=
| 4
ok
(=
/\\.
435

Faaaeg)
AL o~

UL R 2 G e
Registration-Based Mail Access Control Scheme With

Encapsulated Addresses

SRR

fh R HET EL

UL R 2 e g
Registration-Based Mail Access Control Scheme With

Encapsulated Addresses

oy oA LHRE s Student: Win-Tai Lin
R CHET B4 Advisor: Dr. Shiuh-Pyng Shieh
B = i~ B
N A S
AL o <
A Thesis
Submitted to

Department of Computer. Science ‘and fnformation Engineering
College of Electrical Engineering and Computer Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master
in
Computer Science and Information Engineering

June 2004
Hsinchu, Taiwan, Republic of China

Hlﬁ'}f[ﬁﬁ[‘)“—{ = F A E|

P APV SR G OB o [2 AT R i
R B s ISR PSR (R e T P = LS 20
AR FOR P REY SFTH D G e g R R REVHIE R e
RGBT IR

By HEHGETHTHIE > =5 PHielie = S A T et 1~ A IR 0E)
2y H‘Fﬁ%—[lﬁ%@ﬂﬁ%ﬁ%ﬁ‘ﬂ°i§f[ﬁ'ﬁ‘§ﬁ’ﬂﬁﬁ'ﬂ*5§ RS R PR RRE

= VSRR 7 AL S R R S
s I A i e R e RGOS F R Y (A e
Py R Te A TR A IR AV = 20 S e sg = SRRVl 1 - Lge 18
PP IRSERIE IO (5 o SRR | T RS R ~ « RERIPORL - 71
=R VR BRI RIS S — AR - AR RS -
S ST W RUERTRRS - I g SRR SR
(T A et sk o SERURLAY * Y -

Registration-Based Mail Access Control Scheme With

Encapsulated Addresses

Student: Win-Tai Lin Advisor: Shiuh-Pyng Shieh

Department of Computer Science and Information Engineering

National Chaio Tung University

Abstract

Due to the unwitting exposure of email addresses to the Internet, almost every
user will be forced to receive a large, amount of spam everyday. Once an email
address is found in the spammers’ list, unfortunately, it will never be removed from
the list. Besides, spam could even be regarded as a denial of service attack against the
whole Internet. Therefore, for fighting spam; we propose a scheme - Mail Access
Control System (MACS), a system that uses‘a registry mechanism to block illegal
emails or spam. Besides, in the MACS, there is a cooperative mechanism called
Specific Sender Addresses (SSA) which are email addresses only given to the
correspondents a user wants to communicate with and only allowed to be used by
these specific correspondents. The length of SSA will be longer than the original one,
so the transparency achieved by keeping correspondents’ SSA for users will be
another important feature in the MACS. We will analyze the effectiveness of our
scheme and evaluate the MACS by comparing the processing cost with the original

mail server.

—

=

Syl

BRI RS RS H > SRR
EHRE CHORIE > LIRS VT SRR

HFEI 5 A1 HVFER AL 32 2 P RO SRR 0 328 5 TS
BISCHOZS o PIEESI RISy @ 2> SRR et o ABE T -
IS WORR S - FE Y o P LB~ OAKAIEES - BfiBIfie 1
%Mﬁ@~T%ﬁﬂﬁﬂfﬁwWWﬁ%%Eﬂ@EWﬁﬁﬁ@%
) e bIItRLE RS 212E clancy A1 olga > BEES] e s i AR gy
(FLRLELRLR B P b PPl Uy 1 - 4 e > IR0 fir=* =5
SR = TR N TS -

b G R

Table of Contents

IO L oo [¥Tox £ o] o PRSPPI 1
I T [T =] 01T USSR 1
A T LT ALY o] S SS 2
IR T 00 1 {01114] o S 4
Y o]] USSR 4

2. Proposed SCNEMEoiiieiiee e 5
2.1 The Base SCheme OF MACS ..o 7
2.2 Attack-Resistant Scheme of MACS ... 10
2.3 SSA UPUALEeeiiitieiieieie ettt bbb 18

3. SSA MECNANISIM ...ttt bbb ae s 21
3.1 Creation and Processing 0f SSAt ALl it v iiieieee e 21
3.2 1SSUES ADOUL SSA......eeeeeee itk s s s s s e e seeneeaseesseensesseesseessesssesseessessensses 25

4. DiSCUSSION......coveerrrnrenreenee. S e O 2.c.veeeeeeeereeeeseeeneeenesreenne s 28
4.1 White-list and BIaCKIISt.. . .. bsi i eerensme s bt e e eneesteesaesseesseessesseesseessesseesees 28
4.2 Subscribing Electronic NEWSPAPENccitsiueiiereaieiieeneeieseesieseeseesaesneenes 29
4.3 Processing the Group email ... i 31
4.4 Changing User’s ENCryption KEYccciveiveieiieie e esie e 31
4.5 A Solution to all kinds of Special Format Emails..........c.ccccooeviveveiieivenncee, 32

5. Evaluation and COMPAKISONccciiiiiiiieiie ettt 33

6. Conclusion and FULUIE WOTKccooiiiiiiiiieiieie e 39

RETEIENCES ...ttt sttt et e b ne e 41

Vi

List of Figures

Figure 1. Architecture of MACS with the mail Server..........ccccovvveeiveie e 6
Figure 2. Dealing with a normal email in single support environment 8
Figure 3. Dealing with a SSA email in single support environment..............cccccveuee.. 9
Figure 4. Dealing with a normal email in single support environment 9
Figure 5. Dealing with a SSA email in both support environment.......................... 10
Figure 6. Bulk of “Re: Registry Require Email” attack............cc.ccceoevvevnrinennnnnnnn 11
Figure 7. Forged “Registry Success Email” attack...........cccccevvvieiiieinciniecnec, 12
Figure 8. Forged “Re: Registry Apply Email” attackccccovevviiieiviieiienee, 13
Figure 9. The enhanced and attack-resistant scheme of MACSccccccevevivenene 14
Figure 10. A type of the Reflector Attackcccoevevieiviie i 16

Figure 11. An attack making the DoS and wasting the victim’s database storage...17

Figure 12. The process of SSA UPAAte.cliil . i it e 19
Figure 13. The producing process of the Extension-part of a SSA...........ccccevenee. 23
Figure 14. Two methods used for storing the TTLS.........cccccvevveie e 26
Figure 15. Total time spent on processing emails in mail server and mail server
WITN IMIACS ..ttt b bbbt ereeneas 34
Figure 16. Time passed from the first to the 12000™ email in mail server and mail
SEIVEr WIth MACS ... 35
List of Tables

Table 1. The storage cost in database of the MACScccccoevieveeve s 36
Table 2. Comparison between spam-filtering schemes...........cccooevveveiieicvcceceee, 37

vii

1. Introduction

Spam, also known as unsolicited commercial email or unsolicited bulk email, is
currently one of the severe nuisances on the internet. People are forced to receive a
large amount of spam everyday but senders only pay very little cost per email.
Besides receiving, people will also spend time on reading and deleting all the spam.
Gradually, it may decrease users’ confidence in using email as their medium of
communication. Actually, spam can even be considered a denial of service attack
against the whole Internet. They cause the bandwidth loss and unnecessary disk usage
to their targets. Therefore, due to the huge but invisible damage to the whole world, it

will be very urgent and worthful for_fighting spam.

