\$C_\{11\}\$ Contractions are reflexive. II
Author(s): Pei Yuan Wu
Source: Proceedings of the American Mathematical Society, Vol. 82, No. 2 (Jun., 1981), pp. 226-230
Published by: American Mathematical Society
Stable URL: http://www.jstor.org/stable/2043314
Accessed: 28/04/2014 17:01

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support @jstor.org.

[^0]
C_{11} CONTRACTIONS ARE REFLEXIVE. II

PEI YUAN WU ${ }^{1}$

Abstract

It has been shown previously by the author that any completely nonunitary C_{11} contraction with finite defect indices is reflexive. In this note we show that this is true even without the completely nonunitary assumption.

Recall that a bounded linear operator T on a complex, separable Hilbert space is reflexive if Alg Lat $T=\operatorname{Alg} T$, where Alg Lat T and $\operatorname{Alg} T$ denote, respectively, the weakly closed algebra of operators which leave invariant every invariant subspace of T and the weakly closed algebra generated by T and I. It was shown in [9] that every completely nonunitary (c.n.u.) C_{11} contraction with finite defect indices is reflexive and it was conjectured that the same is true for arbitrary C_{11} contractions. In this note we move one step closer to establish this conjecture by dropping the completely nonunitary assumption, i.e. we prove that any C_{11} contraction with finite defect indices (a direct sum of a unitary operator and a c.n.u. C_{11} contraction) is reflexive. Note that this is not entirely trivial since in general we do not know whether the direct sum of two reflexive operators is reflexive (cf. [3, Question 2]).

In the discussion below we will follow the notations established in [9]. We also need some more facts from [10]. Let T be a c.n.u. C_{11} contraction with defect indices $d_{T}=d_{T^{*}} \equiv n<\infty$. Then T can be considered as defined on $H \equiv\left[H_{n}^{2} \oplus \Delta L_{n}^{2}\right] \ominus\left\{\Theta_{T^{w}} \oplus \Delta w: w \in H_{n}^{2}\right\}$ by $T(f \oplus g)=P\left(e^{i t} f \oplus e^{i t} g\right)$ for $f \oplus$ $g \in H$, where Θ_{T} denotes the characteristic function of $T, \Delta=\left(I-\Theta_{T}^{*} \Theta_{T}\right)^{1 / 2}$ and P denotes the (orthogonal) projection onto H. Since Θ_{T} is outer from both sides, there exists an outer scalar multiple δ of Θ_{T} (cf. [7, p. 217]). Let Ω be a contractive analytic function such that $\Omega \Theta_{T}=\Theta_{T} \Omega=\delta I$. Let U denote the operator of multiplication by $e^{i t}$ on $\overline{\Delta_{*} L_{n}^{2}}$, where $\Delta_{*}=\left(I-\Theta_{T} \Theta_{T}^{*}\right)^{1 / 2}$, and let $X: H \rightarrow \overline{\Delta_{*} L_{n}^{2}}$, $Y: \overline{\Delta_{*} L_{n}^{2}} \rightarrow H$ be the operators defined by $X(f \oplus g)=-\Delta_{*} f+\Theta_{T} g$ for $f \oplus g \in H$ and $Y u=P(0 \oplus \Omega u)$ for $u \in \overline{\Delta_{*} L_{n}^{2}}$. Then X and Y are quasi-affinities which intertwine T and U and satisfy $Y X=\delta(T)$ and $X Y=\delta(U)$ (cf. [10, Lemma 2.1]).

