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數位訊號處理器中位址產生單元之 

位址位移配置最佳化 

 
學生：劉昆奇      指導教授：單智君 博士 

 
國立交通大學資訊工程學系碩士班 

 

摘要 
 

近年來，嵌入式系統由嵌入式處理器、程式唯讀記憶體、隨機存取記憶體和

特殊應用硬體組成單一電路的設計方式，在數位訊息處理的應用領域中逐漸增

加。為了達到減少系統發展的花費以及上市的時間，在這類系統下開發程式的方

式，也由組合語言轉變成使用高階的程式語言，如 C、C++和 Java。在本研究論

文中，我們針對有限制的記憶體和具備位址產生器(AGUs)的嵌入式數位訊息處

理器提出程式碼的最佳化技術。位址產生器提供間接定址模式(indirect addressing 
mode)，包括自動遞增(auto-increment)、自動遞減(auto-decrement)以及自動修改

(auto-modify)的動作，而有別於之前的研究重點僅在自動遞增和自動遞減的動

作，我們提出 2 個方法：Pruning method 和基因演算法(Genetic Algorithm)，藉由

同時利用上述的間接定址模式優勢，來減少位址計算所需的程式碼。我們的方法

找出一組變數出在記憶體中的位址配置，使得需要用來明確計算變數位址的指令

達到最少。根據實驗顯示，我們的方法較之前的研究，能更進一步改善 12%到

18%的位址計算指令程式碼。 
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Abstract 
 

In recent years, embedded systems consist of embedded processor, program 

ROM, RAM and any application-specific hardware on a single circuit are becoming 

increasingly in application domains such as digital signal processing (DSP). In order 

to decrease development costs and time-to-market, programming manner on such 

systems is changed from assembly language to high-level languages such as C, C++ 

and Java. In this paper, we present code optimization techniques for embedded DSP 

processors which have limited on-chip ROM and address generation units (AGUs). 

AGUs provide indirect addressing modes with auto-increment, auto-decrement and 

auto-modify operations. We present two approaches：Pruning method and Genetic 

Algorithm that reduce address arithmetic code size by taking advantage of these 

addressing modes simultaneously while previous works only focus on auto-increment 

and auto-decrement operations. Our approaches find an address offset assignment for 

variables in RAM such that explicit instructions for address arithmetic are minimized. 

Experiment results show improvements of 12% to 18% over the previous works in 

address arithmetic code size. 
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Chapter 1 Introduction 

 In recently year, microprocessors such as microcontrollers and digital signal 

processors (DSPs) are increasingly used in embedded systems. System designer 

incorporate all the electronics ― microprocessor, program ROM and RAM, and 

application-specific circuit components ― into a single integrated circuit. Program 

code resides in on-chip ROM and program size translates directly into silicon area and 

cost. Program code size exceeds on-chip ROM size may lead to redesign of the whole 

system. It is an important goal of compiler for such architectures to generate compact 

code to meet the constraints of the limited on-chip ROM size. Many complimentary 

approaches have been employed to reduce code size including software-only 

techniques that rearrange data lay-out to reduce code size and instruction set support 

that allows generation of compact code [1]. 

 Many embedded processors and DSPs (e.g., TI TMS320C25/50/80, Motorola 

DSP56k, ADSP-210x) provide address generation units (AGUs) that support indirect 

addressing mode with auto-increment, auto-decrement and auto-modify operations. 

AGUs allow for efficient sequential access of memory and subsume address 

arithmetic instructions. Subsuming the address arithmetic into auto-increment, 

auto-decrement and auto-modify modes improves both performance and code size 

[1,2]. The placement of variables in storage has a significant impact on the 

effectiveness of subsumption. Variables that are frequently accessed one after another 

are placed into neighboring storage locations during storage assignment. Then, the 

auto-increment and auto-decrement feature can be used and explicit address 

arithmetic instructions to set up the contents of the address register can be avoided. 

The problem of finding a storage layout which maximizes the use of 

auto-increment/decrement to reduce code size using a single address register (AR) is 
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called the Simple Offset Assignment (SOA) problem. When multiple address registers 

(ARs) are exploited, this problem is called General Offset Assignment (GOA) 

problem [2]. 

 The storage offset assignment problem was first modeled as a maximum 

weighted Hamiltonian path cover (MWPC) problem by Bartley [3] and Liao et al. [1]. 

Further extensions have since been developed by many researchers. Leupers and 

Marwedel [2,4] improved Liao’s work by proposing a tie-breaking heuristic for SOA 

and a variable partitioning strategy for GOA to further reduce storage assignment 

cost. 

 

1.1 Research Motivations 

 Experiment surveys indicate that about 20% - 30% (sometime even more than 

50%) instructions of DSPs machine code used for address computations [5]. This is 

quite significant for DSPs with limited ROM size constraints. While previous SOA 

algorithms focus on auto-increment and auto-decrement operations and post-pass 

assign one modify register (MR) that stores frequently modify value for AR updates. 

The exploitation of auto-modify operations may lead to further reduce address 

arithmetic code.  

 

1.2 Research Goal 

 In this thesis, we consider auto-increment, auto-decrement and auto-modify 

operations simultaneously to reduce address arithmetic code. Since the compiler 

determines the addresses of local scalar variables in the stack frame of a function. We 

find a data layout (address assignment) for these local scalar variables that AGUs with 

auto-increment, auto-decrement and auto-modify operations can be utilized to 
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subsume address arithmetic instructions and decrease code size. We also explore the 

influence of multiple modify registers used for auto-modify operation. 

 

1.3 Design Approach 

We provide two approaches：Pruning method and Genetic Algorithm (GA) to 

solve the address offset assignment problem that considers auto-increment, 

auto-decrement and auto-modify operations simultaneously. Pruning method is based 

on Bartley’s access graph [3] and traces all possible paths evaluated by our cost 

function in Chapter 3. Although pruning method can find optimal solution, the time 

complexity is still too high to solve large problem size. Then we apply Genetic 

Algorithm (GA) to solve our problem by modeling address assignment to 

chromosome representation and evolution via crossover and mutation operations. 

Experimental results show that our two approaches are effective. 

 

1.4 Organization of This Thesis 

 This thesis is organized as follows. Chapter 2 introduces the address generation 

units feature and genetic algorithm which is an optimization technique. Then, we 

discuss previous relative researches on offset assignment problem. In Chapter 3, we 

describe our pruning method for finding data layout and apply genetic algorithm to 

our problem in detailed. The experimental environment and out simulation results are 

presented in Chapter 4. Finally, we summarize our conclusions and future work in 

Chapter 5. 



 4

Chapter 2 Backgrounds 

 In this chapter, we introduce the address generation units (AGUs) architecture in 

DSP processors. Then we introduce the Genetic Algorithm (GA) which is an 

optimization technique imitating natural evolution to achieve good solutions. Finally 

we discuss the previous researches related to address offset assignment problem to 

achieve code size reduction. 

 

2.1 Address Generation Units in DSPs 

Address generation units (AGUs) are the special architecture for memory address 

computation. DSP processors equipped with AGUs can perform indirect address 

computations in parallel to the execution of other machine instructions. The AGUs 

feature for indirect addressing are present in many DSP architectures (e.g., TI 

TMS320C25, Motorola DSP56k, ADSP-210x) and differ mainly in the following 

parameters [1,2]： 

 The number k of address registers (ARs). ARs store the effective addresses 

of variables in memory and can be updated by load and modify (i.e., adding 

or subtracting a constant) operations. 