1.1 Requirements

Our overall goal is to perform.an effective and efficient spam-filtering system.
For this kind of systems, the essential factors can be characterized by the following

requirements.

e Accuracy: The false positive and the false negative rate of a good
spam-filtering system must be very low, even can be zero. The way of
judging emails by human will be the most accurate.

e Incremental Deployment: A good spam-filtering system can be deployed
gradually on the whole world rather than asking all servers in a field should
be cooperated to work in the beginning.

e Backward Compatibility: If a spam filtering system need to modify the

base protocol (e.g., SMTP[1][4]) to achieve its goal, it will be hardly

adopted.

e Against malicious mail DDoS: A spam filtering system usually costs more
resources or database storage than the original mail server, consuming its
resource by DDoS will be easier. There must be an additional mechanism
against spam DDoS in this spam filtering system.

e Low storage cost: To a mail server, the amount of users and their own
correspondents will be very large. If each user or each their correspondent
takes up a part of storage in database, it will cost the whole spam-filtering
system or say, file system hugely.

e Transparency: To the users, if the spam filtering system works like original
mail server, it will be very convenient. Users send and receive emails in the
same way and don’t need to learn hew to use this new technology for

preventing the spam mail.
1.2 Related Work

There are many researches and methods have been proposed for fighting spam,
from government regulation [6] to software approaches. In last few years, a filtering
method is very famous. This new method which uses the techniques of probability
theory originally invented by Thomas Bayes, the 18" century mathematician, to
analyze entire email messages [10]. There are many freely available open-source
Bayesian-based email filtering software [12][13][14][15][16][17][18] designed by
different programming language, e.g., SpamAssassin [7] which is a Perl-based
software. Even a Bayesian-like machine learning software has been included in
several email products from Microsoft Corp [11]. False positive is the disadvantage of
this kind of software, because Bayesian-based analysis uses the concept of probability

to flag messages as spam. Therefore, there may be this kind of situation that some

2

legitimate emails are judged as spam but users even don’t know. To make matters
worse, one of them maybe is very important for the user. It’s the false-positive
problem.

Another kind of methods for fighting spam is the concept of Single-Purpose
Address (SPA) [8]. SPA is an email address which encrypts policy in it for the purpose
of filtering spam. The policy specified may be an expiration date and/or the email
address of the allowed sender or a full-fledged program. The advantage of it is it
doesn’t cost additional storage in the file system, but it cannot solve the guessing
problem well. We will describe the guessing problem in section 2.3. Like SPA, the
Tagged Message Delivery Agent (TMDA) [9] also has the concept of using
correspondents’ email address to create single-purpose addresses. TMDA doesn’t
encrypt policies into email addresses (except for their Dated Addresses) but takes the
address as a rule to look up its-local tables. Due to this reason, TMDA will keep the
rule and the corresponding allowed sender-in-its database. For the whole mail server,
that will be a big cost to the database.storage. The challenge-response system of
TMDA is another feature. This system blocks spam by sending the original sender a
short puzzle that a human can answer quickly and accurately but a machine can not.
It’s effective for fighting spam, but it will make an auto-sending email to be unable to
go through the mail server, like electronic greeting cards sent from any website which
doesn’t ask users to give them senders’ email addresses or some important notification
emails sent from an auto-sending program.

Recently, there is a way proposed and cooperated by most of ISPs for fighting
spam. They thought a part of spam were usually sent from spammers’ own mail
servers over dynamic IPs so they add a keyword “dynamic” to each dynamic IP’s
Fully Qualified Domain Name (FQDN), e.g. 1-1-1-1.hinet.net becomes

1-1-1-1.dynamic.hinet.net. Afterwards they recommended all mail servers to block the

3

emails come from these dynamic IPs by searching the keywork “dynamic”. Actually,
these may mitigate the problem of spam, but spammers still can deliver spam by the
mail server of their own ISPs. Finally, if a large amount of spam were sent though the
mail server of one ISP, this ISP may reopen their dynamic IPs due to the overhead to

their mail servers.

1.3 Contribution

The objective of this paper is to design an effective and practical spam-filtering
scheme which can work with the current mail servers over the SMTP. Unlike the
Bayesian-based email filtering software, false-positive problem will not happen in our
scheme. Besides, our scheme requires lower storage cost than the TMDA in storing
the special email addresses given to correspondents and solves the guessing problem
in the situation not affecting other.correspondents, which is just the disadvantage of
the SPA system. Finally, the transparency-in. our-scheme makes users the most

convenient.

1.4 Synopsis

The rest of this paper is organized as follows. In section 2, we will describe the
proposed scheme for fighting spam. In section 3, a concept which is used in our
proposed scheme called “Specific Sender Addresses” will be presented in great detail.
Many operational issues regarding our scheme will be discussed in section 4. In
section 5, we will show the evaluation of our scheme, comparing the performance
with the original mail server. Finally, section 6 will talk about the future work and

then include this paper.

2. Proposed Scheme

Although the way whether an email is spam or not judged totally by the machine
is convenient for users, it will be the most effective way if they are judged by human
being. Seriously, to a user, any email he doesn’t want to receive can be called spam.
Therefore, we proposed a scheme which can not only block all unsolicited
commercial emails but also let the user decide whose emails he wants to receive. In
the front of this scheme, it’s a flexible registry-required mechanism which will block
any email sent by unknown users and then send an email back for asking the sender to
register. In the back of this scheme, registering emails from each sender will be put in
user’s mailbox, waiting for his agreement and authorization. This makes the spirit that
a user can actually decide whose 'ematls:he wants to receive rather than let all
incoming emails be judged totally by.the machine. Besides, we also designed a
Specific Sender Addresses (SSA) mechanism which belonged to our scheme to
restrict the senders’ identity. If a user agrees one correspondent’s registry, our scheme
will give that person a SSA which is an email address alias of the user and only that
correspondent can send emails to this SSA. The appearance of a SSA will be like
“user_name.Extension@domain_name”. The “Extension” part is the appended string
which is encrypted with the allowed sender email address as a rule by each user’s
encryption key in our scheme and the “.” is a symbol separates the original username
and the Extension part. So, a SSA will mean only the sender email address encrypted
in the Extension part can send emails to this SSA. Emails sent from other persons will

be considered as illegal emails. In Section 3 we will describe the SSA mechanism in

great detail.

Our scheme is base on SMTP and runs as a part of the mail server, so it is totally
backward compatible to current environment. We call it the Mail Access Control

System (MACS). Figure 1 shows the architecture of a mail server with the MACS.

Mail Server

I
I
I
I SSA
I
I
I

Generator
mailbox
The
Local — Processor of
The processor of MACS Mail Server
Intermet — » [Intemet

Mail Buffer MACS
Database

ﬁ {Mail Access Control System)
I
I
I
I
I

Figure 1. Architecture of MACS with the mail server

When an email arrives from Local or the Internet, MACS will check it first. If
that email is sent to a legal SSA, it will be recognized as a legal email by the MACS
and be delivered into the incoming queue of the mail server. MACS will let the
processor of the mail server take over the legal emails. Besides examining the legality
of emails, MACS can create different SSAs for each user’s correspondents by calling
the SSA Generator if a user wants to receive any correspondent’s emails from now on.
In addition to the SSA Generator, there are two major storage in the MACS : the

MACS Database and the Mail Buffer. The MACS Database stores all information

needed to be checked when any email comes in or goes out, e.g., each user’s
encryption key and the SSAs given by other correspondents. There are also a database
of whitelist and blacklist in the MACS Database. Users can set up their own whitelist
and blacklist. As the literal meaning shows, the whitelist stores the allowed
correspondents’ email addresses or domain names. Emails matching any rule in the
whitelist will be allowed to come in without registration. On the contrary, the blacklist
stores the unwelcome correspondents’ email addresses or domain names. Emails
matching any rule in the blacklist will be discarded by the MACS directly. Finally, the
Mail Buffer stores all emails which are waiting for the user’s agreement of their
registry in a limited period of time.

In Section 2.1 we start with the base scheme of MACS in two kinds of situations :
only receiver has MACS-support and both sender.and receiver have MACS-support;
in Section 2.2 we solve three problems by preposing-an enhanced scheme of MACS;
for another different problem+= guessing-problem, we will need a SSA-update

mechanism and that will be discussed in.Section.2.3.

