
國 立 交 通 大 學

資 訊 工 程 學 系

碩 士 論 文

程式失控動態分析系統設計與實作

The Design and Implementation of a Dynamic Instrument Tool

for Program Crash Analysis

研 究 生: 劉世弘

指導教授: 黃世昆 博士

中華民國九十三年六月

程式失控動態分析系統設計與實作

The Design and Implementation of a Dynamic Instrument Tool
for Program Crash Analysis

研 究 生: 劉世弘 Student: Shih-Hung Liu
指導教授: 黃世昆 博士 Advisor: Dr. Shih-Kun Huang

國 立 交 通 大 學

資 訊 工 程 學 系

碩 士 論 文

A Thesis
Submitted to

Department of Computer Science and Information Engineering
College of Electrical Engineering and Computer Science

National Chiao Tung University
In Partial Fulfillment of the Requirements

For the Degree of
Master

In
Computer Science and Information Engineering

June 2004

Hsinchu Taiwan, Republic of China

中華民國九十三年六月

 ii

程式失控動態分析系統設計與實作

研究生 : 劉世弘 指導教授:黃世昆 博士

國立交通大學資訊工程學系（研究所）碩士班

摘要

為了符合市場快速開發的特性，發行後的軟體系統常發生未預期的錯

誤。有些錯誤可能導致軟體失控，甚或產生安全弱點。一般現成的商業軟體

（Commercial Off-The-Shelf, COTS）都沒有附原始碼，若軟體發生失控，

我們能做的就是回報給開發此軟體的廠商，並等待他們的修補（patch）。然

而軟體廠商常延誤多時才推出修補程式，有些修補程式甚至與舊有的軟體版

本不相容，未能完全修復錯誤。針對現有商業軟體元件，一般仍使用反向工

程（Reverse Engineering）工具進行測試與觀察軟體執行行為，以判斷該軟

體是否存在可能遭入侵的弱點。本研究的目標在於設計系統、協助判斷程式

失控點是否隱藏可被運用的軟體漏洞。我們希望此系統能提供系統化的程式

失控分析。

目前已有許多研究著力於偵測程式錯誤並指出錯誤形成的原因，有些是

透過靜態程式碼分析或動態觀測程式執行過程來進行分析，而大部分的研究

採用的方法是稽核或修改程式原始碼，以達到觀察的目的。然而由於本研究

是針對現成的商用軟體，沒有原始碼可供分析，我們因此發展一個實驗與攔

截（instrument and interception）的系統，能夠偵測軟體異常執行流程，

並判斷是否可能成為安全上的漏洞。本研究發展堆疊錯誤點偵測、逼近（stack

corrupt site approximation and identification）與呼叫目標確認（call

target validation）兩種機制去偵測程式的執行流程是否發生異常。透過對

微軟視窗（Microsoft Windows）平台上商業軟體的實驗，對現有多種弱點都

能有效偵測，並經由攔截狀況分析中瞭解產生異常的原因。此實驗也證實錯

誤點偵測機制能指出導致堆疊異常的函式。最後我們與相關工具比較，以評

估系統的可行性。

 iii

The Design and Implementation of a Dynamic Instrument Tool
for Program Crash Analysis

Student: Shih-Hung Liu Advisor: Shih-Kun Huang

Department (Institute) of Computer Science and Information Engineering

National Chaio Tung University

Abstract
 In order to meet time to market, software often releases with unintended flaws.

Some cause software crashes that are highly related to security vulnerabilities.

Commercial Off-The-Shelf (COTS) software normally comes without source code. If

there happened any program crash, all we can do is to report it to the vendor and wait

for the patch. Some software companies, however, develop their patch not in timely

manner, or even no longer support the older version. Normally, intended users can use

debuggers to observe the running behavior of the software and determine if there

exists any vulnerability to exploit. Our objective is to design a tool that helps

systematically detect security-related errors from the crash. We want to automate the

process to a certain extent for crash analysis.

Much research work focused on detecting program errors and identifying their

root causes either by static analysis or observing their running behavior through

dynamic program instrument. Much of the work analyzes or instruments the source

code of the software. However, with the assumption of lack of the source code, we

develop an execution instrument and interception system and add detection

mechanism of anomaly control flow inside to automatically judge if a certain crash

can be exploited. We develop stack corrupt site identification and call target

validation to detect if the control flow of the program is changed abnormally. Case

studies of several commercial Windows applications from known exploits have

proved the applicability of our system and better understanding of the exploiting path

of these vulnerabilities. It manifests that our corrupt site identification mechanism

points out the vulnerable function where the stack is polluted. At last, we compare this

work with several related work to manifest the evaluation in the recent research.

Keywords: Dynamic Analysis, Software Wrapper, COTS Vulnerability Testing

 iv

誌謝

 首先，要感謝我的指導教授黃世昆博士，謝謝老師這些日子以來的細心指

導，給予許多寶貴的意見與想法，使得這篇論文得以完成；並感謝老師在生活與

做事上的觀念分享，讓我明白每個人在一個團隊中要盡心盡力地扮演好自己的角

色，才能使這個團隊卓壯與進步；並且要感謝中研院的梁德容教授，他的思路與

邏輯常常讓問題更加清楚。再來要感謝中研院軟體方法實驗室的黃舜溫學長以及

博士班的蔡昌憲學長，在做研究的這段過程裡給與我技術上與心態上的建議與教

導，在我鬆懈的時候給我提醒，在我茫然的時候給我意見，讓我得以完成這篇論

文，非常謝謝他們。接著要謝謝中研院軟體方法實驗室的其他學長，有袁勤國學

長、蔡和諺學長、洪偉能學長、陳宗裕學長、林宗伯學長與陳寬達學長，給我在

研究生這段期間生活上與技術上的幫忙與指教，讓我更加順利。最後要謝謝我的

祖母與父母給我的支持與鼓勵，容忍我的任性與脾氣，感謝他們長久以來對我所

做的一切；也謝謝宛真的陪伴以及給我的叮嚀與嘮叨，得以完成這篇論文。最後

祝福我所有的朋友同學平安快樂。

劉世弘謹誌

民國九十三年六月

 v

Table of Contents

1 Introduction..1

1.1 Motivation..1
1.2 Background..1

1.2.1 Stack-based Overflow Crash...1
1.2.2 Heap-based Overflow Crash ...4

1.3 Objective ..4
1.4 Contribution ...5
1.5 Synopsis ...6

2 Related Work ...7
2.1 Static analysis...7
2.2 Runtime Inspection ..8
2.3 System Call Interception Techniques ..9
2.4 Checkpoint Techniques..9
2.5 Fault Triggering and Robustness Testing ..10
2.6 Replay and Debug Parallel Programs ..11

3 Win32 API Hooking Techniques ..12
3.1 Injection ...12

3.1.1 Registry ...13
3.1.2 Windows Hooks..13
3.1.3 Remote Threads ..14

3.2 Interception ..15
3.2.1 Modification of the Import Address Table ...15
3.2.2 API patch ..17

3.3 The Comparison of API Interception Works ...18
4 Research Method ...20

4.1 Control Flow Anomaly Detection..20
4.1.1 Stack Corrupt Site Identification ..21

4.1.1.1 Pertinent Registers to a Stack ..22
4.1.1.2 Stack Frame Backtracing ...22

4.1.2 Call Target Validation...24
4.2 Tainted Input Tracing ..26

5 Implementation ..28
5.1 System Architecture...28
5.2 Process Rewriting for Function call wrapping...28

5.2.1 Binary Disassembly ..30
5.2.2 Function Info Parser..30

 vi

5.2.3 Instrumentation Library ..31
5.3 Breakpoint Interrupt...32
5.4 Experience and Further Discussion ...34

5.4.1 Stack Region ...34
5.4.2 Stack Evolvement After Instrument..36

5.4.3 Corrupt Site Approximation ...37
6 Experiments and Assessment..39

6.1 Buffer Overflow in RobotFTP Server 1.0..39
6.2 Buffer Overflow in Serv-U 4.1 ..40
6.3 Buffer Overflow in Palace 3.x client ...40
6.4 Smashing C++ VPTR ..41
6.5 Wrapping Coverage ...42
6.6 Comparisons ..43

7 Conclusion and Future Work ...47
References ...48

 vii

List of Tables
Table 1 The comparison of API interception techniques..........................18
Table 2 Wrapping coverage ..43
Table 3 Comparison of our work with other dynamic approaches...........44

 viii

List of Figures
Figure 1 An activation record on the stack ...2
Figure 2 A sample program to show the stack overflow crash...................................3
Figure 3 The process of calling a function in another module16
Figure 4 The interception process...17
Figure 5 The sample program to demonstrate the crash site and the corrupt site.....22
Figure 6 The operation of stack frame backtracing ..23
Figure 7 A sample program to detect the function pointer anomaly26
Figure 8 The buffer tree constructed during the program execution26
Figure 9 System Architecture ...28
Figure 10 The flow of the function wrapping...29
Figure 11 The instrument scenario of INT 3 instruction ..32
Figure 12 The stack backtrace of the RobotFTP Server 1.0 when overlong input...40
Figure 13 The sample program of smashing C++ VPTR ...41
Figure 14 The result of detecting the function pointer anomaly...............................42

 ix

1 Introduction

1.1 Motivation

 Program running behavior has much to do with software security. Especially,

crashed software may be exploited to be a potential vulnerability. It is difficult to

reconstruct system failures after a program has crashed and much research effort has

been taken on detecting program errors and identifying their root causes either by

static analysis or observing their running behavior through dynamic program

instrument. In order to meet the time to market, software releases with unintended

flaws. Some of them cause software crash, while others may introduce security

vulnerabilities. Our goal is to design a tool that helps analyze the program running

behavior and determine if it is an exploitable vulnerability. We try to intercept and

monitor running behaviors during programs in execution when only COTS

(Commercial Off-The-Shelf) executables available for analysis.

