
A Fault-Tolerant RAID-like System

with List Decodable Codes

Ming Yu Liu

August 19, 2004

2

A Fault-Tolerant RAID-like System with List Decodable Codes

Ming Yu Liu

Abstract

With list decoding of error-correcting codes, we can correct errors be-

yond the traditional ”error-correction radius”. The advantage is that the

transmitted message can suffer from more errors caused by the noise in the

communication channel. But after we perform the list-decoding algorithm

on the received word, we get a list of codewords, and still don’t know which

is the correct one. Codes that have list-decoding algorithm are called list-

decodable codes.

In the thesis, we will use the list-decodable codes to build a RAID-like

system with high fault tolerance, for example, more than half the system is

faulty. That is, we can safeguard a document in the system, even when more

than half the system are failure. We will also bring up some experimental

results about our system.

Keywords: Coding theory, List-decoding, Reed-Solomon codes, RAID, Fin-

gerprint

Contents

1 Introduction 9

2 List-decodable codes 13

2.1 Reed-Solomon codes . 13

2.2 Unique-decoding of Reed-Solomon codes 14

2.3 List-decoding of Reed-Solomon codes 16

2.4 Decoding of RS codes with erasures 18

2.5 An example . 19

3 The RAID-like system 23

3.1 Background . 23

3.2 The high fault-tolerant RAID-like system 24

3.2.1 The store function . 25

3.2.2 The retrieve function 26

3.3 Choose a proper (N,K)q RS code 28

4 Experimental results 31

4.1 The list size of the list-decoder 31

4.2 The RAID-like system . 33

4.2.1 The simulation environment 33

4.2.2 Simulation results . 35

5 Conclusion 37

3

4 CONTENTS

List of Figures

3.1 The RAID-like system . 24

3.2 The store function . 25

3.3 Get the candidate list for a document fragment 26

3.4 The retrieve function . 27

3.5 The efficient-retrieve function 28

4.1 Snapshot 1 of the simulation environment 33

4.2 Snapshot 2 of the simulation environment 34

4.3 Unique-retrieve (left) and efficient-retrieve (right) with p = 0.3. 36

4.4 Unique-retrieve (left) and efficient-retrieve (right) with p = 0.5. 36

4.5 Unique-retrieve (left) and efficient-retrieve (right) with p = 0.7. 36

5

6 LIST OF FIGURES

List of Tables

2.1 + operation over GF (24) . 20

2.2 · operation over GF (24) . 21

3.1 Some (N,K) RS codes with 1/2 error-correcting rate 29

4.1 The list size of the list-decoder for the (16, 2)24 RS code 32

4.2 The list size of the list-decoder for the (32, 4)25 RS code 32

7

8 LIST OF TABLES

Chapter 1

Introduction

When we transmit a message in a communication channel, some errors

caused by the noise in the channel may occur such that we receive a different

message on the other side. To ensure that the receiver can recover the orig-

inal message from the received information, some redundant information is

required. Coding theory deals with such problem with efficiency in the time

of encoding/decoding and the space of redundant information.

In coding theory, the distance d(C) of a code C is the minimum Hamming

distance over all pairs of non-identical codewords in C. It is the key factor in

deciding the error-correcting capability of a code C since a conventional de-

coder can correct up to bd(C)−1
2
c errors. Within this error-correcting bound,

the decoder can find at most one codeword c ∈ C such that d(c, r) ≤ bd(C)−1
2
c

where d(c, r) is the distance between the codeword c and the received word

r. So such decoding problem is called unique-decoding. Another notion

called list-decoding, which was introduced independently by Elias[1] and

Wozencraft[16] in the late 1950s, deals with the problem that the num-

ber of errors is beyond the traditional ”error-correction radius” (i.e. half

the minimum distance). A list-decoder will output all of the possible code-

words within a specified distance with the received word. Until now, the list-

decoding algorithms for some error-correcting codes are invented and codes

that have efficient list-decoding algorithms are called list-decodable codes.

9

10 CHAPTER 1. INTRODUCTION

The list decoding algorithm of Reed-Solomon codes was shown by Madhu

Sudan[13] in 1997. It inspires the research in this area. Then, the

list decoding algorithms for other well-known codes, such as Reed-Muller

codes[10], Chinese remainder codes[6], algebraic-geometric codes[5], concate-

nated codes[4] and algebraic soft decoding[8] were invented. There was also

a new combinatorial approach to list decoding resulting a linear time encod-

able and list-decodable codes by Venkatesan Guruswami and Piotr Indyk[7]

in 2003.

Same idea in coding theory can be applied to applications in data storage.

Plank[11] gave a tutorial on how to use RS code to build a RAID-like System

with unique-decoding. Teng et al. [14] used the extractor codes to build a

EC-RAID system, which offers high fault tolerance, while there is no specific

implementation.

In this thesis, we show an architecture of RAID-like system by using the

list-decodable codes. The RAID-like system can provide higher fault tolerance

and reliability due to the nice property of list-decoding. We not only describe

the full details about how to store and retrieve a document in our system,

but also build a simulation environment in Java programming language so

that we can demonstrate the reliability of the storage system with visualized

testing. Our RAID-like simulation system through the web can be accessed

via http://www.csie.nctu.edu.tw/∼myliu/java2/.