2.1 The Base Scheme of MACS

There are two situations in our base scheme : only receiver side has

MACS-support and both sender and receiver side all have MACS-support.

(1) M

,,-'-""'-F- s,)
- S
/‘"f (2) Registry Require : Rr T ;
— AT o (4} Regi:s.ir'_.,_-' Jf.[:_ply :Ra
g - i h Q
— e
Alice t— s - . Bob
{B) Registry Success : Rs || 35A {5) Ra
M: normal message
Rn: Registry-Require message
Ra: Registry-Apply message
Rs: Registry-Success message

SSA: Specific Sender Address

Figure 2. Dealing with a normal email in single support environment

Figure 2 shows the situation that.a sender (we give it a name Alice) sends a
normal email to a receiver (wg give-it-a name Bob) and only receiver side has
MACS-support. Because the email from Alice 1s'a normal email, which means Alice
doesn’t send this email to a legal SSA, Bob’s MACS will block it and send back
another email with Registry-Require message notifying Alice she needs to apply a
registry to Bob by simply introducing herself on this Registry-Require Email and
replying it to Bob. If Alice follows the registry way and does reply the email, when
Bob’s MACS receives this replied email, it will keep the Alice’s introduction, modify
the email content with Registry-Apply message to let Bob know someone wants to
send emails to him, and then put this Registry-Apply Email into Bob’s mailbox
waiting for his agreement. If Bob doesn’t want to receive Alice’s emails, he won’t do
anything. If he does, replying this Registry-Apply Email with nothing modified is the
only thing he needs to do. When Bob’s MACS gets the replied Registry-Apply Email
from Bob, it will send an email with Registry-Success message and a new generated

SSA to Alice notifying her that her registry has been allowed by Bob, if she wants to

send emails to Bob, she needs to send emails to this SSA from now on. Figure 3
shows the situation of using SSA. If Alice sends an email to a legal SSA which ever

got from Bob, Bob’s MACS will let this email pass through.

(1) M (send to Bob's SSA) (2) F“_"_{Sﬁ'”d 15 BoR)
——————————— | Bob'sMACS | — —

D

Alice Bob

M: normal message
SSA; Specific Sender Address

Figure 3. Dealing with a SSA email in single support environment

An idea approach would be communicating with each other in a both support
environment. It will be very convenient:for Alice, if her mail server also has
MACS-support. If it has, the process of-applying fegistry will be automatically done.
Figure 4 shows that there are two different places between it and Figure 2.

(1) M

" _

.-F""“_FF- ____\-_\-_hh"‘“-*
2) Registry R ire: R : :
o ZiReglely Requira:Rr = (4) Registry Apply : Ra
(3) Rr = B
_ ———
Bob's MACS
—_ e - o Bob
(6) Registry Success : Rs || S3A (5) Ra

Alice's “Correspondents’ S5A Table"”

Corresnondin M: normal message
Receiver List P 9 Rr: Registry-Require message
SSA ;
Ra: Registry-Apply message
Baob Bob's SSA Rs: Registry-Success message

SS;ﬂ\: Specific Sender Address

Figure 4. Dealing with a normal email in single support environment

The first difference is when Alice’s MACS receives a Registry-Require Email

from Bob’s MACS, it will automatically fill out this email with Alice’s introduction
which are written by Alice in advance and then reply the email. Another difference is
when Alice’s MACS receives a “Registry Success Email” by Bob’s MACS, it will
store the SSA appended to the email in Alice’s “Correspondents’ SSA Table” which is
actually one member in the MACS Database. So, if Alice’s mail server has
MACS-support, she will not be annoyed by the registry procedure and doesn’t need to

keep Bob’s SSA by herself.

(11 M {SEﬂd to BDD_:I {2) M {Eﬁnd to Bob's ESA} {3_:| M I:S-Efld to BDD}

Ty "
Bob's MACS

Bob

Alice's MACS

M: normal message
S3A; Specific Sender Address

Figure 5. Dealing with a'SSA email in both support environment

In this both-support scheme, Alice-ean-send emails as usual. MACS will block
her outgoing emails and automatically transform the envelope recipient address into
the corresponding SSA format like Figure 5, if Bob’s SSA is found in her
“Correspondents’ SSA Table”. So, with MACS-support, a user does even not need to

know how the SSA looks like and indeed, it’s very convenient.

2.2 Attack-Resistant Scheme of MACS

In the base scheme, three kinds of attack will occur. We first illustrate these

problems and then propose an enhanced and attack-resistant scheme of MACS.

10

Bulk of “Re: Registry Require Email”

—

—
—

Altacker A R
Bob's MACS —_— Q
I Bob
Bulk of “Re: Registry Require Email”

Attacker B

Figure 6. Bulk of “Re: Registry Require Email” attack

First attack is Bulk of “Re: Registry Require Email” attack. If we don’t design a
prevention way, anyone can follow the format of “Registry Require Email” and
directly send bulks of “Re: Registry Require Email” to the victim. In our base scheme,
MACS will let the “Re: Registry Require Email” pass through without checking it, so
the victim will see bulks of “Re: Registry:Require Email” waiting for his agreement.
This could be another form of spam; because spammers can use this attack and paste
commercial words as their self<introduction on the “Re: Registry Require Email”. We
limit the length of self-introduction ' (e.g. 30 characters) to decrease the effect of
commercial words, make it hard to show their product but easy to do self-introduction
to a human being. Despite we can decrease the effect of making “Re: Registry
Require Email” as spam, victims still may be annoyed by bulks of “Re: Registry

Require Email” with nonsense. Figure 6 shows this attack.

11

UMRS: Undelivered Mail Returned to Sender
{ilegal SSA)

(2) M (send to Bob)

o —

Alice (5) UMRS

{3} M (send to forged S3SA)

Bob's MACS Q
Bob

(4) UMRS

(1) Forged “Registry Success Email”

Forged “Registry Success Email (Forged SSA)

(Forged 8SA)

a Alice’s “Correspondents’ SSA Table” [\

Receiver List | Corresponding SSA

Attacker B\ Bob Bob's SSA (forged) -M Attacker A

{use random
forged source * Forged receiver Forged SSA (pretend to be

email address) Bob)

Figure 7. Forged “Registry Success Email” attack

The second attack is Forged “Registry. Success Email” attack. In our base
scheme, anyone could send a forged “Registry Suceess Email” to the victim, making
victim’s MACS change or add: SSAs in the victim’s “Correspondents’ SSA Table”.
For example, in Figure 7, Attacker A may pretend to be Bob (it means forge the
source email address as Bob’s email address) and send a “Registry Success Email” to
Alice with a forged SSA. Hereafter, emails which Alice sends to Bob will send to
another place. In the base scheme, we solve this problem by checking incoming SSA’s
username and domain name, seeing whether these names match the source email
address of the Registry Success Email. Due to this checking mechanism, attackers
could only forge the extension part of a SSA, and this makes the victim still can send
emails to the original SSA’s mail server but gets a return email (Undelivered Mail
Returned to Sender) notifying him that he sends to an illegal SSA. Another attack is
an attacker may send many Forged “Registry Success Email” to waste the victim’s

storage of MACS database, like Attacker B does in Figure 7.