 The number m of modify registers (MRs). MRs can be loaded with 

constants and are generally used to store frequently required AR modify 

values. 
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Figure 2-1 Generic address generation unit (AGU) model for DSPs 

 

Further differences in the detailed AGU architectures of DSPs are whether MR values 

are interpreted as signed or unsigned numbers, and whether ARs and MRs are 

orthogonal, i.e., whether each MR can be used to modify each AR. 

We consider indirect addressing based on the genetic AGU model depicted in 

Figure 2-1. The AGU contains a file of k address registers and a file of m 

modify-registers. The indices for ARs and MRs are provided by two AGU inputs： 

The AR pointer (ARP) and the MR pointer (MRP). The third AGU input is an 

immediate value, originating from the instruction word, which can be used to load 

AR[ARP] or MR[MRP], or to immediately modify AR[ARP]. Further, AR[ARP] 

modification can also by adding or subtracting the contents of MR[MRP], or adding 

the value +1/–1. 
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Table 2-1 AGU operations and cost values 

Operation Functionally Cost value 

AR load AR[ARP] = imm 1 

MR load MR[MRP] = imm 1 

AR immediate modify AR[ARP] += imm 1 

AR auto-increment AR[ARP] ++ 0 

AR auto-decrement AR[ARP] – – 0 

AR auto-modify AR[ARP] += MR[MRP] 0 

ARP load ARP = imm 0 

MRP load MRP = imm 0 

 

Table 2.1 shows the AGU operations and cost values for each operation. The 

functionalities are given in C-like notation, where “imm” denotes an immediate value. 

Further, immediate value occupies a large portion of the total instruction word-length, 

so that these operations usually inhibit execution of other machine instructions in 

parallel. Like all other register transfer (RT) patterns, we assume AGU operations to 

be executed in a single machine cycle, so that the results are valid in the following 

cycle.  

“AR load”, “MR load”, and “immediate modify”, which involve immediate 

value in the instruction word. These operations cannot be performed in parallel to 

other operations, but introduce an extra machine instruction. Therefore, we assign the 

cost value 1 to these operations. On the other hand, “auto-increment”, 

“auto-decrement”, and “auto-modify” only utilize AGU resource and can be regarded 

as zero-cost operations. These operations can be executed without any overhead in 

code size or speed. The same hold for “ARP load” and “MRP load”： These require 
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only “short” immediate values (of length 2 to 3), which are (in direct form) instruction 

word fields, or (in indirect form) originate from registers which can be loaded in 

parallel (e.g., TMS320C2x). In indirect form, the required ARP contents must be 

prepared one machine cycle earlier than in direct form, but this has no impact on the 

cost metric [2]. 

 

Example 

 To simplify the exposition of address offset assignment, we use a simple 

processor model that reflects the indirect addressing arithmetic of most DSPs. The 

model is an accumulator-based machine where, for each instruction, one operand 

resides in the accumulator and another operand resides in the memory. The operand 

involves memory is referenced through one of the address registers (AR0, AR1 …). 

ARi can point to the desired position by adding or subtracting an immediate value, 

using the instructions “ADAR” and “SBAR”. Also, we use the instructions “LDAR” 

and “LDMR” to load ARi and MRi. 

 We use *(ARi), *(ARi)+, *(ARi)-, *(ARi)+MRi to denote indirect addressing 

through ARi, indirect addressing with post-increment, indirect addressing with 

post-decrement and indirect addressing with post-modify, respectively. 

Consider the C code sequence shown in Figure 2-2(a). Assume that the address 

offset assignment to the various variables is as shown in Figure 2-2 2-2(b). The 

assembly code for the C program is shown in Figure 2-2(c). In the assembly code, the 

comment after an instruction indicates which variable AR0 point to after the 

instruction is executed. The instruction SBAR and ADAR are used to change AR0 to 

point to the frame location accessed in the next instruction. 
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Figure 2-2 Example of address arithmetic with AGU 

 Assume that AR0 initially points to the position 1 of the frame, i.e., variable b 

and MR0 is initialized by a constant 2. The value of the variable b is loaded in the 

accumulator, and AR0 is modified by the value of MR0 in the first “LOAD” 

instruction. In the fourth instruction “ADD”, the values in b and d are summed and 

stored in the accumulator. Next, the contents of the accumulator must be stored in the 

location corresponding to variable a, but AR0 point to d. Therefore, we have to 

subtract 3 from the content of AR0 using an explicit instruction “SBAR AR0, 3”. 

Then, the instruction “STOR” is used to store the contents of accumulator to the 

location of a; futher, AR0 is incremented and points to the location of b. When the 

assembly instructions corresponding to “d = b + c” are to be executed, variables 

access order of variables is b, c, then d. We can see that the locations of these 

variables are continuous in Figure 2-2(b). So, these address arithmetic operations can 

be subsumed in “LOAD”, “ADD” or “STOR” instructions. The objective of the 

solution to the address offset assignment is to find the minimal address pointer 

arithmetic instructions required using proper placement of variables in memory. 

LDAR AR0, 1   ; b 
LDMR MR0, 2 
LOAD *(AR0)+MR0  ; d 
ADD *(AR0) 
SBAR AR0, 3   ; a 
STOR *(AR0)+   ; b 
LOAD *(AR0)+   ; c 
ADD *(AR0)+   ; d 
STOR  *(AR0) 
 

(c) Assembly code 

a = b + d ; 
d = b + c ;  

 
(a) Code sequence 

a 

b 

c 

d 

 (b) Offset assignment 

AR0 

0 

1 

2 

3 
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2.2 The Genetic Algorithm 

 Genetic Algorithms belong to a certain group of heuristic problem solving 

techniques based on the principles of natural evolution. To this group of Evolutionary 

Algorithms belong also Evolutionary Programming, Evolution Strategies, and Genetic 

Programming. They share a common conceptual base of simulating the evolution of 

individual structures via processes of selection, mutation, and reproduction. The 

processes depend on the perceived performance of the individual structures as defined 

by an environment [6, 7]. 

 More precisely, Evolutionary Algorithms maintain a population of structures, 

that evolve according to rules of selection and other operators, that are referred to as 

search operators, (or genetic operators), such as recombination and mutation. Each 

individual in the population receives a measure of it’s fitness in the environment. 

Reproduction focuses attention on high fitness individuals, thus exploiting the 

available fitness information. Recombination and mutation perturb those individuals, 

providing general heuristics for exploration. Although simplistic from a biologist’s 

viewpoint, these algorithms are sufficiently complex to provide robust and powerful 

adaptive search mechanisms [6, 7]. 

 Genetic Algorithms were devised by John Holland. The Genetic Algorithm is a 

model of machine learning which derives its behavior from a metaphor of some of the 

mechanisms of evolution in nature. This is done by the creation of a population of 

individuals of individuals represented by chromosomes, in essence a set of character 

strings that are analogous to the base-4 chromosomes that we see in our own DNA. 

The individuals in the population then go through a process of simulated evolution. 

Implementations typically use fixed-length character strings to represent their genetic 

information, together with a population of individuals which undergo crossover and 
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mutation in order to find interesting regions of the search space [6, 7]. 