Since a list-decoder can correct more errors than a traditional unique-

decoder, it usually takes more time. But if we have other useful information

(e.g. erasures), we can reduce the decoding time. Similar information are

found when we try to reconstruct the source document in our system. The

information can be used not only to speedup the decoding time, but also to

filter impossible decoding results. So the retrieve function provided by our

system is more efficient than just using a list-decoder directly.

As pointed by McEliece[9], we find similar results in our experiments that

the list size is almost unique. Even so we have used the fingerprint to help

the list decoding algorithm reconstruct the unique answer from the lists. Our

11

system can be used to develop new list decoding techniques. With the object

oriented nature of Java, users can design and test their new coding methods

on our system.

The organization of the rest of this thesis is as follows. Chapter 2 intro-

duces the list-decodable codes we used. Chapter 3 shows an application in

data storage with the list-decodable codes. Chapter 4 gives some experimen-

tal results on the codes and the system. At last, we make a conclusion in

chapter 5.

12 CHAPTER 1. INTRODUCTION

Chapter 2

List-decodable codes

In this thesis, we use the most widely used Reed-Solomon codes to be our list-

decodable code. So we will give a detail introduction of the code, including

unique-decoding, list-decoding and decoding with erasures.

2.1 Reed-Solomon codes

Reed-Solomon code is one of the most practical and well-known error-

correcting codes. They were introduced by Irving S. Reed and Gustave

Solomon[12]. Until now, they have a wide range of applications in digital

communication and data storage. We define the codes first.

Definition 2.1.1 (Reed-Solomon codes) Let Σ = Fq be a finite field and

α1, . . . , αn be distinct elements of Fq. Given n, k and Fq such that k ≤ n ≤ q,

we define the encoding function for Reed-Solomon codes as: C : Σk → Σn

where on message m = 〈m0,m1, . . . ,mk−1 〉 consider the polynomial p(X) =∑k−1
i=0 miX

i and C(m) = 〈 p(α1), p(α2), . . . , p(αn) 〉 is the codeword.

From the above definition, we know that a Reed-Solomon code is a map-

ping from a vector space of dimension k over a finite field Fq into a vector

space of higher dimension n > k over the same field. The following theorem

shows that it matches the singleton bound.

13

14 CHAPTER 2. LIST-DECODABLE CODES

Theorem 2.1.2 Reed-Solomon code is a [n, k, n− (k − 1)]q-code.

Proof. Let p1 and p2 be any two polynomials with both degree ≤ k − 1.

Their codewords agree at the i-th coordinate iff (p1 − p2)(αi) = 0. Since the

degree of (p1 − p2) is ≤ k − 1, it has at most k − 1 zeros. So the minimum

distance d ≥ n− (k − 1). With the singleton bound, we have the minimum

distance d = n− (k − 1).

2.2 Unique-decoding of Reed-Solomon codes

The well-known decoding algorithm for Reed-Solomon codes is given by

Berlekamp and Welch[15]. Before we describe the algorithm, we need to

define the error-locating polynomial.

Definition 2.2.1 (Error-locating polynomial) Let e, k be some param-

eters. Let α1, . . . , αn and m1, . . . ,mn be such that there exists a polynomial

p of degree ≤ k − 1 such that p(αi) 6= mi for ≤ e values of i. E(x) is an

error-locating polynomial for the above input if we have

1. E(αi) = 0 if p(αi) 6= mi.

2. deg(E) ≤ n− k, and E 6= 0.

Note the given E, we know the location where these errors occur by

finding the i’s for which E(αi) = 0. Then we replace mi with ? for those i’s

and run erasure decoding on the resulting vector of mi’s. This works because

there are at most n− k ≤ d− 1 i’s for which E(αi) = 0.

Now we define N(x) = E(x) · p(x). It is clear that (mi− p(αi))E(αi) = 0

for all i. Then,

N(αi) = E(αi)p(αi) = miE(αi), for all i.

The BW decoding algorithm is as follows.

2.2. UNIQUE-DECODING OF REED-SOLOMON CODES 15

Berlekamp-Welch decoding algorithm

Input: α1, . . . , αn,m1, . . . ,mn where αi,mi ∈ Fq. k and e ≤ b(n− k)/2c
Procedure:

1. Find polynomial N(x) and E(x) such that

(a) N(αi) = miE(αi) for all i.

(b) deg(N) ≤ e+ k − 1 and N(x) 6= 0

(c) deg(E) ≤ e and E(x) 6= 0

2. Let p(x) = N(x)/E(x)

Output: The coefficients of the polynomial p(x).

Theorem 2.2.2 Let α1, . . . , αn and m1, . . . ,mn be such that there exists a

polynomial p of degree at most k−1 such that p(αi) 6= mi for e ≤ b(n−k)/2c
values of i. Then we can find the polynomial p by the Berlekamp-Welch

decoding algorithm efficiently.