Any absolutely continuous unitary operator U_{a} on K is, by the spectral theorem, unitarily equivalent to the operator of multiplication by $e^{i t}$ on $L^{2}\left(E_{1}\right)$ $\oplus \cdots \oplus L^{2}\left(E_{k}\right)$, where k may be infinite and E_{1}, \ldots, E_{k} are Borel subsets of the

[^1]unit circle C with $E_{1} \supseteq E_{2} \supseteq \cdots \supseteq E_{k}$. In particular, U is unitarily equivalent to the operator of multiplication by $e^{i t}$ on $L^{2}\left(F_{1}\right) \oplus \cdots \oplus L^{2}\left(F_{n}\right)$, where $C \supseteq F_{1} \supseteq$ $F_{2} \supseteq \cdots \supseteq F_{n}$. Let $Z_{1}: K \rightarrow L^{2}\left(E_{1}\right) \oplus \cdots \oplus L^{2}\left(E_{k}\right)$ and $Z_{2}: \overline{\Delta_{*} L_{n}^{2}} \rightarrow L^{2}\left(F_{1}\right)$ $\oplus \cdots \oplus L^{2}\left(F_{n}\right)$ be the implementing unitary transformations.

Now we are ready to start. In the following lemmas we consider a C_{11} contraction with finite defect indices whose unitary part is absolutely continuous. We first find operators in its double commutant. Lemma 2 deals with the reflexivity and the double commutant property.

Lemma 1. Let $S=U_{a} \oplus T$, where U_{a} is an absolutely continuous unitary operator on K and T is a c.n.u. C_{11} contraction with finite defect indices on H. Then $\{S\}^{\prime \prime}=\left\{\psi\left(U_{a}\right) \oplus P\left[\begin{array}{l}B_{i}^{A} \\ \hline\end{array}\right]: \psi \in L^{\infty}, A \Theta_{T}=\Theta_{T} A_{0}\right.$ and $B \Theta_{T}+\psi \Delta=\Delta A_{0}$ for some bounded analytic function $\left.A_{0}\right\}$.

Proof. For any $V \in\{S\}^{\prime \prime}, V=V_{1} \oplus V_{2}$ where $V_{1} \in\left\{U_{a}\right\}^{\prime \prime}$ and $V_{2} \in\{T\}^{\prime \prime}$. Hence

$$
V_{1}=\psi_{1}\left(U_{a}\right) \quad \text { and } \quad V_{2}=P\left[\begin{array}{cc}
A & 0 \\
B & \psi_{2}
\end{array}\right],
$$

where $\psi_{1}, \psi_{2} \in L^{\infty}$ and A, B satisfy $A \Theta_{T}=\Theta_{T} A_{0}$ and $B \Theta_{T}+\psi_{2} \Delta=\Delta A_{0}$ for some bounded analytic function A_{0} (cf. [9, Lemma 2]). Let $W=\delta\left(U_{a}\right) V_{1} \oplus X V_{2} Y \equiv W_{1}$ $\oplus W_{2}$. For any $u \in \overline{\Delta_{*} L_{n}^{2}}$, we have

$$
\begin{aligned}
W_{2} u & =X V_{2} Y u=X P\left[\begin{array}{cc}
A & 0 \\
B & \psi_{2}
\end{array}\right] P\left[\begin{array}{c}
0 \\
\Omega u
\end{array}\right] \\
& =X P\left[\begin{array}{c}
0 \\
\psi_{2} \Omega u
\end{array}\right]=-\Delta_{*} 0+\Theta_{T} \psi_{2} \Omega u=\delta \psi_{2} u .
\end{aligned}
$$

