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Abstract. The effect of non-parabolic band structure of surface phonons in n-type InSb films 
has been investigated quantum mechanically in the GHz frequency region. Numerical results 
show that the amplification coefficient is enhanced for the non-parabolic band structure due 
to the non-linear nature of the energy band in semiconductors. Moreover, the amplification 
coefficient depends also on the temperature, the piezoelectric coupling mechanisms, the 
frequency of sound waves, the electric field. and the thickness of the semiconductor film. 

1. Introduction 

Elastic surface waves have been the subject of considerable interest in surface physics, 
since they can be used as probes for understanding the properties of solids near the 
surfaces, such as surface electronic states (Prange 1969) and surface irregularities (Steg 
and Klemens 1970,1974, Sakuma 1972,1973, De Vries and Miller 1972, Nakayama and 
Sakuma 1975, 1976, Maradudin and Mills 1976, Nakayama 1976). The interaction of 
elastic surface waves with conduction electrons in a piezoelectric semiconductor provides 
a useful tool to study the electronic band structure of matter. Acoustic waves can be 
propagated along the boundary of an elastic half-space (Ezawa 1971), the amplitude of 
which falls off rapidly as one goes away from the surface. Such elastic excitations are 
called Rayleigh waves (Grishin and Kaner 1972). The surface phonons are the quanta 
of elastic waves that satisfy the proper boundary condition on solid surfaces (Ezawa 
1971). They are to be used in place of the bulk phonons when one is dealing with surface 
phenomena. In piezoelectric semiconductors, the interaction of surface phonons with 
conduction electrons is dominated by the deformation potential and piezoelectric fields. 
The deformation of the crystal due to the surface phonons determines directly the 
deformation potential force acting on the conduction electrons. On the other hand the 
piezoelectric field, which is due to a polarisation of the medium, can only be found by 
a self-consistent solution involving Maxwell’s equations. The interaction of surface 
phonons with conduction electrons in piezoelectric semiconductors for the parabolic 
band structure has been investigated in the intermediate-high-frequency region by 
Tamura and Sakuma (1977a, b). They calculated and discussed the amplification coef- 
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ficients of Rayleigh waves using the Born approximation and the approximation includ- 
ing the effect of the finite relaxation time phenomenologically. This effect of the finite 
relaxation time reduces the amplification in the lower frequency region. However, their 
numerical results reflect the qualitatively correct features of the surface phonon ampli- 
fication. Therefore, if we consider the high-frequency phonons for which the relation 
w t  > 1 holds, where w is the angular frequency of the surface phonons and z is the 
relaxation time of the carriers, we may safely neglect the effect of the relaxation time of 
the electronic states. In Tamura and Sakuma’s calculations, it was assumed that the 
energy band structure in semiconductors is parabolic. It has been shown that the non- 
parabolicity of the band structure in piezoelectric semi-conductors can be used to explain 
the longitudinal magnetoacoustic phenomena (Wu and Spector 1971). Moreover, the 
discrete part of electronic energy levels is proportional to the square of the level quantum 
number. Thus, when we take the summation over the higher quantum numbers, the 
electronic energy becomes comparable with the band gap energy of semiconductors. 
Consequently, the non-parabolic band model in the electronic energy surface would 
play an important role for the amplification of the surface phonons. In our present study, 
we wish to survey the qualitative features of the effect of non-parabolic band structure 
on the amplification coefficient of surface phononsin n-type InSb films using the quantum 
treatment. In the calculation of the amplification coefficient of surface phonons, we 
make the following assumptions: 

(i) the energy band structure of the piezoelectric semiconductor n-type InSb is 
non-parabolic ; 

(ii) the media are elastically isotropic and the quasi-free-electron description of 
conduction electrons is valid; 

(iii) the interaction of the surface phonons and conduction electrons is via 
deformation-potentia1 and piezoelectric couplings. 

In 9 2, we describe the configuration of the layered system of a piezoelectric semi- 
conductor and an insulator which we shall use for determining the amplification charac- 
teristics and specify the eigenfunctions of conduction electrons for the non-parabolic 
band structure. In 9 3,  the calculation of the interaction Hamiltonian of the surface- 
phonon-conduction-electron system due to the deformation-potentia1 and piezoelectric 
couplings is performed quantum mechanically. In 9 4, we calculate the amplification 
coefficient using the Born approximation. In 8 5, we present some numerical results of 
the amplification coefficient for the epitaxial layer of n-type InSb grown on a semi- 
insulating InSb substrate, and give a brief discussion. 