 

Standard Formulation 

 Genetic Algorithms are working on a population of individuals that undergo an 

evolution. This evolution is caused by manipulating the chromosomes of the 

individuals of the current generation by mutation and crossover. The Genetic 

Algorithm selects those offspring individuals for the next generation that perform best 

in a defined environment (that possess the highest fitness). That means that only the 

fittest survive and the average fitness of the population will increase. For that reason 

the population adapts itself optimally to the environment after a certain number of 

generations. 

 If the fitness of the individuals is chosen according to the objective function f and 

the genes of the chromosomes are seen as the genome representation of optimization 

variables x1, x2, …xm then a Genetic Algorithm can be used to solve the 

multidimensional optimization problem [6]： 

f (x1, x2, …xm) => optimum 

 Figure 2-3 shows the general scheme of Genetic Algorithm. At the beginning a 

population of nP individuals is created and initialized. The initialized is usually done 

by filling the chromosomes of the individuals with random values. The initial 

generation will then be evaluated. The fitness of the particular individuals is 

calculated and the population is ordered with respect to fitness. To evaluate the fitness 

of the individuals the phenotypic representation of the individual must be derived 

from the genotypic one. That means in context of the considered optimization 

problem the optimization variable x1, x2 …xm must be calculated from the 

chromosomes which are typically fixed-length bit string. 
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Figure 2-3 General scheme of a Genetic Algorithm 

 

At the beginning of each cycle the current generation (parent generation) will 

reproduce itself. This is performed in two steps [6]： 

 First, the nE best of the current generation will be copied into the next generation. 

This is also known as elitist approach because it can lead to the formation of elite in 

the population. Elitist individuals can survive a long time in the population. 

 Second, two of individuals in the parent generation exchange parts of their 

chromosomes to create two children. This process is called crossover and occurs with 

a probability px. Typical values px are in the range between 0.4 and 0.8. So nP /2 pairs 

nP 

nE nP 

nE + nP 

nP 

Initialize 

Best parents 
Select parents 
Apply crossover 

Apply mutation 

Evaluate fitness 
Delete last 

Stop?

Finish 
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of parents will produce nP children. After reproduction the new population has size nE 

+ nP. To select pairs of parents the following selection techniques are considered： 

 Random parent selection (RS)： The parent is chosen randomly from the 

parent generation. All individuals have the same chance to become a parent. 

 Tournament parent selection (TS)： Two individuals are chosen randomly. 

As parent is used that individual with the higher fitness. This guarantees 

that fitter individuals become more often parents than others. 

 Roulette wheel parent selection (RWS)： The parent is chosen randomly, 

but its chance to be chosen as parent is proportional to its fitness. This is 

done as follows： Calculate the total fitness as sum of the fitness values of 

all the population members. Generate n, a random number between 0 and 

total fitness. Select the first population member whose fitness, added to the 

fitness of the preceding population members, is greater than or equal to n. 

Note, that the fitness values must be nonnegative numbers. This selection 

technique also guarantees that fitter individuals become more often parents 

than others. 

After the parent selection the actual crossover can take place. During the 

crossover the parents exchange parts of their chromosomes. This is done in order to 

be able to combine good chromosome parts in the offspring, to create better 

chromosomes from good ones. There exit different ways of how parents can exchange 

chromosome parts. Which crossover operator performs best depends on the problem 

at hand. The following three variants can be applied to a variety of problems [6,7]： 

 Single point crossover (SPX)：  A random position is chosen in the 

chromosome. The chromosome parts after this position are exchanged. 

 Dual point crossover (DPX)： Two random positions are chosen in the 

chromosome. The chromosome parts between these positions are 
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exchanged. 

 Uniform crossover (UX)： For each bit position there is a random decision 

which parents contributes its bit value to which child. The exchange of 

chromosome parts is controlled by a random template. 

After reproduction mutation are applied to the population. This is done by flipping 

bits in the chromosomes of the individuals. The bit flipping occurs with a certain 

probability pM. A typical value for pM is 0.01. The purpose of the application of 

mutations is to introduce a certain amount of diversity into the population. 

 Then, the individual’s fitness is calculated according to the objective function f. 

The population is ordered with respect to fitness and the last nE individuals are deleted 

from the population. This is the second point in the algorithm where a selection 

according to fitness takes place. If as parent selection technique random selection is 

used then it is necessary to set the number of elitist individuals nE greater than 0. 

Otherwise no directed development over the generations can occur. On the other hand, 

if random parent selection is not used, then nE can be set to 0 and the time consuming 

ordering of the population can be avoided. 

 Until now, a new generation of nP individuals was generated and process of 

reproduction, mutation, and selection can start again. If all parameter values of the 

algorithm are set reasonably and crossover operator, mutation operator and 

representation are chosen appropriately then the Genetic Algorithm will converge 

after a certain number of generations to the solution of the considered optimization 

problem. 
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2.3 Previous Researches Related to Address Offset 

Assignment Problem 

 In the following subsection, we describe access graph model for Offset 

Assignment problem first proposed by Bartley. Then we introduce previous researches 

about Offset Assignment problem. Finally we compare these algorithms with our 

research in last subsection. 

 

2.3.1 Bartley’s Approach 

Bartley was the first to address the simple offset assignment (SOA) problem that 

considered a single address register (AR). He proposed the access graph model for 

SOA problem and presented an approach based on finding a maximum weighted 

Hamiltonian path [2, 8].. 

Definition 2-1 Given a local scalar variable set },...,{ 1 nvvV =  and a variable 

access sequence },...,{ 1 mssS =  of a function with [ ] Vsmi i ∈∈∀ :,1 , the access 

graph is an undirected, complete, and edge-weighted graph ),,( wEVG =  

with },|},{{ VvvvvE jiji ∈= . The function 0: Ν→Ew  assigns a weight to each 

edge },{ ji vve =  that denotes the number of access transitions between vi and vj in S, 

i.e., the number of subsequence of S of the form (vi, vj) or (vj, vi). 

Definition 2-2 For an access sequence S on variable set V, an address assignment 

is a mapping }1||,...,0{: −→ VVπ , which assignment all variables in V to a unique 

location within a contiguous address space of size |V|. Due to the symmetry of 

auto-increment and auto-decrement, the ordering of v and w is irrelevant here. 

Likewise, self-edges of the form {vi, vj} can be neglected. 
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Definition 2-3 The distance ),( ji vvπδ  of two variables Vvv ji ∈, with respect 

to π  is )()( ji vv ππ − . 

Definition 2-4 Let ),,( wEVG =  be the access graph for S. The cost of an 

address assignment π  is defined as ∑
∈=

+=
^

},{

)(1)(cos
Evve ji

ewt π with 

}1),(|},{{
^

>∈= jiji vvEvvE πδ . 

Simple Offset Assignment is the problem of computing a minimum cost address 

assignment for an access graph G in presence of a single address register. 

In Figure 2-4(a)-(b), we see an example of access graph model ),,( wEVG =  

for },,,{ dcbaV =  and ),,,,,,,,,,,,( dcadabcadcadbS = . Any access transition (vi, 

vj) in S can be implemented by auto-increment, if and only if vi and vj are assigned 

neighboring stack locations. In order to maximize the use of auto-increment 

addressing, obviously those variable pairs {vi, vj} should be neighbors in the stack 

frame, whose edge weight w({vi, vj}) in G is high, since this will save many extra 

instructions for address computation. Figure 2-4(c) shows the maximum weighted 

Hamiltonian path cover (MWPC) P in G, i.e. the path touching each node once with 

the maximum edge weight sum. The memory layout is derived from P by assigning 

those node pairs to adjacent memory locations, which are also neighboring in P (i.e., 

c-a-d-b or b-d-a-c in Figure 2-4(c)) [2, 8]. 
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Figure 2-4 Access graph model and maximum weighted Hamiltonian path 

 

 Suppose, address space reserved for V is A = {0, 1, 2, 3} and one AR is available 

to compute the address according to the sequence S. Consider an address assignment 

where V is mapped to A in lexicographic order (as shown in Figure 2-5(a)).  