This shows that $W_{2}=\left(\delta \psi_{2}\right)(U)$. Hence $W=\left(\delta \psi_{1}\right)\left(U_{a}\right) \oplus\left(\delta \psi_{2}\right)(U)$. Next we show that $W \in\left\{U_{a} \oplus U\right\}^{\prime \prime}$. Since $W_{1} \in\left\{U_{a}\right\}^{\prime \prime}$ and $W_{2} \in\{U\}^{\prime \prime}$, we have only to check that (i) any operator $Q: K \rightarrow \overline{\Delta_{*}} L_{n}^{2}$ intertwining U_{a} and U intertwines W_{1} and W_{2} and (ii) any operator $R: \overline{\Delta_{*} L_{n}^{2}} \rightarrow K$ intertwining U and U_{a} intertwines W_{2} and W_{1}. To prove (i), note that $Y Q: K \rightarrow H$ intertwines U_{a} and T. Since $V=V_{1} \oplus V_{2} \in$ $\{S\}^{\prime \prime}$, we have $Y Q V_{1}=V_{2} Y Q$. Applying X from the left on both sides, we obtain $X Y Q V_{1}=X V_{2} Y Q$ or $\delta(U) Q V_{1}=W_{2} Q$. But $\delta(U) Q V_{1}=Q \delta\left(U_{a}\right) V_{1}=Q W_{1}$. Hence Q intertwines W_{1} and W_{2}, proving (i). (ii) can be proved in a similar fashion. Thus $W \in\left\{U_{a} \oplus U\right\}^{\prime \prime}$ as asserted and therefore $W=\xi\left(U_{a} \oplus U\right)$ for some $\xi \in$ L^{∞}. But we already have $W=\left(\delta \psi_{1}\right)\left(U_{a}\right) \oplus\left(\delta \psi_{2}\right)(U)$. It follows that $\xi=\delta \psi_{1}$ a.e. on E_{1} and $\xi=\delta \psi_{2}$ a.e. on F_{1}, whence $\psi_{1}=\psi_{2}$ a.e. on $E_{1} \cap F_{1}$. Let ψ in L^{∞} be such that $\psi=\psi_{1}$ a.e. on E_{1} and $\psi=\psi_{2}$ a.e. on F_{1}. Then $V=\psi\left(U_{a}\right) \oplus P\left[{ }_{B}^{A}{ }_{\psi}^{0}\right]$ as asserted.

For the converse, let $V=V_{1} \oplus V_{2}=\psi\left(U_{a}\right) \oplus P\left[\begin{array}{l}B \\ B\end{array}{ }_{\psi}^{0}\right]$ for some $\psi \in L^{\infty}$. Again, we consider $W=\delta\left(U_{a}\right) V_{1} \oplus X V_{2} Y$. As before, it can be shown that $W=$ $(\delta \psi)\left(U_{a} \oplus U\right) \in\left\{U_{a} \oplus U\right\}^{\prime \prime}$. Since $V_{1} \in\left\{U_{a}\right\}^{\prime \prime}$ and $V_{2} \in\{T\}^{\prime \prime}$ (cf. [9, Lemma 2]), to show that $V \in\{S\}^{\prime \prime}$ we have to check (i) any operator $Q: K \rightarrow H$ intertwining U_{a} and T intertwines V_{1} and V_{2} and (ii) any operator $R: H \rightarrow K$
intertwining T and U_{a} intertwines V_{2} and V_{1}. Here we only prove (i). Since $X Q$: $K \rightarrow \overline{\Delta_{*} L_{n}^{2}}$ intertwines U_{a} and U and $W \in\left\{U_{a} \oplus U\right\}^{\prime \prime}$, we have $X Q \delta\left(U_{a}\right) V_{1}=$ $X V_{2} Y X Q$. It follows from the injectivity of X that $Q \delta\left(U_{a}\right) V_{1}=V_{2} Y X Q$. But $V_{2} Y X Q=V_{2} \delta(T) Q=V_{2} Q \delta\left(U_{a}\right)$ and hence we have $Q V_{1} \delta\left(U_{a}\right)=V_{2} Q \delta\left(U_{a}\right)$. Since $\delta\left(U_{a}\right)$ has dense range, we conclude that $Q V_{1}=V_{2} Q$ as asserted. Similarly for (ii). Hence $V \in\{S\}^{\prime \prime}$, completing the proof.

Lemma 2. Let $S=U_{a} \oplus T$ be as in Lemma 1.
(1) If $E_{1} \cup F_{1} \neq C$ a.e., then $\operatorname{Alg} \operatorname{Lat} S=\operatorname{Alg} S=\{S\}^{\prime \prime}$.
(2) If $E_{1} \cup F_{1}=C$ a.e., then Alg Lat $S=\operatorname{Alg} S=\left\{\varphi(S): \varphi \in H^{\infty}\right\}$.

