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程式失控動態分析系統設計與實作 

研究生 : 劉世弘             指導教授:黃世昆 博士 

國立交通大學資訊工程學系（研究所）碩士班 

摘要 

為了符合市場快速開發的特性，發行後的軟體系統常發生未預期的錯

誤。有些錯誤可能導致軟體失控，甚或產生安全弱點。一般現成的商業軟體

（Commercial Off-The-Shelf, COTS）都沒有附原始碼，若軟體發生失控，

我們能做的就是回報給開發此軟體的廠商，並等待他們的修補（patch）。然

而軟體廠商常延誤多時才推出修補程式，有些修補程式甚至與舊有的軟體版

本不相容，未能完全修復錯誤。針對現有商業軟體元件，一般仍使用反向工

程（Reverse Engineering）工具進行測試與觀察軟體執行行為，以判斷該軟

體是否存在可能遭入侵的弱點。本研究的目標在於設計系統、協助判斷程式

失控點是否隱藏可被運用的軟體漏洞。我們希望此系統能提供系統化的程式

失控分析。 

目前已有許多研究著力於偵測程式錯誤並指出錯誤形成的原因，有些是

透過靜態程式碼分析或動態觀測程式執行過程來進行分析，而大部分的研究

採用的方法是稽核或修改程式原始碼，以達到觀察的目的。然而由於本研究

是針對現成的商用軟體，沒有原始碼可供分析，我們因此發展一個實驗與攔

截（instrument and interception）的系統，能夠偵測軟體異常執行流程，

並判斷是否可能成為安全上的漏洞。本研究發展堆疊錯誤點偵測、逼近（stack 

corrupt site approximation and identification）與呼叫目標確認（call 

target validation）兩種機制去偵測程式的執行流程是否發生異常。透過對

微軟視窗（Microsoft Windows）平台上商業軟體的實驗，對現有多種弱點都

能有效偵測，並經由攔截狀況分析中瞭解產生異常的原因。此實驗也證實錯

誤點偵測機制能指出導致堆疊異常的函式。最後我們與相關工具比較，以評

估系統的可行性。 
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Abstract 
    In order to meet time to market, software often releases with unintended flaws. 

Some cause software crashes that are highly related to security vulnerabilities. 

Commercial Off-The-Shelf (COTS) software normally comes without source code. If 

there happened any program crash, all we can do is to report it to the vendor and wait 

for the patch. Some software companies, however, develop their patch not in timely 

manner, or even no longer support the older version. Normally, intended users can use 

debuggers to observe the running behavior of the software and determine if there 

exists any vulnerability to exploit. Our objective is to design a tool that helps 

systematically detect security-related errors from the crash. We want to automate the 

process to a certain extent for crash analysis. 

Much research work focused on detecting program errors and identifying their 

root causes either by static analysis or observing their running behavior through 

dynamic program instrument. Much of the work analyzes or instruments the source 

code of the software. However, with the assumption of lack of the source code, we 

develop an execution instrument and interception system and add detection 

mechanism of anomaly control flow inside to automatically judge if a certain crash 

can be exploited. We develop stack corrupt site identification and call target 

validation to detect if the control flow of the program is changed abnormally. Case 

studies of several commercial Windows applications from known exploits have 

proved the applicability of our system and better understanding of the exploiting path 

of these vulnerabilities. It manifests that our corrupt site identification mechanism 

points out the vulnerable function where the stack is polluted. At last, we compare this 

work with several related work to manifest the evaluation in the recent research. 

 

Keywords: Dynamic Analysis, Software Wrapper, COTS Vulnerability Testing 
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1 Introduction 

 
1.1 Motivation 

    Program running behavior has much to do with software security. Especially, 

crashed software may be exploited to be a potential vulnerability. It is difficult to 

reconstruct system failures after a program has crashed and much research effort has 

been taken on detecting program errors and identifying their root causes either by 

static analysis or observing their running behavior through dynamic program 

instrument. In order to meet the time to market, software releases with unintended 

flaws. Some of them cause software crash, while others may introduce security 

vulnerabilities. Our goal is to design a tool that helps analyze the program running 

behavior and determine if it is an exploitable vulnerability. We try to intercept and 

monitor running behaviors during programs in execution when only COTS 

(Commercial Off-The-Shelf) executables available for analysis.  

 
1.2 Background 

    The purpose of this work is to automatically detect security-related errors from 

the crash. First of all, we must explain what our so-called “exploitable crash” is. 

Actually, this concept is much similar to exploiting the vulnerabilities in the programs. 

Buffer overflow vulnerabilities dominate the security attacks in recent years because 

it provides the attackers with exactly what they need, the space to inject payload and 

the change of control flow of the program. In this section, two common kinds of 

buffer overflow crashes will be explained, including how they are produced, how the 

attackers can exploit them to alter the control flow and how they can be detected. 

    We cannot generate enough testings to prove inexistence of all bugs. The 

problem such as strcpy, which will be shown in the following, is well known but 

exists so far. Although we can swap strcpy with strncpy, it still cannot make our 

code secure. There still exists many other vulnerable function such as wsprintf() 

or sprintf() to manipulate the string operations. 
1.2.1 Stack-based Overflow Crash 

 Stack overflow is a programming error that might cause the program to be 
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controlled by malicious attackers [17]. When the execution control of the program is 

taken, the attacker can do anything with the privilege of this program. This 

programming error is a notorious attack problem for years. 
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flow corruption. The purpose of this work is to detect crashes due to frame pointer 

and return address overwriting because this vulnerability will be exploited by careful 

manipulation. 

Figure 2 is a simple example to show the stack overflow crash. We can 

obviously see that the return address overwritten alters the control flow. 

 

/* This is a program to show the stack overflow crash. It is intended to 

overwrite the frame pointer and the return address of the function func 

with 0x61616161, which is ‘aaaa’ in ASCII. */ 

 

#include <stdio.h> 

#include <string.h> 

 

int func(void) 

{ 

 char str[8]; /* declare a character buffer in func */ 

 strcpy(str, “aaaaaaaaaaaaaaaaaaaa”); /* copy an overlong string  

to this buffer */ 

 return 0; /* func will not return correctly because of stack corruption */ 

} 

int main(void) 

{ 

 func();  /* call the vulnerable function */ 

 printf(“Should not see this line.\n”); /* execution flow is altered, so this  

message will not be seen */ 

 return 0; 

} 

Figure 2  A sample program to show the stack overflow crash 
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1.2.2 Heap-based Overflow Crash 

Based on the overwritten of the return address and saved base pointer on the 

stack, the execution flow can be changed. Heap is the memory region for dynamic 

data allocated at runtime. Heap-based overflow can also change the execution flow of 

the program and is more complicated than stack-based overflow. We will introduce 

how the heap-based overflow overwrites the destination of CALL instruction to 

change the execution flow and causes programs to crash. 

 The basic method is to pollute a function pointer by the neighboring buffer. 

Memory objects are often on the heap and through these objects, we can overwrite the 

pointer of virtual function table [20]. 

  
1.3 Objective 

We will develop an execution instrument and interception system. This system 

will instrument the process and perform the detection mechanism to analyze whether 

the crash is exploitable or not. Usually, the intended attacker does not have source 

code of the program and uses the debugger to judge whether the program is 

exploitable or not. Therefore, our instrument process should not need to access the 

source code. This system will monitor the running behavior of the program when the 

execution meets the point we instrument. For stack-based overflow crash, we will 

instrument the prologue and epilogue of the API call and the user function call to 

record the stack evolvement. By verifying the integrity of the stack-trace made in the 

prologue and epilogue, we can determine that the stack is corrupted or not and point 

out the corrupt site of the program. For heap-based overflow crash, we will instrument 

all the CALL instruction whose destination is determined at runtime. When this type 

of CALL is executed, we will validate the legality of its target. We want to perform 

sort of input tracing to find out the path through which the corrupt site is deduced. 

Through memory-related API call wrapper, we design a data structure to save buffer 

size and address information. When the stack corrupt site is identified, we can 

traverse the data structure to find out why the corrupt site occurs due to some specific 

input data.  
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With this tool, we don’t need to step by step execute the program to observe the 

crash process of a certain crash and judge its exploitability. It will detect two kinds of 

control state anomaly: saved base pointer / return address and function pointer 

corruption. We will evaluate our tool with actual known vulnerabilities. 