1.2 Background

 The purpose of this work is to automatically detect security-related errors from

the crash. First of all, we must explain what our so-called “exploitable crash” is.

Actually, this concept is much similar to exploiting the vulnerabilities in the programs.

Buffer overflow vulnerabilities dominate the security attacks in recent years because

it provides the attackers with exactly what they need, the space to inject payload and

the change of control flow of the program. In this section, two common kinds of

buffer overflow crashes will be explained, including how they are produced, how the

attackers can exploit them to alter the control flow and how they can be detected.

 We cannot generate enough testings to prove inexistence of all bugs. The

problem such as strcpy, which will be shown in the following, is well known but

exists so far. Although we can swap strcpy with strncpy, it still cannot make our

code secure. There still exists many other vulnerable function such as wsprintf()

or sprintf() to manipulate the string operations.
1.2.1 Stack-based Overflow Crash

 Stack overflow is a programming error that might cause the program to be

 1

controlled by malicious attackers [17]. When the execution control of the program is

taken, the attacker can do anything with the privilege of this program. This

programming error is a notorious attack problem for years.

s

Parameters

Return Address

Frame Pointer

Array Buffer

Figure 1 An activation record on the s

 In high-level languages, the parameters passed to the fu

declared in the function, and the return address of the functio

stack. Figure 1 shows the arrangement of these elements i

logical stack frame corresponding to a function) on the sta

grows from high memory address to low memory address.

When a function is called, the parameters passed to the

on the stack first. Moreover, the order of the parameters to

depends on the various calling syntax. Then the “CALL” ins

by pushing the address of the next instruction after “CALL”,

stack. Afterwards, the frame pointer stored in the current EB

stack. The content of this frame pointer is the address of the

will be used to restore the previous stack frame information

last element to be allocated on the stack is the local variable

When an array buffer is declared in this function, it will al

function copies an overlong string without bound checking, t

Because of the order of the buffer growth, the overlong st

values of the frame pointer and the return address, which

 2
Buffer Growth
Stack Growth
High Addres
tack

nction, the local variables

n will be allocated on the

n an activation record (a

ck. Notice that the stack

 function will be pushed

 be pushed on the stack

truction will be executed

 i.e. return address, on the

P will be pushed on the

previous stack frame and

 at the function exit. The

 declared in this function.

so be placed here. If the

he stack overflow occurs.

ring could overwrite the

may result in the control

flow corruption. The purpose of this work is to detect crashes due to frame pointer

and return address overwriting because this vulnerability will be exploited by careful

manipulation.

Figure 2 is a simple example to show the stack overflow crash. We can

obviously see that the return address overwritten alters the control flow.

/* This is a program to show the stack overflow crash. It is intended to

overwrite the frame pointer and the return address of the function func

with 0x61616161, which is ‘aaaa’ in ASCII. */

#include <stdio.h>

#include <string.h>

int func(void)

{

 char str[8]; /* declare a character buffer in func */

 strcpy(str, “aaaaaaaaaaaaaaaaaaaa”); /* copy an overlong string

to this buffer */

 return 0; /* func will not return correctly because of stack corruption */

}

int main(void)

{

 func(); /* call the vulnerable function */

 printf(“Should not see this line.\n”); /* execution flow is altered, so this

message will not be seen */

 return 0;

}

Figure 2 A sample program to show the stack overflow crash

 3

1.2.2 Heap-based Overflow Crash

Based on the overwritten of the return address and saved base pointer on the

stack, the execution flow can be changed. Heap is the memory region for dynamic

data allocated at runtime. Heap-based overflow can also change the execution flow of

the program and is more complicated than stack-based overflow. We will introduce

how the heap-based overflow overwrites the destination of CALL instruction to

change the execution flow and causes programs to crash.

 The basic method is to pollute a function pointer by the neighboring buffer.

Memory objects are often on the heap and through these objects, we can overwrite the

pointer of virtual function table [20].

1.3 Objective

We will develop an execution instrument and interception system. This system

will instrument the process and perform the detection mechanism to analyze whether

the crash is exploitable or not. Usually, the intended attacker does not have source

code of the program and uses the debugger to judge whether the program is

exploitable or not. Therefore, our instrument process should not need to access the

source code. This system will monitor the running behavior of the program when the

execution meets the point we instrument. For stack-based overflow crash, we will

instrument the prologue and epilogue of the API call and the user function call to

record the stack evolvement. By verifying the integrity of the stack-trace made in the

prologue and epilogue, we can determine that the stack is corrupted or not and point

out the corrupt site of the program. For heap-based overflow crash, we will instrument

all the CALL instruction whose destination is determined at runtime. When this type

of CALL is executed, we will validate the legality of its target. We want to perform

sort of input tracing to find out the path through which the corrupt site is deduced.

Through memory-related API call wrapper, we design a data structure to save buffer

size and address information. When the stack corrupt site is identified, we can

traverse the data structure to find out why the corrupt site occurs due to some specific

input data.

 4

With this tool, we don’t need to step by step execute the program to observe the

crash process of a certain crash and judge its exploitability. It will detect two kinds of

control state anomaly: saved base pointer / return address and function pointer

corruption. We will evaluate our tool with actual known vulnerabilities.

1.4 Contribution

 The contribution of this thesis is as following:

(1) The control flow anomaly detection mechanisms, such as stack corrupt site

identification and call target validation, are presented. By using the debugger to

analyze a crash, testers have to perform something like single-step executions and

observe the running behavior of the program such as stack evolvement with core

dump. However, core dump is produced at crash site and the stack has already

been corrupted. Therefore, this debugging process is tedious and important actions

may be hidden from being observed, such as functions that were called but silently

returned before the crash. The mechanisms we proposed serve as measures to

automate the process of crash analysis related to the security errors.

(2) Our stack corrupt site identification mechanism is helpful to understand why a

certain stack-based crash occurs. If the distance between the corrupt site and the

crash site is large, it is very likely that testers may miss the corrupt site and do not

know what happened until the program crash. Current research often prevents the

occurrence of the crash but does not point out where the corruption point is.

(3) There is an unusual tricky method to exploit the stack-based buffer overflow

vulnerability through the saved base pointer [2, 12]. Our stack frame backtracing

approach detects the anomaly of the saved base pointer with limitations.

(4) We extensively survey the interception techniques on instrument and intercept

programs. Through these techniques our instrument tool monitors their running

behaviors in execution when only COTS (Commercial Off-The-Shelf) executables

available for analysis on the platform of Microsoft Windows.

 5

1.5 Synopsis

 In Section 2, related work will be presented. We investigate the Win32 API

hooking techniques, which will be presented in Section 3. It is discussed in a

dedicated chapter because our implementation on process rewriting for function call

wrapping use a similar method to one of these injection and interception approaches.

Moreover, one of API hooking techniques is utilized to provide tainted input analysis

to a certain extent. The research method is explained in Section 4. The

implementation issues are presented in Section 5. Finally, the experimental results are

in Section 6 and the conclusions in Section 7.

 6

2 Related Work

A considerable amount of work has been performed on detecting program errors

and identifying their root causes either by static analysis or observing their running

behavior through dynamic program instrumentation. In this section we review

different works in each category and relate them to our work.

2.1 Static analysis

 Static analysis is based on the information provided by the source code. It may

validate the call sequence to find the program error or check if the vulnerable function

call is used without actually executing the application [29]. The drawbacks of this

way to find bugs are: (1) there are too many program states to verify, (2) it cannot

know some dynamic information such as pointers and should use other inexact

measures to analyze [8, 25, 27]. Livshits and Lam proposed a pointer alias analysis

with path and context sensitivity for bug detection in C programs [15]. They made an

unsound assumption to reduce spurious aliases and speedup the analysis. Our method

combines the static binary disassembly analysis and dynamic instrumentation and

monitoring to point out where the corruption occurs.

Chen and Wagner use a formal approach to examine whether the program

violates the pre-defined security properties, which are described by Finite State

Automata (FSA) [3]. The programs to be tested are modeled as pushdown automata

(PDA) and MOPS uses model-checking techniques to determine the reachability of

exception states in the PDA. Liblit and Aiken present an algorithm for computing a

set of paths given a crash site and a global control flow graph [14]. Furthermore, it

uses some post-crash artifacts such as the stack trace and the event trace to reduce the

set of possible execution paths. ARCHER (ARray CHeckER) uses path-sensitive,

interprocedural symbolic analysis to bound the value of both variables and memory

size [31]. Accesses that violate constraints are flagged as errors.