In particular, S is reflexive and $\{S\}^{\prime \prime}=\operatorname{Alg} S$ if and only if $E_{1} \cup F_{1} \neq C$ a.e.
Proof. (1) In this case, it suffices to show that Alg Lat $S \subseteq\{S\}^{\prime \prime}$ and $\{S\}^{\prime \prime} \subseteq$ $\operatorname{Alg} S$. To prove the former, let $V \in \operatorname{Alg}$ Lat S. Then $V=V_{1} \oplus V_{2}$, where $V_{1} \in$ Alg Lat $U_{a}=\operatorname{Alg} U_{a}$ and $V_{2} \in \operatorname{Alg}$ Lat $T=\mathrm{Alg} T$ since U_{a} and T are both reflexive (cf. [6] and [9]). Hence

$$
V_{1}=\psi_{1}\left(U_{a}\right) \quad \text { and } \quad V_{2}=P\left[\begin{array}{cc}
A & 0 \\
B & \psi_{2}
\end{array}\right]
$$

where $\psi_{1}, \psi_{2} \in L^{\infty}$ and A, B satisfy $A \Theta_{T}=\Theta_{T} A_{0}$ and $B \Theta_{T}+\psi_{2} \Delta=\Delta A_{0}$ for some \boldsymbol{A}_{0}.

Consider the subspace

$$
\Re=\left\{Z_{1}^{-1}\left(\chi_{E_{1}} f \oplus \cdots \oplus \chi_{E_{k}} f\right) \oplus Z_{2}^{-1}\left(\chi_{F_{1}} f \oplus \cdots \oplus \chi_{F_{n}} f\right): f \in L^{2}\right\}
$$

of $K \oplus \overline{\Delta_{*} L_{n}^{2}}$. Note that \mathcal{R} is a (closed) invariant subspace for $U_{a} \oplus U$. Let $\mathfrak{\Re}=\overline{\left(\delta\left(U_{a}\right) \oplus Y\right) \mathscr{R}}$. Then \mathfrak{N} is invariant for S and hence $\overline{V \Re} \subseteq \mathscr{R}$. Applying $I \oplus X$ on both sides, we obtain $\overline{(I \oplus X) V 丹 \pi} \subseteq \overline{(I \oplus X) \Re}$. But

$$
\begin{aligned}
\overline{(I \oplus X) V \mathscr{R}} & =\overline{(I \oplus X)\left(V_{1} \oplus V_{2}\right)\left(\delta\left(U_{a}\right) \oplus Y\right) \mathscr{\Re}} \\
& =\overline{\left(V_{1} \delta\left(U_{a}\right) \oplus X V_{2} Y\right) \mathscr{R}}=\overline{\left(\psi_{1}\left(U_{a}\right) \oplus \psi_{2}(U)\right) \delta\left(U_{a} \oplus U\right) \mathscr{R}}
\end{aligned}
$$

where the last equality was proved in Lemma 1 , and

$$
\overline{(I \oplus X) \mathscr{R}}=\overline{(I \oplus X)\left(\delta\left(U_{a}\right) \oplus Y\right) \mathscr{R}}=\overline{\delta\left(U_{a} \oplus U\right) \mathscr{R}} .
$$

Since δ is an outer function, $\delta\left(U_{a} \oplus U\right) \mid \mathscr{T}$ is a quasi-affinity on \Re (cf. [10, Lemma 2.3]). We conclude from above that $\overline{\left(\psi_{1}\left(U_{a}\right) \oplus \psi_{2}(U)\right) \mathscr{N}} \subseteq \mathcal{N}$. Hence for any $f \in L^{2}$, there exists $\psi \in L^{2}$ such that $\chi_{E_{1}} \psi_{1} f=\chi_{E_{1}} \psi$ a.e. and $\chi_{F_{1}} \psi_{2} f=\chi_{F_{1}} \psi$ a.e. In particular, for $f \equiv 1$ this implies that $\psi_{1}=\psi$ a.e. on E_{1} and $\psi_{2}=\psi$ a.e. on F_{1}. Therefore, $V=\psi\left(U_{a}\right) \oplus P\left[{ }_{B}^{A}{ }_{\psi}^{0}\right] \in\{S\}^{\prime \prime}$ by Lemma 1 .

