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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 82, Number 2, June 1981 

C11 CONTRACTIONS ARE REFLEXIVE. II 

PEI YUAN WUI 

ABsTRAr. It has been shown previously by the author that any completely 
nonunitary C1l contraction with finite defect indices is reflexive. In this note we 
show that this is true even without the completely nonunitary assumption. 

Recall that a bounded linear operator T on a complex, separable Hilbert space is 
reflexive if Alg Lat T = Alg T, where Alg Lat T and Alg T denote, respectively, 
the weakly closed algebra of operators which leave invariant every invariant 
subspace of T and the weakly closed algebra generated by T and I. It was shown in 
[9] that every completely nonunitary (c.n.u.) C11 contraction with finite defect 
indices is reflexive and it was conjectured that the same is true for arbitrary C11 
contractions. In this note we move one step closer to establish this conjecture by 
dropping the completely nonunitary assumption, i.e. we prove that any C11 con- 
traction with finite defect indices (a direct sum of a unitary operator and a c.n.u. 
C11 contraction) is reflexive. Note that this is not entirely trivial since in general we 
do not know whether the direct sum of two reflexive operators is reflexive (cf. [3, 
Question 2]). 

In the discussion below we will follow the notations established in [9]. We also 
need some more facts from [10]. Let T be a c.n.u. C1l contraction with defect 
indices dT = n < oo. Then T can be considered as defined on 
H _ 2[H@2 E AL,2J e (0Tw @ AW W E H,2) by T(f ED g) = P(e'f (Dei'g) for f @ 
g E H, where 3T denotes the characteristic function of T, A = (I - @TT)1/2 and 
P denotes the (orthogonal) projection onto H. Since /3T iS outer from both sides, 
there exists an outer scalar multiple 8 of 3T (cf. [7, p. 217]). Let 02 be a contractive 
analytic function such that 02T = TS = 0I. Let U denote the operator of 
multiplication by e" on A*L",, where A* = (IE- T03)1/2, and let X: H AL2 

Y: A*L2-- H be the operators defined by X(f @ g) = -_A f + Tg forf @ g E H 

and Yu = P(O @ 52u) for u E A*Ln2. Then X and Y are quasi-affinities which 
intertwine T and U and satisfy YX = 8(T) and XY = 8(U) (cf. [10, Lemma 2.1]). 

Any absolutely continuous unitary operator U. on K is, by the spectral theorem, 
unitarily equivalent to the operator of multiplication by eit on L2(Ed) 
f ... @ L2(Ek), where k may be infinite and E1, .. ., Ek are Borel subsets of the 
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unit circle C with E1 2 E2 D ... D Ek. In particular, U is unitarily equivalent to 
the operator of multiplication by e" on L2(F1) ED .* * * L2(FJ,), where C 2 F1 D 
F2 D * * * D F,. Let Z1: K -L2(E1) @ ... EDL2(Ek) and Z2: A,L,2- L2(F1) 
E *... @ L2(F,,) be the implementing unitary transformations. 

Now we are ready to start. In the following lemmas we consider a C,1 contrac- 
tion with finite defect indices whose unitary part is absolutely continuous. We first 
find operators in its double commutant. Lemma 2 deals with the reflexivity and the 
double commutant property. 

LEMMA 1. Let S = U@ T, where U,, is an absolutely continuous unitary operator 
on K and T is a c.n.u. C11 contraction with finite defect indices on H. Then 

{ {4'(Ua) @ P[AB ,]: i4 E L , A0T = OTAO and B0T + 4P' = AAO for SoMe 
bounded analytic function A0). 

PROOF. For any V e {S)", V= V1 D V2 where V1 E {U.)" and V2 E {T)". 
Hence 

VI = 41(Ua) and V2 = P[ 
A 

where xpl, 4,2 E L and A, B satisfy A9T = ETAO and B0T + 4,2A = AA0 for some 
bounded analytic function A0 (cf. [9, Lemma 2]). Let W = O( Ua) V1 ED XV2 Y-W 
@ W2. For any u E A. L%2, we have 

W2U = XV2YU= XP[ B 2 ][ Du 

= i2 u] =A*0 + OTP2"u = 82U' 

This shows that W2 = (&P2)(U). Hence W = (&1)(Ua) ED (8P2)(U). Next we show 
that W e { Ua D U)". Since !! E { U j" and W2 E ( U)", we have only to check 
that (i) any operator Q: K --*A L2 intertwining Ua and U intertwines W1 and W2 

and (ii) any operator R: A*L2 K intertwining U and Ua intertwines W2 and W1. 
To prove (i), note that YQ: K -+ H intertwines Ua and T. Since V = V1 ED V2 E 