 
1.4 Contribution 

    The contribution of this thesis is as following: 

(1) The control flow anomaly detection mechanisms, such as stack corrupt site 

identification and call target validation, are presented. By using the debugger to 

analyze a crash, testers have to perform something like single-step executions and 

observe the running behavior of the program such as stack evolvement with core 

dump. However, core dump is produced at crash site and the stack has already 

been corrupted. Therefore, this debugging process is tedious and important actions 

may be hidden from being observed, such as functions that were called but silently 

returned before the crash. The mechanisms we proposed serve as measures to 

automate the process of crash analysis related to the security errors.  

(2) Our stack corrupt site identification mechanism is helpful to understand why a 

certain stack-based crash occurs. If the distance between the corrupt site and the 

crash site is large, it is very likely that testers may miss the corrupt site and do not 

know what happened until the program crash. Current research often prevents the 

occurrence of the crash but does not point out where the corruption point is. 

(3) There is an unusual tricky method to exploit the stack-based buffer overflow 

vulnerability through the saved base pointer [2, 12]. Our stack frame backtracing 

approach detects the anomaly of the saved base pointer with limitations. 

(4) We extensively survey the interception techniques on instrument and intercept 

programs. Through these techniques our instrument tool monitors their running 

behaviors in execution when only COTS (Commercial Off-The-Shelf) executables 

available for analysis on the platform of Microsoft Windows.  
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1.5 Synopsis 

    In Section 2, related work will be presented. We investigate the Win32 API 

hooking techniques, which will be presented in Section 3. It is discussed in a 

dedicated chapter because our implementation on process rewriting for function call 

wrapping use a similar method to one of these injection and interception approaches. 

Moreover, one of API hooking techniques is utilized to provide tainted input analysis 

to a certain extent. The research method is explained in Section 4. The 

implementation issues are presented in Section 5. Finally, the experimental results are 

in Section 6 and the conclusions in Section 7. 
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2 Related Work 

 

A considerable amount of work has been performed on detecting program errors 

and identifying their root causes either by static analysis or observing their running 

behavior through dynamic program instrumentation. In this section we review 

different works in each category and relate them to our work. 

 
2.1 Static analysis 

 Static analysis is based on the information provided by the source code. It may 

validate the call sequence to find the program error or check if the vulnerable function 

call is used without actually executing the application [29]. The drawbacks of this 

way to find bugs are: (1) there are too many program states to verify, (2) it cannot 

know some dynamic information such as pointers and should use other inexact 

measures to analyze [8, 25, 27]. Livshits and Lam proposed a pointer alias analysis 

with path and context sensitivity for bug detection in C programs [15]. They made an 

unsound assumption to reduce spurious aliases and speedup the analysis. Our method 

combines the static binary disassembly analysis and dynamic instrumentation and 

monitoring to point out where the corruption occurs. 

Chen and Wagner use a formal approach to examine whether the program 

violates the pre-defined security properties, which are described by Finite State 

Automata (FSA) [3]. The programs to be tested are modeled as pushdown automata 

(PDA) and MOPS uses model-checking techniques to determine the reachability of 

exception states in the PDA. Liblit and Aiken present an algorithm for computing a 

set of paths given a crash site and a global control flow graph [14]. Furthermore, it 

uses some post-crash artifacts such as the stack trace and the event trace to reduce the 

set of possible execution paths. ARCHER (ARray CHeckER) uses path-sensitive, 

interprocedural symbolic analysis to bound the value of both variables and memory 

size [31]. Accesses that violate constraints are flagged as errors.  
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2.2 Runtime Inspection 

Some works automatically add codes in the source and observe the behavior of 

these codes at runtime [5, 28]. The difference from our work is that we instrument the 

runtime process image, not the source. Therefore even if we don’t have the source, we 

still can detect the program errors, or even add survival patches. Hangal and Lam 

present DIDUCE for tracking down software bugs using automatic anomaly detection 

[9]. DIDUCE aids programmers in detecting complex program errors and identifying 

their root causes. It dynamically formulates hypotheses of invariants obeyed by the 

program. Our work is also based on runtime inspection, but in different method from 

DIDUCE. DIDUCE observes the invariants at runtime and check if the program 

violates them. Binary Rewriting protects the integrity of the return address on the 

stack by modifying the binary code [19]. The difference from our work is that its 

detection on stack overflow has false positives when the corruption occurs not in the 

current stack frame. There is another work presented by Nebenzahl and Wool similar 

to Binary Rewriting [16]. They developed an anti-stack-smashing defense technique 

for Microsoft Windows systems. The instrument process, which is called 

“vaccination” in their paper, is at install-time and does not need access to the source 

code. But they do not present any results on detecting the known or unknown 

vulnerabilities of real software. Avijit et al. presented a runtime approach for 

protection against all known forms of buffer overflow attacks [1]. Their solution 

consists of two tools: TIED and LibsafePuls. TIED extracts size information of all 

global and automatic buffers defined in the program from the debugging information 

produced by the compiler and inserts it back in the program binary as a data structure 

available at runtime. LibsafePlus performs unsafe C library function wrapping. They 

combine these two tools to protect any character array operation performed by the 

unsafe library function. The difference from our work is that they retrieve the array 

size information from debugging information. However, we observe the runtime 

behavior of the program. Ruwase and Lam developed a dynamic buffer overflow 

detector CRED that checks the bounds of memory accesses [22]. It is implemented as 

an extension of the GNU C compiler version 3.3.1. Their protecting mechanism from 
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buffer overflow is based on the boundary checking other than stack inspection or call 

target observation. There is another interesting work of runtime inspection called 

PointGuard [4]. It is a compiler technique to defend buffer overflows by encrypting 

pointers when stored in memory, and decrypting them only when loaded into CPU 

registers.  

 
2.3 System Call Interception Techniques 

 System call interception is the fundamental technique in our work. We have 

surveyed a lot of system call interception techniques, which are listed in Table 1. 

Detours developed by Hunt and Brubacher is a library for instrumenting arbitrary 

Win32 functions on x86 machines [10]. It replaces the first few instructions of the 

target function with unconditional jump, which points to the user-provided detour 

function. Users can do the interception work in the corresponding detour function. 

The instructions removed from the target function are preserved in a corresponding 

trampoline function. When the target function is called, the control will jump to the 

detour function. After finishing the interception work, the detour function can call the 

trampoline function or return to the caller. 

Pietrek develops API-SPY in his book [18]. API-SPY tools lists API’s name in 

the order they are called, and record the parameters as well as the return value. The 

purpose of this work, the same as Detours, is to get control before the intended target 

function call is reached. However, the technique used in API-SPY is DLL redirection 

by modifying the Import Address Table (IAT), much different from the way Detours 

used, which is to modify the target function’s prologue code to transfer control by 

inserting a JMP instruction at the start of the function. 

 
2.4 Checkpoint Techniques 

 The best way to find software bugs is to reproduce the fault at any time. 

However, ideally checkpoint the process has some difficulties. We have surveyed 

some checkpoint techniques in order to achieve some kind of rollback and replay. 

Liang et al. present NT-SwiFT for software implemented fault tolerance on Windows 
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NT [13]. The contribution of this work is that they transparently checkpoint and 

recover applications on Windows NT for fault tolerance. During checkpointing, 

NT-SwiFT dumps the user memory space of the application to the physical storage. If 

the application fails afterwards, users can roll back the state to the last checkpoint in 

the same process. Srouji et al. also present a system for software fault tolerance on 

Windows NT platform [26]. The purpose of this work is very similar to NT-SwiFT. 

However, the main difference between them is that this work tries to reconstruct the 

system state when rolling back to the checkpoint by re-invoking certain Win32 API 

calls that change the system state such as CreateThread(), CreateFile(), 

CreateSemaphore(), etc. Besides, the technique of wrapping Win32 API calls in this 

work is to modify the address in the IAT, similar to API-SPY. 

Zandy and Miller perform checkpoints of GUI-based applications on X-window 

system [33]. The system enables the GUI of any application to transparently migrate 

to or replicate on another display. It is based on a small X window server extension 

that enables an application to retrieve its window session from the window server and 

a library of GUI migration functionality that is injected in the application process at 

runtime.  