2. Electronic states in a thin layer of semiconductors for non-parabolic band structure 

The configuration of the amplifier for Rayleigh-wave amplification can be described as 
shown in figure 1. A thin layer with the thickness t of a piezoelectric semiconductor is 
grown epitaxially on an insulating substrate with the same elastic properties as the 
semiconductor layer (Sze 1981). Therefore, the same kind of semiconductor as the film 
but of semi-insulating character is a good candidate for the substrate. We fix the Cartesian 
coordinates so that the material occupies the half-space z 2 0 and has the stress-free 
surface parallel to the xy plane. 

The motion of electrons parallel to the surface may be described by plane waves and 
those perpendicular to the surface will be described by some kind of standing waves 
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Piezoelectric 
semiconductor 

Figure 1. A thin layer with the thickness rof a piezoelectric semiconductor and an insulating 
material. Surface phonons propagate parallel to the surface of the film ( x y  plane). 

depending on the structure of the potential. It is assumed that the potential along the z 
axis is a square well which has infinitely high potential barriers at z = 0 and z = r 
neglecting possible depletion layers on both sides near z = 0 and z = t .  Under this 
assumption, the field operator W(r) of conduction electrons in the second quantised 
form takes the form (Tamura and Saklima 1977a, b) 

~ ( r )  = s-'12 2 C exp(ik x) ( ~ ~ ( 2 )  

cc 

n = l  k 

where r = (x, z) = ( x ,  y ,  z ) ,  k = ( k x ,  k y ) ,  V = tS is the volume of the film with a surface 
area S ,  bk,, and its Hermitian conjugate b;,,, are annihilation and creation operators of 
conduction electrons, respectively, satisfying the commutation relations of the Fermi 
type. The energies of the conduction electrons Ek,,, for the non-parabolic band structure 
are given by the relation 

where Egis the energy gap between the conduction and valence bands, m* is the effective 
mass of conduction electrons. Since (hzk2,,,)/2m* + (~din)~/2m*? = kBT < E,  for semi- 
conductors at low temperatures in which we are interested ( T  < 100 K), then equation 
(2) can be expanded as 

with 

If the thickness of the layer t is  assumed to be 1 pm, the term (22h2n2)(m*?E,)-' in 



4942 C-C Wu and J Tsai 

equation (4) is 5.8 x 10-4n2. Then the factor a, coming from the non-parabolicity in 
energy bands becomes important when the quantum number of energy levels is larger 
than 20. However, if the electronic energy due to the quantised motion along the z 
direction is much smaller than the energy gap E,, then equation (3) can be reduced to 
the energy of the electronic states for the parabolic band structure used by Tamura and 
Sakuma (1977a, b), i.e., 

The quantum number of energy levels which contributes to the summation in the 
expression for the amplification coefficient in Tamura and Sakuma’s work is about 50. 
Thus the factor a, will play an important role in calculating the amplification coefficient 
of surface phonons in semiconductor films. Therefore, the energy band structure of n- 
type InSb in our present work is assumed to be non-parabolic. 

3. Conduction-electron and surface-phonon interaction in piezoelectric semiconductor 
films 

‘Surface phonon’ defined in this paper is a quantum of the Rayleigh wave which is one 
kind of elastic surface waves in solids (Ezawa 1971, Tamura and Sakuma 1977b). In the 
configuration shown in figure 1, the isotropic, elastic continuum is filling up the half 
space ( z  > 0) with a stress-free plane boundary at z = 0. The surface-phonon field 
operator is written, using well known eigenfunctions for the Rayleigh wave, as 

h 
u(r) = (-)1’z[a,u9(z) exp(iq .x)  + (Hermitian conjugate)], ( 6 )  

9 2pws 

where p is the mass density of the medium, q = (qx ,  qy)  is the wavevector of a surface 
phonon parallel to the surface, w = c& = C R q  is the angular frequency of the surface 
phonon, and cR is the velocity of the Rayleigh wave. The operator a, and its Hermitian 
conjugate a: are the annihilation and creation operators of the surface-phonon field, 
respectively, obeying the commutation relations of the Bose type. The explicit forms of 
the wavefunction u,(z) are (Ezawa 1971, Tamura and Sakuma 1977b) 

y, U, and J are the constants defined by the velocity of the longitudinal sound wave cl and 
the velocity of the transverse sound wave ct as 

J = 1 - (CR/CI)Z, 

c? = 1 - (CR/C,)2, 

(9) 

(10) 

and 

J = ( y - U)  ( y - U + 2ya2)/2yaZ. 

