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Towards the Analysis of Small Molecules

with High Spatial and Temporal Resolution

Student: Po-Han Li Advisors: Dr Pawel L. Urban
Dr Yu-Chie Chen

M. S. progress, Department of Applied Chemistry, National Chiao Tung University

Abstract

Development of analytical methods with high spatial resolution and high temporal resolution
has become an important goal in analytical chemistry. For example, matrix-assisted laser
desorption/ionization (MALDI) mass spectrometry (MS) enables mapping chemical
molecules in two-dimensional samples with a micrometer-range spatial resolution. On the
other hand, fast detection techniques are introduced to accommodate the analysis of dynamic
chemical systems. In this work, we demonstrate hybrid nanoparticles which can facilitate
mass spectrometric imaging at high spatial resolution. The nanoparticles attach to biological
specimens (algal cells) due to electrostatic interactions, which is further followed by a
controlled release of an organic MALDI matrix in the presence of alkaline vapors of ammonia.
Using this method — in conjunction with a MALDI-MS instrument equipped with a 10-um
ultraviolet laser beam — we achieved the spatial resolution of approximately 15 pm. In the
second part — in order to preserve temporal resolution — we implemented an on-line sampling
system which takes advantage of segmented or continuous flow. The system was used in
conjunction with a home-made multi-point multi-wavelength optical detector. The device
enabled real-time monitoring of convection currents. The continuous flow sampling, and the
optical detector, were readily hyphenated with an electrospray ion-trap mass spectrometer.
This enabled online analysis of the low-volume liquid samples collected from the convection
vessel — simultaneously — by light absorption and mass spectrometry. We believe that the
developments presented here will contribute to new discoveries in natural and physical

sciences.
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Chapter 1

Introduction

1.1. Foreword

In many studies related to chemistry, biology, or medicine, it is necessary to investigate
chemical composition of complex samples. For this reason, it is not surprising that hundreds
of analytical instruments and methods have been developed over the past two centuries; they
are based on various concepts, including chromatography, optical spectroscopy,
electrochemistry, as well as mass spectrometry (MS). Using these analytical platforms, one
can nowadays identify and quantify a large variety of analytes.

During the last decade, spatial and temporal resolutions have become increasingly
important features of analytical techniques. For example, using matrix-assisted laser
desorption/ionization (MALDI)-MS imaging, one can study distributions of chemical
molecules on sample surfaces. Such analyses can provide high-quality molecular images.
Nowadays efforts are made to increase the spatial resolution in molecular imaging, and thus
provide the possibility of mapping chemical compositions of biological samples on the
microscopic level.

Chemical analysis performed in real time is also an important topic in modern chemistry.
High temporal resolution is a significant “added value” in the analytical measurements. One
way to preserve temporal resolution is to digitize bulk samples collected from the
environment by aliquoting them into micro- or sub-micro-liter volume segments. This can

prevent longitudinal diffusion and dispersion of the digitized solutions along the flow line. In



fact, segmented-flow systems have widely been used in analytical chemistry, and this
approach is very promising for coupling dynamic chemical systems with various detection

techniques.

1.2. Matrix-assisted laser desorption/ionization mass spectrometry

1.2.1. Principles of matrix-assisted laser desorption/ionization

The matrix-assisted laser desorption/ionization is a technique which enables desorption
of analytes adsorbed on flat conductive targets, and simultaneous ionization in the gas phase
prior to separation in the mass analyzer.® The original concept of MALDI was demonstrated
by Dr Franz Hillenkamp.? In the course of sample preparation for MALDI-MS, samples are
typically mixed and co-crystallized with a chemical matrix, which can absorb the ultraviolet
(UV) laser light (Figure 1.1). The most common wavelengths used for this purpose are 337
nm (nitrogen laser) and 355 nm (Nd-YAG laser). When the UV laser light impinges onto the
crystalline deposit of the MALDI matrix with the sample, the ionization (e.g. protonation,
deprotonation) of analyte molecules may occur. The gas-phase ions are then injected to the
mass analyzer in order to determine their mass-to-charge (m/z) ratios. MALDI-MS has widely
been used in the analysis of small organic molecules, peptides, proteins and synthetic

polymers.!

w To Mass
°° Analyzer

\
Analyte/Matrix

: @ Mixture @

Figure 1.1 The process of desorption/ionization in MALDI. Figure reproduced from reference 3.