Next we show that $\{S\}^{\prime \prime} \subseteq \operatorname{Alg} S$. Let $V \in\{S\}^{\prime \prime}$. By [5, Theorem 7.1], it suffices to show that Lat $S^{(n)} \subseteq$ Lat $V^{(n)}$ for any $n \geqslant 1$, where

$$
S^{(n)}=\underbrace{S \oplus \cdots \oplus S}_{n} \text { and } V^{(n)}=\underbrace{V \oplus \cdots \oplus V}_{n}
$$

Since $S^{(n)}$ is an operator of the same type as S and $V^{(n)} \in\left\{S^{(n)}\right\}^{\prime \prime}$, it is clear that we have only to check for $n=1$, i.e. Lat $S \subseteq$ Lat V. To prove this, let $\mathfrak{N} \in$ Lat S. By Lemma 1, $V=V_{1} \oplus V_{2}=\psi\left(U_{a}\right) \oplus P\left[{ }_{B}^{A}{ }_{\psi}^{0}\right]$ for some $\psi \in L^{\infty}$ and A, B.

Let $W=\delta\left(U_{a}\right) V_{1} \oplus X V_{2} Y$. As proved in Lemma $1, W=(\delta \psi)\left(U_{a} \oplus U\right) \in$ $\left\{U_{a} \oplus U\right\}^{\prime \prime}$. Since by our assumption $E_{1} \cup F_{1} \neq C$ a.e., every invariant subspace for $U_{a} \oplus U$ is bi-invariant, i.e. invariant for any operator in $\left\{U_{a} \oplus U\right\}^{\prime \prime}$. In particular, $\mathscr{\Re} \equiv \overline{(I \oplus X) \mathscr{R}}$ is invariant for W, i.e. $\overline{W \Re} \subseteq \mathscr{R}$. Applying $\delta\left(U_{a}\right) \oplus$ Y on both sides, we obtain $\overline{\left(\delta\left(U_{a}\right) \oplus Y\right) W \mathscr{T}} \subseteq \overline{\left(\delta\left(U_{a}\right) \oplus Y\right) \Re}$. But

$$
\begin{aligned}
\overline{\left(\delta\left(U_{a}\right) \oplus Y\right) W \Re} & =\overline{\left(\delta\left(U_{a}\right) V_{1} \delta\left(U_{a}\right) \oplus Y X V_{2} Y X\right) \mathscr{R}} \\
& =\overline{\left(V_{1} \oplus V_{2}\right) \delta\left(U_{a} \oplus T\right)^{2} \Re}=\overline{\left(V_{1} \oplus V_{2}\right) \mathscr{R}},
\end{aligned}
$$

where the last equality follows from the fact that $\delta\left(U_{a} \oplus T\right) \mid \mathscr{N}$ is a quasi-affinity on $\mathfrak{\Re}$. (This can be proved in the same fashion as [10, Lemma 2.3].) On the other hand, $\overline{\left(\delta\left(U_{a}\right) \oplus Y\right) \mathscr{R}}=\overline{\delta\left(U_{a} \oplus T\right) \mathscr{R}}=\Re$. We conclude that $\overline{\left(V_{1} \oplus V_{2}\right) \Re} \subseteq$ \mathfrak{R} whence $\mathfrak{R} \in$ Lat V. This completes the proof of (1).
(2) As in (1), let

$$
V=\psi_{1}\left(U_{a}\right) \oplus P\left[\begin{array}{cc}
A & 0 \\
B & \psi_{2}
\end{array}\right]
$$

be an operator in Alg Lat S. This time we consider the subspace

$$
\Re=\left\{Z_{1}^{-1}\left(\chi_{E_{1}} f \oplus \cdots \oplus \chi_{E_{k}} f\right) \oplus Z_{2}^{-1}\left(\chi_{F_{1}} f \oplus \cdots \oplus \chi_{F_{n}} f\right): f \in H^{2}\right\}
$$