In the presence of piezoelectric coupling, the sound velocity c is modified to c’ as a 
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result of 'piezoelectric stiffening' (Hutson and White 1962), 

c" = c?(1 + K 2 ) ,  (12) 
if the conductivity of the medium is small. This is valid in piezoelectric semiconductors. 
Here K2 is the electromechanical coupling constant defined by 

K 2  = 4n&eo~~4, (13) 

where Pp, c44, and @ are respectively the piezoelectric, elastic, and static dielectric 
constants of the material along an appropriate crystal axis. For n-type InSb, Pp = 
1.8 x lo4 esu cm-', cU = 3.02 x 10l1 dyn cm-', and = 18, then K 2  = 7.4 x low4. 
Therefore the correction for piezoelectric coupling to the sound velocity is small in our 
work and can be neglected. 

In the piezoelectric semiconductor, the conduction electrons interact with surface 
phonons through the deformation potential which is proportional to the dilation caused 
by the acoustic field. These conduction electrons also interact with surface phonons 
through piezoelectricity. This induced electric field is proportional to the strain in the 
piezoelectric coupling. The deformation-potentia1 coupling is known to be weaker than 
the piezoelectric coupling for surface phonons of low frequencies. However, at high 
phonon frequencies the deformation-potentia1 coupling becomes dominant because of 
its stronger frequency dependence (Spector 1966). Consequently, we shall take these 
two coupling mechanisms into account simultaneously in our present study. The inter- 
action Hamiltonian of the conduction-electron-surface-phonon system may be written 
as 

HI = H D  + H p ,  (14) 

where HD is the interaction Hamiltonian due to the deformation-potentia1 coupling and 
H p  is the interaction Hamiltonian due to the piezoelectric coupling. For the 
deformation-potentia1 coupling, HD can be expressed by 

HD = c 1 Y+(r)V * u(r)  Y(r) df 

C 
= - ds n,n E, L: k , q  [b:+q,n'bk,naq@i,(q) + (Hermitian conjugate)], (15) 

where Cis  the deformation potential, and 

In a piezoelectric material, the polarisation induced by applying a strain can be expressed 
by (Spector 1966) 

Di = + 4n&!$jk, (17) 
where D, is the electric displacement, E, is the electric field, E!, is the dielectric tensor, 
Pilk is the piezoelectric tensor, and S, is the strain tensor which is written explicitly in 
terms of the displacement vector U of the medium as 

If the electrostatic approximation is valid, the electric field B is derived from a scalar 
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potential qq, 

E = -Qq 4 
Within insulating crystals, Gauss’s law is expressed as 

V . D = O .  

Since we assume that the medium is isotropic in its elastic properties, that is = @Sij 
(@ is the static dielectric constant), then, from equations (17), (19), and (20), we have 
the equation 

Using equations (7), (8), (18), and (21), the electric potential produced by the acoustic 
vibration of the surface phonon travelling with the wavevector q can be obtained as 

( P q ( 4  = @&) exp(iq * x) (22) 

with 

In the case of piezoelectric coupling, semiconductors with zincblende crystal struc- 
ture have only three non-vanishing components of the piezoelectric tensor P i j k ,  i.e. , 
P14 = pZs = b6 = Pp. In the phonon picture, the displacement vector of the surface 
phonon can be expanded as equation (6), then the electric potential can be quantised as 
follows: 

h 
@(r) = 2 (-)”’ aqqq(r) + (Hermitian conjugate). 

Q 2pos  

Taking these results into account, the interaction Hamiltonian due to the piezoelectric 
coupling can be written as 

where 

We have fixed the direction of the wavevector q along the [110] crystal axis (the easiest 
direction in which the Rayleigh wave is accompanied by piezoelectric effects). Although 
conduction electrons couple only with the longitudinal wave in the deformation-poten- 
tial coupling, in the piezoelectric coupling the conduction electrons couple with both 
longitudinal and transverse waves. Consequently, we shall consider both longitudinal 
and transverse coupling mechanisms in the present study. 
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4. Calculation of the amplification coefficient 