12

-

._ff
P (2) Registry Require : Rr

& (3) Re: Rr
e i -

Attacker A

ot

(6) Registry Success : Rs || SS5A \ ﬁ

(5) Forged reply of Ra

M: normal message

Rn: Registry-Require message Attacker B
Ra: Registry-Apply message

Rs: Registry-Success message

SS5A; Specific Sender Address

Figure 8. Forged “Re: Registry Apply Email” attack

The last attack is Forged “Re: Registry Apply Email” attack. Figure 8 shows this
attack. Attacker A wants to send emails to Baob: He follows the registry mechanism
and finally replies Registry Require Email to Bob’s MACS. Bob receives the Registry
Apply Email from his MACS, but he doesn’t want to receive Attacker A’s emails, so
he doesn’t reply it. After a few days, Attacker A doesn’t get the Registry Success
Email. He guesses Bob doesn’t want to receive his emails, so he requests Attacker B
to help him. Attack B is a user in the same domain with Bob, so he can pretend to be
Bob sending a forged Re: Registry Apply Email to Attacker A. Once Bob’s MACS
gets this forged email, it will generate a legal SSA and send this SSA with a Registry
Success Email to Attacker A. From now on, Attacker A can send emails to this Bob’s
SSA, and poor Bob would be forced to receive them. Actually, Bob can delete this
SSA given to Attacker A afterwards and put Attacker A into his blacklist forever.
Although this way is useful enough to solve the Forged “Re: Registry Apply Email”

attack, it’s still not the most effective way.

13

Table of TO Table of T1
Current Sequence Number : 2 Current Sequence Number : 2
Sequence Sequence
Number Bzt Number R
1 W 1 W
2 2
M N
T v
Tag 1M .
| [Ml 2\
T~ f '(4) Registry Apply : Ra [| T2 [| T3
egistr i Ra
_ A (2) Regisiry Request : Rr || ||MT‘* ¢ LEE
/// a— 4 B
Q 7 [micesmacs | ()Re:Rrl| TL"_I?___ Q
B
Alice Po ' Y ——— Bob
o —_—
(6) Registry Success : Rs || SSA || T2 ‘:‘ (S)Ra || T2] T3
7
Vi
jLakis b T2 Tableof T3 |
Current Sequence Number : 2 | Current Sequence Number : 2
Sequence
Nﬂmher Mark M: normal message Sequence Wark
Rr: Registry-Require message Number
1 ¥ Ra: Registry-Apply message 1 v
P Rs: Registry-Success message
SSA: Specific Sender Address 2
T token for verification
H N

Figure 9. The enhanced and attack-resistant scheme of MACS

After illustrating three kinds of attack,

we propose an enhanced and

attack-resistant scheme with the token checking mechanism which can prevent these

attacks in advance. We use the token T and Table of T to achieve our goal and save the

database storage at the same time. T is an encryption of “sender email address”,

“receiver email address”, “a sequence number” and “an expiration date”. Before

MACS sends a special format email out, it will create this kind of T and append it to

this email. After MACS receiving the replied email from corresponding user, it will

check whether there is a T. If there isn’t a T found in the replied email, this email will

be discarded. If there it is, MACS will decrypt this T and check whether this is an

14

illegal T by examining its format. Comparing sender and receiver email address pair
in T with those in the email header will know whether it’s a stolen T. Checking the
sequence number in T can prevent DoS attack with the same email (replay attack).
Moreover, checking the expiration date in T can prevent attackers from reusing this T.

As it shows in Figure 9, each “Table of T” holds a current sequence number
whose value is one in the beginning. Whenever MACS creates a T, it will encrypt this
sequence number with other information needed to be hidden in T. Besides, it will use
the current sequence number as an index to search the “Table of T and clear the
original mark in that index site if there is. Finally, MACS will make the current
sequence number plus one. These are things MACS needs to do when creating a T.
Afterwards, when MACS decrypts the T in the replied email and find it’s a legal T, it
will use the sequence number decrypted from T as.an index to check the “Table of T”.
If that index site has been marked,.this replied email will be seen as a duplicate mail
and be discarded by MACS. Ifthere.isn’t.any-mark-in it, MACS will mark it in that
index site preventing later DoS or‘replay attack."The current sequence number has a
maximum N and it is also the maximum storage of the Table of T. When it reaches its
maximum, it will become one again. Actually, this makes a problem. If two special
format emails which hold the legal but different T with the same sequence number in
them are sent to the MACS during their expiration date, MACS will judge one of
them as an attack email. We must estimate the average time the sequence number was
ran out and set the expiration date of T less than this time.

In Figure 9, T1, T2, T3 are designed individually for “Bulk of Re: Registry
Require Email Attack”, “Forged Registry Success Email Attack” and “Forged Re:
Registry Apply Email Attack” introduced previously. If an attacker sends bulks of “Re:
Registry Require Email” to the victim, all emails will be discarded by the victim’s

MACS due to the lack of T1. Likewise, “Forged Registry Success Email Attack” and

15

“Forged Re: Registry Apply Email Attack™ cannot happen due to attackers’ lack of T2

and T3.
Altacker A
{pretend to be
Alice) ™~
=~ 1) Bulks of M
S
Sy
Tk
()R T
——————— 4 F".
g Alice’s MACS Bob'smacs | (M R@ Q
________ — —
Alice (3) Re: Rr || T1 Bob
M: normal message
Rr: Registry-Require message
Ra: Registry-Apply message
T: token for verification

Figure 10. Atype,of the Reflector Attack

Till now, all attackers can do is following-the normal sending flow to get legal T1
or T2. An attacker can set up his own-MACS and use different forged username to
send the victim many normal emails. When the victim’s MACS sends back
corresponding “Registry Require Email”s, this attacker’s MACS will reply all of them
and make the “Bulk of Re: Registry Require Email Attack”. If this really happens, the
victim can put this attacker’s email address or private domain name into his MACS
Blacklist and then he will not receive any email from that attacker again. Actually, an
attacker usually doesn’t want to use their true domain name but may use a forged
identity to send bulks of emails to the victim to make another type of the Reflector
Attack. Reflector attack is a kind of attack which an attacker forges his identity as the
victim sending many packets to many legitimate servers and all the reply packets

from the servers will send to the victim. We show a similar type of the Reflector

16

attack on our MACS scheme in Figure 10. Despite the appearance of T1, an attacker
still can imitate the Reflector attack to make the “Bulk of Re: Registry Require
Email” attack. In this “Alice-Bob” example, the attacker A may pretend to be Alice
sending bulks of emails to Bob. Bob’s MACS, of course, will send “Registry Require
Email”s to Alice. Alice’s MACS then will reply all of them and this will make the

“Bulk of Re: Registry Require Email Attack”.

{1) Bulks of (Rr || T1)

(2)Bulks of (Re:Rr || T1[| T2) | Aftacker A's
———————— i MACS

Alics (3) Bulks of (Rs || T2) Ailaesach
Table of T2
B Alice’s outgoing SSA list
Current Sequence Number : X mod N = _ -
Receiver List Corresponding SSA
Sequence Mark
A HE Forged receiver 1 Forged SSA 1
1] Forged receiver 2 Forged SSA 2
2 v
Forged receiver X Forged SSA X
N v
Rr: Registry-Require massage
Rs: Registry-Success message

SSA; Specific Sender Address
T: token for verification

Figure 11. An attack making the DoS and wasting the victim’s database storage

Similarly, an attacker may set up his own MACS and use different forged
username to send the victim bulks of “Registry Require Email”s. We show this attack
in Figure 11. After receiving replied “Registry Require Email”s from the victim, the

attacker’s MACS may directly send “Registry Success Email”s back with each T2 got

17

from each replied “Registry Require Email”. This will still make the “Forged Registry
Success Email Attack” to waste the victim’s database storage with all forged receivers
and SSAs. Moreover, it will also make the Dos attack to the victim’s Table of T2,
especially when X is bigger than N. (X is the number of bulks emails, N is the
maximum storage number of the Table of T2)

In Figure 9, the token TO can make a big help in preventing this kind of attack.
When MACS sends a non-SSA email out, it will create a TO and append to it. After
receiving any Registry Require Email, MACS will check the TO and then decide to
reply or to discard it. This will let the attacks we discussed above become hard to
work.

We have completely defined the scheme of MACS. In the next section, we will
talk about another issue — update of the SSA and we will see another problem — the

guessing problem and how does-MACS solve.it.