of $K \oplus \overline{\Delta_{*} L_{n}^{2}}$. Since $E_{1} \cup F_{1}=C$ a.e., it is easy to check that \mathscr{N} is closed and invariant for $U_{a} \oplus U$. As in the first part of (1), we derive that for any $f \in H^{2}$ there exists $\varphi \in H^{2}$ such that $\chi_{E_{1}} \psi_{1} f=\chi_{E_{1}} \varphi$ a.e. and $\chi_{F_{1}} \psi_{2} f=\chi_{F_{1}} \varphi$ a.e. Hence for $f \equiv 1$, we have $\psi_{1}=\varphi$ a.e. on E_{1} and $\psi_{2}=\varphi$ a.e. on F_{1}. Therefore $V=\varphi\left(U_{a}\right) \oplus$ $P\left[{ }_{B}^{A}{ }_{\varphi}^{0}\right]$. Using the fact that $\left\{P(0 \oplus g): g \in \Delta L_{n}^{2}\right\}$ is dense in H (cf. [9, proof of Lemma 2]), we can easily show that $P\left[{ }_{B}^{A}{ }_{\varphi}^{0}\right]=\varphi(T)$. Hence $V=\varphi\left(U_{a} \oplus T\right)=$ $\varphi(S)$, completing the proof.

Now comes our main result.
Theorem 3. Any C_{11} contraction S with finite defect indices is reflexive. Moreover, $\{S\}^{\prime \prime}=\operatorname{Alg} S$ if and only if $E_{1} \cup F_{1} \neq C$ a.e.
Proof. Let $S=U_{s} \oplus U_{a} \oplus T$ on $L \oplus K \oplus H$ be such that U_{s} and U_{a} are singular and absolutely continuous unitary operators, respectively, and T is a c.n.u. C_{11} contraction (cf. [7, p. 9] and [4]). We first show that $\operatorname{Alg} U_{s} \oplus \operatorname{Alg}\left(U_{a} \oplus T\right)=$ Alg S. By [5, Theorem 7.1], this is equivalent to Lat $U_{s}^{(n)} \oplus \operatorname{Lat}\left(U_{a} \oplus T\right)^{(n)}=$ Lat $S^{(n)}$ for all $n \geqslant 1$. Since $S^{(n)}=U_{s}^{(n)} \oplus\left(U_{a} \oplus T\right)^{(n)}$ is of the same type as $S=U_{s} \oplus\left(U_{a} \oplus T\right)$, it suffices to check for $n=1$, i.e. Lat $U_{s} \oplus \operatorname{Lat}\left(U_{a} \oplus T\right)=$ Lat S. Let $\mathfrak{N} \in$ Lat S. We can decompose the C_{1}. contraction $S \mid \Re \mathbb{R}$ as $S \mid \Re \mathbb{R}=$ $S_{1} \oplus S_{2} \oplus S_{3}$ on $\mathfrak{N}=\mathfrak{R}_{1} \oplus \mathbb{R}_{2} \oplus \Re_{3}$, where S_{1} and S_{2} are singular and absolutely continuous unitary operators and S_{3} is a c.n.u. C_{1}. contraction. Note that \mathfrak{R}_{1} and $\mathfrak{R}_{2} \oplus \mathscr{R}_{3}$ are invariant for S. To complete the proof, we have to show that $\mathscr{R}_{1} \subseteq L$ and $\mathfrak{R}_{2} \oplus \mathscr{N}_{3} \subseteq K \oplus H$.
Let W be the operator of multiplication by $e^{i t}$ on $L_{n}^{2} \oplus \overline{\Delta L_{n}^{2}}$. Then $Z \equiv U_{s} \oplus U_{a}$ $\oplus W$ is the minimal unitary dilation of S. It follows that Z is a unitary dilation of
$S_{2} \oplus S_{3}$. There exists a reducing subspace \mathcal{L} for Z such that $Z \mid \mathcal{L}$ is the minimal unitary dilation of $S_{2} \oplus S_{3}$ (cf. [7, p. 13]). Since S_{2} is absolutely continuous and S_{3} is c.n.u., $Z \mid \mathcal{L}$ must be absolutely continuous (cf. [7, p. 84]). On the other hand, we have Lat $U_{s} \oplus \operatorname{Lat}\left(U_{a} \oplus W\right)=\operatorname{Lat} Z$ (cf. [2, Lemma 1]). Hence we infer that $\mathcal{L} \subseteq K \oplus\left(L_{n}^{2} \oplus \Delta L_{n}^{2}\right)$. Therefore $\Re_{2} \oplus \Re_{3} \subseteq \mathcal{L} \cap(L \oplus K \oplus H) \subseteq K \oplus H$. Along the same line, an even simpler argument can be applied to \mathscr{R}_{1} and shows that $\Re_{1} \subseteq L$. Thus we have Alg $U_{s} \oplus \operatorname{Alg}\left(U_{a} \oplus T\right)=\operatorname{Alg} S$.