 7

2.2 Runtime Inspection

Some works automatically add codes in the source and observe the behavior of

these codes at runtime [5, 28]. The difference from our work is that we instrument the

runtime process image, not the source. Therefore even if we don’t have the source, we

still can detect the program errors, or even add survival patches. Hangal and Lam

present DIDUCE for tracking down software bugs using automatic anomaly detection

[9]. DIDUCE aids programmers in detecting complex program errors and identifying

their root causes. It dynamically formulates hypotheses of invariants obeyed by the

program. Our work is also based on runtime inspection, but in different method from

DIDUCE. DIDUCE observes the invariants at runtime and check if the program

violates them. Binary Rewriting protects the integrity of the return address on the

stack by modifying the binary code [19]. The difference from our work is that its

detection on stack overflow has false positives when the corruption occurs not in the

current stack frame. There is another work presented by Nebenzahl and Wool similar

to Binary Rewriting [16]. They developed an anti-stack-smashing defense technique

for Microsoft Windows systems. The instrument process, which is called

“vaccination” in their paper, is at install-time and does not need access to the source

code. But they do not present any results on detecting the known or unknown

vulnerabilities of real software. Avijit et al. presented a runtime approach for

protection against all known forms of buffer overflow attacks [1]. Their solution

consists of two tools: TIED and LibsafePuls. TIED extracts size information of all

global and automatic buffers defined in the program from the debugging information

produced by the compiler and inserts it back in the program binary as a data structure

available at runtime. LibsafePlus performs unsafe C library function wrapping. They

combine these two tools to protect any character array operation performed by the

unsafe library function. The difference from our work is that they retrieve the array

size information from debugging information. However, we observe the runtime

behavior of the program. Ruwase and Lam developed a dynamic buffer overflow

detector CRED that checks the bounds of memory accesses [22]. It is implemented as

an extension of the GNU C compiler version 3.3.1. Their protecting mechanism from

 8

buffer overflow is based on the boundary checking other than stack inspection or call

target observation. There is another interesting work of runtime inspection called

PointGuard [4]. It is a compiler technique to defend buffer overflows by encrypting

pointers when stored in memory, and decrypting them only when loaded into CPU

registers.

2.3 System Call Interception Techniques

 System call interception is the fundamental technique in our work. We have

surveyed a lot of system call interception techniques, which are listed in Table 1.

Detours developed by Hunt and Brubacher is a library for instrumenting arbitrary

Win32 functions on x86 machines [10]. It replaces the first few instructions of the

target function with unconditional jump, which points to the user-provided detour

function. Users can do the interception work in the corresponding detour function.

The instructions removed from the target function are preserved in a corresponding

trampoline function. When the target function is called, the control will jump to the

detour function. After finishing the interception work, the detour function can call the

trampoline function or return to the caller.

Pietrek develops API-SPY in his book [18]. API-SPY tools lists API’s name in

the order they are called, and record the parameters as well as the return value. The

purpose of this work, the same as Detours, is to get control before the intended target

function call is reached. However, the technique used in API-SPY is DLL redirection

by modifying the Import Address Table (IAT), much different from the way Detours

used, which is to modify the target function’s prologue code to transfer control by

inserting a JMP instruction at the start of the function.

2.4 Checkpoint Techniques

 The best way to find software bugs is to reproduce the fault at any time.

However, ideally checkpoint the process has some difficulties. We have surveyed

some checkpoint techniques in order to achieve some kind of rollback and replay.

Liang et al. present NT-SwiFT for software implemented fault tolerance on Windows

 9

NT [13]. The contribution of this work is that they transparently checkpoint and

recover applications on Windows NT for fault tolerance. During checkpointing,

NT-SwiFT dumps the user memory space of the application to the physical storage. If

the application fails afterwards, users can roll back the state to the last checkpoint in

the same process. Srouji et al. also present a system for software fault tolerance on

Windows NT platform [26]. The purpose of this work is very similar to NT-SwiFT.

However, the main difference between them is that this work tries to reconstruct the

system state when rolling back to the checkpoint by re-invoking certain Win32 API

calls that change the system state such as CreateThread(), CreateFile(),

CreateSemaphore(), etc. Besides, the technique of wrapping Win32 API calls in this

work is to modify the address in the IAT, similar to API-SPY.

Zandy and Miller perform checkpoints of GUI-based applications on X-window

system [33]. The system enables the GUI of any application to transparently migrate

to or replicate on another display. It is based on a small X window server extension

that enables an application to retrieve its window session from the window server and

a library of GUI migration functionality that is injected in the application process at

runtime.

2.5 Fault Triggering and Robustness Testing

We also survey some fault triggering works because we want to produce a lot of

crashes and examine whether these crash are exploitable or not. Ghosh and Schmid

present an approach to testing COTS software for robustness to operating system

exceptions and errors [7]. That is, they bring up an idea to assess the robustness of

Win32 applications. It instruments the interface between the software application and

the Win32 APIs. By manipulating the APIs to throw exceptions or return error codes,

it analyzes the robustness of the application under the stressful conditions. Whittaker

and Jorgensen summarize the experiences of breaking software in their lab [30]. By

studying how these software failed, they presents four classes of software failures:

improperly constrained input, improperly constrained stored data, improperly

constrained computation and improperly constrained output. Software testers can use

 10

the four classes of failures to break the software.

An empirical study of the robustness of Windows NT applications using random

testing was made by Forrester and Miller [6]. This work designs a special random

testing methodology to test the capability of the applications on NT to process the

messages and events. It uses SendMessage, PostMessage, or keybd_event and

mouse_event to deliver the random input to the running applications. In their

experiment result, almost all the applications on the Windows NT cannot handle the

random message/event input well. They, furthermore, analyzes two open source

software, emacs and mozilla, to see why they failed. Almost all failures result from

the pointer de-referencing error.

Jorgensen adopts different testing methods from other random testing with

hostile data streams [11]. It does not feed non-sense input to the application. Instead,

it creates lexically, syntactically, semantically deformed files to feed Adobe Acrobat

Reader (AAR) and observes if AAR will fail or not. When AAR fails, it uses debug

information to inspect the relationship between the values of the registers and the

string inserted in the deformed document intentionally.

2.6 Replay and Debug Parallel Programs

General debugger is not suitable for debugging parallel programs. Ronsse et al.

explains the relationship between execution replay and debugging [21]. The main

problem is that parallel programs are non-deterministic: each program run (even with

the same input) might result in different program execution. It is so-called

non-determinism property of the parallel programs. For example, programs do not

determine the sequence of using semaphores for processors. It depends on the

competition of processes’ execution at runtime. As a result, when debugging the

parallel programs, the execution details should be recorded for the debugger to

reproduce the former execution. The purpose is to remove the non-determinism

produced in execution time.

 11

3 Win32 API Hooking Techniques

 API call interception technique is the groundwork of our system. The ability to

control API function calls is extremely helpful and enables developers to track down

the internal actions happening during the API call. Actually, this is the reason why the

title of this work adopts the word “instrument”. The purpose of API call interception

is to take control of some execution code. That is the so-called “stub” to force the

target application to execute the injected code. Therefore, the injected code can easily

monitor the program by parameter logging, return value checking, stack dump, frame

pointer tracing, etc. We have investigated some API hooking techniques and the

details of these methods will be discussed in the following.

 There are two roles in the Win32 API hooking system. One is the Hook Server,

which injects the Driver, i.e. spying DLL code, into the address space of the target

application at some proper time. The other is the Hook Driver, which is injected in the

target process’ space to execute the interception work. Usually, the Hook Server

should communicate with the Hook Driver. It retrieves the information from the

Driver when the Driver performing the interception. In the following, the injection

and the interception work we have surveyed will be introduced separately,

corresponding to the Server’s and the Driver’s work.

3.1 Injection

 Dynamic-link libraries (DLLs) are the structural elements of Microsoft Windows.

They are separate files containing functions that could be called by programs to

perform certain jobs. It is the DLLs that we want to write our spying code in. We can

consider them as an extension to the application programs. In Win32, each process

has its own address space and its own set of loaded DLLs. The DLL’s file image must

be mapped into the address space of the calling thread’s process so that the program

could call a function in a DLL. Here comes the problem. How does the application

program use our function in the spying DLLs?

Since the target application does not have any information about our spying DLL,

 12

we need to use some tricks to force the DLL into the target process to perform the

interception. There are three injection techniques we have studied.

3.1.1 Registry

 There is a registry key that records the DLL names loaded by the operating

system into the address space of each process at the process startup time. We can

simply add the DLL name to the value of the following registry hierarchy:

HKEY_LOCAL_MACHINE\Software\Microsoft\WindowsNT\CurrentVe

rsion\Windows\AppInit_DLLs

 The loading of these DLLs in the above registry key is performed when the

USER32.DLL initializes. In its DllMain, USER32.DLL will use the explicit linking,

LoadLibrary() call, to map these files into the address space. This is a tedious and

manual way to inject the spy DLL into our target application process and has some

disadvantages:

1. Windows has to be rebooted for the activation of the injection. This will add a lot

of overhead for our experiments.

2. All the processes that use the USER32.DLL will be injected the spy DLL. We have

to add some check code in the spy DLL to avoid injecting to the processes we are

not interested in. Furthermore, if the application we are interested in does not use

the USER32.DLL such as most console-based applications, this technique fails to

inject the spy DLL.

3.1.2 Windows Hooks

 Installing a windows hook by SetWindowsHookEx() can also force the certain

DLLs into the address space of the target processes. The hook is installed as follows:

HHOOK SetWindowsHookEx (

int idHook,

HOOKPROC lpfn,

 13

HINSTANCE hMod,

DWORD dwThreadId

);

The first parameter indicates the type of hook procedure to be installed. The

second parameter identifies the pointer to the hook procedure. The third parameter

specifies the handle to the DLL containing the hook procedure. Finally, the last

parameter specifies the thread to hook. The operating system will automatically inject

the DLL containing the hook procedure into the address spaces of all processes

influenced by the hook.

 The advantage of this method is that it can use the UnhookWindowsHookEx() to

unload the DLL when the hook is not needed. However, there are still some shortages:

1. The API call made by the target process before the hook is installed will be missed.

2. The spy DLL will not actually be loaded until the some actions performed by the

target process trigger the hook procedure.

3. Windows hooks increase much overhead of extra message processing so as to

decrease the performance of the whole system.