Proof.

1. The polynomials N(x) and E(x) exist.

Define E(x) =
∏

i:p(αi)6=mi(x− αi). If there are e errors, deg(E) = e ≤
b(n− k)/2c and E(x) is what we call error-locating polynomial for our

input. Then define N(x) = E(x) · p(x). We saw earlier that for such

N(x), N(αi) = miE(αi) for all i. So the polynomials N(x) and E(x)

both exist.

2. The polynomial p found by the BW decoding algorithm is unique.

To prove the uniqueness of the polynomial p, we assume that there are

two pairs (N,E) and (N ′, E ′) which both satisfy the condition in step

1. If N
E

= N ′
E′ , we prove the uniqueness of the polynomial p.

Let’s consider two cases.

16 CHAPTER 2. LIST-DECODABLE CODES

case 1: mi = 0: Then N(αi) = N ′(αi) = 0, so N
E

= N ′
E′ = 0.

case 2: mi 6= 0: Then N(αi)N
′(αi) = miE(αi)N

′(αi) =

N(αi)miE
′(αi).

Dividing through by mi, we get N ′(αi)E(αi) = N(αi)E
′(αi) for all i.

Since N ′ ·E and N ·E ′ have degree ≤ 2e+ k− 1, while n > 2e+ k− 1,

this implies that N ′ ·E = N ·E ′ as polynomial. So the polynomial p is

unique.

3. The algorithm is efficient.

In step 1, it is solving a homogeneous linear system of n equations

e+k−1∑
j=0

Njα
j
i = mi

e∑
j=0

Ejα
j
i

in the unknowns N0, . . . , Ne+k−1, E0, . . . , Ee−1, and Ee = 1. There are

2 · e+ k ≤ n unknowns and we have n equations. The straightforward

way of solving the linear system works in time O(n3).

In step 2, the division of the polynomials works in time O(n).

So the BW decoding algorithm is efficient.

2.3 List-decoding of Reed-Solomon codes

The first list-decoding algorithm for Reed-Solomon codes is invented by

Madhu Sudan in 1997[13]. We describe the algorithm in this section.

Definition 2.3.1 (weighted degree) For weights wx, wy ∈ Z+, the

(wx, wy)-weighted degree of a monomial qijx
iyj is iwx + jwy. The (wx, wy)-

weighted degree of a polynomial Q(x, y) =
∑

i

∑
j qijx

iyj is the maximum,

over the monomials with non-zero coefficients, of the (wx, wy)-weighted de-

gree of the monomial.

2.3. LIST-DECODING OF REED-SOLOMON CODES 17

Sudan-List-decoding algorithm for RS codes

Input: n, k, t and {(α1,m1), . . . , (αn,mn)}
Procedure:

1. Let d = k − 1, m = dd/2− 1e and l = d
√

(2(n+ 1)/d)e − 1.

2. Find any bivariate polynomial Q(α,m) such that

(a) Q(α,m) has (1, d)-weighted degree at most m+ ld.

(b) Q(αi,mi) = 0 for all i.

(c) Q 6= 0.

3. Factor Q into irreducible factors.

Output: All the polynomials p such that (m− p(α)) is a factor of Q and

p(αi) = mi for at least t values of i.

Theorem 2.3.2 Let F be a field and {α1,m1}, {α2,m2}, . . . , {αn,mn} be n

distinct pairs where αi,mi ∈ F. Then we can find all polynomials p : F→ F
of degree at most k−1, such that p(αi) = mi for t ≥ (k−1)d

√
2(n+1)
k−1
e−b (k−1)

2
c

values of i by the above list-decoding algorithm efficiently.

Proof.

1. The bivariate polynomial Q in step 2 exists.

We show how to find Q directly, which implies the existence. Let

Q(α,m) =
∑l

j=0

∑m+(l−j)d
k=0 qkjα

kmj. We want to find coefficients qkj

satisfying the constraints
∑l

j=0

∑m+(l−j)d
k=0 qkjα

k
im

j
i = 0 for all i. The

homogenous linear system has (m+1)(l+1)+d·l(l+1)/2 > n unknowns

and n equations. Hence, a non-zero solution exists.

2. If t ≥ (k − 1)d
√

2(n+1)
k−1
e − b (k−1)

2
c and p is a polynomial such that

p(αi) = mi for at least t values of i, the polynomial p must be in the

output list of the list-decoding algorithm.

18 CHAPTER 2. LIST-DECODABLE CODES

It is equivalent to prove that (m − p(α)) divides Q(α,m). First, let

f(α) = Q(α, p(α)). Since Q(α,m) =
∑l

j=0

∑m+(l−j)d
k=0 qkjα

kmj and it

has (1, d)-weighted degree at most m+ld, we have that k+jd ≤ m+ld.

And our f(α) =
∑l

j=0

∑m+(l−j)d
k=0 qkjα

k(f(α)j) has degree at most k+jd.

Thus, we know that f(α) has degree at most m+ ld.