If $V \in \operatorname{Alg}$ Lat S, then $V=V_{1} \oplus V_{2}$ where $V_{1} \in \operatorname{Alg} \operatorname{Lat} U_{s}=\operatorname{Alg} U_{s}$ and $V_{2} \in \operatorname{Alg} \operatorname{Lat}\left(U_{a} \oplus T\right)=\operatorname{Alg}\left(U_{a} \oplus T\right)$ by Lemma 2. From above we conclude that $V \in \operatorname{Alg} S$ whence S is reflexive. Since $\left\{U_{s}\right\}^{\prime \prime}=\operatorname{Alg} U_{s}(c f .[8])$ and $\left\{U_{s}\right\}^{\prime \prime} \oplus$ $\left\{U_{a} \oplus T\right\}^{\prime \prime}=\{S\}^{\prime \prime}\left(\right.$ cf. [1, Proposition 1.3]), Lemma 2 implies that $\{S\}^{\prime \prime}=\operatorname{Alg} S$ if and only if $E_{1} \cup F_{1} \neq C$ a.e.

References

1. J. B. Conway and P. Y. Wu, The splitting of $\mathbb{Q}\left(T_{1} \oplus T_{2}\right)$ and related questions, Indiana Univ. Math. J. 26 (1977), 41-56.
2. J. A. Deddens, Every isometry is reflexive, Proc. Amer. Math. Soc. 28 (1971), 509-512.
3. , Reflexive operators, Indiana Univ. Math. J. 20 (1971), 887-889.
4. P. R. Halmos, Introduction to Hilbert space and the theory of spectral multiplicity, Chelsea, New York, 1951.
5. H. Radjavi and P. Rosenthal, Invariant subspaces, Ergebnisse der Math. und ihrer Grenzgebiete, Bd. 77, Springer-Verlag, New York, 1973.
6. D. Sarason, Invariant subspaces and unstarred operator algebras, Pacific J. Math. 17 (1966), 511-517.
7. B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, North-Holland, Amsterdam; Akadémiai Kiadó, Budapest, 1970.
8. J. Wermer, On invariant subspaces of normal operators, Proc. Amer. Math. Soc. 3 (1952), 270-277.
9. P. Y. Wu, C_{11} contractions are reflexive, Proc. Amer. Math. Soc. 77 (1979), 68-72.
10. \qquad , On a conjecture of Sz.-Nagy and Foias, Acta Sci. Math. (Szeged) 42 (1980).
[^2]
[^0]:

 American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society.

[^1]: Received by the editors June 12, 1980; presented to the Society May 30, 1980.
 1980 Mathematics Subject Classification. Primary 47A45; Secondary 47C05.
 Key words and phrases. C_{11} contraction, reflexive operator, double commutant, invariant subspace, absolutely continuous and singular unitary operators.
 ${ }^{1}$ During the preparation of this paper, the author was visiting Indiana University and received financial support from the National Science Council (Republic of China).

[^2]: Department of Applied Mathematics, National Chio Tung University, Hsinchu, Taiwan, Republic of China