3.1.3 Remote Threads

 We adopt this technique in this work. This method is more flexible and trying to

force the target application process to call the LoadLibrary() and load the spy DLL.

However, the problem is that we don’t have any access to the target process’s thread

and trick it to load the DLL for us. In order to overcome this difficulty, we need some

Win32 functions that could affect other processes. CreateRemoteThread() is the one.

Its prototype is as follows:

HANDLE CreateRemoteThread (

 HANDLE hProcess,

 LPSECURITY_ATTRIBUTE lpThreadAttributes,

 SIZE_T dwStackSize,

 LPTHREAD_START_ROUTINE lpStartAddress,

 LPVOID lpParameter,

 14

 DWORD dwCreationFlags,

 LPDOWRD lpThreadId

);

 CreateRemoteThread() allows one process to create a thread that runs in the

virtual space of another process. Compared with the CreateThread(), this API just

have one more parameter to specify the process that will contain the newly-created

thread. The lpStartAddress parameter identifies the memory address of the thread

function, which will be executed after the remote thread has been created. We can use

GetProcAddress() to retrieve the address of the LoadLibrary() API and consider it

as thread function to load our spy DLL. Because KERNEL32.DLL is always mapped

to the same address of every process, the address of the LoadLibrary() API will be

correct for sure. Therefore, we can succeed to ask the target process to execute

LoadLibrary() on our behalf.

 In Matt Pietrek’s work, he does not use the CreateRemoteThread() API..

Instead, he modifies the target process’s memory and registers so that it look like the

process is calling LoadLibrary() on its own. The advantage is that his method is

portable to the platforms that do not support CreateRemoteThread().

3.2 Interception

 After injecting the Hook Driver (spy DLL code) into the target process’s address

space, what we have to do next is to intercept the API call. That is, the injected DLL

should be responsible for accomplishing all the preparation for interception. In the

following, three interception techniques we surveyed will be introduced.

3.2.1 Modification of the Import Address Table

 This technique is based on the fact that Win32 executables files and DLLs are

built on the neat structure of Portable Executable (PE) file format, which is an

extension of Common Object File Format (COFF). PE file format consists of several

logical chunks called sections. Each section stores a specific type of data. For

example, the .text section contains all general-purpose code produced b the compiler

 15

or assembler; the .edata section is a list of the functions and data that the PE file

exports for other modules.

 In order to implement the API interception, we should pay more attention on

the .idata section, which contains information about functions that the module

imports from other DLLs. An important table resided in this section (so-called Import

Address Table) contains file-relative offsets to the names of imported functions

referenced by the executable’s code. When the program is loaded to the memory, the

addresses in the IAT will be patched to the real addresses of the imported functions.

Figure 3 shows the process of calling a function in another module. When you

call a function in another module (for example, GetMessage in USER32.DLL), the

CALL instruction produced by the compiler does not transfer control directly to the

function in DLL. Instead, the call instruction transfer control to a JMP DWROD

PTR[00040042] instruction in the .text section. The JMP instruction indirects

through a DWORD variable in the .idata section. This .idata section DWORD

contains the real address of API function entry point.

 Application program
USER32.DLL

0x77879426

JMP DWORD PTR[00040042]

CALL 000144408

(Call to GetMessage)

.idata
(import table)

GetMessage Code

0x77879426
0x00040042

 0x00014408 intercept.DLL

Call to GetMessage

.text

Figure 3 The process of calling a function in another module

 16

3.2.2 API patch

 This method directly modifies the API function itself. One approach is to replace

the first byte of the target API with a breakpoint interrupt instruction (INT 3). Any

call to the target API will generate an breakpoint exception, and the operating system

will inform your API interceptor, which serves as a debugger of the target process, to

handle it. The shortcoming of this approach is the overhead caused by Windows

exception handling mechanism.

 Before Interception After Interception

TargetFunction:

 push ebp

 mov ebp,esp

 push ebx

 push esi

 push edi

 ...

Figure

 Another approach to perfo

target API with the control-tran

mechanism to hook the user fu

this approach. Detours is an im

following Figure 4 explains t

Detours. When execution reach

TargetFunction:

 jmp DetourFunction

 push edi

 ...

DetourFunction:

//interception

...

call Trampoline

Trampoline:

 push ebp

 mov ebp,esp

 push ebx

 push esi

 jmp TargetFunction + 5
4 The interception process

rm API patch is to modify the first few bytes of the

sfer instruction JMP. Actually, our process rewriting

nction, which will be described in Section 5, adopts

plementation of the API patch mechanism, and the

he interception process through the terms used in

es the target function, control jumps directly to the

17

user-supplied detour function. After the detour function performs the interception

work, it calls the trampoline function, which consists of the initial instructions from

the target function and a jump to the remainder of the target function.

3.3 The Comparison of API Interception Works

According to the ways of injection of users’ DLL into the target process and

interception mechanisms, there exists some different kind of works for different

purposes. Table 1 compares these surveyed interception work. After the consideration

about stack frame evolving due to added monitor function and the completeness of the

API interception mechanism, Detours is chosen to be the framework of this work.

Table 1 The comparison of API interception techniques

 Watchd [13] Detours [10] API-SPY [18] Intel [26]

Ways to intercept API

Modify IAT to the wrapper

function and when

finishing logging then

calls the real target

function.

Modify target function

(Replaces the first few

instructions of the target

function with an

unconditional jump to

the user-provided

detour function)

Modify IAT to the

logging routine and

when finishing logging

then jumps back to the

real target function.

Modify IAT to the

checkpoint wrapper and

when finishing logging

then jumps back to the

real target function.

Does other process

be influenced?
No (Copy-on-write) No (Copy-on-write) No No

Ways to inject DLL

into the process

Use CreateRemote-

Thread to call LoadLibrary

1.Modify the process’

memory and registers

such that the primary

thread will execute

LoadLibrary

2.Rewrite the import

table of the binary

Modify the process’

memory and registers

such that primary

thread will execute

LoadLibrary

N/A

 18

Ways to Launch

app.exe
CreateProcess

1.CreateProcess

2.System loader loads

app.exe

CreateProcess

Use their own loader to

load app.exe

(Command line loader)

Where to log

parameters
In the wrapper function

In the user-provided

detour function

In the logging routine of

the stub
In the wrapper function

Ways to get the

Return value

Get the return of the target

function directly in the

wrapper function.

Get the return of the

target function directly

in the detour function.

The target function

directly returns to

app.exe，so it’s not easy

to get the return value.

(Using the “return

address stack”)

N/A

Can determine which

API to intercept by the

configuration file

No (Should write user

code in the DLL to be

injected)

No (Should write user

code in the DLL to be

injected)

Yes, after reading the

configuration file, it

dynamically allocates

memory (so-called

stub) for each function

N/A

Does save registers

before interception
No

N/A (It can be done in

the detour function by

using “pushad” and

“popad”.)

Yes (Use “pushad” and

“popad” in the stub)

Yes (Save/restore the

registers in the stub)

 19

4 Research Method

Our research uses the following approaches to manifest and analyze the crash

process as precisely as possible.

4.1 Control Flow Anomaly Detection

 If programs crash, programmers and hackers are eager to find the bugs. There are

two main causes of a crash. The first is accessing data in an invalid address, for

example, null pointer assignment. The second is transferring control to an invalid

address, often due to buffer overflow. The latter is the more serious in the two cases.

In this situation, we can transfer the control of the program by overwriting the

following data:

(1) Return address: The corruption of this data belongs to stack-based control flow

anomaly and will be detected by our stack corrupt site identification mechanism.

When the current function returns, the program transfers the control to the code

designated by the return address. By overwriting the return address, we can jump to

any position in the process. After the function returns, the control flow will be

intercepted. This is the popular target of buffer overflow exploit.

(2) Saved base pointer: The corruption of this data also belongs to stack-based control

flow anomaly and will be detected by our stack corrupt site identification mechanism.

Saved base pointer points to the previous stack frame. If the saved base pointer is

overwritten, the process will have a fake frame after returning from the current

function and will jump to the fake return address.

(3) Function pointer: This data may be in the stack or heap and will be detected by our

call target validation mechanism. When overwriting the function pointer, the process

will jump to an arbitrary position. Overwriting the virtual function pointer in the heap

is also a common vulnerability in C++ program.

 The entire control flow anomaly caused by overwriting these data mentioned

above would be detected by the following two mechanisms. Some limitations will be

described in the Section 6.

 20

4.1.1 Stack Corrupt Site Identification

 When the program crashes, by inspecting it using the debugger we know the

instruction where the program stops running. The point where the program stops

running abnormally is the crash site. When the stack-based overflow occurs, the stack

is “corrupt” for the saved base pointer and the return address corresponding to a

certain function is overwritten. This is the point where the stack becomes abnormal.

At some later time, this program must either crash or be exploited. The goal of the

stack corrupt site identification is that right after the control flow of the program has

been changed, we identify where the corrupt site is as precisely as possible.

 Figure 5 is a sample program to demonstrate the distinction between the crash

site and the stack corrupt site. Function main passes the pointer of its local buffer

buff to function a, and then function a passes it to function b. In function b, after

strcpy() finishes copying the overlong string to main’s local buffer, the stack is

corrupt. However, the program has not yet crashed until the function main returns.

Obviously, the debugger could not specify the distance between the stack corrupt site

and the crash site.

#include <stdio.h>

void b(char *buff){

strcpy(buff, “AAAAAAAAAAAAAAAAAAAAAA”); /* overlong string */

/* stack corrupt site */

......

}

void a(char *buff){

b(buff);

}

void main(){

 char buff[4];

 21

a(buff);

} /* crash site */

Figure 5 The sample program to demonstrate the crash site and the corrupt site

In the following sub-sections, the mechanism to identify the stack corrupt site is

described.