 
2.5 Fault Triggering and Robustness Testing 

We also survey some fault triggering works because we want to produce a lot of 

crashes and examine whether these crash are exploitable or not. Ghosh and Schmid 

present an approach to testing COTS software for robustness to operating system 

exceptions and errors [7]. That is, they bring up an idea to assess the robustness of 

Win32 applications. It instruments the interface between the software application and 

the Win32 APIs. By manipulating the APIs to throw exceptions or return error codes, 

it analyzes the robustness of the application under the stressful conditions. Whittaker 

and Jorgensen summarize the experiences of breaking software in their lab [30]. By 

studying how these software failed, they presents four classes of software failures: 

improperly constrained input, improperly constrained stored data, improperly 

constrained computation and improperly constrained output. Software testers can use 
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the four classes of failures to break the software. 

An empirical study of the robustness of Windows NT applications using random 

testing was made by Forrester and Miller [6]. This work designs a special random 

testing methodology to test the capability of the applications on NT to process the 

messages and events. It uses SendMessage, PostMessage, or keybd_event and 

mouse_event to deliver the random input to the running applications. In their 

experiment result, almost all the applications on the Windows NT cannot handle the 

random message/event input well. They, furthermore, analyzes two open source 

software, emacs and mozilla, to see why they failed.  Almost all failures result from 

the pointer de-referencing error. 

Jorgensen adopts different testing methods from other random testing with 

hostile data streams [11]. It does not feed non-sense input to the application. Instead, 

it creates lexically, syntactically, semantically deformed files to feed Adobe Acrobat 

Reader (AAR) and observes if AAR will fail or not. When AAR fails, it uses debug 

information to inspect the relationship between the values of the registers and the 

string inserted in the deformed document intentionally. 

 
2.6 Replay and Debug Parallel Programs 

General debugger is not suitable for debugging parallel programs. Ronsse et al. 

explains the relationship between execution replay and debugging [21]. The main 

problem is that parallel programs are non-deterministic: each program run (even with 

the same input) might result in different program execution. It is so-called 

non-determinism property of the parallel programs. For example, programs do not 

determine the sequence of using semaphores for processors. It depends on the 

competition of processes’ execution at runtime. As a result, when debugging the 

parallel programs, the execution details should be recorded for the debugger to 

reproduce the former execution. The purpose is to remove the non-determinism 

produced in execution time. 
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3 Win32 API Hooking Techniques 

 

    API call interception technique is the groundwork of our system. The ability to 

control API function calls is extremely helpful and enables developers to track down 

the internal actions happening during the API call. Actually, this is the reason why the 

title of this work adopts the word “instrument”. The purpose of API call interception 

is to take control of some execution code. That is the so-called “stub” to force the 

target application to execute the injected code. Therefore, the injected code can easily 

monitor the program by parameter logging, return value checking, stack dump, frame 

pointer tracing, etc. We have investigated some API hooking techniques and the 

details of these methods will be discussed in the following. 

    There are two roles in the Win32 API hooking system. One is the Hook Server, 

which injects the Driver, i.e. spying DLL code, into the address space of the target 

application at some proper time. The other is the Hook Driver, which is injected in the 

target process’ space to execute the interception work. Usually, the Hook Server 

should communicate with the Hook Driver. It retrieves the information from the 

Driver when the Driver performing the interception. In the following, the injection 

and the interception work we have surveyed will be introduced separately, 

corresponding to the Server’s and the Driver’s work. 

 
3.1 Injection 

    Dynamic-link libraries (DLLs) are the structural elements of Microsoft Windows. 

They are separate files containing functions that could be called by programs to 

perform certain jobs. It is the DLLs that we want to write our spying code in. We can 

consider them as an extension to the application programs. In Win32, each process 

has its own address space and its own set of loaded DLLs. The DLL’s file image must 

be mapped into the address space of the calling thread’s process so that the program 

could call a function in a DLL. Here comes the problem. How does the application 

program use our function in the spying DLLs? 

Since the target application does not have any information about our spying DLL, 
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we need to use some tricks to force the DLL into the target process to perform the 

interception. There are three injection techniques we have studied. 

 
3.1.1 Registry 

    There is a registry key that records the DLL names loaded by the operating 

system into the address space of each process at the process startup time. We can 

simply add the DLL name to the value of the following registry hierarchy: 

 

HKEY_LOCAL_MACHINE\Software\Microsoft\WindowsNT\CurrentVe

rsion\Windows\AppInit_DLLs 

 

    The loading of these DLLs in the above registry key is performed when the 

USER32.DLL initializes. In its DllMain, USER32.DLL will use the explicit linking, 

LoadLibrary() call, to map these files into the address space. This is a tedious and 

manual way to inject the spy DLL into our target application process and has some 

disadvantages: 

1. Windows has to be rebooted for the activation of the injection. This will add a lot 

of overhead for our experiments. 

2. All the processes that use the USER32.DLL will be injected the spy DLL. We have 

to add some check code in the spy DLL to avoid injecting to the processes we are 

not interested in. Furthermore, if the application we are interested in does not use 

the USER32.DLL such as most console-based applications, this technique fails to 

inject the spy DLL. 

 
3.1.2 Windows Hooks 

    Installing a windows hook by SetWindowsHookEx() can also force the certain 

DLLs into the address space of the target processes. The hook is installed as follows: 

HHOOK SetWindowsHookEx ( 

int idHook,  

HOOKPROC lpfn,  
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HINSTANCE hMod,  

DWORD dwThreadId 

); 

The first parameter indicates the type of hook procedure to be installed. The 

second parameter identifies the pointer to the hook procedure. The third parameter 

specifies the handle to the DLL containing the hook procedure. Finally, the last 

parameter specifies the thread to hook. The operating system will automatically inject 

the DLL containing the hook procedure into the address spaces of all processes 

influenced by the hook. 

    The advantage of this method is that it can use the UnhookWindowsHookEx() to 

unload the DLL when the hook is not needed. However, there are still some shortages: 

1. The API call made by the target process before the hook is installed will be missed. 

2. The spy DLL will not actually be loaded until the some actions performed by the 

target process trigger the hook procedure. 

3. Windows hooks increase much overhead of extra message processing so as to 

decrease the performance of the whole system. 

 
3.1.3 Remote Threads 

    We adopt this technique in this work. This method is more flexible and trying to 

force the target application process to call the LoadLibrary() and load the spy DLL. 

However, the problem is that we don’t have any access to the target process’s thread 

and trick it to load the DLL for us. In order to overcome this difficulty, we need some 

Win32 functions that could affect other processes. CreateRemoteThread() is the one. 

Its prototype is as follows: 

HANDLE CreateRemoteThread ( 

 HANDLE hProcess, 

 LPSECURITY_ATTRIBUTE lpThreadAttributes, 

 SIZE_T dwStackSize, 

 LPTHREAD_START_ROUTINE lpStartAddress, 

 LPVOID lpParameter, 
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 DWORD dwCreationFlags, 

 LPDOWRD lpThreadId 

); 

 CreateRemoteThread() allows one process to create a thread that runs in the 

virtual space of another process. Compared with the CreateThread(), this API just 

have one more parameter to specify the process that will contain the newly-created 

thread. The lpStartAddress parameter identifies the memory address of the thread 

function, which will be executed after the remote thread has been created. We can use 

GetProcAddress() to retrieve the address of the LoadLibrary() API and consider it 

as thread function to load our spy DLL. Because KERNEL32.DLL is always mapped 

to the same address of every process, the address of the LoadLibrary() API will be 

correct for sure. Therefore, we can succeed to ask the target process to execute 

LoadLibrary() on our behalf. 

    In Matt Pietrek’s work, he does not use the CreateRemoteThread() API.. 

Instead, he modifies the target process’s memory and registers so that it look like the 

process is calling LoadLibrary() on its own. The advantage is that his method is 

portable to the platforms that do not support CreateRemoteThread(). 

 
3.2 Interception 

    After injecting the Hook Driver (spy DLL code) into the target process’s address 

space, what we have to do next is to intercept the API call. That is, the injected DLL 

should be responsible for accomplishing all the preparation for interception. In the 

following, three interception techniques we surveyed will be introduced. 

 
3.2.1 Modification of the Import Address Table 

    This technique is based on the fact that Win32 executables files and DLLs are 

built on the neat structure of Portable Executable (PE) file format, which is an 

extension of Common Object File Format (COFF). PE file format consists of several 

logical chunks called sections. Each section stores a specific type of data. For 

example, the .text section contains all general-purpose code produced b the compiler 
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or assembler; the .edata section is a list of the functions and data that the PE file 

exports for other modules. 