1.2.2. MALDI matrix

There are numerous kinds of MALDI matrices. Different matrices are suitable for the
ionization of different analyte molecules: for example, in the positive-ion mode,
2,5-dihydroxy benzoic acid (2,5-DHB) is often used in the analysis of peptides*® while
3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid, SA) is used in the analysis of
proteins.>"® In the negative-ion mode, 9-aminoacridine (9-AA) is often used in the analysis of
nucleotides and lipids®'®'* When the solvent of the matrix/sample mixture evaporates, a
crystalline deposit remains on the sample plate. The crystallization pattern is usually far from
homogeneous. This contributes to the so-called “sweet-spot effect™;’? due to the
heterogeneous/chaotic crystallization of the matrix and the analytes, some locations of the
MALDI spots give rise to high signals while the other locations mostly contribute to the
spectral noise. In the conventional qualitative use of MALDI-MS, the “sweet-spot effect”
does not affect the results to a great extent because one can still record high-quality spectra,
and identify the molecules producing peaks with satisfactory signal-to-noise (S/N) ratios.
However, in the case of MALDI imaging, the ‘“sweet-spot effect” may significantly
deteriorate the quality of the MS images, decrease the spatial (lateral) resolution, and
contribute to artifacts. When using inorganic particles or surfaces as matrices in the so-called
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“surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS)”,” the problem

of heterogeneous crystallization is mitigated.'*

1.2.3. Time-of-flight mass analyzer

Time-of-flight (TOF) is the most common mass analyzer used in MALDI-MS.*® The
gas-phase ions are accelerated in an electric field, and shifted to the TOF tube. As the ions
move in the TOF tube, all of the them have the same kinetic energy but different velocities.
The analyte ions with smaller m/z will move faster and reach the detector first, while the ions

with higher m/z will reach the detector later. Finally, the m/z values can be calculated based



on the time elapsed during the migration of the ions from the source to the detector.

1.2.4. MALDI imaging

One of the important applications of MALDI-MS is MALDI imaging. In fact, MALDI
imaging has widely been used to investigate chemical distributions of lipids, proteins, and
small molecules, within biological specimens.’®# In order to obtain a MALDI image, the UV
laser beam needs to be raster-scanned over the sample surface (pre-coated with a MALDI
matrix), spectra recorded at each of the sampling positions and then converted to molecular
images of the sample surface (for an example, see Figure 1.2). Usually this is done by
plotting the intensities of the selected peaks (often following a normalization step) as
two-dimensional maps, in which the saturation level corresponds to the signal intensity.

As pointed out above, sample preparation is crucial for achieving high spatial resolution
in MALDI imaging. In particular, it is very important that the whole sample surface is evenly
coated with the MALDI matrix. Several methods have been proposed for coating specimens
with MALDI matrices, and some of them can provide relatively high spatial resolutions; they
include coating with a pneumatic spray, electrospray deposition (for reviews, see refs 16, 17,
21), and matrix sublimation/recrystallization method.?* In this work, we demonstrate a new
type of matrix coating method, which takes advantage of hybrid nanoparticles (used as a

matrix carrier) in order to record MALDI images of single cells.

1.3. Electrospray ionization mass spectrometry
1.3.1. Principles of electrospray ionization

The electrospray ionization (ESI) is an atmospheric pressure ionization method, used to
produce gas-phase ions, which are subsequently analyzed by mass spectrometry. This
ingenious approach was developed by Dr. John Fenn. In this technique,® the samples are

delivered in liquid phase, typically dissolved in water or organic solvents (e.g. acetonitrile or
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Figure 1.2 The principle of MALDI imaging. (A) A sample containing bradykinin acetate ([M+H]" at m/z
1058.5) is used to write “Leebo” on a MALDI sample plate. (B) Matrix is coated on top of the sample
plate. (C) UV laser beam is raster-scanner over the sample. The sampling sites are indicated with red
circles. If a site illuminated by the laser beam contains bradykinin acetate, a signal at the m/z 1058.5 (in
the positive-ion mode) will be recorded. (D) The spectra collected in (C) are converted to a molecular

map depicting the distribution of bradykinin on the plate surface.