Since p is a polynomial such that p(αi) = mi for at least t values

of i, we have f(αi) = Q(αi, p(αi)) is zero for greater than t ≥ (k −
1)d
√

2(n+1)
k−1
e − b (k−1)

2
c = d(l + 1)− bd

2
c > m+ ld points. But f(α) has

degree at most m + ld, so f(α) = Q(α, p(α)) is identical zero, which

means (m− p(α)) divides Q(α,m).

The above is the first list decoding algorithm for RS codes. Actually, an

improve list-decoding algorithm for RS code has been invented in 1999 by

Guruswami and Sudan[5]. It can correct up to N−
√

(K − 1)N for a (N,K)

RS code. So more errors can be corrected with the GS-decoder. But since

the polynomial Q during decoding has much higher degree than the origi-

nal algorithm, resulting in taking much more time, we choose to implement

Sudan’s list decoding algorithm. To be consistent with the implementation

and the experimental results, we will use Sudan’s algorithm throughout this

paper.

2.4 Decoding of RS codes with erasures

Consider a (N,K) RS code, let C(M)RS = 〈m1,m2, . . . ,mN 〉 denote the

codeword for some message M . If the codeword suffers e ≤ N −K erasures

in the last e tuples, the receive word is 〈m1,m2, . . . ,mN−e, ∗, . . . , ∗〉. Then

we can do error-correcting on the first N − e tuples by viewing the first

N − e tuples as a new receive word 〈m1,m2, . . . ,mN−e〉 corresponding to

a (N − e,K) RS code. From theorem ??, we know that a (N − e,K) RS

code can correct up to b(N − e −K)/2c errors with unique-decoding. And

from theorem 2.3.2, a (N − e,K) RS code can correct up to (N − e) −
(K − 1)d

√
2(N−e+1)
K−1

e − b (K−1)
2
c errors with list-decoding. So, we have that

2.5. AN EXAMPLE 19

a (N,K) RS code can be unique decoded from e ≤ N − K erasures and

b(N − e −K)/2c errors by using the BW unique-decoding algorithm or list

decoded from e ≤ N−K erasures and (N−e)−(K−1)d
√

2(N−e+1)
K−1

e+b (K−1)
2
c

errors by using Sudan’s list-decoding algorithm.

2.5 An example

Now we show an example of how to do list-decoding of a RS code. As an

example, let CRS be a [16, 2, 15]24 Reed-Solomon code. Then CRS : Σ2 → Σ16

where Σ is GF (24). We use ”0” to denote 00002, ”1” to denote 00012, ”2” to

denote 00102, ”3” to denote 00112, . . ., ”14” to denote 11102, ”15” to denote

11112. Table 2.1 and 2.2 show the definition of operations + and · over

GF (24).

Consider the message m = 〈 6, 8 〉 and its corresponding polynomial is

p(x) = 6 + 8x. Then

CRS(m) = 〈 p(1), p(2), p(3), . . . , p(13), p(14), p(15), p(0) 〉
= 〈 14, 5, 13, 0, 8, 3, 11, 10, 2, 9, 1, 12, 4, 15, 7, 6 〉

From theorem 2.3.2, we know that the original message m must be in the

output list of the list-decoding algorithm if there are at least 6 elements in

CRS(m) not changed. It means that the number of errors can be up to 10,

which is greater than the traditional ”error-correction radius” e = bD−1
2
c =

b15−1
2
c = 7.

Let C ′RS(m) be the word that after CRS(m) occurs some errors.

CRS(m) 〈 14, 5, 13, 0, 8, 3, 11, 10, 2, 9, 1, 12, 4, 15, 7, 6 〉
7→ C ′RS(m) 〈 14, 6, 13, 1, 9, 4, 11, 11, 2, 10, 1, 13, 5, 0, 7, 7 〉

Then we need to find any non-zero bivariate polynomial Q with (1, 1)-

weighted degree at most 5 and it passes through (1, 14), (2, 6), (3, 13), (4, 1),

(5, 9), (6, 4), (7, 11), (8, 11), (9, 2), (10, 10), (11, 1), (12, 13), (13, 5), (14, 0),

20 CHAPTER 2. LIST-DECODABLE CODES

+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14

2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13

3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12

4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11

5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10

6 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9

7 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8

8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7

9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6

10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5

11 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4

12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3

13 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2

14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1

15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table 2.1: + operation over GF (24)

2.5. AN EXAMPLE 21

· 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 0 2 4 6 8 10 12 14 3 1 7 5 11 9 15 13

3 0 3 6 5 12 15 10 9 11 8 13 14 7 4 1 2

4 0 4 8 12 3 7 11 15 6 2 14 10 5 1 13 9

5 0 5 10 15 7 2 13 8 14 11 4 1 9 12 3 6

6 0 6 12 10 11 13 7 1 5 3 9 15 14 8 2 4

7 0 7 14 9 15 8 1 6 13 10 3 4 2 5 12 11

8 0 8 3 11 6 14 5 13 12 4 15 7 10 2 9 1

9 0 9 1 8 2 11 3 10 4 13 5 12 6 15 7 14

10 0 10 7 13 14 4 9 3 15 5 8 2 1 11 6 12

11 0 11 5 14 10 1 15 4 7 12 2 9 13 6 8 3

12 0 12 11 7 5 9 14 2 10 6 1 13 15 3 4 8

13 0 13 9 4 1 12 8 5 2 15 11 6 3 14 10 7

14 0 14 15 1 13 3 2 12 9 7 6 8 4 10 11 5

15 0 15 13 2 9 6 4 11 1 14 12 3 8 7 5 10

Table 2.2: · operation over GF (24)