In this section, we shall calculate the amplification coefficient of the surface phonons 
due to the interaction of surface phonons with conduction electrons through the 
deformation-potentia1 and piezoelectric couplings. It is known that conduction electrons 
never travel freely in a semiconductor but are scattered by a variety of sources before 
and after they emit or absorb the surface phonons we should observe. Using Hamilton- 
ians (14 ) ,  (15), and (25 ) ,  and neglecting vertex corrections other than the screening 
effect of the electrons, the width r(’) of the surface phonon can be expressed by 

where C(q) =C/&l(q) , G(q) =4mfi/&&(q) , and E i ( q )  = 1 + (4nNe2cf/&&k~Tq2) . N is 
the electron concentration, i = 1 denotes the electronic screening effect induced by the 
acoustic vibrations of the longitudinal waves with the longitudinal sound velocity c I ,  and 
i = t denotes the electronic screening effect induced by the acoustic vibrations of the 
transverse waves with the transverse sound velocity ct (Roth and Argyres 1966, 
Garcia-Moliner and Flores 1979). The Fermi-Dirac distribution function is f ( E )  = 
{exp[(& - , u ) / k g T ]  + l}-’, where ,U is the chemical potential. In the piezoelectric coup- 
ling, E i ( q )  must be taken as the longitudinal dielectric function q(q)  of the transverse 
dielectric function E t ( q )  depending on the coupling induced by the longitudinal or 
transverse waves, respectively. An(k ,  E )  is the spectral function of the one-electron 
Green function with the quantised level n of conduction electrons. In the first approxi- 
mation, we employ the Born approximation and then simply replace the spectral function 
by the &function, 

An(k ,  E )  = 2 n 4 ~  - Ek,,). (28) 

In a situation where the conduction electrons have a drift velocity U in the direction of 
the surface-phonon wavevector q ,  we must replace fiw by -hox  with the drift parameter 
x = /ul/cR - 1. Then 

f(& - hw) - f(&) ̂I - - h ox s e c h 2 ( z )  
4 k ~  T 2 k ~ T  ’ 

(29)  

From equations (27 ) ,  (28 ) ,  and (29 ) ,  the surface phonon amplification coefficient mi for 
the i-type surface phonon can be obtained as 

ai = - rg;& - h ~ ~ ) i h c ~  
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where 

P(q)  = $E, + p - (m*/2q2h2)[fLWX - (q%2/2m*)]2, 

A = yqtln, and B = uqtln. 

In equation (30), i = 1 denotes the electronic screening effect induced by the acoustic 
vibrations of the longitudinal waves with the longitudinal dielectric function El(q) = 
1 + ( 4 n N e 2 & ~ c $ c ~ T q 2 )  and i = t denotes the electronic screening effect induced by the 
acoustic vibrations of the transverse waves with the transverse dielectric function 
q ( q )  =1 + (4nVe2&~&Tq2).  

5. Numerical results and discussion 

In this section, a numerical example is developed for an n-type InSb thin film grown 
epitaxially on a semi-insulating InSb substrate. The relevant values of physical par- 
ameters are taken to be: & = 1.8 X lo4 esu cm-2 for q 11 [llo], m* = 0.013 mo (mo is the 

4 8 12 1 
w ( G H z 1  w I GHz ) 

Figure 2. Amplification coefficients of surface phonons versus frequency for the non-para- 
bolic band structure in n-type InSb with t = 1 pm and x = 10 at ( a )  T = 77 K and 19.7 K,  and 
( b )  T = 4.2  K. 
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mass of free electron), p = 5.8 g ~ m - ~ ,  N = 1.75 x 1014cm-3, = 18, cR = 
1.35 x lo5 cm s-l ,  CI = 3.76 x 105cm s-' ,  ct = 1.61 x 105cm s-l ,  C = 4.5 eV, E, = 
0.2 eV. The frequency dependence of the amplification coefficients with t = 1 ym and 

x = 10 (corresponding to the applied electric field E = 2.5 V cm-') is shown in figure 2 .  
It can be seen that the amplification coefficients increase with the frequency and then 
decrease monotonically. This is quite different from the results of Tamura and Sakuma 
(1977a, b) for the parabolic band structure in n-type GaAs. Since the effective mass m* 
and the energy gap E, for n-type GaAs are much larger than those for n-type InSb, from 
equation (4), the factor a,, for n-type InSb becomes much more important than that for 
n-type GaAs. We can also see that the amplification coefficients decrease with the 

I 
0 4 8 12 

v ( G H z I  

Figure 3. Amplification coefficients of surface phonons versus frequency for the non-para- 
bolic band structure in n-type InSb with t = 10 pm and x = 10 at (a )  T = 77 K and 19.7 K,  
and ( b )  T = 4.2 K. 