methanol). A common way to apply samples is by using syringe pump connected to a
capillary emitter mounted at the outlet of the flow line. For the electrospray process, it is also
necessary to apply a potential difference between the electrospray emitter and a
counterelectrode (typically the orifice of the mass spectrometer, Figure 1.3). The Taylor cone
and jets are then formed at the outlet of the emitter, which is followed by the detachment of
charged microdroplets.®*® Desolvation of the microdroplets takes place as they advance

towards the inlet of the mass spectrometer. When the so-called “Rayleigh limit” is reached,



the Coulombic repulsion force is higher than the surface tension within a droplet, and the
droplet splits into smaller ones.*® Combined with continuous evaporation of the solvent, this
process will eventually lead to the formation of singly or multiply charged analyte species in
the gas phase. The mass-to-charge ratios (m/z) are subsequently determined in the mass

analyzer.
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Figure 1.3 The process of electrospray ionization. Figure reproduced from reference 37.

One of the advantages of ESI is that it is straightforward to obtain multiply charged
species. This property is very convenient for the analysis of proteins and other
high-molecular-weight molecules (> 4000 Da). The common mass analyzer (e.g. ion trap,
quadrupole) have a relatively low m/z limit 4000 Da; however, the multiply charged
biomolecules with high molecular weight may still fall within the operational m/z range of the
mass spectrometer.®® It is also very convenient to couple the ESI-MS instruments with
different types of separation systems. For example, it is quite common to hyphenate liquid
chromatography (LC)* or capillary electrophoresis (CE)* with ESI-MS in order to perform

on-line analysis.

1.3.2. lon-trap mass analyzer

The ion trap is a mass analyzer which can trap the ions within a three-dimensional space.

It commonly incorporates a ring electrode and two metal end-cap electrodes (Figure 1.4).



When the analyte ions enter the ion trap, a radio-frequency (RF) and direct current (DC)
voltage applied to the electrode, contribute to trapping the ions with specific m/z, which at
certain conditions will move along a stable orbit. After gas-phase ions are trapped in the
analyzer, they be can ejected to the detector by increasing the amplitude of RF voltage applied
to the ring electrode (stability limit ejection method), or end caps (resonant ejection method).
It will cause the ions with a specific m/z leave the trapping region from the z direction (Figure

1.4), and move towards the detector.*?
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Figure 1.4 The design of an ion trap. Figure reproduced from reference 41.

1.4. Optical absorption detection

When a light beam impinges on a semi-transparent sample, some of the light is
absorbed. For example, if a solution has red color, it absorbs light in the wavelength range
~ 380-560 nm, while red light (~ 590-740 nm) will be transmitted or reflected from such
sample. This simple example gives a reason why many liquid solutions in our surrounding
have a color. The phenomenon of the absorption of light is described by the absorption laws

outlined below.



When a light beam with the intensity Pq is shone onto a liquid sample, a fraction of
photons will be absorbed but some light will be transmitted (Figure 1.5). If we denote the
intensity of the transmitted light as P1, we can then define the value of transmittance (T) as the

ratio:

T= Pj_/PO (1)

The transmittance can readily be converted to absorbance (A) by using the logarithmic

expression:

A =-log T = log (Po/P1) (2)

The higher the absorbance, the less light has been transmitted through the sample. Since the
measured absorbance is affected by the optical pathlength, and the concentration of the

analyte, the following expression is valid:

A=c¢bc 3)

where b is the optical pathlength, c is the concentration of the analyte solution and ¢ is the
molar absorptivity. The equation 3 is referred to as the Beer-Lambert law (or Beer’s law).®
From the equation 3 it is clear that an increase of the optical pathlength (b), as well as the
concentration of the analyte (c), will be accompanied by an increase of the absorption of light
within the sample of the solution under analysis. The Beer-Lambert law has widely been used
in quantitative analysis. Since the absorption of light is directly related to the concentration of
an analyte, we can fix the optical pathlength (i.e. use the same vial/cuvette), and measure

absorbances of samples with different concentrations of this analyte.
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Figure 1.5 The incident light (Po) passes through a sample; the light beam intensity after the optical cell is
lower than that of the incident light beam (P, < Py) which shows that the sample is not completely
transparent to light at the wavelength used. The length b is the optical pathlength. The point SP is a

“sampling point” (see section 1.5)

1.5. Segmented flow

It should be pointed out that the optical absorption spectroscopy, characterized by
equations 1-3 is generally applied to homogeneous solutions. If a solution is not homogeneous,
applying the detection strategy depicted in Figure 1.5 will give us information on the average
absorbance of the sample along the illumination axis. If one wants to measure the absorbance
at one location of a three-dimensional vessel (for example, point SP in Figure 1.5), an
alternative detection strategy has to be implemented.