    In order to implement the API interception, we should pay more attention on 

the .idata section, which contains information about functions that the module 

imports from other DLLs. An important table resided in this section (so-called Import 

Address Table) contains file-relative offsets to the names of imported functions 

referenced by the executable’s code. When the program is loaded to the memory, the 

addresses in the IAT will be patched to the real addresses of the imported functions.  

Figure 3 shows the process of calling a function in another module. When you 

call a function in another module (for example, GetMessage in USER32.DLL), the 

CALL instruction produced by the compiler does not transfer control directly to the 

function in DLL. Instead, the call instruction transfer control to a JMP DWROD 

PTR[00040042] instruction in the .text section. The JMP instruction indirects 

through a DWORD variable in the .idata section. This .idata section DWORD 

contains the real address of API function entry point. 

 Application program
USER32.DLL 

 
 

0x77879426 

 

 

 

JMP DWORD PTR[00040042]

 

CALL 000144408 

(Call to GetMessage) 

 

 

.idata 
(import table)

 
GetMessage Code 

0x77879426 
0x00040042 
 

 

 

 

 0x00014408 intercept.DLL 

Call to GetMessage 

 
.text

 

 

 

 

 

Figure 3  The process of calling a function in another module 
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3.2.2 API patch 

    This method directly modifies the API function itself. One approach is to replace 

the first byte of the target API with a breakpoint interrupt instruction (INT 3). Any 

call to the target API will generate an breakpoint exception, and the operating system 

will inform your API interceptor, which serves as a debugger of the target process, to 

handle it. The shortcoming of this approach is the overhead caused by Windows 

exception handling mechanism. 

 Before Interception After Interception

 
TargetFunction: 

  push ebp 

  mov ebp,esp 

  push ebx 

  push esi 

  push edi 

  ... 
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  ... 
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//interception 

...  

call Trampoline 

 

Trampoline: 

  push ebp 
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  push ebx 
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user-supplied detour function. After the detour function performs the interception 

work, it calls the trampoline function, which consists of the initial instructions from 

the target function and a jump to the remainder of the target function. 

 
3.3 The Comparison of API Interception Works 

According to the ways of injection of users’ DLL into the target process and 

interception mechanisms, there exists some different kind of works for different 

purposes. Table 1 compares these surveyed interception work. After the consideration 

about stack frame evolving due to added monitor function and the completeness of the 

API interception mechanism, Detours is chosen to be the framework of this work. 

 

Table 1  The comparison of API interception techniques 

 Watchd [13] Detours [10] API-SPY [18] Intel [26]

Ways to intercept API 

Modify IAT to the wrapper 

function and when 

finishing logging then 

calls the real target 

function. 

Modify target function

(Replaces the first few 

instructions of the target 

function with an 

unconditional jump to 

the user-provided 

detour function) 

Modify IAT to the 

logging routine and 

when finishing logging 

then jumps back to the 

real target function. 

Modify IAT to the 

checkpoint wrapper and 

when finishing logging 

then jumps back to the 

real target function. 

Does other process 

be influenced? 
No (Copy-on-write) No (Copy-on-write) No No 

Ways to inject DLL 

into the process 

Use CreateRemote- 

Thread to call LoadLibrary 

1.Modify the process’ 

memory and registers 

such that the primary 

thread will execute 

LoadLibrary 

2.Rewrite the import 

table of the binary 

Modify the process’ 

memory and registers 

such that primary 

thread will execute 

LoadLibrary 

N/A 
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Ways to Launch 

app.exe 
CreateProcess 

1.CreateProcess 

2.System loader loads 

app.exe 

CreateProcess 

Use their own loader to 

load app.exe 

(Command line loader)

Where to log 

parameters 
In the wrapper function

In the user-provided 

detour function 

In the logging routine of 

the stub 
In the wrapper function

Ways to get the 

Return value 

Get the return of the target 

function directly in the 

wrapper function. 

Get the return of the 

target function directly 

in the detour function.

The target function 

directly returns to 

app.exe，so it’s not easy 

to get the return value. 

(Using the “return 

address stack”) 

N/A 

Can determine which 

API to intercept by the 

configuration file 

No (Should write user 

code in the DLL to be 

injected) 

No (Should write user 

code in the DLL to be 

injected) 

Yes, after reading the 

configuration file, it 

dynamically allocates 

memory (so-called 

stub) for each function  

N/A 

Does save registers 

before interception 
No 

N/A (It can be done in 

the detour function by 

using “pushad” and 

“popad”.) 

Yes (Use “pushad” and 

“popad” in the stub) 

Yes (Save/restore the 

registers in the stub)
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4 Research Method 

 

Our research uses the following approaches to manifest and analyze the crash 

process as precisely as possible. 

 
4.1 Control Flow Anomaly Detection 

    If programs crash, programmers and hackers are eager to find the bugs. There are 

two main causes of a crash. The first is accessing data in an invalid address, for 

example, null pointer assignment. The second is transferring control to an invalid 

address, often due to buffer overflow. The latter is the more serious in the two cases. 

In this situation, we can transfer the control of the program by overwriting the 

following data:  

(1) Return address: The corruption of this data belongs to stack-based control flow 

anomaly and will be detected by our stack corrupt site identification mechanism. 

When the current function returns, the program transfers the control to the code 

designated by the return address. By overwriting the return address, we can jump to 

any position in the process. After the function returns, the control flow will be 

intercepted. This is the popular target of buffer overflow exploit. 

(2) Saved base pointer: The corruption of this data also belongs to stack-based control 

flow anomaly and will be detected by our stack corrupt site identification mechanism. 

Saved base pointer points to the previous stack frame. If the saved base pointer is 

overwritten, the process will have a fake frame after returning from the current 

function and will jump to the fake return address. 

(3) Function pointer: This data may be in the stack or heap and will be detected by our 

call target validation mechanism. When overwriting the function pointer, the process 

will jump to an arbitrary position. Overwriting the virtual function pointer in the heap 

is also a common vulnerability in C++ program. 

    The entire control flow anomaly caused by overwriting these data mentioned 

above would be detected by the following two mechanisms. Some limitations will be 

described in the Section 6. 
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4.1.1 Stack Corrupt Site Identification 

    When the program crashes, by inspecting it using the debugger we know the 

instruction where the program stops running. The point where the program stops 

running abnormally is the crash site. When the stack-based overflow occurs, the stack 

is “corrupt” for the saved base pointer and the return address corresponding to a 

certain function is overwritten. This is the point where the stack becomes abnormal. 

At some later time, this program must either crash or be exploited. The goal of the 

stack corrupt site identification is that right after the control flow of the program has 

been changed, we identify where the corrupt site is as precisely as possible. 

    Figure 5 is a sample program to demonstrate the distinction between the crash 

site and the stack corrupt site. Function main passes the pointer of its local buffer 

buff to function a, and then function a passes it to function b. In function b, after 

strcpy() finishes copying the overlong string to main’s local buffer, the stack is 

corrupt. However, the program has not yet crashed until the function main returns. 

Obviously, the debugger could not specify the distance between the stack corrupt site 

and the crash site. 

 

#include <stdio.h> 

 

void b(char *buff){ 

strcpy(buff, “AAAAAAAAAAAAAAAAAAAAAA”); /* overlong string */ 

/* stack corrupt site */ 

...... 

}  

void a(char *buff){ 

b(buff); 

} 

void main(){ 

    char buff[4]; 
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a(buff); 

} /* crash site */ 

Figure 5  The sample program to demonstrate the crash site and the corrupt site 

 

In the following sub-sections, the mechanism to identify the stack corrupt site is 

described. 

 
4.1.1.1 Pertinent Registers to a Stack 

    In order to understand the operation on a stack, we should know some specific 

assembly language knowledge. Normally, there are three registers that are pertinent to 

the operation on a stack: EIP, EBP and ESP. 

    EIP is the extended instruction pointer. It stores the address of the current 

instruction we are executing. When we call a function, this address will be pushed on 

the stack. We call the saved EIP the return address (RET). When exiting the function, 

the control flow will go back to RET for later execution. ESP is the extended stack 

pointer. It points to the current position on the stack. When we use push or pop 

instruction to add or remove data on the stack, ESP will change as well. Moreover, we 

could change the ESP by direct stack pointer manipulation. Finally, EBP is the 

extended base pointer. It is used to access the stack data such as local variables and 

offsets in a function and should keep the same throughout the lifetime of the function. 