 First, AR needs to be loaded with the address 1, so as to point to the first element 

b of S. Then, AR is modified by +2 to access d which is mapped to address 3, and so 

forth. The complete AGU operation sequence for S is given in Figure 2-5(a). Only 4 

out of 13 AGU operations in the sequence are auto-increment/decrement operations, 

so that a cost of 9 extra instructions for address computation is incurred. However, 

one can find a better address offset assignment by MWPC, which leads to only five 

extra instructions, due to a better utilization of zero-cost operations (as shown in 

Figure 2-5(b)). 
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Figure 2-5 Different address offset assignments and AGU operation sequences 

 

2.3.2 Other Address Offset Assignment algorithms 

Bartley’s access graph model for the SOA problem forms the baseline for most 

SOA algorithms. The cost of an SOA problem P is defined as the sum of the weights 

of G’s edges not covered by P. This corresponds to the number of extra address 

computation instructions to be inserted into the machine code. Because the classical 

Hamiltonian path problem that computing P is an NP-complete problem. Hence, 

many heuristic algorithms had been proposed to solve SOA problem [2]. 

 Bartley proposed a greedy heuristic for finding path P. His algorithm iteratively 

picks an edge e of highest weight w(e) in G and checks whether inclusion of e into a 

partial path P would still allow for a valid solution. This is iterated until a complete 

path with 1−V  edges has been selected [2]. 
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 Liao proposed a more efficient implementation of Bartley’s SOA algorithm, by 

temporarily neglecting edges of zero weight (which are frequent in realistic access 

graphs) and using an efficient Union/Find data structure for checking for cycles. 

Besides the implementation issues, Liao’s algorithms produces the same results as 

Bartley’s [1,2]. 

 

Figure 2-6 Liao’s maximum weighted path cover heuristic algorithm 

 

Leuper and Marwedel proposed a tie-break heuristic for choosing among 

same-weighted edges extended from Liao’s heuristic algorithm. These same 

same-weight edges are very common in access graphs, and the solution quality may 

critically depend on the order in which edges are investigated during path construction. 

1. // INPUT： Access Sequence, L 
2. // OUTPUT： Constructed Assignment E' 
3. Liao-SOA(L) 
4. { 
5.    ),( EVG ← Access-Graph(L) 
6.    Esort ← Sorted list of edges in E in descending order of weight 
7.    φ←← ',':)','(' EVVEVG  

8.    while ( 1' −< VE  and Esort φ≠ ) { 

9.       choose e ← first edge in Esort 
10.       Esort ← Esort – e 
11.       if ( (e does not cause a cycle in 'G ) and  
12.          (e dose not case any node in 'V  to have degree 2< )) 
13.          add e to 'E  
14.       else 
15.          discard e from Esort 
16.    } 
17.    return Constructed-Assignment( 'E ) 
18. } 
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An experiment evaluation for a set of random SOA problem instances indicated that 

the tie-break heuristic on average gives a slight improvement over Liao’s heuristic [9]. 

 Atri et al. proposed an incremental SOA algorithm. It starts with an initial SOA 

solution, constructed by some heuristic, and performs an iterative improvement by a 

local exchange of access graph edges selected for the maximum weighted 

Hamiltonian path. An experiment comparison to Liao’s heuristic for a set of random 

SOA instances indicated that the initial solution can be improved in 3-8% of the cases 

considered, where the average improvement is about 5% [10,11]. 

 The general offset assignment (GOA) problem is the generalization of SOA 

towards an arbitrary number m of ARs. Lioa pointed out that GOA can be solved by 

appropriately partitioning V into m subsets, thereby reducing GOA to m separate SOA 

problems. Leupers and David proposed a genetic algorithm to solve GOA problem 

and experimental evaluation indicated a significant improvement than previous GOA 

researches [2]. 
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2.3.3 Summary 
 

Table 2-2 Comparison of address offset assignment researches 

  Problem domain Optimization Focus Target Registers

Bartley SOA Auto-increment & auto-decrement 1AR 

Liao SOA Auto-increment & auto-decrement 1AR 

Tie break(TB) SOA Auto-increment & auto-decrement 1AR 

GOA GOA Variable set partition mAR 

INC-TB SOA Auto-increment & auto-decrement 1AR 

Our design SOA Auto-increment & auto-decrement 

& auto-modify 

1AR+mMR 

 

 We have introduced several researches for address offset assignment problem in 

subsection 2.3.2. The comparison between these researches with our design is 

depicted in Table 2-1 which appear according the year they were proposed. The 

problem domain is classified according to how many address registers used. Because 

our design considers single address register with multiple modify registers, we 

categorize our design to SOA problem. The third column specifies the optimization 

focus of researches. While previous SOA researches focus on auto-increment and 

auto-decrement operations and post-pass assign MR. Our design consider 

auto-increment, auto-decrement and auto-modify operations simultaneously and 

exploit multiple MRs to further reduce address computation code. The last column is 

the target registers that researches focus on. 
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Chapter 3 Proposed Approaches of Address Offset 

Assignment 

 The address offset assignment optimization is incorporated into compilers for 

embedded systems. The diagram illustrates the stages of the compiler is shown in 

Figure 3-1. Source program is translated into intermediate form by one Front-End that 

includes error checking, lexical, syntax, and semantic analysis. Machine-independent 

optimizations such as constant folding, dead code elimination…, etc. The 

intermediate form is then translated into another intermediate form according to the 

machine description. Instruction scheduling, address offset assignment, and register 

allocation are performed on this intermediate form, along with machine-specific 

dataflow analysis and related optimizations. Object code is generated from the final 

code generation and peephole optimization. Code compression maximizes parallelism 

of object code to increase the code density [1, 2]. 

In this chapter, we present our design for address offset assignment. First, we 

model our address offset assignment problem that considers one address register and 

multiple modify registers simultaneously. Then we proposed two approaches for 

address offset assignment problem. In section 3.2, we present a pruning method 

combined with depth-first search (DFS) to find optimal solution for small instances. 

In section 3.3, we model our problem to apply Genetic Algorithm to solve this 

problem. Finally, we discuss these two approaches with previous researches about 

time complexity and usage in compiler. 
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Figure 3-1 A Diagram of compilers for embedded systems 

3.1 Problem Modeling 

 In our design, we consider the usage of multiple modify registers that store 

frequently modify values for AR updates. So we define the term “count” that 

represents the count of distance after address assignment of variables. Then we define 

the cost function via the “count”. 

Definition 3-1 The distance count count(d) is the sum of w(e) where e = {vi, vj} 
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and 10,),( −≤≤= Vddvv jiπδ . 

