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Ground-state energy of the optical polaron
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The ground-state energy of the optical polaron is calculated by the generalized path-integral

formulation. The ground-state approximation is made to simplify the complicated expression,
and the Ritz variationa1 and direct integration methods are used to obtain the ground-state ener-

gy in the whole range of coupling strength. The results agree with previous work, and it is

found that there is a transition for coupling constant 0., = 9.2. The ground-state energy ob-

tained by harmonic approximation, which is equivalent to taking Gaussian-like trial wave func-

tions, is compared with those obtained by Pekar's trial wave function.

I. INTRODUCTION

The problem of the motion of an electron in ionic
crystals or polar semiconductors has been attracting
the interest of many solid-state physicists for de-
cades. ' The perturbation and the intermediate-
coupling theories4 are valid when the interaction
between the electron and longitudinal-optical pho-
nons is relatively weak and the electron behaves
more or less like a free particle dressed with a few
phonons. On the other hand, the strong-coupling
theory is valid when the interaction is strong enough
to make the electron captured in a self-induced po-
tential which is built up by the field of the correlated
virtual phonons. ' There are also some theories
which interpolate between the weak- and the strong-
coupling theories, " and it is well known that
among all the methods, path-integral theory gives the
best ground-state energy in the overall range of the
coupling strength. ' " The Feynman's path-integral
formalism was restricted to the harmonic-interaction
approximation and it is generalized" recently to un-

specified general form of interaction potential. In
this paper, we try to use the generalized formalism to
calculate the optical polaron energy by analytic nu-

merical variational and direct integration methods
through a ground-state approximation. It is found, in

our ground-state approximation, that the result is
better than Feynman's result in an extremely strong-
coupling case and agree with that of Pekar's; it also
agrees with weak-coupling theories in small-coupling
strength; but this result is still inferior to the
Feynman's harmonic model in the intermediate range
because of the ground-state approximation and one
additional use of Jensen's inequality for the general-
ized formalism. " If within this approximation, the
harmonic-interaction model, which uses the harmonic
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wave function in the generalized formalism with
ground-state approximation, will be inferior to the
results obtained by analytic numerical variational
method with Pekar's-type wave function and direct
integration method. And the transition point
(n, = 9.2) of the unspecified potential case is lower
than that obtained from harmonic-interaction approx-
imation ('n, = 9.4).

II. CALCULATION OF THE OPTICAL
POLARON ENERGY

Because the derivation of generalized path-integral
formalism is very lengthy and tedious, in the present
paper we only briefly write down the results from
Ref. 11. The physical motivation of Feynman's
theory and Luttinger and Lu's variational method
comes from an intuitive belief that in some sense the
reaction of the lattice (phonon) system to the
motions of an electron might be represented approxi-
mately by the reaction of a small number (hopefully,
one) of fictitions particles coupled in some simple

way to the electron and to one another. In the most
simple case, the variational Hamiltonian is chosen as

where p, x and P, R are the momentum and coordi-
nate of the electron and the fictitions particle, respec-
tively; M is the mass of the fictitions particle; and
where we use the units f = m, = coo = 1, m, is the ef-
fective mass of electron in the conduction band, coo is

the frequency of the optical branch phonon which is

taken to be independent of wave vector k. '

The optical polaron energy Eo is a lower bound of
the variational energy E„,

o( r )u„'( r )u„( r ) 1 —exp[ —2C(1+Do„)' 2~ r —r ~]

1+De„
(2)
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where p, =M/(M+I), be„=e„—eo, and C =M/[2(M+I)]', and u„(r) and e„are eigenstate and eigenvalue
of Schrodinger equation with the undetermined variational potential v( r ),

(4)

Since each term in the summation of Eq. (2) is positive, " it is obvious that if we take only the ground-state
term (n =0) in the summation, then the right-hand side of Eq. (2) is still an upper bound of the polaron energy.
Therefore, in this ground-state approximation, we can write

ED~ E„—= ' uo ( r ) uo( r )—,[I—exp( —2C~ r —r ()]
p' ~ & (uo(r)up(r )('
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'

Now, p, and up( r ) are varied to make Eo (p„uo) as
small as possible.

The above energy expression is equal to that of
Pekar's theory plus a term

I
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In the strong-coupling case, we can imagine that the
mass of the fictitions particle M should be large,
hence C ~ to make this additional term extremely
srna11. Since p, is less than or equa1 to one, therefore
our result must be better than, at least equal to, that
of Pekar's. In the weak-coupling case, p, must be
small, and the exponent of expression (5) can be ex-
panded, and it is easily seen in this limit that the po-

I

laron energy is bounded above by —0., which agrees
with that of the second-order perturbation calcula-
tions.

In order to calculate the polaron energy by Eq. (4)
for the overall range of coupling strength, we first ap-

ply the Ritz's variational principle with Pekar's-type
trial wave function which is shown to be extremely
accurate for optical polaron. " This trial function is
given by

u( r ) =N [I +bpr +g (bpr)2]e

where

(6)

N2= 2(b p) 3/[w(14+ 42a + 45a2) 1

Eo (p„,a, b ) can be calculated analytically by using the
following formulas:
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The expression of Eo (p„,a, b) is very tedious and
complicated. It will be included in the Appendix.
We use the direct-search method to find the ex-
tremes of the function Eo (p„a,b) by adopting the
Rosenbrock's rotating-axis algorithm, ' because it
needs only the evaluation of the function. It is found
that there are four local minima for given coupling
strength ot they are: —0.108 504m, —o., —0.75o., and
—0.10114o.', and the situations are found in the
Pekar theory. The convergence criterion of our
computation is set equal to 10 ". Among these local
minima, the smallest one is the absolute minimum
which should be taken as the upper bound to the po-
laron energy. Hence for o. & o., = 9.21, the upper-
bound polaron energy is equal to —o. , and for a ~ n„
the upper-bound polaron energy is equal to
—0.108 504u2.