 
4.1.1.2 Stack Frame Backtracing 

    Stack frame backtracing employs the fact that saved base pointer points to 

previous saved base pointer in the stack. Typically, the function prologue is used to 

allocate the space on the stack for local variables. The following short disassembly 

shows how the compiler decided to implement the allocation of stack variables. 

// function prologue 

PUSH EBP  // save old frame pointer 

MOV EBP, ESP // the current EBP points to the saved EBP 

SUB ESP, X  // stack variables allocation with X bytes 
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The old EBP is pushed on the stack, and then the current EBP is overwritten by 

the address of stack pointer, which points the top of the stack. That is, the current EBP 

points to the previous saved EBP. If we continuously trace back the saved EBP, the 

tracing will reach the saved EBP of main function. We utilize stack frame backtracing 

to verify that the call stack is sound and furthermore identify the stack corrupt site 

when the stack-based overflow occurs.  

    We define our term “stacktrace”. In Figure 6, function A invokes function B. 

Therefore, the stack frame of function A is in the higher address and the stack frame 

of function B is in the lower address. Now assume that the EBP register points to the 

saved base pointer of function B. If we perform the stack frame backtracing, we will 

generate a stacktrace, which comprises {(SavedEBP, RET)B, (SavedEBP, RET)A, …, 

(SavedEBP, RET)Main}. Actually, this sequence could be understood easily by 

realizing that the main function calls some other functions and then some other 

functions call function A, and then function A calls function B. 

 
High

Low

Func B

Func A

Param 1 
RET 

SavedEBP 

Local var. 

Param 2 

Param 1 

Param 2 

RET 

SavedEBP 

Local var. 

(1) FuncA invokes FuncB. 
(2) FuncB’s saved base pointer points 

to FuncA’s saved base pointer. 
(3) Current EBP register points to 

FuncB’s saved base pointer. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6  The operation of stack frame backtracing 

    We first insert a monitor function in the function’s prologue and epilogue 

separately to perform the detection mechanism and we have to ensure that this 

monitor function will not disturb the original program’s normal execution. What this 
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monitor function performs in the function’s prologue and epilogue is as following: 

(1) In the prologue:  

‧Reserving all the registers 

‧Using the current EBP to enforce stack frame backtracing 

‧Restore all the registers 

(2) In the epilogue: 

‧Reserving all the registers 

‧Using the current EBP to enforce stack frame backtracing 

‧Comparing the stacktrace with the prologue’s stacktrace and point out the 

difference 

‧Restore all the registers 

    To detect the stack corruption, we compare the stacktraces generated in a certain 

function’s prologue and epilogue. If the stacktraces are different, there must exist 

some stack buffer in a certain function growing out of bound so that the return address 

or the saved EBP corresponding to that function is overwritten. 

 
4.1.2 Call Target Validation 

    This mechanism is designed for the control flow anomaly resulted from the 

function pointer overwritten. We instrument the application process at the point where 

each CALL instruction is. With this instruction-grained instrument, we insure that 

each CALL instruction is transferring control to the normal function entries. 

    We use the software interrupt to enforce this instrument. We overwrite the first 

byte of the CALL instruction with breakpoint interrupt instruction (INT 3), and install 

a corresponding exception handler. When an INT 3 instruction is executed, it 

generates a Debugger Breakpoint Exception, and the handler gains control to perform 

call target validation. After finishing the validation, we will restore the original EIP 

and CALL instruction.  

    According to the way of the CALL target is determined, we divide the CALL 

instruction into four types: API call, relative call, memory call and register call. The 

former two types of CALL instruction does not need to instrument the INT 3 
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instruction because typically these CALL targets will not be overwritten. The term 

“static calls” will be used to represent these two calls in the following text. For the 

memory call and register call, the target of them will be determined at runtime. We 

only instrument these “dynamic calls”. The details of the implementation of this 

software interrupt will be described in Section 5. 

The steps of the call target validation are as following. 

(1) Off-line parse the disassembly of the program to get the CALL information. 

‧Recognize the CALL type as either static or dynamic. 

‧Retrieve the function entries and the callsites of valid jump instructions. 

(2) There are some INT3 instructions in the original programs, and we just handle the 

INT 3 we have inserted. 

(3) According to the information parsed at step (1), we could compute the CALL 

target address at runtime. 

(4) When the call target computed at step (3) matches one of the function entries 

retrieved at step (1), this call target is valid. 

 

#include <stdio.h> 

 

void a(void) { 

   printf("a was called.\n"); 

} 

void b(void) { 

   printf("b was called.\n");  

} 

int main(void) { 

   void (*p)(void);   

   p = a; 

   (*p)();            

   *p = (void (__cdecl *)(void))0x12345678; 

   (*p)(); 
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   return 0; 

} 

Figure 7  A sample program to detect the function pointer anomaly 

 

We could see a sample program in Figure 7. The function pointer p declared in 

main is assigned in turn the address of function a and an invalid value 0x12345678. 

When the function a is called through function pointer p, the call target is valid. 

However, when the next 0x12345678 is called, we detect that this call target is invalid 

because it does not match any function entries in this program. 

 
4.2 Tainted Input Tracing 

    Establishing the bridge connecting the software robustness and security is a 

brand-new and fantastic idea in the research area of software testing. Traditional 

testing techniques are well equipped to find the bugs that violate the specification, but 

lack of looking for how these bugs relate to the security issues. For example, there are 

plenty of application crashes during our everyday life and you may wonder whether 

bugs leading to these crashes are security-related.  

 

 

 

 

 

 

 

Input system call buffer

 
Memory-related system  

call destination 

Figure 8  The buffer tree constructed during the program execution 

 

    Input tracing mechanism combines the function wrapping techniques and the 

stack overflow detection with the maintenance of the runtime buffer tree. First of all, 

I/O related API call such as ReadFile would be intercepted to create the root buffer 
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for those parameters related to the input. Second, when memory related API calls, 

such as lstrcpyw, are invoked, its destination memory buffer will be added as a child 

node of the root buffer. The buffer tree is shown in Figure 8. Finally, when stack 

corruption occurs, this system will traverse the whole buffer tree and compare the 

buffer address to the corrupted stack address. If these two addresses matches, the path 

to the suspect buffer will be printed out. And this path stands for the input pollutant 

flow causing the stack to be corrupted. That is, malicious users may have capability of 

putting their payload on the stack. 
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5 Implementation 

 

The instrument tool mentioned above helps testers to know why the programs 

crash by observing the stack and input tracing. Furthermore, to manifest the exploit 

process of the known vulnerable programs is another proof that this tool is useful. 

Using the log of runtime monitoring on the running applications, this tool can help 

analyze why this software is exploitable. 

 
5.1 System Architecture 

There is an instrument tool to communicate with the API/function wrapper DLL 

that is injected into the target process. During the execution of the application 

program, testers may want to modify the parameter or return values of a certain 

suspicious functions. Figure 9 shows the system architecture. 

 
Kernel 

 

User Space 

 

 

Wrapper 

DLL 

　 Send requests to modify some values

　 Receive monitor results 

　

　

The instrument tool 

 

 

 

 

 

 

 

Figure 9  System Architecture 

 
5.2 Process Rewriting for Function call wrapping 

For purpose of monitoring the stack frame evolving and tracing EBP/return pair, 

however, API call interception still seems too coarse to pinpoint the reason why the 

application programs crash. Actually speaking, the most ideal scenario for crash 

analysis is to figure out which line of code is the onset of bugs, and it is impossible 

without source code. What we can do furthermore is to wrap user functions to achieve 

the finer-grained monitoring. 
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Function call wrapping is especially helpful to catch the site resulting in crashes 

happening on the stack. For instance, if a function in a program does some string 

manipulation without careful bound checking, it may crash when the string in process 

is out of bound. Such vulnerabilities bring about the classic and simple attack, i.e. 

stack overflow. By overwriting the return address through stack variables overflowing, 

the attacker can intercept the programs when this function returns. Therefore, the 

control jumps to a location where the attacker would have inserted malicious code. To 

deserve to be mentioned, buffer overflow attack is a kind of injection/interception 

mechanism. Compared with the API interception techniques mentioned above, buffer 

overflow cannot successfully return back to the correct site after some destructive 

activities since the return address and the stack is overwritten. Figure 10 shows the 

flow of the function call wrapper generation. 