2.3 SSA Update

There is still one problem may happen indirectly to users. If an attacker guessed,
got from the internet or was told any SSA and the corresponding user’s email address
which is allowed to send emails to this SSA, he may pretend to be this victim user
sending emails to the SSA. Of course, the victim will receive all this attacker’s emails
because to the victim’s MACS, this attacker’s identity is totally legal. Despite
receiving many junk emails, the victim still cannot put this correspondent’s email
address into his blacklist, or he will lose all emails truly sent by that correspondent.
We call this kind of problem the guessing problem. Guessing problem is troublesome.
It also happens in the whitelist mail filtering system. If a user uses his whitelist to
limit correspondents allowed to send him emails, once the guessing problem happens

(an attacker got any permitted email address in this user’s whitelist and uses this email

18

address as the envelope sender address to send emails to this user), he still cannot
remove that victim correspondent’s email address from his whitelist. It is possible to
guess one user’s whitelist, especially an attacker guessed the name who is in the same

domain as the victim.

Bob's MACS Q

Bob
o e

Us || Alice's ID (send to Alice)
Us: Update SSA message
(yMjIT0.

._,-o-"""_f__'_ __-__---"""-1
— (2) Registry Request : Rr || TO || T1

-

(3IRr)| T1 T2
———— I—— _—+
Bob's MACS

.- i Bob

{4) Registry Success : Rs || S5A || T2

M; normal message
Rr: Registry-Require message
Rs: Registry-Success message

SSA; Specific Sender Address
T: token for verification

Figure 12. The process of SSA update

Our scheme can solve guessing problem by updating the SSA ever given to
others if a user finds any SSA has been used by spammers. Besides, once we update a
SSA, the old one will automatically become invalid, we will discuss this property in
detail in section 3. Figure 12 shows our update scheme. If Bob wants to update the
SSA which ever give to Alice. He just needs to send an Update SSA Email to Alice.
When his MACS gets this kind of email, it will keep a mark. Next time, when Alice
sends an email to Bob, it will start the same Registry Require mechanism, and finally

Alice will get a Registry Success Email with a new SSA. The only difference in this

19

Registry Require mechanism is that Bob isn’t involved, because Bob has agreed the

update mission.

20

3. SSA Mechanism

In section 2, we have simply introduced how a SSA looks like and how we use it.
A SSA is an email address alias of a user. It encapsulates an allowed sender’s email
address in it and only that sender can send emails to this SSA. In a word, it’s a limited
alias email address and only one specific sender can send to it. Now we want to

describe how and why the MACS creates a SSA.

3.1 Creation and Processing of SSA

Once we create and deliver a SSA to a person, we must have a relative
examining mechanism to check the, legality of this SSA used in the incoming email.
Till now, we always talk about:the spirit| of SSA :only a specific sender can send
emails to it. Now, we want to describe how we did it and what the reason is.

There are many ways may “achieve this goal, but the most convenient way is
storing all information in the MACS database. For example, we keep each allowed
correspondent’s email address and the corresponding SSA in the MACS database.
When a SSA email arrives, we just search all pairs of allowed-correspondent and SSA
in our database. If any pair matches the pair in the incoming SSA email header, we
judge it as a legal email. Undoubtedly, the computation of this way is light, but the
database storage cost will be very huge. For each correspondent of a user, MACS may
need to keep a pair of the correspondent’s email address and the corresponding SSA.
We are not always sure how many correspondents a user has and how many users will
be under a MACS. So we try to use a way which need not cost any database storage.
We encrypt data needed to be check into the SSA. Here we call the data a rule which

is an allowed sender email address. When a SSA email arrives, we just decrypt it and

21

see whether the rule matches the sender email address in the mail header. Because
data needed to be checked all transferred from the database to the SSA itself, this way
will not cost any other database storage but only an encryption key of MACS.
Although this seems perfect, it still has a drawback. It cannot solve the guessing
problem very well. After the happening of the guessing problem, indeed, we can
update a brand-new SSA for others by changing the encryption key of MACS but that
will make all other SSAs become invalid. We may adopt two ways after changing the
encryption key of MACS. One is updating all other SSAs at the same time. Actually,
it is impossible because MACS doesn’t know any information of correspondents.
Another way is keeping a number of old encryption keys at the same time. Adopting
this way we won’t need to update all other SSAs immediately but cannot solve the
guessing problem immediately either. Eventually, we still need to let all legitimate
correspondents use new SSAs gradually, and-discard all old encryption keys. So we
will need another way to verify a sender’s-legitimacy. If a sender sends to a SSA
encrypted by an old key, we can send an.email to-him and wait his reply. If he replies,
we will give him a new SSA. Actually, to all other correspondents of users in MACS,
it’s an annoying solution, because they must change the SSA (if they don’t have
MACS-support) only due to an unrelated person. Besides, what is the best time to
discard an old encryption key will be a very troublesome problem, because there isn’t
any information letting MACS know how many correspondents are still using an old
SSA.

We proposed a better way to solve the problems mentioned above. In this way,
MACS will create a N-byte (in our scheme, default value of N is 2) TTL (Time to
Live) for each allowed correspondent of users before it calls MACS Generator to
generate each SSA. This N-byte TTL will be involved in the creation of the SSA and

be seen as an identity of a correspondent. Once we need to change a SSA, we can just

22

change the corresponding TTL. Of course, we need to store each TTL in the MACS
database, but we use a way to let the storage cost be minimal as possible as it can. We

will show what the way is and why we create and store each TTL in section 3.3.

TTL correspondent’'s email address

Plaintext

User's Encryption Key Ciphertext (the Extension of a SSA)

|

SSA: user_name. Extension @domain_name

Figure 13. The producing process of the Extension part of a SSA

Now, let’s see the producing process of.a SSA first. The format of a SSA is

“user_name.Extension@domain_name”. The major part of it which we need to create

is the Extension part. Figure 13 shows the way how the MACS Generator generates
the Extension part of a SSA. In the MACS, each user has a different encryption key.
To achieve the goal of specific sender addresses, the Extension is an encryption of the
TTL and the correspondent’s email address which are encrypted by each user’s
encryption key. Therefore, after decrypting the Extension part of a SSA, the MACS
can examine whether the sender of this email is legal. Besides, the MACS
encapsulates the correspondent’s email address into the SSA for saving the storage
cost. The MACS doesn’t store any SSA in its database, because the rule has been
encrypted into the SSA. The encryption algorithm, for example, the Advanced
Encryption Standard (AES) with 256-bit key may be chosen for the creation of SSA.

Because the length of an encryption block in AES is 16-bytes and we don’t want the

23

length of a SSA being too long, we may decide to let the plaintext has the same size
with the encryption block, e.g., if the length of an encryption block is 16-byte, we can
combine the 2-byte TTL and the 14-byte hash value of the correspondent’s email
address as our plaintext. This hash function can be chosen from any collision-free and
one-way hash function, e.g., MD5. The main purpose of this hush function is to make
the secret plaintext of the encryption algorithm. If an attacker gets any user’s
encryption key and any SSA this user gave to his correspondent, this attacker still
cannot know the correspondent’s email address. Till now, actually, the Extension is
still not complete. In most cases, there may be some unprintable character in the final
ciphertext. We can use Base64 [5] (encoding with character [A-Z][a-z][+][/]) to
encode the ciphertext. If we choose the AES as the encryption algorithm, after
encoding the 16-byte ciphertext, the length of it.will become 22 bytes. Due to the
case-insensitivity of the email -address, a potential problem will occur if any email
software changes the case of a SSA; €.g--lowercases all email addresses. For not
taking any risk, we decide to choose Base32 [5] (encoding with character [A-Z][2-7])
encoding, although the 16-byte ciphertext will become a 26-byte text string.
Eventually, with this Extension and a separate symbol *.”, here the SSA is.