If harmonic interaction is assumed, then the wave
function is Hermite function and the energy expres-

(10)
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sion in the ground-state approximation can be calcu-
lated analytically, and is given by

0 0 1 0 1E(Q, ru) = —0 —a—exp ——erfc
4

GJ m 0 0
(11)

where 0 = (k/p)' ', cu = (k/M) ' ', and k is the
Hook's constant of the harmonic potential
v(x-K) =-,'k(x-K)'.

The expression (11) has two local minima, one is
—0., the other is —0.10610. , the transition point will

be o.,' = 9.42.
It is seen that the improvement of harmonic poten-

tial by the optimum one is about 2% when e )9.21.
There is no improvement when u & 9.21, for in weak
coupling the Hermite wave function is very similar to
that of Pekar's-type wave function in the limit of
small k.
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Besides the Ritz s variational method, the direct-integration method is also used to calculate the polaron ener-
gy. Since E„ is a function of p, and a functional of up( r ), and the only constraint is that up is normalized, the
stationary conditions for the best choice of interaction potential are equivalent to

r t

8 E„—X J up(r )2dr Sup(r)=0

5EP/Bp, =0

Therefore we have to solve the self-consistent Hartree-type Schrodinger equation

p' nJ2 " ap(r )'
up( r ) —

~ dr, [1—exp( —2Ci r —r i)]up( r ) =epup( r )
2p,

i r —r'i

(12)

(14)

for each p, .
This is a prohibitively laborious numerical work,

since for each given p, , the self-consistent Hartree-
type equation needs many iterations to give the po-
laron energy. Because the second term in the in-
tegral of Eq. (14), although the ingenious integration
scheme of Miyake is used, "' the iterations are still

very time consuming. According to our experience
in the Ritz's method, and it is also shown in
Miyake's work, Pekar's trial function is an excellent
approximation, hence we take p, = 0 when a & n, and

p, = 1 when n & 0, By this assumption we can easily
find: when a & a„Eq. (14) will be reduced to a par-
ticle moving in constant potential of magnitute —u,
when n ) a„Eq. (14) will just be reduced to Pekar's
model and can be solved by direct integration to ob-
tain the exact value of the polaron energy. " There-
fore, by direct integration, the upper-bound polaron
energy is equal to —0.108513m' for cx larger than 0,

III. DISCUSSION AND CONCLUSION

The optical polaron energy is calculated by the gen-
eralized formalism under ground-state approxima-
tion, although the energy is higher than harmonic ap-
proximation of Feynman's model and Luttinger and
Lu's" work which include a11 the excited states; it is
shown that the result of the optimum potential ap-
proach is better than that of harmonic approximation
if they are both under ground-state approximation.
We also find a phase-transition-like behavior at u,
which also occurred, in the work of some other au-
thors, e.g. , Gross, Larsen, ' Luttinger and Lu, "
Manka, '~ Lepine and Matz, ' and Shoji and Tokuda. '

Within our approximation, the mass of the fictitions
particle changes abruptly, as coupling increases, from
zero to infinity, whihc shows the abrupt change of

I

the polaron state from nearly free type to self-
trapping type. However, from the work of Sumi and
Toyozawa, ' the conjecture of Peeters and Devresse"
and the fact that Feynman's polaron theory, which
gives a lower upper bound to the ground-state energy
than the other approaches in most part range of cou-
pling strength, did not predict a phase transition.
Therefore it is still an unanswered theoretical
question —whether this feature is a property of gen-
eral type or if it just comes from approximation. Ac-
cording to the generalized path-integral formalism,
we find that if more terms of excited states were in-
cluded, the lower polaron energy results and the
smaller critical transition coupling strength will be,
e.g. , in harmonic interaction, if only ground state
(n = 0) is included, a, = 9.42; if all the excited states
are included, o., will be 5.8." We also conjecture the
possibility that, by the generalized formalism, if the
optimum potential can be determined, and when all
the excited states are included, would make the
abrupt change disappear, because, in principle, the
generalized formalism should give lower energy than
Feynman's model.
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APPENDIX: EXPRESSION OF E„(p„a,b )

The trial function u ( r ) = N [1+b p, r
+a(bpr)2]e ~""and N'=2(bp)3/[w(14+42a
+45a')], then EP can be expressed as

b'pA i(a) + ~ [~ '(a)~ —(a) -~+'(a))
10243 2' (a) 2 2 (a)

1

1282 22 (a) „~i (b + c)" (b —c)"
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where C =
~ (1 —p, ) ' ' and

A~(a) =874+2622a+4320a +4095a3+ 1771.875a~

A, (a) =A4(a)

A6(a) = 616+2364a+ 3933a'+ 3690a'+1S75a~,

A7(a) =228+1848a+3159a +2880a +1181.25a~,

A8(a) =912a+2136a +1800a3+675a~,

A 9(a) =1140a'+720a3+ 225a~,

5

A&o(a) = $P (a')b" 'l(b+C)"+'
n 1

5

A ~p(a) = XP„(a)b" '/(b —C) "+'
n 1

P~(a) = 0.25

P2(a) = 0.5,
P3(a) = 0.75a+ 0.37S

P4(a) =1.5a

P5(a) =1.875a
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