22 CHAPTER 2. LIST-DECODABLE CODES

(15, 7) and (0, 7). Since the bivariate polynomial Q has 21 unknowns and we

have 16 equations, the polynomial Q exists. After solving the homogenous

linear system, we choose one of the non-zero solutions be our polynomial Q.

Q(x, y) = 4 + 2x+ 4y + 6x2 + 12xy + 4y2 + 10x3 + 4x2y + 13xy2 + y3 + x4

+9x3y + xy3 + y4 + 12x5 + 3x4y + 13x3y2 + x2y3 + xy4 + y5

After factoring the polynomial Q into irreducible polynomials, we get

Q(x, y) = 4 + 2x+ 4y + 6x2 + 12xy + 4y2 + 10x3 + 4x2y + 13xy2 + y3 + x4

+9x3y + xy3 + y4 + 12x5 + 3x4y + 13x3y2 + x2y3 + xy4 + y5

= (6 + 8x+ y) · (7 + 8x+ y)

·(4 + 4x+ 5x2 + 8xy + x3 + 13x2y + xy2 + y3)

Both of the polynomials p 1(x) = 6 + 8x and p 2(x) = 7 + 8x satisfy the

output constraints of the list-decoding algorithm. So we get two possible

messages 〈 6, 8 〉 and 〈 7, 8 〉.

We can check them again.

C ′RS(m) = 〈 14, 6, 13, 1, 9, 4, 11, 11, 2, 10, 1, 13, 5, 0, 7, 7 〉
CRS(〈 7, 8 〉) = 〈 15, 4, 12, 1, 9, 2, 10, 11, 3, 8, 0, 13, 5, 14, 6, 7 〉

and

C ′RS(m) = 〈 14, 6, 13, 1, 9, 4, 11, 11, 2, 10, 1, 13, 5, 0, 7, 7 〉
CRS(〈 6, 8 〉) = 〈 14, 5, 13, 0, 8, 3, 11, 10, 2, 9, 1, 12, 4, 15, 7, 6 〉

Both agree with C ′RS in 6 positions.

Chapter 3

The RAID-like system

From the previous chapter, we have shown that the error-correcting capa-

bility of Reed-Solomon codes can be more powerful with the list-decoding

algorithm. In this chapter, we show an application in data storage with the

list decoding.

3.1 Background

A RAID-like system consists of individual storage devices and each of them

works independently as shown in figure 3.1.

Today, if we want to safeguard a document in a RAID-like system, the

most trivial method is to replicate it, and to store the different copies in

different storage devices. Suppose the RAID-like system has n devices, and

each of them holds one copy. Then we can reconstruct the original document

by doing majority vote on the copies collected from each device if no more

than half of the system incur arbitrary failures, including alterations to the

data. However, the method has a main drawback that the required storage

space grows linearly with the number of storage devices.

Rather than using the method of replication, those who are familiar with

the coding theory may use an error-correcting code to encode the document.

Suppose the size of the document is s and we use a [N,K,D]q Reed-Solomon

23

24 CHAPTER 3. THE RAID-LIKE SYSTEM

CPU

Disk nDisk 1 Disk 2 Disk 3

Storage devices

Figure 3.1: The RAID-like system

code where q = 2s/K and N = n, the number of storage devices. The

document can be viewed as a vector space of dimension K over a field F of

size q. By the encoding function of the code, the vector space of dimension K

maps into a vector space of dimension N over the same field and each device

holds the data of one dimension. With the unique-decoding of Reed-Solomon

codes, we can reconstruct the original document when up to b(D − 1)/2c =

b(N −K)/2c storage devices incur arbitrary failures, including alterations to

data stored in them.

The above describes a traditional setting when using an error-correcting

code with traditional unique-decoding to safeguard a document in a RAID-

like system. Since the distance D of a code is at most equal to the block

length N , the fraction of the failure storage devices in the system is at most

≈ 1/2 when N → ∞. That is, the above method can never satisfy the

failure model that the fraction of failure storage devices is more than 1/2,

whatever the error-correcting codes we use. So it is a challenge to construct a

RAID-like system with high fault tolerance that more than half of the storage

devices incur arbitrary failures.

3.2 The high fault-tolerant RAID-like system

The RAID-like system needs to provide two important functions: store and

retrieve. The store function takes a document as the input, and transforms

the document into several data pieces. On the other hand, the retrieve func-

tion takes several data pieces as the inputs, and tries to reconstruct the

3.2. THE HIGH FAULT-TOLERANT RAID-LIKE SYSTEM 25

encoding

encoding

encoding

encoding

......

partition

fingerprint

......

