assigned to offsets in the

order of their first use in the code. This order would typically be used in

 46

non-optimizing compilers without a dedicated SOA phase, and thus serves as

baseline case for our experiments.

2. Liao：Liao’s SOA heuristic algorithm based on the access graph model.

3. TB：SOA-Liao extended by the tie-break heuristic algorithm.

4. Pruning：Our approach 1 based on the access graph model.

5. GA：Our approach 2 by mapping problem to genetic algorithm.

For the address offset assignment solutions of above approaches, we compute their

cost by the cost function in Definition 3-2 with one address register and various

number of modify registers.

4.2 Simulation Results and Analyses

 In the following subsection, we show our simulations and the analysis including

the reduction of code size and the influence of modify registers usage. Besides

pruning method can not deal with too large problem size, we divide our experiment

into two parts. One is that small instances (size of variable set is less than 17) in

benchmarks are estimated for pruning method and compared with other approaches.

Another is that all instances in benchmarks are estimated for all approaches excluded

pruning method.

4.2.1 Reduction of Code Size

In Table 4-1, we show the address arithmetic cost for each benchmark and the

total cost. We first see the results of different approaches with one register and various

number of modify registers for small instances in benchmarks. In Figure 4-2, we show

the total cost of five approaches after they are applied. Here we can observe two

things：First, when multiple MRs are considered, our two approaches have lower cost

 47

than other approaches. Second, result of GA is approximately to pruning method that

is optimal solution. In Figure 4-3, we show the relative cost of approaches compared

to OFU with 1AR for small instances in benchmarks. As we can see, previous

researches (Liao and TB) reduce the cost as compared to OFU by about 30% to 46%.

Our approaches (pruning and GA) have better results that reduce the cost as compared

to OFU by about 30% to 60%.

 Figure 4-4 and Figure 4-5 show the results for all instances in benchmarks

(Pruning method is not included here due to runtime limitations). The best results are

produced by GA, and the relative cost compared to OFU by about 25% to 65% with

1AR and various MRs usage on average.

Table 4-1 Address arithmetic costs in benchmarks

Benchmark Address Arithmetic Cost

ADPCM 2724

DSPSTONE 3529

FFT 469

GSM 10293

JPEG 29523

MP3 14763

MPEG2 13033

VITERBI 4821

TOTAL 79155

 48

Figure 4-2 Cost reduction of approaches with 1AR and multiple MRs for small

instances in benchmarks

Figure 4-3 Relative cost of approaches compared to OFU with 1AR for small

instances in benchmarks

 49

Figure 4-4 Cost reduction of approaches with 1AR and multiple MRs for all

instances in benchmarks

Figure 4-5 Relative cost of approaches compared to OFU with 1AR for all

instances in benchmarks

 50

4.2.2 Influence of Modify Registers usage

 As shown in Figure 4-6, we see the relative cost compared to OFU with 1AR and

multiple MRs for all instances in all benchmarks on average. The x-axis represents the

different number of MRs used when all algorithms run. The y-axis represents the

relative cost of all other approaches (pruning method in not included) compared to

OFU. We observe that previous researches that focus on

auto-increment/auto-decrement operation optimization limit the use of auto-modify

operation. On the other hand, as GA’s results shows that optimization consider

auto-increment/auto-decrement and auto-modify operations simultaneously have more

reduction rate. And with the number of modify registers increased, the more potential

for reducing code.

Figure 4-6 Relative cost compared to OFU with 1AR and multiple MRs for all

instances in all benchmarks on average

 51

Chapter 5 Conclusion and Future Work

 Code optimization technique is important for embedded systems to take

consideration to the limited ROM and RAM size. Even small reductions in code size

could lead to significant changes in chip area and hence reduction in cost. We

observed the address offset assignment problem and proposed a technique for

optimizing address instructions for DSP code generation by considering

auto-increment and auto-modify operations simultaneously. Compare to previous

works that focus on auto-increment operation, our considerations have more potential

for reducing address arithmetic instructions.

 From experiments using DSP benchmark programs, we confirmed that

considering auto-increment and auto-modify operations simultaneously in address

code generation reduces the address code size by 12%-18% over previous researches

(Liao and TB) solutions and by 30%-33% over a naïve storage assignment algorithm

(OFU). Based on pruning method and GA may be slow for a large code. However, it

is not so critical that compilation is at static time. Our works provide valuable hints

for code generation in compiler and researches on address offset assignment for DSPs.

As a secondary contribution, we provide two approaches：Pruning method and GA

which results is superior to previous algorithms.

 There are many further works in address offset assignment. First, code

scheduling affects access sequences and could lead to different address offset

assignment problems. Further work can couple offset assignment problem with code

scheduling to exploit scheduling on minimizing address arithmetic instructions more

effectively. Second, subsuming the address arithmetic into addressing mode in AGU

improves both performance and code size. In our research, we just discussed the

address code reduction. The effect of performance needs to be taken into account in

 52

address offset assignment, such as the number of loop iteration should be considered.

 53

References

[1] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, A. Wang, “Storage Assignment to

Decrease Code Size“, ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI), 1995.

[2] Rainer Leupers, “Retargetable Code Generation for Digital Signal Processors”,

Norwell, MA : Kluwer Academic Publishers, 1997.

[3] D.H. Bartley, “Optimizing stack frack frame accesses for processors with

restricted addressing modes”, Software Practice and Experience (SP&E), Vol.22,

No.2, pages 101-110, February, 1992.

[4] R. Leupers and P. Marwedel, “Algorithm for address assignment in DSP code

generation,” in Proc. Int. Conf. Computer-Aided Design, pp.109-112, 1996.

[5] S. Udayanarayanan, C. Chakrabarti, “Address Code Generation for Digital

Signal Processors”, 38th Design Automation Conference (DAC), 2001.

[6] http://www.robotic.dlr.de/Holger.Weiss/garep/, Genetic Algorithm and optimum

robot design, Institute of Robotics and Mechatronics.

[7] http://lancet.mit.edu/ga/

[8] Shuvra S. Bhattacharyys, Rainer Leupers, and Peter Marwedel, “Software

Synthesis and Code Generation for Signal Processing Systems”, IEEE Trans. On

Circuits and System. I: Analog and Digital Signal Processing, Vol.47, NO.9,

Septerber 2000.

[9] R. Leupers and F. David, “A uniform optimization technique for offset

assignment problem,” in Proc. Int. Symp. Sst. Snthesis, pp.3-8, 1998.

[10] S. Atri, J, Ramanujam, M. Kandemir, ”Improving Offset Assignment for

Embedded Processors”, Languages and Compiler for High-Performance

Computing, S. Midkiff et al. (eds.), Lecture Notes in Computer Science, Springer,

 54

2001.

[11] Rainer Leupers, “Offset Assignment Showdown：Evaluation of DSP Address

Code Optimization Algorithms”, Institute for Integrated Signal Processing

System (ISS), 2003.

[12] Yoonseo Choi, Taewhan Kim, “Address Assignment in DSP Code Generation -

An Integrated Approach”, IEEE Trans. on Computer-Aided Design of Integrated

circuits and Systems, Vol.22, No.8, August 2003.