 

 

 

 

 

Binary OllyDBG FunctionInfo Parser Prologue / epilogue

Instrumentation Library Function Wrapper Prologue / epilogue 

 

Figure 10  The flow of the function wrapping 

The principle of function wrapping is similar to what Detours does in the API 

call interception. Detours replaces the first few instructions of the target API with 

unconditional jump to the user-provided monitor function. The primary difference 

between Detours and this function wrapper is as follows: 

(1) Detours acquires the API call entry address from static linking. However, this 

function wrapper acquires the user function from the disassembly of the binary code 

of the application program through the FREE tool named “OllyDBG” [32]. 

(2) Detours only instruments the prologue of the API call. However, this function 

wrapper instruments both the prologue and epilogue of the user function. Comparing 

the stack tracing in a function’s entry and exit is extremely helpful to detect the 

anomaly of the stack. 
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5.2.1 Binary Disassembly 

 Our research method relies heavily on the disassembly ability of OllyDBG, 

which is a 32-bit assembler level analysing debugger for Microsoft® Windows®. It 

does much work on binary code analysis that we could utilize especially when the 

source is not available. It could recognize procedures, API calls, and complex code 

constructs, like call to jump to procedure. These analyses help us parse the 

disassembly of the application to retrieve the necessary information such as procedure 

call site, entry address, etc. In addition, it could disassemble all the executable 

modules the application loads. 

 
5.2.2 Function Info Parser 

In order to transfer control from the execution of the application process to our 

runtime-generated stub, we need to replace instructions at the function prologue and 

epilogue with a JMP to the stub. The type of the procedures we recognize is the 

typical function prologue and epilogue, which will do operations on the stack and 

frame pointer. Our function info parser retrieves prologue/epilogue information that is 

needed by the instrument library. In typical C/C++ programs, the compiler will 

generate the prologue as “ PUSH EBP” “ MOV EBP, ESP” and the epilogue as “POP EBP” 

“RET (const)”. The prologue is 3 bytes and the epilogue is at most 3 bytes. Therefore, 

we need to look the instructions following the prologue and the instructions above the 

epilogue until the space is enough to put a JMP instruction. 

The following example is the result of parser: 

> 

60F71213 558BEC8B4508 6 

60F71243 5DC3 2 

60F71248 0FB60A2BC15DC3 7 

60F71251 5DC3 2 

< 

The first line is the needed information of a prologue. The first field is the entry 
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address of this prologue. The second field is the binary code of this prologue that will 

be overwritten by the instrument library. When instrumenting this prologue, the 

instrument library will check the third field that is the length of the binary to be 

replaced. If the length is less than 5 bytes, it means that there is not enough space to 

substitute the prologue for the JMP instruction and we leave this kind of procedure to 

breakpoint interruption instruction instrumentation if needed. The second lines to the 

last line of this function information are the epilogues. There may be multiple return 

site of this function, but not all of them have enough space to be instrumented. 

When looking for more space for instrumenting the JMP instruction, we have to 

exclude the following situations that might disturb the correct execution of the target 

program. When the instructions following the prologue or the instructions above the 

epilogue should not be: 

(1) JMP / CALL related instruction 

(2) JMP target such as the following example 

push ebp 

mov ebp,esp 

    x:    push edi         

.... 

         .... 

      jmp x 

The reason is that if we have to move these instructions to our stub, and the 

control flow of the original program is disturbed, which will result in the software 

failure even program crash. 

 
5.2.3 Instrumentation Library 

 We develop an instrumentation library to replace the certain functions at runtime. 

According to the information provided by the function info parser, the instrumentation 

library will allocate the space for the stub and append the intended instructions on the 

stub. The most important instruction is to CALL the monitor function where we could 

backtrace the stack for corruption detection. Detours provides some useful library to 
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append the certain instruction on the stub. 

 
5.3 Breakpoint Interrupt 

    We use the breakpoint interrupt instruction to instrument each CALL instruction 

in the program we are interested in to enforce the call target validation mechanism. 

We overwrite the first byte of the CALL instruction with INT 3, and install a 

corresponding exception handler. When an INT 3 instruction is executed, it generates 

a Debugger Breakpoint Exception, and the handler gains control to perform call target 

validation. After finishing the validation, we will restore the original EIP and CALL 

instruction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INT 3  (CALL) 

… 

… 

INT 3  (CALL) 

… 

(1) 

(3) 

// Set break Points            (2) 

SetBreakPoint(address); 

...... 

// Main Debug Loop 

while(1) { 

   if(WaitForDebugEvent(&DebugEv, INFINITE)) { 

      switch(DebugEv.dwDebugEventCode) { 

         case EXCEPTION_DEBUG_EVENT: 

            switch(DebugEv.u.Exception.ExceptionRecord.ExceptionCode) {

               case EXCEPTION_BREAKPOINT: 

           // handler      (4) 

        break; 

            } 

      } 

      ContinueDebugEvent(); 

   } 

} 

Application process

(1) The instrument tool creates/attaches the application process. 

(2) Replace the first byte of the CALL instruction with INT 3. 

(3) When trapping to OS, the instrument tool uses Win32 Debug API to handle breakpoint exception.

(4) The handler performs the call target validation. 

Figure 11  The instrument scenario of INT 3 instruction 

    The scenario of this instrument process is shown in Figure 11. The whole 

instrument process consists of four steps. First, the instrument tool will create the 

application process. Second, it replaces the first byte of the CALL instruction with 

INT3. Third, when the application process is executing the INT 3 we have inserted in, 

the control will trap to operating system. Then the instrument tool uses Win32 Debug 
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API to handle the breakpoint exception. Last, what we have to do is perform the call 

target validation in the corresponding handler. 

    When the application process is executing the INT 3 instruction we have inserted 

in, the EXCEPTION_DEBUG_EVENT debug event is generated. A debug event is an object 

used to communicate with debugger, which is the role we are playing. When a debug 

event is generated in the target application process, the operating system will inform 

us to handle this. We will use WaitForDebugEvent() to acquire the debug event and 

information about the event in a DEBUG_EVENT structure. This structure is defined as 

following: 

typedef struct _DEBUG_EVENT {  

  DWORD dwDebugEventCode;  

  DWORD dwProcessId;  

  DWORD dwThreadId;  

  union {  

      EXCEPTION_DEBUG_INFO Exception;  

      CREATE_THREAD_DEBUG_INFO CreateThread;  

      CREATE_PROCESS_DEBUG_INFO CreateProcessInfo;  

      EXIT_THREAD_DEBUG_INFO ExitThread;  

      EXIT_PROCESS_DEBUG_INFO ExitProcess;  

      LOAD_DLL_DEBUG_INFO LoadDll;  

      UNLOAD_DLL_DEBUG_INFO UnloadDll;  

      OUTPUT_DEBUG_STRING_INFO DebugString;  

      RIP_INFO RipInfo;  

  } u;  

} DEBUG_EVENT, *LPDEBUG_EVENT; 

    The member dwDebugEventCode identifies the type of debug event. The 

dwProcessId member is the identifier of the process in which the debugging event 

occurs. The union u provides additional information relating to the debug event. The 

way to retrieve the additional information is determined by the dwDebugEventCode 

member. 
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    We use WaitForDebugEvent() and ContinueDebugEvent() to handle the 

debug event. The WaitForDebugEvent() blocks the our instrument tool and waits for 

a debug event to occur in a process being debugged. When the debug event occurs, 

the system suspends all threads in the process being debugged. Its prototype is as 

following: 

BOOL WaitForDebugEvent( 

  LPDEBUG_EVENT lpDebugEvent,  // debug event information 

  DWORD dwMilliseconds          // time-out value 

); 

    The second parameter describes the number of milliseconds to wait for a debug 

event. If a debug event does not occur in this time, the function times out and returns 

FALSE. If a debug event occurs then the function returns TRUE and puts the 

information about event type into the DEBUG_EVENT structure. Then we check the 

event type. If it is the event corresponding to INT 3, we perform the call target 

validation measure as described in Section 5. After our code for validating the call 

target, we have to use the ContinueDebugEvent() to resume the thread execution 

and wait for next event to occur. 

 

5.4 Experience and Further Discussion 

 

    When implementing this instrument tool, we encounter some issues that are not 

intuitively simple to overcome. We address these issues in this sub-section and 

describe our solutions and experience. 