4.1.1.1 Pertinent Registers to a Stack

 In order to understand the operation on a stack, we should know some specific

assembly language knowledge. Normally, there are three registers that are pertinent to

the operation on a stack: EIP, EBP and ESP.

 EIP is the extended instruction pointer. It stores the address of the current

instruction we are executing. When we call a function, this address will be pushed on

the stack. We call the saved EIP the return address (RET). When exiting the function,

the control flow will go back to RET for later execution. ESP is the extended stack

pointer. It points to the current position on the stack. When we use push or pop

instruction to add or remove data on the stack, ESP will change as well. Moreover, we

could change the ESP by direct stack pointer manipulation. Finally, EBP is the

extended base pointer. It is used to access the stack data such as local variables and

offsets in a function and should keep the same throughout the lifetime of the function.

4.1.1.2 Stack Frame Backtracing

 Stack frame backtracing employs the fact that saved base pointer points to

previous saved base pointer in the stack. Typically, the function prologue is used to

allocate the space on the stack for local variables. The following short disassembly

shows how the compiler decided to implement the allocation of stack variables.

// function prologue

PUSH EBP // save old frame pointer

MOV EBP, ESP // the current EBP points to the saved EBP

SUB ESP, X // stack variables allocation with X bytes

 22

The old EBP is pushed on the stack, and then the current EBP is overwritten by

the address of stack pointer, which points the top of the stack. That is, the current EBP

points to the previous saved EBP. If we continuously trace back the saved EBP, the

tracing will reach the saved EBP of main function. We utilize stack frame backtracing

to verify that the call stack is sound and furthermore identify the stack corrupt site

when the stack-based overflow occurs.

 We define our term “stacktrace”. In Figure 6, function A invokes function B.

Therefore, the stack frame of function A is in the higher address and the stack frame

of function B is in the lower address. Now assume that the EBP register points to the

saved base pointer of function B. If we perform the stack frame backtracing, we will

generate a stacktrace, which comprises {(SavedEBP, RET)B, (SavedEBP, RET)A, …,

(SavedEBP, RET)Main}. Actually, this sequence could be understood easily by

realizing that the main function calls some other functions and then some other

functions call function A, and then function A calls function B.

High

Low

Func B

Func A

Param 1
RET

SavedEBP

Local var.

Param 2

Param 1

Param 2

RET

SavedEBP

Local var.

(1) FuncA invokes FuncB.
(2) FuncB’s saved base pointer points

to FuncA’s saved base pointer.
(3) Current EBP register points to

FuncB’s saved base pointer.

Figure 6 The operation of stack frame backtracing

 We first insert a monitor function in the function’s prologue and epilogue

separately to perform the detection mechanism and we have to ensure that this

monitor function will not disturb the original program’s normal execution. What this

 23

monitor function performs in the function’s prologue and epilogue is as following:

(1) In the prologue:

‧Reserving all the registers

‧Using the current EBP to enforce stack frame backtracing

‧Restore all the registers

(2) In the epilogue:

‧Reserving all the registers

‧Using the current EBP to enforce stack frame backtracing

‧Comparing the stacktrace with the prologue’s stacktrace and point out the

difference

‧Restore all the registers

 To detect the stack corruption, we compare the stacktraces generated in a certain

function’s prologue and epilogue. If the stacktraces are different, there must exist

some stack buffer in a certain function growing out of bound so that the return address

or the saved EBP corresponding to that function is overwritten.

4.1.2 Call Target Validation

 This mechanism is designed for the control flow anomaly resulted from the

function pointer overwritten. We instrument the application process at the point where

each CALL instruction is. With this instruction-grained instrument, we insure that

each CALL instruction is transferring control to the normal function entries.

 We use the software interrupt to enforce this instrument. We overwrite the first

byte of the CALL instruction with breakpoint interrupt instruction (INT 3), and install

a corresponding exception handler. When an INT 3 instruction is executed, it

generates a Debugger Breakpoint Exception, and the handler gains control to perform

call target validation. After finishing the validation, we will restore the original EIP

and CALL instruction.

 According to the way of the CALL target is determined, we divide the CALL

instruction into four types: API call, relative call, memory call and register call. The

former two types of CALL instruction does not need to instrument the INT 3

 24

instruction because typically these CALL targets will not be overwritten. The term

“static calls” will be used to represent these two calls in the following text. For the

memory call and register call, the target of them will be determined at runtime. We

only instrument these “dynamic calls”. The details of the implementation of this

software interrupt will be described in Section 5.

The steps of the call target validation are as following.

(1) Off-line parse the disassembly of the program to get the CALL information.

‧Recognize the CALL type as either static or dynamic.

‧Retrieve the function entries and the callsites of valid jump instructions.

(2) There are some INT3 instructions in the original programs, and we just handle the

INT 3 we have inserted.

(3) According to the information parsed at step (1), we could compute the CALL

target address at runtime.

(4) When the call target computed at step (3) matches one of the function entries

retrieved at step (1), this call target is valid.

#include <stdio.h>

void a(void) {

 printf("a was called.\n");

}

void b(void) {

 printf("b was called.\n");

}

int main(void) {

 void (*p)(void);

 p = a;

 (*p)();

 *p = (void (__cdecl *)(void))0x12345678;

 (*p)();

 25

 return 0;

}

Figure 7 A sample program to detect the function pointer anomaly

We could see a sample program in Figure 7. The function pointer p declared in

main is assigned in turn the address of function a and an invalid value 0x12345678.

When the function a is called through function pointer p, the call target is valid.

However, when the next 0x12345678 is called, we detect that this call target is invalid

because it does not match any function entries in this program.

4.2 Tainted Input Tracing

 Establishing the bridge connecting the software robustness and security is a

brand-new and fantastic idea in the research area of software testing. Traditional

testing techniques are well equipped to find the bugs that violate the specification, but

lack of looking for how these bugs relate to the security issues. For example, there are

plenty of application crashes during our everyday life and you may wonder whether

bugs leading to these crashes are security-related.

Input system call buffer

Memory-related system

call destination

Figure 8 The buffer tree constructed during the program execution

 Input tracing mechanism combines the function wrapping techniques and the

stack overflow detection with the maintenance of the runtime buffer tree. First of all,

I/O related API call such as ReadFile would be intercepted to create the root buffer

 26

for those parameters related to the input. Second, when memory related API calls,

such as lstrcpyw, are invoked, its destination memory buffer will be added as a child

node of the root buffer. The buffer tree is shown in Figure 8. Finally, when stack

corruption occurs, this system will traverse the whole buffer tree and compare the

buffer address to the corrupted stack address. If these two addresses matches, the path

to the suspect buffer will be printed out. And this path stands for the input pollutant

flow causing the stack to be corrupted. That is, malicious users may have capability of

putting their payload on the stack.

 27

5 Implementation

The instrument tool mentioned above helps testers to know why the programs

crash by observing the stack and input tracing. Furthermore, to manifest the exploit

process of the known vulnerable programs is another proof that this tool is useful.

Using the log of runtime monitoring on the running applications, this tool can help

analyze why this software is exploitable.

5.1 System Architecture

There is an instrument tool to communicate with the API/function wrapper DLL

that is injected into the target process. During the execution of the application

program, testers may want to modify the parameter or return values of a certain

suspicious functions. Figure 9 shows the system architecture.

Kernel

User Space

Wrapper

DLL

　 Send requests to modify some values

　 Receive monitor results

　

　

The instrument tool

Figure 9 System Architecture

5.2 Process Rewriting for Function call wrapping

For purpose of monitoring the stack frame evolving and tracing EBP/return pair,

however, API call interception still seems too coarse to pinpoint the reason why the

application programs crash. Actually speaking, the most ideal scenario for crash

analysis is to figure out which line of code is the onset of bugs, and it is impossible

without source code. What we can do furthermore is to wrap user functions to achieve

the finer-grained monitoring.

 28

Function call wrapping is especially helpful to catch the site resulting in crashes

happening on the stack. For instance, if a function in a program does some string

manipulation without careful bound checking, it may crash when the string in process

is out of bound. Such vulnerabilities bring about the classic and simple attack, i.e.

stack overflow. By overwriting the return address through stack variables overflowing,

the attacker can intercept the programs when this function returns. Therefore, the

control jumps to a location where the attacker would have inserted malicious code. To

deserve to be mentioned, buffer overflow attack is a kind of injection/interception

mechanism. Compared with the API interception techniques mentioned above, buffer

overflow cannot successfully return back to the correct site after some destructive

activities since the return address and the stack is overwritten. Figure 10 shows the

flow of the function call wrapper generation.

Binary OllyDBG FunctionInfo Parser Prologue / epilogue

Instrumentation Library Function Wrapper Prologue / epilogue

Figure 10 The flow of the function wrapping

The principle of function wrapping is similar to what Detours does in the API

call interception. Detours replaces the first few instructions of the target API with

unconditional jump to the user-provided monitor function. The primary difference

between Detours and this function wrapper is as follows:

(1) Detours acquires the API call entry address from static linking. However, this

function wrapper acquires the user function from the disassembly of the binary code

of the application program through the FREE tool named “OllyDBG” [32].

(2) Detours only instruments the prologue of the API call. However, this function

wrapper instruments both the prologue and epilogue of the user function. Comparing

the stack tracing in a function’s entry and exit is extremely helpful to detect the

anomaly of the stack.