......

Doc
Disk 1 Disk n

......

Disk 2 Disk 3

......

Figure 3.2: The store function

original document based on the information in those pieces.

In this chapter, we assume that there are n storage devices in the system,

the size of the document is s bits and the number of faulty storage devices in

the system is at most e where e ≥ n/2. We use ErrBoundU(e) to denote the

error-correcting bound of unique-decoding with e erasures. ErrBoundL(e)

denotes the error-correcting bound of list-decoding with e erasures.

3.2.1 The store function

First, we need to choose a proper (N,K)q Reed-Solomon code where N = n

and q is as small as possible such that the code can correct up to e errors. So

the code can encode M = K ∗ log2 q bits. Then, we partition the document

into s/M fragments and encode each fragment separately. After encoding,

each fragment is transformed into n data pieces and we store them on the n

storage devices separately. At last, each device holds s/M data pieces and

an extra hash value of the original document as fingerprint. Figure 3.2 shows

the store function.

26 CHAPTER 3. THE RAID-LIKE SYSTEM

encoding

candidate listdocument fragment

retrievestore

......

n data pieces

......
list−decoding

Figure 3.3: Get the candidate list for a document fragment

3.2.2 The retrieve function

The goal of the retrieve function is to reconstruct the original document.

First, we can get a candidate list for each document fragment by performing

the list-decoding algorithm on its corresponding data pieces. If there are at

most e storage devices failure, every candidate list must contain the original

corresponding document fragment. See figure 3.3. Now we show how to

choose the correct one from the candidate list for all document fragments.

Step 1. Let I be an empty set that is used to collect the indices of the failure

storage devices.

Step 2. For all candidate lists, do as follows: if the candidate list has only

one message m, let C(m)RS denote the (N,K)q RS code of m and

D0, D1, . . . , Dn−1 denote the corresponding data pieces of m.

I = I ∪ {i : C(m)RSi 6= Di} where 0 ≤ i ≤ n− 1

Then, the set I has some indices of failure storage devices.

Step 3. For all candidate lists of size which is greater than one, do as follows:

If e−|I| ≤ ErrBoundU(|I|), we can use unique-decoding with erasures

to get the correct document fragment. Otherwise, assume the candidate

list has messages m1,m2, . . . ,ml. Let C(m)RS denote the (N,K)q RS

code of some messagem andD0, D1, . . . , Dn−1 denote the corresponding

data pieces of m. For the message mj where 1 ≤ j ≤ l, if

| I ∪ {i : C(mj)RSi 6= Di} |> e where 0 ≤ i ≤ n− 1

we delete the message mj from the candidate list.

3.2. THE HIGH FAULT-TOLERANT RAID-LIKE SYSTEM 27

list−decoding

that match the fingerprintsList all

list−decoding

Drop impossible data fragments for all candidate lists

Collect information about the indices of failure storage devices

......

Disk n

......

......

......

......

Disk 2Disk 1

......

......

fingerprint

Collect fingerprints that have at least n−e identical copies

Figure 3.4: The retrieve function

Step 4. If the sizes of all candidate lists are one. Concatenate them and we

get the original document. Otherwise, compare all combinations with

the fingerprints that have at least n−e identical copies in the n storage

devices to get all possible documents.

We summarize all of the procedures in figure 3.4.

Since the list-decoding algorithm takes more time, we can reorder some

procedures in figure 3.4 to speed up the retrieve function. That is, every

time we get the candidate list for some document fragment, we can update

the set I, if the list size is one. Then, we can discard the indices in I as

the positions of erasures. If e − |I| ≤ ErrBoundU(|I|), we use a unique-

decoder with erasures to decode the next document fragment. Otherwise,

ErrboundU(|I|) < e − |I| ≤ ErrBoundL(|I|), we use a list-decoder with

erasures. The more information about the erasures, the less time taken by the

list-decoding algorithm. Figure 3.5 shows a speedup version of the retrieve

28 CHAPTER 3. THE RAID-LIKE SYSTEM

that match the fingerprints

Drop impossible data fragments for all candidate lists

List all

......

fingerprint
......

Collect fingerprints that have at least n−e identical copies

......

......

Disk 2

Use a proper decoder by cases

(Update I)

Disk 1
Initially, let I be an empty set.

......

......

Disk n

......

Figure 3.5: The efficient-retrieve function

function.

3.3 Choose a proper (N,K)q RS code

In the store function, we need a proper (N,K)q RS code as the encoder.

Here, we show how to choose a code with error-correcting rate 0.5.

First, N is set to n, the number of storage devices in the system and q

is set to 2dlg2 ne. From theorem 2.3.2, we know that an (N,K) RS code with

list-decoding can correct up to N − (K − 1)d
√

2(N+1)
K−1

e + b (K−1)
2
c errors. If

we want our system to correctly retrieve the stored document with half of

the system failed, that is, we need to choose K with some fixed N to satisfy

(K − 1)d
√

2(N + 1)

K − 1
e+ b(K − 1)

2
c ≤ N/2.