 

5.4.1 Stack Region 

    When performing stack frame backtracing, we need to figure out when to stop 

tracing the frame pointer. The straightforward idea is that the frame pointer should not 

point to the address that is out of stack region.  

At first, we try to use VirtualQueryEx() API to retrieve the meta-data of a 

stack region. It provides information about a region of consecutive pages beginning at 
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a specified address that share the same attributes. VirtualQueryEx() determines the 

attributes of the first page in the region and then scans subsequent pages until it scans 

the entire range of pages, or until it encounters a page with a non-matching set of 

attributes. Because of our wrong assumption that the whole stack region shares the 

same attributes, we make a serious mistake on determining the stack upper boundary. 

Therefore, in this wrong implementation we did not traverse the whole stack and 

missed many stack frames to check. 

Our solution to overcome this problem is to use Thread Information Block (TIB) 

to identify when to stop backtracing the frame pointer. TIB is a key system data 

structure in Microsoft Windows and there are many data related to threads inside it, 

including a pointer to the thread’s structured exception handler list, the location of the 

thread’s stack and the location of the thread local storage. Furthermore, each thread in 

the system has its corresponding TIB. 

In all Intel-based Win32 implementations, the FS register points to the TIB. As a 

result, we have to look at what the FS register points to for getting the information 

hidden in the TIB. For example, FS:[0] points to the structured exception handling 

chain, while FS:[2C] points to the thread’s local storage array. The information we 

needed to judge the stack region is pvStackUserTop and pvStackUserBase field in 

the TIB. The 04h DWORD pvStackUserTop filed contains the linear address of the 

topmost address of the thread’s stack. This thread should not have a stack pointer 

value that is greater than or equal to the value of this field. The 08h DWORD 

pvStackUserBase field contains the linear address of the lowest committed page in 

the thread’s user mode stack. As the thread uses successively lower addresses in the 

stack, those pages will be committed, and this field will be updated accordingly. The 

18h DWORD ptibSelf field holds the linear address of the TIB. We use this data to 

access the pvStackUserTop and pvStackUserBase structure. The following code is 

to demonstrate how to access these system data structure. 

PTIB pTIB; 

__asm { 

  mov EAX, FS:[18h] 
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  mov [pTIB], EAX 

} 

Therefore, we could use pTIB->pvStackUserTop and pTIB->pvStackUserBase 

to set the boundary when performing stack frame backtracing. 

 
5.4.2 Stack Evolvement After Instrument 

    We need to explain more about the stack evolvement after our code is 

instrumented. The instrument library replaces certain functions at runtime. It will 

allocate the space for the stub and append the instructions used to perform stack frame 

backtracing on the stub. The instruction to call the monitor function will add a stack 

frame on the stack, and this stack frame is not our concern. 

    The instrument library inserts a JMP instruction in the prologue and epilogue and 

the inserted JMP instruction in prologue jumps to the following stub code: 

PUSH addr 

CALL Monitor_Function 

ADD ESP, 4 

// Instructions which is recognized by parser and moved from the original prologue 

PUSH EBP 

MOV EBP 

……  

// Jump back to the next instruction after prologue recognized by the parser 

JMP Next_inst_after_prologue 

    The PUSH addr instruction is intended to pass a parameter addr, which is the 

address of the prologue, to the Monitor_Function but it adds 4 bytes on the stack. 

Afterward, the CALL Monitor_Function instruction pushes the return address of 

monitor function on the stack. After calling the monitor function, its saved base 

pointer will also pushed on the stack. Therefore, in the monitor function we should 

access the return address of the wrapped function by adding 12 bytes as following: 

unsigned long ret = *(unsigned long *)(EBP+12); 

Similarly, the inserted JMP instruction in the epilogue jumps to the following 
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stub code: 

...... 

PUSH addr 

CALL Monitor_Function 

ADD ESP, 4 

// Instructions which is recognized by parser and moved from the original epilogue 

...... 

POP EBP 

RETN 

The stack evolvement in the epilogue is similar to that in prologue. Therefore, 

access to the return address and saved base pointer of the wrapped function is the 

same as that in prologue and is not trivial as well. 

 
5.4.3 Corrupt Site Approximation 

    Because of insufficient space to instrument a JMP instruction to prologue and 

epilogue, we do not wrap all the typical functions in the target program. Therefore, 

some corrupt site approximation could be discussed to increase the precision of the 

corrupt site identification. 

    For a certain wrapped function, its stacktraces performed in prologue and 

epilogue will fall in one of situations below under an assumption: a “normal” 

stacktrace is defined.  

(1) If the stacktrace in the prologue is normal but the stacktrace in the epilogue is 

abnormal, it means that the stack is corrupted in this wrapped function. 

(2) If the stacktraces in the prologue and epilogue are normal, it means that the stack 

is not yet corrupted. 

(3) If the stacktrace in the prologue is abnormal, it means that no matter the stacktrace 

in the epilogue is normal or not, the stack is corrupted in one of the previous 

functions. 

    Case 3 can be divided into two situations.  

(i) If the stacktrace in current wrapped function’s prologue and the stacktrace in the 
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previous wrapped function’s prologue differ in one saved base pointer / return 

address pair as following, it means that the corruption occurred in the previous 

wrapped function. 

Stacktrace in previous wrapped function’s prologue: 

(EBP1,RET1),(EBP2,RET2),…,(EBPn,RETn) 

Stacktrace in current wrapped function’s prologue: 

(EBP1,RET1),(EBP2,RET2), …,(EBPn,RETn),(EBPn+1,RETn+1) 

(ii) If the stacktrace in current wrapped function’s prologue and the stacktrace in the 

previous wrapped function’s epilogue differ in one more saved base pointer / 

return address pairs as following, it means that the corruption occurred in one of 

the previous unwrapped functions. 

Stacktrace in previous wrapped function’s prologue: 

(EBP1,RET1), …,(EBPn,RETn) 

Stacktrace in current wrapped function’s prologue: 

(EBP1,RET1),…,(EBPn,RETn),(EBPn+1,RETn+1),(EBPn+2,RETn+2),(EBPn+3,RETn+3) 

    If we could retrieve the function entries corresponding to these different stack 

frames, we could use another method such as software interrupt to wrap these 

functions to identity the exact corrupt site. Therefore, we could increase the precision 

of corrupt site identification. 
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6 Experiments and Assessment 

    This instrument tool is used to detect some known buffer overflow 

vulnerabilities through the proof-of-concept exploit code that will lead the program to 

crash. 

 
6.1 Buffer Overflow in RobotFTP Server 1.0 

To validate the correctness of the BEAGLE prototype, we need to verify that our 

stack corrupt site detection does point out the vulnerable function where the stack is 

polluted. We instrument RobotFTP Server 1.0, which has a known stack overflow 

vulnerability, to demonstrate that BEAGLE could detect the abnormal stack at 

runtime when running the exploit and terminate the program. The description of the 

vulnerable program follows. 

    RobotFTP Server is an FTP server for the Microsoft Windows platform. It has a 

non-trivial buffer overrun bug in the function that processes the login information that 

an FTP client sends. An attacker can first login with a username longer than 48 

characters and login again with a username 1994 character long to overflow the return 

address of this function. When this program is running under the BEAGLE 

instrumentation, this buffer overflow will be detected and terminate the program to 

prevent from transferring control to the attacker’s payload. The result is shown in 

Figure 12. 

    We can see first frame pointer and return address pair in the third line from 

bottom, (41414141, 58585858), and this is the second overlong input username. 

Before program returns from this vulnerable function, our epilogue monitor function 

backtraces the stack and discovers that this stack trace is abnormal by comparing the 

stack trace in the prologue monitor function. 
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Figure 12  The stack backtrace of the RobotFTP Server 1.0 when overlong input 

 
6.2 Buffer Overflow in Serv-U 4.1 

    While executing SITE CHMOD on a nonexistent file, Serv-U constructs the error 

message [24]. The code resembles the following: 

sprintf(dst, “%s: No such file or directory.”, filename); 

The length of the dst buffer is limited. If a long filename was received, Serv-U will 

crash. 

    The function 00419080, which handles the CHMOD command, passes its local 

variable as an error message buffer to function 0059F9B0. The function 0059F9B0 

calls function 005A01C4, which calls function 005A015C, which calls function 

005A0114, which calls function 0059F988, which calls function 0059BBF8. The last 

function 0059BBF8 then overflow the local variable in the first function 00419080. 