A very simple way to obtain such information — which is further elaborated in chapter
3 — would be to probe the contents of the sample vessel into a thin tubing (e.g. capillary),
and subsquently transfer the collected samples to a detector. This method allows one to collect
samples at a given point of the three-dimensional space (e.g. point SP in Figure 1.5), and

measure the absorbance of the medium in the corresponding microenvironment. However,



transferring samples along capillaries (from the inlet towards the detector) by hydrodynamic
flow can contribute to significant dispersion (Figure 1.6), and this way decrease the temporal

resolution and sensitivity of the measurement.
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Figure 1.6 Dispersion of a sample plug in the continuous (hydrodynamic) flow. Figure reproduced from

reference 26.

In order to prevent the dispersion (due to advection and diffusion), and this way
increase the temporal resolution of sampling detection, the segmented-flow approach can be
implemented. Segmented flow can easily be generated by simultaneous injection of two
immiscible fluids (two liquids or liquid/gas) into a capillary or a microfluidic channel (Figure
1.7).2%° Mixing occurs mainly within the samples encapsulated in each droplet (Figure 1.8),
while the longitudinal dispersion/diffusion and carry-over effect are reduced.***

After the sampling, the plugs can readily be transported towards the optical absorption
detector, and the Beer-Lambert law can be used to determine the absorbance of each droplet
collected at point SP (cf. Figure 1.5). This sampling method may potentially enhance the
temporal resolution of analysis conducted by optical absorption detection, and other

platforms.3234
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Figure 1.7 Methods for producing segmented flow. Figure reproduced from reference 29.

Flow

Figure 1.8 Separation of individual segments of samples (grey to black) with air bubbles (white) along the flow

line; mixing of the transported liquid witin the segments (arrows). Figure reproduced from reference 30.

1.6. Goals of the work

In this work, we were aiming to develop two analytical methods, one preserving spatial

resolution, and the other one preserving temporal resolution.

e The goal of the first study was to develop a new type of MALDI matrix, based on
hybrid nanopatricles, which would enable performing MALDI imaging of single cells

at a high spatial resolution.
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e The goal of the second study was to develop a method useful in the monitoring of
heterogeneous dynamic chemical systems while preserving temporal resolution. The

method should accommodate optical as well as mass spectrometric detection.
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Chapter 2

Hybrid nanoparticles for mass spectrometric imaging

of single cells

2.1. Introduction

As outlined in section 1.2, Matrix-assisted laser desorption/ionization (MALDI) is an
analytical technique in which laser light is used to desorb and ionize molecules — previously
co-crystallized with a chemical matrix — to enable mass spectrometric (MS) detection of the
resulting gas-phase ions.>? One of the interesting features of this technique is the possibility

of mapping chemical distributions of analytes in biological specimens. In fact, MALDI-MS

43-45 46-48 49-51

has widely been used for mapping lipids, proteins, and small molecules in the
samples such as tissues or single cells."?°?*52%% Examples of powerful chemical matrices
used in MALDI include a-cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic
acid (2,5-DHB), and 9-aminoacridine (9-AA). Before analysis, concentrated solution of a
selected chemical matrix is applied onto the surface of the biological sample. The biggest
nuisance in MALDI imaging is the heterogeneous crystallization of MALDI matrices on the
sample surface, which considerably decreases lateral resolution of the resulting images, and
often disables the possibility of performing single-cell studies. Homogeneous and
reproducible application of MALDI matrices is critical for obtaining high-quality results
using this technique.

Here we demonstrate a new type of hybrid inorganic-organic nanomaterial which

enables in-situ delivery of a chemical matrix for mass spectrometric imaging with high lateral
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resolution. Application of the hybrid matrix to biological specimens poses less threat to the
experimenters and the environment since the toxic matrix compound does not need to be
sprayed by using a gas-powered sprayer, which could lead to the contamination of the
laboratory environment with toxic aerosols. The hybrid nanomaterial binds to the surface of
the cells whi