When MACS receives a SSA email which is sent to a local user, it will first use
Base32 to decode the Extension part and get a ciphertext. Then it will decrypt the
resulting ciphertext with the user’s encryption key and then get a plaintext. After that,
MACS will find out the sender’s N-byte TTL in the database and then combine this
N-byte TTL with the sender’s email address as a string. Finally, if this string matches
the plaintext got from the Extension, MACS will judge this SSA email as a legitimate
email and pass it into the incoming queue of the mail server. If it doesn’t, MACS will
send an email back notifying the original sender his email has been discarded due to

his improper use of SSA.

24

3.2 Issues about SSA

In section 3.1, we ever mentioned two major issues needed to be cared when
designing a SSA mechanism. They are the guessing problem and storage cost in
database.

Our N-byte TTL is just designed for solving the guessing problem. By changing
this N-byte TTL of a correspondent, MACS can create a brand-new SSA and update it
for that correspondent with the way described in section 2.3. The initial value of
N-byte TTL will be set to its maximum, 2", so the easiest way to change this N-byte
TTL is subtract one from it each time. Most importantly, SSAs which are hold in each
other correspondent of users won’t be affected by this update, because each
correspondent has his own N-byte. FTL. Besides, when MACS changes a N-byte TTL,
the old SSA will become invalid- immediately.and that is what we want to see most.

The length of TTL is an important-issue.If it is too big, it will cost unnecessary
storage in database. If it is too small; the times for updating SSA will be not enough.
For example, if we set the TTL to only 1 byte, the initial value of it will be 256, it
means we only can update a SSA 256 times. One day, we will run out of any one
(when the TTL becomes zero) and have no choice but to change this user’s encryption
key to make another brand-new SSA for the same correspondent. Of course, this will
be an annoying thing for other correspondents of this user, because they need to
change the SSA received before just due to the exhaustion of one correspondent’s
TTL. We set the length of TTL 2-byte. The initial value of TTL will be 65536 and we
think it’s a proper size.

A collision-free hash function and a table for storing TTLs are used in our
scheme. To minimize the storage cost in database, there are two methods can be used

for storing TTLs. The major difference between these two methods will also be the

25

design way of this collision-free hash function and the structure of the table used in
database. We illustrate them with different table names : Sequence Table of TTL and

Index Table of TTL individually in Figure 14.

(1) M| TO

o HEH‘M 3
(4) Registry Apply : Ra [| T2 || T3
(2) Regisiry Request : Rr || T0 || T1 % oo APRY - Ra I T2l

¥—~———— Bob

——_______ ______—r
{6) Registry Success : Rs || 5SA || T2 | (S)Ra |l T2] T3
- I
T
|
Bob's Table of TTL /u/,»/ JL
Ll LW
HEI{_ad dr) as 2-byte TTL -
index Bob's Table of TTL
1 65536 H1{addr) 2-byte TTL
2 OOXX 65536

M

{B) Index Table of TTL (A) Sequence Table of TTL

M: narmal message

Rr: Registry-Require message
Ra: Registry-Apply message
Rs: Registry-Success message
S5A: Specific Sender Address

T: token for verification

Hiaddr): Hash value of correspondent's email address

Figure 14. Two methods used for storing the TTLs

In the Sequence Table of TTL, there are two kinds of strings needed to store. One
is the hash value of the correspondent’s email address and another is the 2-byte TTL
of that correspondent. For example, in Figure 14, before Bob’s MACS wants to
generate a SSA for Alice, it will compute the hash value of Alice’s email address and
generate a 2-byte TTL for Alice. Then Bob’s MACS will store these two strings in

Bob’s Sequence Table of TTL. Afterwards, if needed, Alice’s TTL will be found by

26

matching the hash value of Alice’s email address sequentially in this Table by Bob’s
MACS.

The table for storing TTLs in our second method is called Index Table of TTL.
The most different place from the first method is the return value of that collision-free
hash function. Suppose we get a collision-free hash function whose return value falls
in 1 to a maximum N. Then we can use these return values as the index of our table
array to get the data. Therefore, due to this kind of return value, there will be only the
TTL part needed to store in our Index Table of TTL. The search time of the Index
Table is O(1), faster than the O(n) of the Sequence Table and the storage cost of the
Index Table will be less than the Sequence Table, because the former doesn’t store all
hash value. The only disadvantage of the Index Table is that Index Table limits the
number of correspondents a user has in the beginning. If the maximum number N is

2000, it means a user only can have.2000 correspondents at most.

27

4. Discussion

There are several operational issues of MACS need to be discussed. We will
describe the functionality of some components and the solution for some special

situation.

4.1 White-list and Blacklist

We have ever simply introduced the white-list and the blacklist in the proposed
MACS scheme. Users can actively put his correspondent’s email address into his
white-list in advance, and then this correspondent’s emails will pass through the SSA
examination mechanism directly: Besides; using ‘white-list can solve the problem
happened during subscribing electronic newspapers.-We will mention it after. In the
blacklist, users can put any target whose emails he doesn’t want to receive. The target
it blocks can be a complete email address; a username or a whole domain name.
Actually, the whole scheme we described in section 2 and section 3 can block almost
all emails a user doesn’t want to see, but the blacklist will be useful in the following
situation. If a spammer sends many spam mails to a user with forged source email
address, this user won’t receive any spam mail due to lost of the Registry Require
Email. If a spammer sends spam mails with a true domain name and a random-forged
username, his MACS will receive the Registry Require Email sent from the user’s
MACS. This will make the user get many junk Registry Apply Emails sent from
different usernames but the same domain name. This user, now, can put this domain
name into his blacklist and never get them again. The way how does a user add or

delete targets in his white-list and blacklist will be another issue. The easiest way, like

28

the way we used in the update of SSA in section 2.3, a user needs to send a special
format email to the target person, and this email will be processed and then discarded
by the user’s MACS. In the end of this section, we will give all this kinds of special

format emails a different solution.

4.2 Subscribing Electronic Newspaper

Nowadays, many people are used to subscribe various kinds of electronic
newspapers. The way they subscribe them is filling out the form on the subscribing
webpage with their personal information like name, birthday and email address. If the
user tells a newspaper publisher his email address, the newspaper publishing agent
will use this email address to send electronic-newspapers to the user, and then receive
the Registry Require Emails sent from the user’s MACS. Of course, the user cannot
see the electronic newspapers because they will be queued in the MACS. Here comes
the problem. The newspaper publishing agent is' not a person but just a service
program. It cannot understand the content of Registry Require Email and reply it until
the person who is responsible for the electronic newspaper service checks the service
account’s mailbox and replies these emails. Unfortunately, we are always not sure
whether anyone might check the service account’s mailbox. If no one checks the
service account’s mailbox, this subscriber will not see any newspapers.

There are three methods can solve this problem. The first method which is also
the best way is installing a MACS into the electronic newspapers publisher’s mail
server. A MACS can automatically reply each Registry Require Email to each
subscriber and store all SSAs given from the subscribers’ MACS. Therefore, no
problem will occur during subscribing and publishing electronic newspapers.

Second is recommending the subscriber to check his MACS mail queue after

29

using his naked email address to subscribe an electronic newspaper. MACS mail
queue is put all the emails which are waiting for the registry in a period, including all
the spam mails. Therefore, the MACS mail queue will be designed as a space putting
another mailbox of users. Users can use the normal way (e.g. mutt —f filename) to
open this mailbox and see all the potential spam mails. If the user finds one
newspaper in his MACS mail queue, he will know the sender’s email address of this
newspaper and then add this email address into his whitelist in MACS. Afterwards, he
will receive all these electronic newspapers come from this allowed email address. In
addition to using the whitelist, MACS provides an additional protocol which allows a
user to ask his MACS to create a SSA for his specific correspondent. Therefore, when
the subscriber knows which email address the newspaper publisher will use to send
him emails, he can ask his MACS'to create a SSA for this publisher and modify the
information of the subscriber’s email address.to this brand-new SSA on the website of
that newspaper. From now on, all newspapers-will send to this SSA directly.