Definition 3-2 Consider the usage of a single address register and m modify 

registers. The cost of an address assignment π  is defined as  

 cost(π ) = 1 + n + ∑
−

=

1

2

V

k

 count (k) ∑− (the first n maximum count (d)) 

, where n is the number of the first n maximum count(d) that 1)( >dcount , 

mn ≤≤0 , 12 −≤≤ Vd . Because we consider the best usage of AGUs, not all the 

m modify registers are used for each instance. To initialize an address register or a 

modify register need the cost 1. So the cost to initialize a single address register and n 

modify registers is 1+ n. 

For the purpose of illusion, we give two examples to see the influence when 

address assignment is assigned for modify registers. We first see the distance count 

for Figure 2-5 in Figure 3-2. The modify values in Figure 3-2(a) and Figure 3-2(b) are 

the distances of variables after address assignment. We calculate the number for each 

distance in code sequence and establish distance count table. Figure 3-2(b) is the 

result of maximum weighted Hamiltonian path cover and maximizes count of distance 

1 that can be subsumed by auto-increment or auto-decrement operations. The count 3 

of distance 2 is the maximal count of all distances larger than 1. Consider one modify 

register is used, distance 2 is assigned to modify register and the cost is decrease to 3 

in Figure 3-2(c). 

Let us see a more complex example from [12] in Figure 3-3. The variable set and 

access sequence are extracted from the C code, and the access graph is constructed. 

The path that edges are bold in access graph is the solution of tie-break algorithm. We 

observe different address assignments：TB solution, Address assignment 1 and 

Address assignment 2 in Figure 3-4. TB solution is the result from Figure 3-3,  



 24

 

Figure 3-2 Example of distance count for different address assignment 

 

Address assignment 1 and Address assignment 2 are the optimal solutions for 1AR 

with 1 MR and 1AR with 2MRs respectively. For each address assignment, its 

distance count table is also shown in Figure 3-4. We know that distance 1 can be 

subsumed by auto-increment or auto-decrement operations and distance larger than 1 

can be subsumed by auto-modify operation via assigning distances to modify registers. 

We can see that when only one AR is considered, the minimal cost is 13 in Figure 

3-4(a) (i.e. Tie-Break solution). But when MR is considered, the minimal cost is 8 

with 1AR and 1MR in Figure 3-4(b) and the minimal cost is 5 with 1AR and 2MRs in 

Figure 3-4(c). Therefore, the good address assignment for auto-increment and 

auto-modify operations is not necessarily good when auto-modify operation is 

considered. 

Problem Definition 

Our design for address offset assignment problem is to compute a minimum cost 
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of address assignment for an access graph G in presence of a single address register 

and multiple modify registers. 

 

 

Figure 3-3 Code example from [12] 

 

Figure 3-4 Different address assignment for Figure 3-3 example 
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3.2 Approach 1：Pruning Method for Address Offset 

Assignment 

 In this section, we describe a pruning method for the address offset assignment 

problem in presence a single address assignment and m modify registers. We trace 

access graph and decrease search time by pruning some paths that are not possible to 

be optimal solution. 

Given a variable set V and a variable access sequence S of a function, the 

Bartley’s access graph is constructed in Figure 3-5 and the maximum weight path 

cover is shown in Figure 3-6(a). From the maximum weight path cover, the address 

assignment is in Figure 3-6(b). Consider 1AR and 1MR for this example, we get the 

distance count in Figure 3-6(c) derived from the address assignment in Figure 3-6(b). 

The distance is 1 can be subsumed by auto-increment or auto-decrement operations, 

and the distance is 3 can be subsumed by auto-modify operation via assigning 3 to 

MR. Then we calculate the cost by the cost function in definition 3.5. So the total cost 

is 6 in Figure 3-6(d) is the cost of initial 1AR and 1MR, and distance count that can 

not be subsumed by auto-increment, auto-decrement, and auto-modify operations 

(count of distance 2 or 4).  

 

Figure 3-5 An example of access graph for pruning 



 27

 

   

Figure 3-6 The solution of maximum weight path cover for Figure 3-5 

 

 Then, we explore the access graph in Figure 3-5 using depth-first search (DFS) 

that each vertex in access graph can be the original source and take the cost in Figure 

3-6(d) as the cost bound to pruning some search path that cost is larger than cost 

bound. The strategy followed by depth-first search is, as its name implies, to search 

“deeper” in the graph whenever possible. In depth-first search, edges are explored out 

of the most recently discovered vertex u that still has unexplored edges leaving it. 

When all of u’s edges have been explored, the search “backtracks” to explore edges 

leaving the vertex from which u was discovered. This process continues until we have 

discovered all the vertices that are reachable from the original source vertex. If any 

undiscovered vertices remain, then one of them is selected as a new source and the 

search is repeated from that source. This entire process is repeated until all vertices 

are discovered. Next, we give an example to see the pruning operation. 

 Consider the example in Figure 3-7(a). The DFS start from node “a” and explore 

to “c” currently (edges in bold). The current address assignment is shown in Figure 
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3-7(b) that “a” is assigned the address “0”, “b” is “1”, and “c” is “2”. The current 

distance count is shown in Figure 3-7(c) that the count of distance 1 is 2 

( ),(),( cbwbaw + ) and the count of distance 2 is 3 ( ),( caw ). Because the current 

distances are only 1 and 2, which can be subsumed by auto-increment, 

auto-decrement and auto-modify operation. So the current cost 2 is the cost of 

initializing 1AR and 1MR.  

Now there are two uncovered nodes “d” and “e” that are adjacent to node “c”. 

First, we choose node “d” as shown in Figure 3-7(e), and the current address 

assignment and distance count are shown in Figure 3-7(f) and Figure 3-7(g). And the 

current cost 7 in Figure 3-7(h) is cost of 1AR and 1MR initialization and distance 

count that can not be subsumed by auto-increment, auto-decrement and auto-modify 

operations (count of distance 3). Here, we find that the current cost 7 is larger than 

cost bound 6, so we stop search deeper from node “d” in current path and backtrack to 

node “c”. Therefore, we choose another node “e” that is adjacent to node “c” in Figure 

3-7(a). The results of this choice are shown in Figure 3-7(i) to Figure 3-7(l). The 

current cost is not larger than cost bound, so we this search can be continue and will 

not be pruned.  

 Via our pruning method, we can search all possible paths to find the optimal 

solution and save some search time. The algorithms of our pruning method are in 

Figure 3-8 and Figure 3-9. We will discuss our pruning method with previous 

searches and our genetic algorithm about the time complexity and effect in later 

section and chapter. 

 



 29

 

 

 

 

Figure 3-7 An example of pruning for DFS 
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Consider the algorithm in Figure 3-8. This algorithm takes an access sequence 

“L” which extracted from high level code as input, and produces an address offset 

assignment as output. In line 3, access graph ),,( wEVG  is produced from the access 

sequence “L”. Line 4 produces an address offset assignment 1π by Liao’s SOA 

heuristic algorithm mentioned in Chap 2. We set the cost_bound via the cost function 

in definition 3.5 that takes 1π as its input. Then we start to explore the access graph 

),,( wEVG  using depth-first search (DFS) that each vertex in G can be the original 

source. The DFS-VISIT implements the DFS procedure with pruning.  

 

 

Figure 3-8 Depth first search (DFS) for access graph 

 

Consider the procedure DFS-VISIT in Figure 3-9. In each call DFS-VISIT(u), 

vertex u is checked if it can be added to π_tmp  that record the current unfinished 

address offset assignment. Lines 2-3 add u to π_tmp in order and set u is explored. 