temperature. This means that the effect of amplification of surface phonons will be 
diminished considerably at very low temperatures. Moreover, the amplification coeffi- 
cient at with the transverse dielectric function is enhanced much more than that a, with 
the longitudinal dielectric function owing to the larger electronic screening effect for the 
longitudinal waves. In figure 3, we show the amplification coefficient as a function of the 
frequency v for the case t = 10 ym. It shows that the amplification coefficients at and al 
are reduced considerably in the high-frequency region and the maximum point disap- 
pears when the thickness of the thin film increases. It can be seen that the amplification 
coefficients decrease monotonically with the increasing frequency. Thus the energy of 
surface phonons is reduced and conduction electrons will not get more energies from 
surface phonons even if the frequency increases. This is quite different from that for n- 
type GaAs in which the amplification coefficient increases with the frequency (Tamura 
and Sakuma 1977a, b). Figure 4 shows the amplification coefficients versus the drift 
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?o-l{ 

parameter x or applied electric field E with v = 3 GHz and t = 1 pm. It can be seen that 
the amplification coefficient increases monotonically with the applied electric field. This 
is in qualitative agreement with the numerical results of Tamura and Sakuma (1977a, b).  
However, when the thickness of the semiconductor film increases, the amplification 
coefficients are reduced considerably for both types of the electronic screening effect. 
In figure 5 we also find that the local maximum and minimum appear in the lower- 
temperature region. 

E 1 v cm- ‘  I 
5 10 15 20 

IO&[ 
l a 1  

7 1  U 

f , ,,/” 
I 

101 : , , J 
0 20 40 60 80 100 

X 

5 10 15 20 

10’: l b )  

7 1  - I /  5 

1 0 - 2 1  
80 1( 0 20 40 60 

X 

Figure 4. Amplification coefficients of surface phonons versus drift parameter x = ( ( u l i  
CR - 1) or applied electric field E for the non-parabolic band structure in n-type InSb with 
I = 1 pm and v = 3 GHz at ( a )  T = 77 K and 19.7 K,  and ( b )  T = 4.2 K. 

We have calculated the amplification coefficient for the non-parabolic band structure 
in piezoelectric semiconductor films using the Born approximation which is valid in the 
region wt > 1. However, in our present study we investigate the qualitative features of 
the effect of non-parabolicity on the amplification of surface phonons in the piezoelectric 
semiconductor films, the effect of finite relaxation time can thus be neglected. In the 
results of Tamura and Sakuma (1977a, b) it showed that the effect of the finite relaxation 
time of the electronic state reduces the amplification coefficient considerably at relatively 
low frequency. Their results for the Born approximation and the approximation includ- 
ing the effect of finite relaxation time phenomenologically are in qualitative agreement. 
Consequently, we may safely neglect the effect of the relaxation time of the electronic 
states and can obtain just qualitative agreement using the Born approximation to discuss 
the effect of non-parabolicity in piezoelectric semiconductors. 

Our present calculations show that the amplification coefficient for the transverse 
dielectric screening effect is enhanced much more than that for the longitudinal effect. 
It can also be seen that the amplification coefficient increases with increasing tempera- 

) 
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ture. Since the effective mass for conduction electrons in an energy level of the non- 
parabolic band structure with the quantum number n is m*a,, the effective mass of 
conduction electrons defined by m*a, will thus depend on high quantum numbers in 
which the effect of the non-parabolicity on the surface-phonon-conduction-electron 
interaction is important. Therefore, the amplification coefficients depend on the band 
structure of materials, the temperature, the electronic screening effect, the frequency 
of sound waves, the applied electric field, and the thickness of the semiconductor films. 

X 

E (  v cm-’ I 
5 10 15 20 

1 

( b )  

I/ 
1 0 4  L 

0 20 40 60 BO 1 
X 

Figure 5. Amplification coefficients of surface phonons versus drift parameter x = ( 1 ~ 1 :  
cR - 1) or applied electric field E for the non-parabolic band structure in n-type InSb with 
t = 10 pm and v = 3 GHz at ( a )  T = 77 K and 19.7 K. and ( b )  T = 4.2 K. 

However, there exist some relations between these important factors. From the expres- 
sion for the amplification coefficient given in equation (30), it can be seen that a, is 
roughly proportional to T3’2 due to the dominant factor .si(q). This means that the effect 
of temperature is dominated by the electronic screening effect. On the other hand, the 
frequency dependence of the amplification coefficient is not dominated by E ; ( q ) ,  but by 
factors A ,  B ,  P(q) ,  and Q(q, n ,  n’) .  This complicated frequency dependence of the 
amplification coefficient arises mainly from the effect of the non-parabolic band structure 
in piezoelectric semiconductors. similarly, the dependence on the thickness of thin films 
also comes from the non-parabolic band structure of materials. 
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