{S}", we have YQV1 = V2YQ. Applying X from the left on both sides, we obtain 
XYQV1 = XV2YQ or 8(U)QV1 = W2Q. But 8(U)QV1 = Q8(Ua)VI = QW1. 
Hence Q intertwines W1 and W2, proving (i). (ii) can be proved in a similar fashion. 
Thus W e {Ua ED U)" as asserted and therefore W= {(Ua @ U) for some ( E 

L'. But we already have W = (864l)(Ua) ED (&2)(U). It follows that ( = 4, a.e. on 

E, and ( = 8&2 a.e. on F1, whence 4,1 = 42 a.e. on El n F1. Let 4, in LO be such 
that 4 =4 1 a.e. on E1 and , = 42 a.e. on F1. Then V= x(Ua) E P[A 0] as 
asserted. 

For the converse, let V = V1 ED V2 = xp(Ua) ED P[A ,] for some 4, E L'. Again, 
we consider W = 8(Ua) VI ED XV2 Y. As before, it can be shown that W = 

(64)(Ua ED U) E { Ua ED U)". Since V1 E { Ua}" and V2 E {T)" (cf. [9, Lemma 
2]), to show that V E {S)" we have to check (i) any operator Q: K-4 H 
intertwining Ua and T intertwines V1 and V2 and (ii) any operator R: H -4 K 
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intertwining T and Ua intertwines V2 and V1. Here we only prove (i). Since XQ: 
K-A*AL,2 intertwines Ua and U and W E {Ua @ U)", we have XQ8(Ua)VI = 
XV2YXQ. It follows from the injectivity of X that Q8(Ua) VI = V2YXQ. But 
V2YXQ = V28(T)Q = V2Q8(Ua) and hence we have QVI6(Ua) = V2Q8(Ua). 
Since 8(Ua) has dense range, we conclude that QV1 = V2Q as asserted. Similarly 
for (ii). Hence V e { S)}", completing the proof. 

LEmmA 2. Let S = Ua E T be as in Lemma 1. 
(1) If E1 U F1 C a.e., then Kg Lat S = AKg S = (S}". 
(2) If E1 U F1 = C a.e., then Ag Lat S = Alg S = {(q(S): q) C H'}. 

In particular, S is reflexive and {S}" = Alg S if and only if E1 u F1 # C a.e. 

PROOF. (1) In this case, it suffices to show that AKg Lat S C (S}" and (S}" C 
Alg S. To prove the former, let V E Alg Lat S. Then V = V1 @ V2, where V1 E 
Alg Lat Ua = Alg Ua and V2 E Alg Lat T = Alg T since Ua and T are both re- 
flexive (cf. [6] and [9]). Hence 

VI = i1(Ua) and V2=P[iB P 
A 

] 

where 4'I, #2 C L and A, B satisfy A0T = OTAO and B0T + #2A = AAo for some 
Ao. 

Consider the subspace 

= {Zj(XEf D... DXEf) @E Z'(XF1f X... xf): f E L2} 

of K @ A* ,. Note that ?t is a (closed) invariant subspace for U.a @ U. Let 
GA = (8( Ua) ED Y) %. Then GA is invariant for S and hence V'7)1l C '1. Applying 
I ED X on both sides, we obtain (I ED X) V6J 5 (I @ X) MI. But 

(I @ X)VOR = (I @ X)(VlE @ V2)(8(Ua) @ Y)SL 

- (Vi8(Ua) @ XV2Y))L = (41(Ua) E 412( U))8(Ua @ U) 

where the last equality was proved in Lemma 1, and 

(I ED3 X)%R = (I ED X)(,8(Ua) ED Y)DL = 8(Ua ED U)%. 

Since 8 is an outer function, 8(UaE @ U)JSL is a quasi-affinity on SZ (cf. [10, 
Lemma 2.3D. We conclude from above that (41( Ua) D 1P2( U))9)L C S t. Hence for 
anyf E L2, there exists 'p E L2 such that XIp1f = xE,# ae. and XF,#2f = XF,# a.e. 
In particular, for f -1 this implies that 41 = 'k a.e. on E1 and #2 = # a.e. on F1. 
Therefore, V = #(Ua) @D P[[A ] E {S}" by Lemma 1. 