Line 4-5 check compute the cost of π_tmp and check cost. When cost≥ cost_bound, 

we prune the following process of π_tmp and leave DFS-VISIT(u). Otherwise, if  

1 // INPUT： Access Sequence, L 
2 // OUTPUT： Constructed Assignment to minimize the cost 

function in definition 3.5. 
3 ),,( wEVG ← Access-Graph(L) 
4 1π ← Liao-SOA(L) 
5 cost_bound ← count_cost( 1π ) 
6 // Use Depth First Search (DFS) to trace ),,( wEVG  
7 for each vertex Vu∈ { 
8    if (u is not explored) 
9       DFS-VISIT(u) 
10 } 
11 // When finished, we get the optimal solution π  
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Figure 3-9 DFS with pruning for access graph 

 

cost less than cost_bound, we further check the size of current π_tmp  in line 6. If 

the size of current π_tmp is equal the size of variable set, this means that one 

solution is found. We record the current best solution in π  and reset cost_bound 

from this solution in lines 7-8. If all variable are not covered, line 11 examines each 

vertex v adjacent to u and recursively visit v. We say that edge (u, v) is explored by 

the depth-first search. Finally, after every edge leaving u has been explored, lines 

16-17 delete u in π_tmp and set u is unexplored. This causes the next search from 

the predecessor of u. When all vertex u is explored, the algorithm is stopped and we 

get the optimal path (i.e., the optimal address offset assignment). 

1 DFS-VISIT(u) { 
2    Add u to π_tmp in order 
3    set u is explored 
4    cost ← count_cost( π_tmp ) 
5    if (cost≤ cost_bound) { 

6       if ( Vtmp =π_ ) { 

7          ππ _tmp←  
8          cost_bound ← cost 
9       } 
10       else { 
11          for each v adjacent to u { 
12             if (v is unexplored) DFS-VISIT(v) 
13          } 
14       } 
15    } 
16    delete u in π_tmp  
17    set u is unexplored 
18 } 
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3.3 Approach 2：Genetic Algorithm for Address Offset 

Assignment 

The Genetic Algorithm (GA) is an optimization technique that imitates natural 

evolution to achieve good solutions. GA is particularly well-suited for nonlinear 

optimization problems, since it can skip local extreme in the objective function and in 

general come close to optimal solutions.  

 We choose GA for solving address offset assignment problem in presence of a 

single address register and multiple modify registers mainly due to three reasons：First, 

GA is more robust than heuristic algorithms. If enough computation time is invested, 

then a GA most likely approximates a global optimum, while heuristics in many cases 

are trapped in a local optimum. Since very high compilation speed is not important for 

DSP compilers, GA is more promising than heuristics, whenever a reasonable amount 

of time is not exceeded. Second, since address offset assignment mainly demands for 

computing a good permutation of variables w.r.t. simple cost functions, address offset 

assignment has a straightforward encoding as a GA. Third, although the pruning 

method mentioned in section 3.2 can find the optimal solution, it can’t deal with large 

variable set. The complexity for large instance is too high for pruning method to find 

the optimal solution in a reasonable time. The influence of the size of variable set for 

GA is not critical. 

 In this section, we present our problem the address offset assignment problem in 

presence of a single address register and multiple modify registers in the form of a 

GA. We describe the chromosomal representation for our solution, crossover and 

mutation operators for chromosome, objection function to judge chromosome’s fitness, 

the stop criteria of GA process and other parameters for GA. 
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3.3.1 Chromosomal Representation and initialization 

 In order to apply a Genetic Algorithm to the address assignment problem an 

appropriate genotypic representation must be chosen. An obvious possibility is to use 

chromosomes with a number of genes equal to the number of variables where each 

gene represents a variable that is assigned to a memory location. This is an 

order-based representation that represents any solution to our problem. Assume we 

have a variable set V = {a, b, c, d, e, f, g}, Figure 3-10 shows two examples of our 

genotypic representation. Chromosome 1 and chromosome 2 represent two possible 

solutions to our problem. In chromosome 1, the order-based representation means an 

address offset assignment for the variable set V (d → 0, a → 1, b → 2 … and so on.) 

and the same in chromosome 2. 

 

Figure 3-10 Example of genotypic representation 

  

In our design for GA, we initialize the individuals with such chromosomes in 

population. We start with Liao’s and Tie-Break’s SOA solutions which are discussed 

in Chap 2. We choose the minimum cost by applying our cost function in Definition 

3-2 from these two solutions. Then we translate the solution to the form of genotypic 

representation and use it to initialize the first chromosome of individual. This 

chromosome is the primordial genetic material from which all solutions will evolve. 

b c f g eadChromosome 
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3.3.2 Crossover and Mutation Operators 

 A special property of our address offset problem and other similar combinational 

problems is that the genes cannot be treated independent of each other. That’s because 

each variable is allocated to one memory location and therefore, each variable may 

only appear once in the chromosome. Standard crossover and mutation operators 

which don’t take into account these dependencies will produce partly illegal offspring. 

One approach of dealing with that fact would be to use a standard Genetic Algorithm 

and to assign small or zero fitness to illegal ones. This could work in case when the 

number of illegal individuals is small in comparison to the legal ones. This cannot be 

expected for our problem. That’s why reproduction operators must be used that only 

yield offspring with legal genotypic representations. In the following, we describe our 

reproduction operators：Crossover and mutation operators in the following： 

 

Crossover 

 The crossover operator defines the procedure for generating a child from two 

parent chromosomes. It should also provide the possibility of combining good pieces 

from the parents into their children. In our approach, we use the standard Partial 

match crossover (PMX) operation which generates two offspring individuals from 

two parent individuals as follows： 

1. Two random positions in the parent chromosomes are chosen. The genes in 

the so determined interval are exchanged. 

2. Replace all doubled variables v outside the exchange interval by the 

following procedure： 

2.1 Look for the position p, where the variable v is positioned in the other 

parent. 

2.2 Replace v with the variable which can be found at position p. 
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Figure 3-11 Partial match crossover (PMX) operation 

 

Figure 3-11 shows the partial match crossover in action at a particular example. 

Step 1, two random gene positions in the parents’ chromosomes parent 1 and parent 2 

are chosen. Step 2, the genes in the interval determined by two random positions are 

exchanged in gray areas. Step 3, we fill other genes outside the interval and replace all 

doubled variables. Now we fill each position of child 1’s chromosome from parent 1’s 

chromosome in order. The first gene in parent 1’s chromosome is “d”, but it appears 

in child 1’s chromosome in the interval. So we look for the position 3 where “d” is 

b c f g ead

d g a c fbe
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Step 1 

d g a     

b c f     

Child 1 
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Interval 
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positioned in parent 1’s chromosome. Then we replace “d” with “b” and fill it in the 

first position in child 1’s chromosome. The same in the position 2 and 6 that we 

replace “a” with “f” and “g” with “c” to child 1. Finally, “e” was not appear more than 

twice before, so we don’t replace it. It is the same for child 2 to fill other genes in 

chromosome. 

 We can see that Partial match crossover (PMX) not only preserves the good 

pieces in parents to children by exchanging interval, but also generates legal children 

by the replace policy. 

 

Mutation 

 The mutation operator defines the procedure for mutating each genome. 