 29

5.2.1 Binary Disassembly

 Our research method relies heavily on the disassembly ability of OllyDBG,

which is a 32-bit assembler level analysing debugger for Microsoft® Windows®. It

does much work on binary code analysis that we could utilize especially when the

source is not available. It could recognize procedures, API calls, and complex code

constructs, like call to jump to procedure. These analyses help us parse the

disassembly of the application to retrieve the necessary information such as procedure

call site, entry address, etc. In addition, it could disassemble all the executable

modules the application loads.

5.2.2 Function Info Parser

In order to transfer control from the execution of the application process to our

runtime-generated stub, we need to replace instructions at the function prologue and

epilogue with a JMP to the stub. The type of the procedures we recognize is the

typical function prologue and epilogue, which will do operations on the stack and

frame pointer. Our function info parser retrieves prologue/epilogue information that is

needed by the instrument library. In typical C/C++ programs, the compiler will

generate the prologue as “ PUSH EBP” “ MOV EBP, ESP” and the epilogue as “POP EBP”

“RET (const)”. The prologue is 3 bytes and the epilogue is at most 3 bytes. Therefore,

we need to look the instructions following the prologue and the instructions above the

epilogue until the space is enough to put a JMP instruction.

The following example is the result of parser:

>

60F71213 558BEC8B4508 6

60F71243 5DC3 2

60F71248 0FB60A2BC15DC3 7

60F71251 5DC3 2

<

The first line is the needed information of a prologue. The first field is the entry

 30

address of this prologue. The second field is the binary code of this prologue that will

be overwritten by the instrument library. When instrumenting this prologue, the

instrument library will check the third field that is the length of the binary to be

replaced. If the length is less than 5 bytes, it means that there is not enough space to

substitute the prologue for the JMP instruction and we leave this kind of procedure to

breakpoint interruption instruction instrumentation if needed. The second lines to the

last line of this function information are the epilogues. There may be multiple return

site of this function, but not all of them have enough space to be instrumented.

When looking for more space for instrumenting the JMP instruction, we have to

exclude the following situations that might disturb the correct execution of the target

program. When the instructions following the prologue or the instructions above the

epilogue should not be:

(1) JMP / CALL related instruction

(2) JMP target such as the following example

push ebp

mov ebp,esp

 x: push edi

....

 jmp x

The reason is that if we have to move these instructions to our stub, and the

control flow of the original program is disturbed, which will result in the software

failure even program crash.

5.2.3 Instrumentation Library

 We develop an instrumentation library to replace the certain functions at runtime.

According to the information provided by the function info parser, the instrumentation

library will allocate the space for the stub and append the intended instructions on the

stub. The most important instruction is to CALL the monitor function where we could

backtrace the stack for corruption detection. Detours provides some useful library to

 31

append the certain instruction on the stub.

5.3 Breakpoint Interrupt

 We use the breakpoint interrupt instruction to instrument each CALL instruction

in the program we are interested in to enforce the call target validation mechanism.

We overwrite the first byte of the CALL instruction with INT 3, and install a

corresponding exception handler. When an INT 3 instruction is executed, it generates

a Debugger Breakpoint Exception, and the handler gains control to perform call target

validation. After finishing the validation, we will restore the original EIP and CALL

instruction.

INT 3 (CALL)

…

…

INT 3 (CALL)

…

(1)

(3)

// Set break Points (2)

SetBreakPoint(address);

......

// Main Debug Loop

while(1) {

 if(WaitForDebugEvent(&DebugEv, INFINITE)) {

 switch(DebugEv.dwDebugEventCode) {

 case EXCEPTION_DEBUG_EVENT:

 switch(DebugEv.u.Exception.ExceptionRecord.ExceptionCode) {

 case EXCEPTION_BREAKPOINT:

 // handler (4)

 break;

 }

 }

 ContinueDebugEvent();

 }

}

Application process

(1) The instrument tool creates/attaches the application process.

(2) Replace the first byte of the CALL instruction with INT 3.

(3) When trapping to OS, the instrument tool uses Win32 Debug API to handle breakpoint exception.

(4) The handler performs the call target validation.

Figure 11 The instrument scenario of INT 3 instruction

 The scenario of this instrument process is shown in Figure 11. The whole

instrument process consists of four steps. First, the instrument tool will create the

application process. Second, it replaces the first byte of the CALL instruction with

INT3. Third, when the application process is executing the INT 3 we have inserted in,

the control will trap to operating system. Then the instrument tool uses Win32 Debug

 32

API to handle the breakpoint exception. Last, what we have to do is perform the call

target validation in the corresponding handler.

 When the application process is executing the INT 3 instruction we have inserted

in, the EXCEPTION_DEBUG_EVENT debug event is generated. A debug event is an object

used to communicate with debugger, which is the role we are playing. When a debug

event is generated in the target application process, the operating system will inform

us to handle this. We will use WaitForDebugEvent() to acquire the debug event and

information about the event in a DEBUG_EVENT structure. This structure is defined as

following:

typedef struct _DEBUG_EVENT {

 DWORD dwDebugEventCode;

 DWORD dwProcessId;

 DWORD dwThreadId;

 union {

 EXCEPTION_DEBUG_INFO Exception;

 CREATE_THREAD_DEBUG_INFO CreateThread;

 CREATE_PROCESS_DEBUG_INFO CreateProcessInfo;

 EXIT_THREAD_DEBUG_INFO ExitThread;

 EXIT_PROCESS_DEBUG_INFO ExitProcess;

 LOAD_DLL_DEBUG_INFO LoadDll;

 UNLOAD_DLL_DEBUG_INFO UnloadDll;

 OUTPUT_DEBUG_STRING_INFO DebugString;

 RIP_INFO RipInfo;

 } u;

} DEBUG_EVENT, *LPDEBUG_EVENT;

 The member dwDebugEventCode identifies the type of debug event. The

dwProcessId member is the identifier of the process in which the debugging event

occurs. The union u provides additional information relating to the debug event. The

way to retrieve the additional information is determined by the dwDebugEventCode

member.

 33

 We use WaitForDebugEvent() and ContinueDebugEvent() to handle the

debug event. The WaitForDebugEvent() blocks the our instrument tool and waits for

a debug event to occur in a process being debugged. When the debug event occurs,

the system suspends all threads in the process being debugged. Its prototype is as

following:

BOOL WaitForDebugEvent(

 LPDEBUG_EVENT lpDebugEvent, // debug event information

 DWORD dwMilliseconds // time-out value

);

 The second parameter describes the number of milliseconds to wait for a debug

event. If a debug event does not occur in this time, the function times out and returns

FALSE. If a debug event occurs then the function returns TRUE and puts the

information about event type into the DEBUG_EVENT structure. Then we check the

event type. If it is the event corresponding to INT 3, we perform the call target

validation measure as described in Section 5. After our code for validating the call

target, we have to use the ContinueDebugEvent() to resume the thread execution

and wait for next event to occur.

5.4 Experience and Further Discussion

 When implementing this instrument tool, we encounter some issues that are not

intuitively simple to overcome. We address these issues in this sub-section and

describe our solutions and experience.

5.4.1 Stack Region

 When performing stack frame backtracing, we need to figure out when to stop

tracing the frame pointer. The straightforward idea is that the frame pointer should not

point to the address that is out of stack region.

At first, we try to use VirtualQueryEx() API to retrieve the meta-data of a

stack region. It provides information about a region of consecutive pages beginning at

 34

a specified address that share the same attributes. VirtualQueryEx() determines the

attributes of the first page in the region and then scans subsequent pages until it scans

the entire range of pages, or until it encounters a page with a non-matching set of

attributes. Because of our wrong assumption that the whole stack region shares the

same attributes, we make a serious mistake on determining the stack upper boundary.

Therefore, in this wrong implementation we did not traverse the whole stack and

missed many stack frames to check.

Our solution to overcome this problem is to use Thread Information Block (TIB)

to identify when to stop backtracing the frame pointer. TIB is a key system data

structure in Microsoft Windows and there are many data related to threads inside it,

including a pointer to the thread’s structured exception handler list, the location of the

thread’s stack and the location of the thread local storage. Furthermore, each thread in

the system has its corresponding TIB.

In all Intel-based Win32 implementations, the FS register points to the TIB. As a

result, we have to look at what the FS register points to for getting the information

hidden in the TIB. For example, FS:[0] points to the structured exception handling

chain, while FS:[2C] points to the thread’s local storage array. The information we

needed to judge the stack region is pvStackUserTop and pvStackUserBase field in

the TIB. The 04h DWORD pvStackUserTop filed contains the linear address of the

topmost address of the thread’s stack. This thread should not have a stack pointer

value that is greater than or equal to the value of this field. The 08h DWORD

pvStackUserBase field contains the linear address of the lowest committed page in

the thread’s user mode stack. As the thread uses successively lower addresses in the

stack, those pages will be committed, and this field will be updated accordingly. The

18h DWORD ptibSelf field holds the linear address of the TIB. We use this data to

access the pvStackUserTop and pvStackUserBase structure. The following code is

to demonstrate how to access these system data structure.

PTIB pTIB;

__asm {

 mov EAX, FS:[18h]

 35

 mov [pTIB], EAX

}

Therefore, we could use pTIB->pvStackUserTop and pTIB->pvStackUserBase

to set the boundary when performing stack frame backtracing.

5.4.2 Stack Evolvement After Instrument

 We need to explain more about the stack evolvement after our code is

instrumented. The instrument library replaces certain functions at runtime. It will

allocate the space for the stub and append the instructions used to perform stack frame

backtracing on the stub. The instruction to call the monitor function will add a stack

frame on the stack, and this stack frame is not our concern.