Next we show that {S}" C Alg S. Let V E {S}". By [5, Theorem 7.1], it suffices 
to show that Lat S(n) C Lat V(n) for any n > 1, where 

S(n) = s (3 ... * eS and V -n) = V ED* @ * V. 
n n 

Since s(n) is an operator of the same type as S and V(n) E {s (n)}"I, it is clear that 
we have only to check for n = 1, i.e. Lat S C Lat V. To prove this, let S E 
Lat S. By Lemma 1, V= V1 @ V2= #(Ua) ED P[A,J1 for some #, E L' and A, B. 
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Let W = 8(Ua) VI ED XV2Y. As proved in Lemma 1, W= (8p)(Ua ED U) E 
{ Ua ED U}". Since by our assumption E1 U F1 # C a.e., every invariant subspace 
for Ua ED U is bi-invariant, i.e. invariant for any operator in { Ua ED U}". In 
particular, 't -=(I ED X)'1 is invariant for W, i.e. WGY C 9t. Applying 8(Ua) ED 
Y on both sides, we obtain (8( Ua) ED Y) WD, C (8( Ua) ED Y)%. But 

(8(Ua) ED Y)WYt = (8(Ua) VM(Ua) ED YXV2YX)O? 

- (VI ED V2)8(Ua ED T)21R = (VI ED3 V2)l, 

where the last equality follows from the fact that 8(Ua ED3 T)10R is a quasi-affinity 
on Gi. (This can be proved in the same fashion as [10, Lemma 2.3].) On the other 
hand, (8(Ua) (D Y) =6 8( Ua (D T) = OR). We conclude that ( V1 ED V2)1 5C 
01t whence G1t E Lat V. This completes the proof of (1). 

(2) As in (1), let 

V = %P(Ua) ED PB A 
; ] 

be an operator in Alg Lat S. This time we consider the subspace 

= {Z '(XEf E... ED)f) @ Z2'(xF,f @... * xf):fExH } 

of K ED A*Lt,. Since El U F1 = C a.e., it is easy to check that 'R is closed and 
invariant for Ua (D U. As in the first part of (1), we derive that for any f E H2 
there exists (g E H2 such that XE,tPlf = XE,9 a.e. and X,P2f = X, a.e. Hence for 
f -1, we have 4i = pg a.e. on E1 and 4'2 = T ae. on F1. Therefore V= -P(Ua) @ 
P[jB ?]. Using the fact that {P(O ED g): g E AL,2} is dense in H (cf. [9, proof of 
Lemma 2]), we can easily show that P[AB ?] = (p(T). Hence V = p(Ua ED T) = 
(p(S), completing the proof. 

Now comes our main result. 

THEOREM 3. Any C11 contraction S with finite defect indices is reflexive. Moreover, 
{S}" =AlgSif and only if E1 u F1 =#Ca.e. 

PROOF. Let S = U, ED Ua ED T on L ED K ED H be such that U, and Ua are 
singular and absolutely continuous unitary operators, respectively, and T is a c.n.u. 
C,1 contraction (cf. [7, p. 9] and [4]). We first show that Alg U, ED Alg(Ua ED T) = 
Alg S. By [5, Theorem 7.1], this is equivalent to Lat Us(") @ Lat( U @3 T)(P) - 
Lat S(n) for all n > 1. Since S(n) - Us(n) ED (U, ED T)(n) is of the same type as 
S = U, ED (U. ED T), it suffices to check for n = 1, i.e. Lat U, ED Lat(Ua E7 T) = 
Lat S. Let G1t E Lat S. We can decompose the C1. contraction S I1G as S = 
S1 @ S2 ED S3 on % = 6 @i ED DZ2 ED 9)3, where S1 and S2 are singular and 
absolutely continuous unitary operators and S3 is a c.n.u. C1. contraction. Note 
that D1R1 and 9f12 ED 93 are invariant for S. To complete the proof, we have to 
show that lit c L and D12 ED O3 C K @ H. 

Let W be the operator of multiplication by e't on Ln2 ED ALn2. Then Z- U, ED U. 
ED W is the minimal unitary dilation of S. It follows that Z is a unitary dilation of 
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S2 ED S3. There exists a reducing subspace e for Z such that Z e is the mimmal 
unitary dilation of S2 ED S3 (cf. [7, p. 13]). Since S2 is absolutely continuous and S3 
is c.n.u., Z I e must be absolutely continuous (cf. [7, p. 84]). On the other hand, we 
have Lat UL ED Lt(JUa ED W) = Lat Z (cf. [2, Lemma ID. Hence we infer that 

5K EK D (L ED AL,2). Therefore t2 ED93 C & e n (L E K @ H) C K ED H. 
Along the same line, an even simpler argument can be applied to ')L, and shows 
that 9IZ, C L. Thus we have Alg U (ED Alg(U. ED T) = Alg S. 

If V E Alg Lat S, then V = V1 ED V2 where V1 E Alg Lat U, = Alg U, and 
V2 E Alg Lat(Ua E T) = Alg(Ua ED T) by Lemma 2. From above we conclude 
that V E Alg S whence S is reflexive. Since { U,}" = Alg U, (cf. [8]) and { U,}" ED 
{Ua ED T}" = {5}" (cf. [1, Proposition 1.3]), Lemma 2 implies that {S}" = AIgS 
if and only if E1 U F1 # C a.e. 
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