It is clear that if K ≤ b5N + 7 − 2
√

2(N + 1)(3N + 4)c, then the above

inequality holds.

3.3. CHOOSE A PROPER (N,K)Q RS CODE 29

N K Information rate Blowup factor Message size

24 = 16 2 2
16

= 0.1250 8 8 bits

25 = 32 4 4
32

= 0.1250 8 20 bits

26 = 64 7 7
64
≈ 0.1094 9.14 42 bits

27 = 128 13 13
128
≈ 0.1016 9.85 91 bits

28 = 256 26 26
256
≈ 0.1016 9.85 208 bits

29 = 512 52 52
512
≈ 0.1016 9.85 468 bits

210 = 1024 104 104
1024
≈ 0.1016 9.85 1040 bits

211 = 2048 207 207
2048
≈ 0.1010 9.89 2277 bits

212 = 4096 414 414
4096
≈ 0.1010 9.89 4968 bits

· · · · · · · · · · · · · · ·
∞ ≈ 0.1010 9.90

Table 3.1: Some (N,K) RS codes with 1/2 error-correcting rate

Table 3.1 lists some RS codes that can be list-decoded from N/2 errors

with maximum rate when using the Sudan’s list decoding algorithm.

30 CHAPTER 3. THE RAID-LIKE SYSTEM

Chapter 4

Experimental results

In the previous chapter, we have described the design of our RAID-like sys-

tem. To study the reliability of the storage system, we show some experi-

mental results in this chapter.

4.1 The list size of the list-decoder

The list size of the list-decoding algorithm for RS codes plays an important

role in the design of our RAID-like system. The previous work[9] on this

topic by R. J. McEliece shows that list-decoder almost always returns a list

of size one. In this section, we show this by experimental results. We may

choose a (N,K)q RS code and assume it can correct up to e errors with

the list-decoding algorithm. In each experiment, we will choose randomly a

message and encode the message with the chosen RS code. After encoding,

we get a codeword and randomly replace the values of e′ positions for the

codeword where (N −K + 1)− e ≤ e′ ≤ e. Finally, we decode the codeword

by the list-decoding algorithm and collect the outputs into the set L. For all

e′, we do the experiment t times.

Table 4.1 shows the experimental results for the (16, 2)24 RS code which

can correct up e = 10 errors with the list-decoding algorithm. Table 4.2 is

for the (32, 4)25 code with e = 18.

31

32 CHAPTER 4. EXPERIMENTAL RESULTS

t = 100, 000 for each e′

e′: # of errors #{|L| > 1} The fraction of |L| > 1

10 2389 0.02389

9 1408 0.01408

8 720 0.00720

7 340 0.00340

6 99 0.00099

5 24 0.00024

Table 4.1: The list size of the list-decoder for the (16, 2)24 RS code

t = 1, 000, 000 for each e′

e′: # of errors #{|L| > 1} The fraction of |L| > 1

18 0 0

17 0 0

16 0 0

15 0 0

14 0 0

13 0 0

12 0 0

11 0 0

Table 4.2: The list size of the list-decoder for the (32, 4)25 RS code

4.2. THE RAID-LIKE SYSTEM 33

The results in Table 4.2 may seems unusual. It shows that the output list

of the list-decoder is size one with very high probability. It indicates that in

most cases the list-decoder behaves just like a conventional decoder(unique-

decoding algorithm).

4.2 The RAID-like system

Before we show the experimental results of the system, we introduce its

simulation environment first.

4.2.1 The simulation environment

The snapshots of the simulation environment are shown in Figure 4.1 and

Figure 4.2. The main window is divided into three areas, which are named

”Step 1”, ”Step 2”, and ”Step 3”.

Figure 4.1: Snapshot 1 of the simulation environment

”Step 1” Area:

34 CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.2: Snapshot 2 of the simulation environment

In this area, users can select a source data (document) and a code as the

encoder. Once both of them are selected, users can press the button named

”Store” to perform the store function. In order to easily compare the original

document in ”Step 1” area with the retrieved document in ”Step 3” area,

we use images as the sources. Once select an image, users can preview the

image on the bottom of this area.

”Step 2” Area:

Once press the ”Store” button in ”Step 1” area, all disks of the system

will store the encoded data. Then, we can use the button named ”random

noise” to add random errors to the disks. The ”reset” button is used to

reset all disks to a state of error free.

Before pressing the ”random noise” button, users can decide the number

of failure disks and an error probability. Now suppose the number of failure

disks is e, and the error probability is p. After pressing the ”random noise”

button, it will randomly select e disks as failure disks and the error probability

for each data piece and each fingerprint on these failure disks will be p.

4.2. THE RAID-LIKE SYSTEM 35

”Step 3” Area:

In this area, users can select a retrieving method to retrieve the docu-

ment from the encoded data stored in those disks. Once select the retrieving

method, users can press the button named ”Retrieve” to perform the re-

trieve function and the result will be shown on the bottom of this area. If

users just want to see where the errors occur, then press the button named

”show errors”. If we have more than one outputs, the button named ”�”

and ”�” can be used to switch between them.