Mutation means different things for different types. For example, a typical mutation 

for a binary string genome flips the bits in the string with a given probability. A 

typical mutation for a tree, on the other hand, would swap subtrees with a given 

probability. In general, we should define a mutation that can do both exploration and 

exploitation. Mutation should be able to introduce new genetic material as well as 

modify existing material. 

 In our design, since any chromosome represent a permutation of variable set, 

mutation operators have to be permutation preserving, i.e., they must only generate 

new permutations of variable set. This can be achieved by using swap operation for 

mutation of chromosomes. A swap operation denotes the exchange of the content of 

two genes in a chromosome. The positions of the two genes are randomly chosen. A 

swap operation can change the address offset assignment that may modify the offsets 

of two variables. 

 Figure 3-12 shows the example for swap mutation operation. Two random 

positions are chosen in Figure 3-12(a) and the contents of these two positions are 
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exchanged as shown in Figure 3-12(b). 

 

Figure 3-12 Mutation operation 

 

3.3.3 Object Function 

 Genetic algorithms are often more attractive than gradient search methods 

because they do not require complicated differential equations or a smooth search 

space. The genetic algorithm needs only a single measure of how good a single 

individual is compared to the other individuals. The objective function provides this 

measure for the fitness of an individual in the population. 

 In our design, for a given variable access sequence S and variable set V, object 

function Z decodes a chromosome (i.e., an address offset assignment) of individual I 

and calculate the distance count “count(d)” as described in Definition 3-1. We derive 

our object function Z from the cost function in Definition 3-2： 

∑=)(IZ (the first n maximum count(d)) 

, where n is the number of the first n maximum count(d) that count(d) 1> , mn ≤≤0 , 

12 −≤≤ Vd . 

Our address offset assignment problem is to minimum the cost function in Definition 

3-2 that means to maximum the object function Z(I) above. 

 

b c f g ea d g c f b e ad

(a) (b)
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3.3.4 Stopping Criteria 

 Typically, genetic algorithm will run forever. There should be some criteria to 

specify when the algorithm should terminate. These include terminate upon 

generation, in which it specifies a certain number of generations for which the 

algorithm should run, and terminate upon convergence, in which it specifies a value to 

which the best of generation score should converge. We adopt the latter and described 

our method as follows：. 

Terminate upon convergence：We compare the average score in the current population 

with the score of the best individual in the current population. If the ratio of these 

exceeds a specified threshold, the GA should stop. Basically this means that the entire 

population has converged to a “good” score. The formula of the ratio is described as 

follow： 

 

3.3.5 Parameters Setting in Genetic Algorithm 

 Here, we give our parameter setting in genetic algorithm： 

 Population size：50 individuals 

 Crossover probability for two individuals：0.6 

 Mutation probability per gene：0.01 

 Replacement rate：1/2 of the population size 

 Termination condition：The ratio more than 0.99 

 

Ratio = 
The average score in the current population 

The score of the best individual in the current population 
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3.4 Discussion 

In Table 3-1, we give a comparison of time complexity for offset algorithms with 

a single AR and multiple MRs, including previous researches and our approaches. N 

is the number of variables, L is the length of the access sequence, and E is the number 

of edges in the access graph.  The time complexities of Bartley’s, Tie Break (TB) 

and INC-TB approaches are )( 3 LNO +  and Liao’s approach is )log( LEEO + . We 

compare these approaches to our two approaches：The pruning method descried in 

section 3.2 and the genetic algorithm in section 3.3. Although the pruning method can 

find the optimal address offset assignment, it’s complexity of worst case 

is )!(NO which is too high to run the problem with large variable set size. For genetic 

algorithm, we initialize first chromosome from Liao’s and Tie Break’s results, and the 

crossover, mutation and terminate check operations are finished in linearly time. The 

time complexity of genetic algorithm here is )log( 3 LEENO ++ .  

Although the time complexities of our approaches are higher than previous 

researches, we know that compilation time is not very critical for embedded system. 

Address offset assignment optimization can both reduce code size and improve 

performance. In order to get a high code quality in a reason time, we suggest that 

choose pruning for small problem size to get optimal solution and run GA for large 

problem to find good solution. We will show the address arithmetic code reduction of 

GA that is approximate to the result of pruning method in small problem size and 

superior to other approaches in Chap 4. 
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Table 3-1 Comparison of time complexity for offset assignment algorithms with a 

single AR and multiple MRs 

 Approach Time complexity 

Bartley )( 3 LNO +  

Liao )log( LEEO +  

Tie break (TB) )( 3 LNO +  

INC-TB )( 3 LNO +  

Pruning Method )!( LNO +  

Genetic Algorithm (GA) )log( 3 LEENO ++  
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Chapter 4 Simulation Environment and Result 

 In this chapter, we discuss the simulation environment for analyzing the 

benchmark programs and evaluate the reduction of address arithmetic cost with 

different proposed methods. First, the simulation environment and the benchmarks 

suite are described. Then we present the simulation results obtained from evaluating 

the reduction of address arithmetic code reduction, and compare the reduction effect 

of different proposed methods. 

 

4.1 Simulation Environment 

 In this section, we discuss the OffsetStone suite [11] which is designed for 

address offset assignment problem. We describe the simulation flow, the benchmarks 

program, and the proposed approaches that we will compare with in the OffsetStone 

suite. 

 

4.1.1 Simulation Flow 

  The experimental flow in Figure 4-1, we show how each application program is 

extracted for address offset assignment problem instances by means of several steps 

and the relation among address offset assignment algorithm execution and other 

execution stages. 
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Figure 4-1 Simulation Flow 

 

The complete simulation flow is described as follows： 

1. The ANSI C sources of the application are translated into a three address code 

intermediate representation (IR) by means of the LANCE C Front-End, in order 

to make the variable access sequences explicit. Additionally, this step inserts 

temporary variables for intermediate results that a compiler would normally 

generate. The IR is optimized by standard techniques used in most compilers, 

including common sub-expression elimination, dead code elimination, constant 
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folding, jump optimization, etc. This step ensures that the IR does not contain 

superfluous variables and computations, which a compiler would eliminate 

anyway. 

2. From the optimized IR, the detailed variable access sequence is extracted from 

each basic block. Since any offset assignment is valid throughout an entire C 

function, on global access graph is constructed per function by merging the local 

access graphs of the basic blocks. In this way, all local access sequences are 

represented in a single graph. Each global access graph forms one instance of the 

address offset assignment problem. 

3. In this step, address offset assignment algorithm is executed. For all access 

sequence instances extracted from application program, they are taken as input to 

all address offset assignment algorithms. Then each address offset assignment 

algorithm outputs an address assignment solution. 

4. In the last step, we calculate the total address arithmetic cost for application 

program. Here, we have two inputs：Access sequence and address assignment 

solution, then we calculate the cost by our cost function defined in Definition 

3-2. 

 

4.1.2 OffsetStone Benchmarks 

OffsetStone suite is composed of a large suite of SOA problem instances 

extracted from 31 complex real-world application programs written in ANSI C. These 

include computation-intensive DSP applications and control-dominated standard 

applications [11]. We take computation-intensive DSP applications to evaluate our 

design compare to related work. Here, we give a description of these DSP application 

as follow： 

 ADPCM： 
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Adaptive Differential Pulse Code Modulation (ADPCM) is a technique for 

converting sound or analog information to binary information by taking 

frequent samples of the sound and expressing the value of the samples of 

the sound modulation in binary terms. 