 The instrument library inserts a JMP instruction in the prologue and epilogue and

the inserted JMP instruction in prologue jumps to the following stub code:

PUSH addr

CALL Monitor_Function

ADD ESP, 4

// Instructions which is recognized by parser and moved from the original prologue

PUSH EBP

MOV EBP

……

// Jump back to the next instruction after prologue recognized by the parser

JMP Next_inst_after_prologue

 The PUSH addr instruction is intended to pass a parameter addr, which is the

address of the prologue, to the Monitor_Function but it adds 4 bytes on the stack.

Afterward, the CALL Monitor_Function instruction pushes the return address of

monitor function on the stack. After calling the monitor function, its saved base

pointer will also pushed on the stack. Therefore, in the monitor function we should

access the return address of the wrapped function by adding 12 bytes as following:

unsigned long ret = *(unsigned long *)(EBP+12);

Similarly, the inserted JMP instruction in the epilogue jumps to the following

 36

stub code:

......

PUSH addr

CALL Monitor_Function

ADD ESP, 4

// Instructions which is recognized by parser and moved from the original epilogue

......

POP EBP

RETN

The stack evolvement in the epilogue is similar to that in prologue. Therefore,

access to the return address and saved base pointer of the wrapped function is the

same as that in prologue and is not trivial as well.

5.4.3 Corrupt Site Approximation

 Because of insufficient space to instrument a JMP instruction to prologue and

epilogue, we do not wrap all the typical functions in the target program. Therefore,

some corrupt site approximation could be discussed to increase the precision of the

corrupt site identification.

 For a certain wrapped function, its stacktraces performed in prologue and

epilogue will fall in one of situations below under an assumption: a “normal”

stacktrace is defined.

(1) If the stacktrace in the prologue is normal but the stacktrace in the epilogue is

abnormal, it means that the stack is corrupted in this wrapped function.

(2) If the stacktraces in the prologue and epilogue are normal, it means that the stack

is not yet corrupted.

(3) If the stacktrace in the prologue is abnormal, it means that no matter the stacktrace

in the epilogue is normal or not, the stack is corrupted in one of the previous

functions.

 Case 3 can be divided into two situations.

(i) If the stacktrace in current wrapped function’s prologue and the stacktrace in the

 37

previous wrapped function’s prologue differ in one saved base pointer / return

address pair as following, it means that the corruption occurred in the previous

wrapped function.

Stacktrace in previous wrapped function’s prologue:

(EBP1,RET1),(EBP2,RET2),…,(EBPn,RETn)

Stacktrace in current wrapped function’s prologue:

(EBP1,RET1),(EBP2,RET2), …,(EBPn,RETn),(EBPn+1,RETn+1)

(ii) If the stacktrace in current wrapped function’s prologue and the stacktrace in the

previous wrapped function’s epilogue differ in one more saved base pointer /

return address pairs as following, it means that the corruption occurred in one of

the previous unwrapped functions.

Stacktrace in previous wrapped function’s prologue:

(EBP1,RET1), …,(EBPn,RETn)

Stacktrace in current wrapped function’s prologue:

(EBP1,RET1),…,(EBPn,RETn),(EBPn+1,RETn+1),(EBPn+2,RETn+2),(EBPn+3,RETn+3)

 If we could retrieve the function entries corresponding to these different stack

frames, we could use another method such as software interrupt to wrap these

functions to identity the exact corrupt site. Therefore, we could increase the precision

of corrupt site identification.

 38

6 Experiments and Assessment

 This instrument tool is used to detect some known buffer overflow

vulnerabilities through the proof-of-concept exploit code that will lead the program to

crash.

6.1 Buffer Overflow in RobotFTP Server 1.0

To validate the correctness of the BEAGLE prototype, we need to verify that our

stack corrupt site detection does point out the vulnerable function where the stack is

polluted. We instrument RobotFTP Server 1.0, which has a known stack overflow

vulnerability, to demonstrate that BEAGLE could detect the abnormal stack at

runtime when running the exploit and terminate the program. The description of the

vulnerable program follows.

 RobotFTP Server is an FTP server for the Microsoft Windows platform. It has a

non-trivial buffer overrun bug in the function that processes the login information that

an FTP client sends. An attacker can first login with a username longer than 48

characters and login again with a username 1994 character long to overflow the return

address of this function. When this program is running under the BEAGLE

instrumentation, this buffer overflow will be detected and terminate the program to

prevent from transferring control to the attacker’s payload. The result is shown in

Figure 12.

 We can see first frame pointer and return address pair in the third line from

bottom, (41414141, 58585858), and this is the second overlong input username.

Before program returns from this vulnerable function, our epilogue monitor function

backtraces the stack and discovers that this stack trace is abnormal by comparing the

stack trace in the prologue monitor function.

 39

Figure 12 The stack backtrace of the RobotFTP Server 1.0 when overlong input

6.2 Buffer Overflow in Serv-U 4.1

 While executing SITE CHMOD on a nonexistent file, Serv-U constructs the error

message [24]. The code resembles the following:

sprintf(dst, “%s: No such file or directory.”, filename);

The length of the dst buffer is limited. If a long filename was received, Serv-U will

crash.

 The function 00419080, which handles the CHMOD command, passes its local

variable as an error message buffer to function 0059F9B0. The function 0059F9B0

calls function 005A01C4, which calls function 005A015C, which calls function

005A0114, which calls function 0059F988, which calls function 0059BBF8. The last

function 0059BBF8 then overflow the local variable in the first function 00419080.

 By our definition, the function 00419080 is the crash site of this bug; while the

function 0059BBF8 is the corrupt site of this bug. The instrument tool successfully

detects stack corruption in the epilogue of the function 0059BBF8 and infers the

correct calling sequence. Other approaches, such as StackGuard or Binary Rewriting,

would not detect the buffer overflow until the crash site.

6.3 Buffer Overflow in Palace 3.x client

 The Palace is a graphical chat. Its client has a stack-based buffer overflow due to

 40

a dangerous call to wsprintf when a user visits an overlong link similar to the

following [23]:

 palace://(‘a’ x 118)(‘BBBB’)(‘XXXX’)

When this situation occurs, this instrument tool detects that saved EBP / return

address pair is abnormal.

6.4 Smashing C++ VPTR

 We demonstrate the call target validation mechanism through a smashing C++

VPTR example. Figure 13 shows that object f1’s buffer is overwriting object f2’s

virtual function pointer and cause the control of the program abnormal.

#include <stdio.h>

#include <string.h>

class foo

{

public:

char buf[20];

virtual void bar(void){

printf("calling bar!\n");

}

};

int main(int argc, char* argv[])

{

class foo *f2 = new foo();

class foo *f1 = new foo();

gets(f1->buf); /* overflow point*/

f2->bar();

return 0;

}

Figure 13 The sample program of smashing C++ VPTR

 41

 In Figure 14, our instrument tool sets breakpoint interrupt instruction to perform

the call target validation. Because the overlong input overwrites the virtual function

pointer and causes the object f2 could not find its correct virtual function table. We

find out that address 61616161 is not a legal function entry in the program and give

the alarm.

Figure 14 The result of detecting the function pointer anomaly

6.5 Wrapping Coverage

 We show our function wrapping coverage by parsing the disassembly of five

common programs in Microsoft Windows. Our function info parser is responsible for

distinguishing whether a function has enough space to instrument a JMP instruction in

its prologue and epilogue. The result is shown in Table 2 and will be discussed

following the Table.

 The meaning of each column is detailed as follows:

(1) Typical: This is the number of functions that have typical prologue and epilogue.

The ideal situation in our implementation is that we wrap the whole typical

functions in the program and perform stack frame backtracing mechanism to

detect the stack anomaly.

 42

(2) Prologue-epilogue: This is the number of functions that have sufficient space in

prologue and epilogue to insert a JMP instruction. It is these functions that we

wrap, and we can compare the stacktraces produced in prologue and epilogue.

(3) Prologue: This is the number of functions that have sufficient space in prologue.

(4) Epilogue: This is the number of functions that have sufficient space in epilogue.

Table 2 Wrapping coverage

Program Typical Pro/epilogue Prologue Epilogue Wrapping %

Word 9863 7283 9862 7284 73.84%

Excel 9046 6701 9045 6701 74.08%

Access 3034 1902 3033 1902 62.69%

PowerPoint 3149 2115 3148 2115 67.16%

Notepad 36 26 36 26 72.22%

Our wrapping coverage depends on whether there are sufficient spaces in the

prologue and epilogue. Because we have to ensure that the JMP instruction we insert

in function’s prologue and epilogue will not disturb the program, the limitation of our

wrapping technique occurs. When the instructions following the prologue or the

instructions above the epilogue are JMP / CALL related instruction or JMP target, we

should not wrap this function. According to our experiment, if we ignore these

conditions, the program will even crash. Another reason for not enough space is that

the function is less than 5 bytes.

We observe that the number of functions that have sufficient space in epilogue is

always less than that in prologue. This is because that an epilogue has higher

probability to become a JMP target. We found that it is also the main reason why

epilogues have insufficient space to insert a JMP instruction.

6.6 Comparisons

 We try to compare our work with the related work that also adopts dynamic

method to provide buffer overflow protection. The comparison is shown in Table 3.

 43

The comparison can manifest the evaluation of this work in the recent research.

Table 3 Comparison of our work with other dynamic approaches

 StackGuard [5] RAD [19] TIED&Libsafe [1] CRED [22] Our Work

Protection
principle

Protect return

address

Protect return

address
Bound checking Bound checking

Protect return

address / saved

base pointer /

function pointer

Method Insert canary
Backup return

address

Wrap unsafe C

function for range

checking

Validate pointer

access

1. Backtrace stack

frame

2. Validate call

target

Implementation
platform

Linux Windows Linux Linux Windows

Source code
needed?