Here we provide two retrieving method. The first retrieving method

is called unique-retrieve. It uses the unique-decoding algorithm as the de-

coder and its error-correction bound is half of the minimum distance of the

code. Another retrieving method is called efficient-retrieve. It uses the list-

decoding algorithm as the decoder and hence it has higher error-correction

capability.

4.2.2 Simulation results

We use the Lena (or Lenna) picture, which is one of the most widely

used images for data compression, to be our source data (document) and

the (16, 2)24 RS code, which can correct up to 10 errors, to be our encoder.

The number of failure disks is set to 10. Figure 4.3 shows the result when

the error probability p is set to 0.3. Figure 4.4 is the result when p = 0.5.

Figure 4.5 is the result when p = 0.7.

The (16, 2)24 RS code can correct up to 7 errors with unique-decoding and

10 errors with list-decoding. So once the encoded data pieces for some doc-

ument fragment has more than 7 errors, the unique-retrieve method cannot

reconstruct the original fragment and some parts of the retrieved picture will

be corrupted. But for the efficient-retrieve method, it can correctly retrieve

the original picture under this setting.

36 CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.3: Unique-retrieve (left) and efficient-retrieve (right) with p = 0.3.

Figure 4.4: Unique-retrieve (left) and efficient-retrieve (right) with p = 0.5.

Figure 4.5: Unique-retrieve (left) and efficient-retrieve (right) with p = 0.7.

Chapter 5

Conclusion

In the thesis, we have shown how to use one of the list-decodable codes,

Reed-Solomon codes with list-decoding to build a RAID-like system with high

fault tolerance. Moreover, the system can offer traditional error-correcting

capability if we replace a unique-decoder with the list-decoder. Then we can

save much time in decoding if there are only few disks failure.

Since list-decoding of RS codes can be viewed as bivariate interpolation

and factorization problem[2, 3], the retrieve function in this system may be

too slow if the size of the document is too large. To overcome this problem,

we can use other list-decodable codes (e.g. expander codes) that have low

complexity in time to replace RS codes although we may need more disk

space to store the encoded data.

37

38 CHAPTER 5. CONCLUSION

Bibliography

[1] P. Elias, “List decoding for noisy channels,” Institute of Radio Engineers,

94-104, 1957.

[2] J. von zur Gathen and E. Kaltofen, “Polynomial time factorization of

multivariate polynomials over finite fields,” Math. Comput, 45:251–261,

1985.

[3] Shuhong Gao and Alan G.B. Lauder, “Hensel lifting and bivariate poly-

nomial factorisation over finite fields,” Mathematics of Computation,

Volume 71, Issue 240, October 2002.

[4] V. Guruswami and M. Sudan, “List decoding algorithms for certain

concatenated codes,” Proceedings of the 32nd annual ACM symposium

on Theory of computing, 181–190, May 2000.

[5] V. Guruswami and M. Sudan, “Improved Decoding of Reed-Solomon

Codes and Algebraic Geometry Codes,” IEEE Transactions on Infor-

mation Theory, vol. 45, no. 6, pp. 1757-1767, September 1999.

[6] V. Guruswami, A. Sahai and M. Sudan, “Soft-Decision Decoding of

Chinese Remainder Codes,” Proceedings of the 41st Annual Symposium

on Foundations of Computer Science, 2000.

[7] V. Guruswami and P. Indyk, “Linear Time Encodable and List Decod-

able Codes,” STOC, 2003.

39

40 BIBLIOGRAPHY

[8] R. Koetter and A. Vardy, “Algebraic soft-decision decoding of Reed-

Solomon codes,” IEEE Transactions on Information Theory, August 31

2001

[9] R. J. McEliece, “On the average list size for the Guruswami-Sudan De-

coder,” International Symposium on Communication Theory and Appli-

cations, July 2003.

[10] R. Pellikaan and Xin-Wen Wu, “List decoding of q-ary Reed-Muller

codes,” IEEE Transactions on Information Theory, April 2004.

[11] J. S. Plank, “A Tutorial on Reed-Solomon Coding for Fault-Tolerance in

RAID-like Systems,” Software, Practice and Experience, 27(9):995-1012,

September 1997.

[12] Irving S. Reed and Gustave Solomon, “Polynomial Codes over Certain

Finite Fields,” Journal of the Society for Industrial and Applied Math-

ematics, 1960.

[13] Madhu Sudan, “Decoding of Reed-Solomon codes beyond the error-

correction bound,” Journal of Complexity, 13(1):180–193, 1997.

[14] C.-Y. Teng, R.-J. Chen, M.-Y. Liu and S.-C. Tsai, “Extractor Codes

with Applications,” NCS 2003.

[15] L. R. Welch and E. R. Berlekamp, “Error correction for algebraic block

codes,” US patent, Number 4, 633, 470, 1986.

[16] J. M. Wozencraft, “List decoding,” Quarterly Progress Report, Research

Laboratory of Electronics, MIT, 48:90-95, 470, 1958.