The last method involves an additional rule in the SSA mechanism. A user can
ask his MACS to create and delete a SSA-for-ANY which is also a SSA but allows
anyone to send to it. Each user can have many different-looking SSA-for-ANYs. So,
an electronic newspaper subscriber can get a SSA-for-ANY from his MACS and fill
out the subscribing form with this SSA-for-ANY. Afterwards, the publishing agent
will send electronic newspapers to this SSA-for-ANY and these emails will be judged
as legitimate emails by the subscriber’s MACS. Actually, this subscriber can always
receive electronic newspapers by the SSA-for-ANY, but because everyone can send to
it, the Guessing problem will occur easily. So, like the second method we described,
this subscriber can ask his MACS to create a SSA for the publisher once he knows the
publisher’s email address or just put the publisher’s email address into his whitelist,

and then ask his MACS to delete this SSA-for-ANY.

30

4.3 Processing the Group email

When MACS receives a reply of Registry Require Email which is sent to a group
email address, it will pass it into the incoming queue and let the mail server handle it.
The mail server will then give each member of this group a duplicate email. This will
make a problem : who needs to reply this email or who has the right to decide. If
everyone needs to reply it for agreeing to receive this correspondent’s emails, it will
take too much time to wait all replies. MACS lets the administrator of the mail server
decide who has the right to agree the registry from correspondents. As long as these
users who have the decision right all reply, the emails which are sent from that

correspondent will be seen by every,members of the group.

4.4 Changing User’s Encryption Key

Despite the hardness of stealing or ‘guessing a user’s 32-byte encryption key, it is
still possible to get a user’s encryption key for an attacker. If this happens, actually,
the user won’t suffer any attack directly. If the attacker wants to send forged emails to
the victim, he must guess the TTL of one of this victim’s correspondents and use the
TTL and the encryption key to make the legitimate SSA. A TTL is 2-byte in our
scheme, so the attacker must guess 2'° times at most. Therefore, a user should have
the right to ask MACS to change his encryption key, if he feels many of his SSAs
have been compromised. Actually, we can prevent this kind of attack by increasing
the length of the TTL, e.g. 4-byte TTL. It will let the guessing times increase
substantially. But comparing with the possibility of being guessed a 32-byte

encryption key, saving the storage of the database in storing many TTLs will be more

31

valuable for the MACS.

4.5 A Solution to all kinds of Special Format Emails

So far, there are many kinds of special format emails which users need to
remember by themselves. When a user wants to ask his MACS to do something, he
will need to send the corresponding format email to his MACS. All of them are for
different purposes, e.g. update the SSA for one correspondent (section 2.3), add a
member to the whitelist, add a member to the blacklist, get a SSA-for-ANY, delete a
specific SSA-for-ANY, get a SSA for one specific sender, change the encryption key
of self. We can make it more convenient by reducing the complexity of these special
format emails. At the same time, we can write a little tool which can send these
special format emails for users. Users only need:to choose their purposes (e.g. adding
whitelist) and type the target email address: This tool:will operate all details for them.
It will be more convenient if every user downloads-this additional tool of the MACS.

There is a problem hidden in sending these special format emails. Everyone may
pretend to be others to send these emails, for example, you can arbitrarily add any
members to other users’ whitelists just like the Forged “Re: Registry Apply Email”
attack showed in Figure 8 of section 2.2. Doing authentication will be what we need.
We may force users to type their passwords on POP3[2] or IMAP4[3] server when
they are sending these special format emails. We may also do the authentication by a
CA built up for a local network or a domain. When MACS receives a special format
email, it will check whether this email comes from the true person, not a forged one.
Besides, there are still many feasible ways. Briefly, if only the way can do the

authentication well, it will be a suitable way to this problem.

32

5. Evaluation and Comparison

When an email comes into our MACS, more time will be needed to process this
email, e.g. decode and decrypt. Therefore, we want to know how much percentage of
time was increased. We built our MACS prototype by modifying one component of
the Postfix version 2.1. This component is called “Cleanup” in the architecture of the
Postfix and is responsible for receiving all emails come from Local or Internet and
then delivering them to the incoming queue of the Postfix. For evaluating the
effectiveness and efficiency of our MACS prototype, we compared the difference
between the original mail server and the new mail server with our MACS prototype.

We prepared two computers andiused the:Postfix 2.1 official release as our mail
server. These two computers were qur sender. site and receiver site. The sender site
was equipped with AMD Athlon XP2800+, 22 G RAM running FreeBSD
4.10-STABLE. The receiver site: was equipped with double Intel P3 733 MBHz
processors, 256 MB RAM running Linux 2.4.20 (Red Hat 9.0). We let the receiver
site install the Postfix 2.1 without and with our MACS individually and let the sender
site send 1000 emails sequentially as fast as it can to the receiver.

Figure 15 shows the total cost of processing 1000 emails in the “Cleanup”
component in two situation : mail server without MACS and with MACS. The x-axis
stands for the number of processed emails and the y-axis stands for the total time
spent in the “Cleanup” component. In the situation without MACS (original Cleanup),
passing 1000 emails through the “Cleanup” component totally cost 10.93427 seconds
in average. Passing 1000 SSA emails through our MACS (new Cleanup) totally cost
12.96729 seconds in average. Due to the decoding and decryption to a SSA, our

MACS increases 18.5% processing time to process a SSA email in average.

33

For processing a single email, this result is not satisfying, but actually, to the
whole mail server, our MACS won’t down too much efficiency. Figure 16 shows this
result. The x-axis stands for the number of processed emails and the y-axis stands for
how much time passed when “Cleanup” finished processing emails. In the situation
without MACS, 182 seconds passed when “Cleanup” finished the 1000™ email. In the
situation with MACS, 195 seconds passed when “Cleanup” finished the 1000 email.
To the whole mail server, it only increased 7% on the cost. We think it’s an acceptable

result.

14
12 ’/l
" =
8 e
5 ot

& /.’/‘:7'/,/ —— Criginal Mail Server

2 —8— hfail Server with MACS
0 T S S O SO S O R

R N N T

Amount of Processing Emails

Total Processing Time (sec.)

Figure 15. Total time spent on processing emails in mail server and mail server
with MACS

34

250

200
2 150 -
w
= 100
-
2 —— Original Mail Server
= 0 —=— bail Server with MACS

ﬁx@“@%@@ﬁ@h@ﬂ@%@ﬁ@ﬁ

Amount of Processing Emails

Figure 16. Time passed from the first to thé’2000™ email in mail server and mail
server with MACS

In addition to the efficiency, we evaluate-the database storage cost of the MACS
by a specific example. Suppose there are-1;000,000 users in a MACS and each user
has 1,000 correspondents. For a user in the MACS, we need to count the size of
encryption key, the size of Index Table of TTL and the size of SSA Table. Each user’s
encryption key is 32-byte. A TTL for each correspondent is 2-byte. Each row of a SSA
Table is put two strings : correspondent’s email address and the SSA the
correspondent gives to the user. We suppose the size of a normal email address is 30
bytes and the size of a SSA is (30+1+26) bytes in average. Besides, for a whole
MACS, we need to count its 32-byte encryption key and the size of all Table of T (TO,
T1, T2, T3). Each mark in a Table of T is 1 bit : 0 or 1, so there are total N bit used in
a Table of T. We suppose the maximum N in the Table of T will be (number of users)

* (number of T-corresponding emails each user will send or receive in one day in

35

average) * (number of days the Token T exists).