 DSPSTONE： 

The DSPstone benchmark consists of the following three suites： 

1. Application benchmarks are complete program widely employed by 

the DSP user community. 

2. DSP – kernel benchmarks consist of code fragments or functions 

which cover the most often used DSP algorithms. 

3. C – kernel benchmarks consist of typical C statements (loops, 

function calls, etc). 

 FFT： 

Fast Fourier Transform (FFT) is an algorithm which converts a sampled 

complex-valued function of time to a sampled complex-valued function of 

frequency. It is suited to analyze digital audio recordings or synthesize 

sounds. 

 GSM： 

The Global System for Mobile communication (GSM) is a world-wide 

standard for digital wireless mobile phones. European GSM 06.10 is a 

provisional standard for full-rate speech transcoding, prI-ETS 300 036, 

which uses residual pulse excitation/long term prediction coding at 13Kbit/s. 

GSM 06.10 compresses frames of 160 13-bit samples (8 KHz sampling rate, 

i.e. a frame rate of 50 KHz) into 260 bits. 

 JPEG： 

JPEG is standardized compression method for full-color and gray-scale 
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images. JPEG is lossy, meaning that the output image is not exactly 

identical to the input image. Two application are derived from the JPEG 

source code： cjpeg, which does image compression, and djpeg, which does 

decompression. 

 MP3： 

MPEG Audio Layer 3 (MP3) s a compression algorithm developed by the 

Motion Picture Experts Group. Very generally, the algorithm takes a digital 

audio file and reduces its size, while maintaining the quality of the 

recording. 

 MPEG2： 

MPEG-2 is the designation for a group of audio and video coding standards 

agreed upon by MPEG (Moving Picture Experts Group. MPEG-2 is 

typically used to encode audio and video for broadcast signals, including 

digital satellite and Cable TV. 

 VITERBI： 

The Viterbi algorithm is a way to find the most likely sequence of hidden 

states (or causes) that result in a sequence of observed events. It is 

commonly used in information theory, speech recognition and computation 

linguistics. 

 

4.1.3 Address Offset Assignment Approaches in Simulation 

Environment 

 We evaluate our two approaches and other three offset assignment algorithms for 

the extracted benchmarks. Let us review these approaches as following： 

1. OFU：A trivial offset assignment, where variables are assigned to offsets in the 

order of their first use in the code. This order would typically be used in 
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non-optimizing compilers without a dedicated SOA phase, and thus serves as 

baseline case for our experiments. 

2. Liao：Liao’s SOA heuristic algorithm based on the access graph model. 

3. TB：SOA-Liao extended by the tie-break heuristic algorithm. 

4. Pruning：Our approach 1 based on the access graph model. 

5. GA：Our approach 2 by mapping problem to genetic algorithm. 

For the address offset assignment solutions of above approaches, we compute their 

cost by the cost function in Definition 3-2 with one address register and various 

number of modify registers. 

 

4.2 Simulation Results and Analyses 

 In the following subsection, we show our simulations and the analysis including 

the reduction of code size and the influence of modify registers usage. Besides 

pruning method can not deal with too large problem size, we divide our experiment 

into two parts. One is that small instances (size of variable set is less than 17) in 

benchmarks are estimated for pruning method and compared with other approaches. 

Another is that all instances in benchmarks are estimated for all approaches excluded 

pruning method. 

 

4.2.1 Reduction of Code Size 

In Table 4-1, we show the address arithmetic cost for each benchmark and the 

total cost. We first see the results of different approaches with one register and various 

number of modify registers for small instances in benchmarks. In Figure 4-2, we show 

the total cost of five approaches after they are applied. Here we can observe two 

things：First, when multiple MRs are considered, our two approaches have lower cost 
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than other approaches. Second, result of GA is approximately to pruning method that 

is optimal solution. In Figure 4-3, we show the relative cost of approaches compared 

to OFU with 1AR for small instances in benchmarks. As we can see, previous 

researches (Liao and TB) reduce the cost as compared to OFU by about 30% to 46%. 

Our approaches (pruning and GA) have better results that reduce the cost as compared 

to OFU by about 30% to 60%. 

 Figure 4-4 and Figure 4-5 show the results for all instances in benchmarks 

(Pruning method is not included here due to runtime limitations). The best results are 

produced by GA, and the relative cost compared to OFU by about 25% to 65% with 

1AR and various MRs usage on average. 

 

Table 4-1 Address arithmetic costs in benchmarks 

Benchmark Address Arithmetic Cost

ADPCM 2724 

DSPSTONE 3529 

FFT 469 

GSM 10293 

JPEG 29523 

MP3 14763 

MPEG2 13033 

VITERBI 4821 

TOTAL 79155 
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Figure 4-2 Cost reduction of approaches with 1AR and multiple MRs for small 

instances in benchmarks 

 

 

Figure 4-3 Relative cost of approaches compared to OFU with 1AR for small 

instances in benchmarks 
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Figure 4-4 Cost reduction of approaches with 1AR and multiple MRs for all 

instances in benchmarks 

 

 

Figure 4-5 Relative cost of approaches compared to OFU with 1AR for all 

instances in benchmarks 
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4.2.2 Influence of Modify Registers usage 

 As shown in Figure 4-6, we see the relative cost compared to OFU with 1AR and 

multiple MRs for all instances in all benchmarks on average. The x-axis represents the 

different number of MRs used when all algorithms run. The y-axis represents the 

relative cost of all other approaches (pruning method in not included) compared to 

OFU. We observe that previous researches that focus on 

auto-increment/auto-decrement operation optimization limit the use of auto-modify 

operation. On the other hand, as GA’s results shows that optimization consider 

auto-increment/auto-decrement and auto-modify operations simultaneously have more 

reduction rate. And with the number of modify registers increased, the more potential 

for reducing code. 

 

 

Figure 4-6 Relative cost compared to OFU with 1AR and multiple MRs for all 

instances in all benchmarks on average 
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Chapter 5 Conclusion and Future Work 

 Code optimization technique is important for embedded systems to take 

consideration to the limited ROM and RAM size. Even small reductions in code size 

could lead to significant changes in chip area and hence reduction in cost. We 

observed the address offset assignment problem and proposed a technique for 

optimizing address instructions for DSP code generation by considering 

auto-increment and auto-modify operations simultaneously. Compare to previous 

works that focus on auto-increment operation, our considerations have more potential 

for reducing address arithmetic instructions. 

 From experiments using DSP benchmark programs, we confirmed that 

considering auto-increment and auto-modify operations simultaneously in address 

code generation reduces the address code size by 12%-18% over previous researches 

(Liao and TB) solutions and by 30%-33% over a naïve storage assignment algorithm 

(OFU). Based on pruning method and GA may be slow for a large code. However, it 

is not so critical that compilation is at static time. Our works provide valuable hints 

for code generation in compiler and researches on address offset assignment for DSPs. 

As a secondary contribution, we provide two approaches：Pruning method and GA 

which results is superior to previous algorithms. 

 There are many further works in address offset assignment. First, code 

scheduling affects access sequences and could lead to different address offset 

assignment problems. Further work can couple offset assignment problem with code 

scheduling to exploit scheduling on minimizing address arithmetic instructions more 

effectively. Second, subsuming the address arithmetic into addressing mode in AGU 

improves both performance and code size. In our research, we just discussed the 

address code reduction. The effect of performance needs to be taken into account in 
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address offset assignment, such as the number of loop iteration should be considered. 
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