    By our definition, the function 00419080 is the crash site of this bug; while the 

function 0059BBF8 is the corrupt site of this bug. The instrument tool successfully 

detects stack corruption in the epilogue of the function 0059BBF8 and infers the 

correct calling sequence. Other approaches, such as StackGuard or Binary Rewriting, 

would not detect the buffer overflow until the crash site. 

 
6.3 Buffer Overflow in Palace 3.x client 

    The Palace is a graphical chat. Its client has a stack-based buffer overflow due to 
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a dangerous call to wsprintf when a user visits an overlong link similar to the 

following [23]: 

    palace://(‘a’ x 118)(‘BBBB’)(‘XXXX’) 

When this situation occurs, this instrument tool detects that saved EBP / return 

address pair is abnormal. 

 
6.4 Smashing C++ VPTR 

    We demonstrate the call target validation mechanism through a smashing C++ 

VPTR example. Figure 13 shows that object f1’s buffer is overwriting object f2’s 

virtual function pointer and cause the control of the program abnormal. 

 

#include <stdio.h> 

#include <string.h> 

class foo 

{ 

public: 

char buf[20]; 

virtual void bar(void){ 

printf("calling bar!\n"); 

} 

}; 

int main(int argc, char* argv[]) 

{ 

class foo *f2 = new foo(); 

class foo *f1 = new foo(); 

gets(f1->buf);  /* overflow point*/ 

f2->bar(); 

return 0; 

} 

Figure 13  The sample program of smashing C++ VPTR 
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    In Figure 14, our instrument tool sets breakpoint interrupt instruction to perform 

the call target validation. Because the overlong input overwrites the virtual function 

pointer and causes the object f2 could not find its correct virtual function table. We 

find out that address 61616161 is not a legal function entry in the program and give 

the alarm. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14  The result of detecting the function pointer anomaly 

 
6.5 Wrapping Coverage 

    We show our function wrapping coverage by parsing the disassembly of five 

common programs in Microsoft Windows. Our function info parser is responsible for 

distinguishing whether a function has enough space to instrument a JMP instruction in 

its prologue and epilogue. The result is shown in Table 2 and will be discussed 

following the Table. 

    The meaning of each column is detailed as follows: 

(1) Typical: This is the number of functions that have typical prologue and epilogue. 

The ideal situation in our implementation is that we wrap the whole typical 

functions in the program and perform stack frame backtracing mechanism to 

detect the stack anomaly.  

 42



(2) Prologue-epilogue: This is the number of functions that have sufficient space in 

prologue and epilogue to insert a JMP instruction. It is these functions that we 

wrap, and we can compare the stacktraces produced in prologue and epilogue. 

(3) Prologue: This is the number of functions that have sufficient space in prologue. 

(4) Epilogue: This is the number of functions that have sufficient space in epilogue. 

 

Table 2  Wrapping coverage 

Program Typical Pro/epilogue Prologue Epilogue Wrapping %

Word 9863 7283 9862 7284 73.84% 

Excel 9046 6701 9045 6701 74.08% 

Access 3034 1902 3033 1902 62.69% 

PowerPoint 3149 2115 3148 2115 67.16% 

Notepad 36 26 36 26 72.22% 

Our wrapping coverage depends on whether there are sufficient spaces in the 

prologue and epilogue. Because we have to ensure that the JMP instruction we insert 

in function’s prologue and epilogue will not disturb the program, the limitation of our 

wrapping technique occurs. When the instructions following the prologue or the 

instructions above the epilogue are JMP / CALL related instruction or JMP target, we 

should not wrap this function. According to our experiment, if we ignore these 

conditions, the program will even crash. Another reason for not enough space is that 

the function is less than 5 bytes. 

We observe that the number of functions that have sufficient space in epilogue is 

always less than that in prologue. This is because that an epilogue has higher 

probability to become a JMP target. We found that it is also the main reason why 

epilogues have insufficient space to insert a JMP instruction. 

 
6.6 Comparisons 

    We try to compare our work with the related work that also adopts dynamic 

method to provide buffer overflow protection. The comparison is shown in Table 3. 
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The comparison can manifest the evaluation of this work in the recent research. 

 

Table 3  Comparison of our work with other dynamic approaches 

 StackGuard [5] RAD [19] TIED&Libsafe [1] CRED [22] Our Work 

Protection 
principle 

Protect return 

address 

Protect return 

address 
Bound checking Bound checking 

Protect return 

address / saved 

base pointer / 

function pointer

Method Insert canary 
Backup return 

address 

Wrap unsafe C 

function for range 

checking 

Validate pointer 

access 

1. Backtrace stack 

frame 

2. Validate call 

target 

Implementation 
platform 

Linux Windows Linux Linux Windows 

Source code 
needed? 

Yes No 
No if compiled 

with –g option
Yes No 

When to 
instrument 

Compilation time 
Off-line binary 

rewriting 
Runtime Compilation time Runtime 

RET protection Yes Yes Yes Yes Yes 

Function pointer 
protection 

No No Yes Yes Yes 

BOF due to pointer 
arithmetic 

Yes Yes No Yes Yes 
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Corrupt site 
identification 

No No Yes Yes Yes 

Granularity of 
corrupt site 

N/A N/A Function level Instruction level 

1. Function level 

for stack-based 

corruption 

2. Instruction 

level for 

heap-based 

corruption 

Runtime 
overhead 

Low Low Low 
High (memory 

consumption) 
Low 

 
    The rows in Table 3 are as following: 
(1) Protection principle: There are two primary principles to prevent buffer overflow 

attack. One is to protect some important data related to control flow, and the other 
is to check boundary of each memory access.  

(2) Method: This row presents the method to achieve the corresponding protection 
principle. 

(3) Implementation platform: This row shows the platform on which the work 
implements. 

(4) Source code needed: This row shows whether the source code of the target 
program is needed or not. A certain technique without the source code results in 
the wider-spread adoption in practice. 

(5) When to instrument: This row indicates the timing at which the guard code is 
instrumented in the target program.  

(6) RET protection: This row indicates whether the work provides return address 
protection mechanism. 

(7) Function pointer protection: This row indicates whether the work provides 
function pointer protection mechanism. 

(8) BOF due to pointer arithmetic: This row indicates that whether buffer overflow 
on some critical location due to pointer arithmetic can be detected or not. Some 
mechanisms can only guard against buffer overflows due to improper use of C 
library functions. 

(9) Corrupt site identification: This row shows whether a certain technique can 
identify where the corruption occurs. 

(10) Granularity of corrupt site: This row shows the level that a certain technique 
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reaches to identify the corrupt site. 
(11) Runtime overhead: When a certain mechanism is instrumented in the target 

program, we evaluate the runtime overhead coarsely into two categories: low and 
high. The former means that the instrument will not affect the program’s normal 
execution and the latter means that the program’s performance could decrease a 
lot. 

  Although this research is intended to analyze a crash related to the security 
problems, this tool can also be treated as a protection tool. The protection provided by 
other buffer overflow protector is just to terminate the program and give the alarm 
when buffer overflow occurs. 
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7 Conclusion and Future Work 

 

    We presented the control flow anomaly detection mechanism such as stack 

corrupt site identification and call target validation, as a measure to automate the 

process of crash analysis related to the security errors. We study and employ the 

interception techniques to instrument and intercept programs. By these techniques we 

monitor their running behaviors in execution when only COTS (Commercial 

Off-The-Shelf) executables available for analysis on the platform of proprietary 

Microsoft Windows. Our contribution lies, not in inventing new approaches to detect 

buffer overflow attacks, but in trying to add some sort of automation in crash analysis 

to build up a relationship between software robustness and system security. Moreover, 

our stack corrupt site identification is helpful to understand why a certain stack-based 

crash occurs. When the program crashes, its inherent bug may have correlation to the 

vulnerability to be exploited. We design a tool that helps analyze the program running 

behavior and determine if it is an exploitable vulnerability. By process rewriting and 

breakpoint interruption to get control over a particular piece of code execution, we 

intercept the running process and checkpoint their execution status to judge if this 

crash is exploitable or not. 

    A limitation of current implementation is the lack of data flow analysis. Under 

the assumption of source code unavailable, it is not easy to understand how the tainted 

input flows to the corrupt site. If the information of data flow path is available, it will 

be helpful to determine the exploitability of the software. However, the primary 

problem is how to combine the runtime observation with the data flow analysis to 

deduce the exploitability. 
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