Yes No
No if compiled

with –g option
Yes No

When to
instrument

Compilation time
Off-line binary

rewriting
Runtime Compilation time Runtime

RET protection Yes Yes Yes Yes Yes

Function pointer
protection

No No Yes Yes Yes

BOF due to pointer
arithmetic

Yes Yes No Yes Yes

 44

Corrupt site
identification

No No Yes Yes Yes

Granularity of
corrupt site

N/A N/A Function level Instruction level

1. Function level

for stack-based

corruption

2. Instruction

level for

heap-based

corruption

Runtime
overhead

Low Low Low
High (memory

consumption)
Low

 The rows in Table 3 are as following:
(1) Protection principle: There are two primary principles to prevent buffer overflow

attack. One is to protect some important data related to control flow, and the other
is to check boundary of each memory access.

(2) Method: This row presents the method to achieve the corresponding protection
principle.

(3) Implementation platform: This row shows the platform on which the work
implements.

(4) Source code needed: This row shows whether the source code of the target
program is needed or not. A certain technique without the source code results in
the wider-spread adoption in practice.

(5) When to instrument: This row indicates the timing at which the guard code is
instrumented in the target program.

(6) RET protection: This row indicates whether the work provides return address
protection mechanism.

(7) Function pointer protection: This row indicates whether the work provides
function pointer protection mechanism.

(8) BOF due to pointer arithmetic: This row indicates that whether buffer overflow
on some critical location due to pointer arithmetic can be detected or not. Some
mechanisms can only guard against buffer overflows due to improper use of C
library functions.

(9) Corrupt site identification: This row shows whether a certain technique can
identify where the corruption occurs.

(10) Granularity of corrupt site: This row shows the level that a certain technique

 45

reaches to identify the corrupt site.
(11) Runtime overhead: When a certain mechanism is instrumented in the target

program, we evaluate the runtime overhead coarsely into two categories: low and
high. The former means that the instrument will not affect the program’s normal
execution and the latter means that the program’s performance could decrease a
lot.

 Although this research is intended to analyze a crash related to the security
problems, this tool can also be treated as a protection tool. The protection provided by
other buffer overflow protector is just to terminate the program and give the alarm
when buffer overflow occurs.

 46

7 Conclusion and Future Work

 We presented the control flow anomaly detection mechanism such as stack

corrupt site identification and call target validation, as a measure to automate the

process of crash analysis related to the security errors. We study and employ the

interception techniques to instrument and intercept programs. By these techniques we

monitor their running behaviors in execution when only COTS (Commercial

Off-The-Shelf) executables available for analysis on the platform of proprietary

Microsoft Windows. Our contribution lies, not in inventing new approaches to detect

buffer overflow attacks, but in trying to add some sort of automation in crash analysis

to build up a relationship between software robustness and system security. Moreover,

our stack corrupt site identification is helpful to understand why a certain stack-based

crash occurs. When the program crashes, its inherent bug may have correlation to the

vulnerability to be exploited. We design a tool that helps analyze the program running

behavior and determine if it is an exploitable vulnerability. By process rewriting and

breakpoint interruption to get control over a particular piece of code execution, we

intercept the running process and checkpoint their execution status to judge if this

crash is exploitable or not.

 A limitation of current implementation is the lack of data flow analysis. Under

the assumption of source code unavailable, it is not easy to understand how the tainted

input flows to the corrupt site. If the information of data flow path is available, it will

be helpful to determine the exploitability of the software. However, the primary

problem is how to combine the runtime observation with the data flow analysis to

deduce the exploitability.

 47

References

[1] K. Avijit, P. Gupta and D. Gupta. TIED, LibsafePlus: Tools for Runtime Buffer Overflow

Protection. In Proceedings of 13th USENIX Security Symposium, August 2004.

[2] Bulba and Kil3r. Bypassing Stackguard and Stackshield. Phrack Magazine, 10(56): File 5, 2000.

[3] H. Chen and David Wagner. MOPS: an infrastructure for examining security properties of

software. In Proceedings of the 9th ACM Conference on Computer and Communication Security,

November 2002.

[4] C. Cowan, S. Beattie, J. Johansen and P.Wagle. PointGuard: Protecting Pointers From Buffer

Overflow Vulnerabilities. In Proceedings of the 12th USENIX Security Symposium, August 2003.

[5] C. Cowan, C.Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle, Q. Zhang and H.

Hinton. StackGuard: Automatic Adaptive Detection and Prevention of Buffer-Overflow Attacks.

In Proceedings of 7th USENIX Security Conference, pages 63-78, January 1998.

[6] Justin E. Forrester and Barton P. Miller. An Empirical Study of the Robustness of Windows NT

Applications Using Random Testing. 4th Usenix Windows System Symposium, August 2000.

[7] A. K. Ghosh and M. Schmid. An Approach to Testing COTS Software for Robustness to

Operating System Exceptions and Errors. 10th International Symposium on Software Reliability

Engineering, November 1999.

[8] Samuel Z. Guyer and Calvin Lin. Client-Driven Pointer Analysis, The 10th International Static

Analysis Symposium, 2003.

[9] S. Hangal and M. S. Lam. Tracking Down Software Bugs Using Automatic Anomaly Detection.

In Proceedings of International Conference on Software Engineering, May 2002.

[10] G. Hunt and D. Brubacher. Detours: Binary Interception of Win32 Functions. In Proceedings of

the 3rd USENIX Windows NT Symposium, July 1999.

[11] Alan A. Jorgensen. Testing with Hostile Data Streams. Software Engineering Notes vol 28 no 2,

March 2003.

[12] klog. The Frame Pointer Overwrite. Phrack Magazine, 9(55): File 8, 1999.

[13] D. Liang, P. E. Chung, Y. Huang, C. Kintala, W. J. Lee, T. K. Tsai and C. Y. Wang. NT-SwiFT:

software implemented fault tolerance on Windows NT. In Journal of Systems and Software,

November 2002

[14] B. Liblit and A. Aiken. Building a Better Backtrace: Techniques for Postmortem Program

 48

Analysis. UCB Technical Report, No. UCB//CSD-02-1203, October 2002

[15] V. B. Livshits and M. S. Lam. Tracking Pointers with Path and Context Sensitivity for Bug

Detection in C Programs. In Proceedings of the 9th European Software Engineering Conference

held jointly with 10th ACM SIGSOFT International Symposium on Foundations of Software

Engineering, September 2003.

[16] D. Nebenzahl and A. Wool. Install-time Vaccination of Windows Executables to Defend Against

Stack Smashing Attacks. In Proceedings of 19th IFIP International Information Security

Conference, August 2004.

[17] Aleph One. Smashing the Stack for Fun and Profit. Phrack Magazine, 7(49): File 14, 1996.

[18] Matt Pietrek. Windows 95 System Programming SECRETS. IDG Books, 1995

[19] M. Prasad and T. Chiueh. A Binary Rewriting Defense against Stack based Buffer Overflow

Attacks. In Proceedings of the USENIX Annual Technical Conference, pages 211-224, June

2003.

[20] rix. Smashing C++ VPTRs. Phrack Magazine, 10(56): File 8, 2000

[21] Michiel Ronsse, Koen De Bosschere, Jacques Chassin de Kergommeaux. Execution Replay and

Debugging. In Proceedings of the Fourth International Workshop on Automated Debugging,

August 2000.

[22] O. Ruwase and M. S. Lam. A Practical Dynamic Buffer Overflow Detector. In Proceedings of

the 11th Annual Network and Distributed System Security Symposium, February 2004.

[23] SecurityFocus. The Palace Graphical Chat Client Remote Buffer Overflow Vulnerability.

http://www.securityfocus.com/bid/9602.

[24] SecurityFocus. Rhinosoft Serv-U FTP Server SITE CHMOD Buffer Overflow Vulnerability.

http://www.securityfocus.com/bid/9675.

[25] M. Shapiro and S. Horwitz. Fast and Accurate Flow-Insensitive Points-To Analysis, In

Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of Programming

Languages, 1997.

[26] J. Srouji, P. Schuster, M. Bach and Y. Kuzmin. A Transparent Checkpoint Facility on NT. In

Proceeding of the 2nd USENIX Windows NT Symposium, August 1998.

[27] B. Steensgaard. Points-to Analysis in Almost Linear Time, In ACM Symposium on Principles of

Programming Language, pages 32-41, January 1996.

 49

[28] Vendicator. Stackshield: a “Stack Smashing” Technique Protection Tool for Linux.

http://www.angelfire.com/sk/stackshield/, January 2000.

[29] J. Viega, J. T. Bloch, T. Kohno and G. McGraw. Token-based Scanning of Source Code for

Security Problems. ACM Transactions on Information and System Security, 5(3): 238-261,

August 2002.

[30] James A. Whittaker and Alan A. Jorgensen. Why Software Fails. ACM SIGSOFT Software

Engineering Notes, 1999.

[31] Y. Xie, A. Chou and D. Engler. ARCHER: Using Symbolic, Path-sensitive Analysis to Detect

Memory Access Errors. In Proceedings of the 9th European Software Engineering Conference

held jointly with 10th ACM SIGSOFT International Symposium on Foundations of Software

Engineering, September 2003.

[32] O. Yuschuk. OllyDBG. http://home.t-online.de/home/Ollydbg/

[33] V. C Zandy and B. P. Miller. Checkpoints of GUI-based Applications, In Proceedings of

USENIX 2003 Annual Technical Conference, June 2003.

 50