Single user All users ina MACS |Storage
Each user’s encryption key |32 bytes 32 bytes * #u 32 MB
Each user’s Index Table of |2 bytes * #c 2 bytes * #c * #u 2GB
TTL
Each user’s (30+57)bytes * |(30+57)bytes * #c * #u 87 GB
Correspondent’s SSA Table|#c
Whole MACS Storage
MACS’s encryption key |32 bytes 32 bytes
Table of TO 1 bit* #u*50*2 12.5MB
Table of T1 1 bit * #u > 200 * 7 175 MB
Table of T2 1bit*#u*25*7 21.875 MB
Table of T3 1bit*#u*25*7 21.875 MB
#u = number of users = 1,000,000
#c = number of correspondents each user has = 1,000

Table 1. The storage cost in database of the MACS

To the Table of TO, we suppose @ user-sends 50 normal emails out everyday and
our MACS only keeps each TO for 2 days. That is because if the receiver site doesn’t
have MACS-support, the TO will never come back, but if the receiver site has
MACS-support, the TO will come back soon with the Registry Require Email. So, for
the TO, two days will be much sufficient. To the Table of T1, we suppose a user
receives 200 normal emails everyday (including spam mails) in average and our
MACS keeps each T1 for a week. It means the correspondent may be able to reply the
“Registry Require Email” during one week. To the Table of T2 and T3, we suppose a
MACS may receive 25 “Registry Require Email”s and 25 “Re: Registry Require
Email”s everyday in average and our MACS will keep each T2 or T3 for a week. This
means the user may be able to decide whether he gives a SSA to the correspondent

(reply the “Registry Apply Email”) during one week.

36

Table 1 shows the maximal storage cost of the MACS which are used by
1,000,000 users and each user has 1,000 correspondents. We noticed that all
“Correspondent’s SSA Table”s cost the database 87 GB for achieving the goal of
transparency. Actually, we could reduce the storage cost by using a collision-free hash
function like the Sequence Table of TTL or the Index Table of TTL we described in
section 3.3. Through the hash function, we can shorten the length of the
correspondent’s email address substantially, even let it disappear. Furthermore, despite
the large database storage cost for achieving the transparency, it is still acceptable for

current disk storage.

Bayesian-Based SPA TMDA MACS
Scheme

False Negative Problem Yes No Yes No
False Positive Problem Yes No No No
Database Storage Cost in Low High Medium
Fighting Spam
Feasible Solution to No Yes Yes
Guessing Problem
Against Spam Flooding Yes No Yes Yes
Receiving Yes Yes No Yes
Automatic-Sending emails
Transparency to Users No No Yes

Table 2. Comparison between spam-filtering schemes

Table 2 shows the comparison between all kinds of spam-filtering schemes. Due
to the probability theory, even though a Bayesian-based scheme can improve its
accuracy on judging spam to 99%, the false negative and false positive problem will
still occur. False Negative problem also occurs in TMDA, because if a spammer
answers the puzzle in the challenge-email, users in TMDA system will still receive

spam. MACS cost more database storage than SPA but less than TMDA. Actually,

37

MACS costs a little more database storage for solving the guessing problem well but
SPA cannot solve it. Besides, in the scheme of SPA, users still need to see bulks of
spam finding whose emails they want to receive and then create the corresponding
SPAs for them. Moreover, users in TMDA may not receive automatic-sending emails
like some notifying emails sent by a sending program because a machine cannot solve
their puzzles. Finally, if a user receives a SPA or a TMDA, he must keep it or change
the old email address of the corresponding alias by himself. The worst is that if he
doesn’t keep them with, he cannot send emails to those SPAs or TMDASs by the Mail
User Agent (MUA) in other person’s computer. So, transparency is also a feature of

the MACS.

38

6. Conclusion and Future work

The MACS can keep all correspondents’ SSA ever gave to a user for
auto-transforming the recipient email address into the SSA format in the future when
the user sends an email to the correspondent. It’s convenient for the user, but in the
meanwhile this user will be restricted only to use his mail server with the MACS to
send emails out. If someday this user goes to other place and suddenly he needs to
send an email to his friend ever gave him a SSA but the request of sending an email in
this area is not allowed by his mail server, a problem will occur. Because the SSA this
user’s friend ever gave him stored in the user’s MACS, if he doesn’t send emails
through his mail server, the recipient of email:address won’t be transformed and this
user will be required to register to his friend again. but he will not know however.
There are some methods can solve this kind of situation. The first method is giving
the user his correspondents’ SSA"as-well as storing the SSAs in the MACS. Then the
user may take all his correspondents’ SSA with him and use them arbitrarily around
the world. The second method will be installing a webmail-like software over SSL in
the user’s mail server. Then the user can use this webmail-like software to send emails
out around the world after typing his password. The last method, which is also the
most interesting method, will be designing a new authentication protocol over SMTP.
Like the scheme of Mobile IP, when the user sends emails out by the foreign mail
server, this foreign mail server will create a tunnel to his mail server (home server)
and check his identity. Finally, this email may be directly sent from home server or
sent from the foreign server after getting the corresponding SSA he should sent to.
This protocol designing for the mobility is needed to think in detail and it will be the

future work of the MACS.

39

In conclusion, we have described the proposed scheme - Mail Access Control
System (MACS), a system that uses a registration mechanism to block unknown
emails first and later lets users decide whose registry they want to accept. We have
also described the mechanism of Specific Sender Addresses (SSA) which is an email
address only allowed to be used by one specific sender. We take this specific sender’s
email address as a rule and encrypt it into the SSA for limiting the owner of this SSA.
When a user decides to accept one correspondent’s registry, the MACS will create a
brand-new SSA and give this SSA to that correspondent. Thus, our system will stop
spam and emails sent from persons our users don’t want to communicate with.
Besides, the encryption in the SSA can save the database storage of the MACS and
the TTL generated for each correspondent can solve the guessing problem very well.
Moreover, for making a stable and robust system, we also analyzed and solved the
DoS attack, the Reflector attack and the forged email attack of special format emails.
The transparency is also achieved by-the-“Correspondents’ SSA Table”. Finally, the
evaluation of the MACS showed ‘that the cost.in processing 1000 emails increases
only 7% in average and this result will be acceptable to the whole mail server in the

respect of fighting spam.

40

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

References

J. Klensin, Editor. Simple Mail Transfer Protocol. Request for Comments 2821,
Internet Engineering Task Force, April 2001.
J. Myers and M.Rose. Post Office Protocol — Version 3. RFC 1939,

http://www.rfc-editor.org/, May 1996.

M. Crispin. Internet Message Access Protocol — Version 4revl. RFC 2060,

http://www.rfc-editor.org/, December 1996.

J. Postel. Simple Mail Transfer Protocol. Request for Comments 821, Internet
Engineering Task Force, August 1982.
S. Josefsson, Editor. The Basel6, Base32,/and Base64 Data Encodings. RFC

3548, http://www.rfc-editor:org/, July 2003.

http://www.spamlaws.com/.

http://spamassassin.org/.

J. loannidis. Fighting Spam by Encapsulating Policy in Email Addresses. In
Proceedings of NDSS 2003.

http://www.tmda.net/.

[10] Vaughan-Nichols, S.J. Saving Private E-mail. Spectrum, IEEE, August 2003,

40-44.

[11] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz. A Bayesian approach to

filtering junk email., AAAI Workshop on Learning for Text Categorization, July

1998, Madison, Wisconsin. AAAI Technical Report WS-98-05

[12] http://bogofilter.sourceforge.net/.

[13] http://www.squirrelmail.org/.

[14] http://spambayes.sourceforge.net/.

41

[15] http://crm114.sourceforge.net/.

[16] http://sherpafilters.sourceforge.net/.

[17] http://popfile.sourceforge.net/.

[18] http://www.mozilla.org/mailnews/spam.html.

[19] http://www.postfix.org/.

42

