

\$C_{11}\$ Contractions are reflexive. II Author(s): Pei Yuan Wu Source: Proceedings of the American Mathematical Society, Vol. 82, No. 2 (Jun., 1981), pp. 226-230 Published by: <u>American Mathematical Society</u> Stable URL: <u>http://www.jstor.org/stable/2043314</u> Accessed: 28/04/2014 17:01

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society.

http://www.jstor.org

C₁₁ CONTRACTIONS ARE REFLEXIVE. II

PEI YUAN WU¹

ABSTRACT. It has been shown previously by the author that any completely nonunitary C_{11} contraction with finite defect indices is reflexive. In this note we show that this is true even without the completely nonunitary assumption.

Recall that a bounded linear operator T on a complex, separable Hilbert space is *reflexive* if Alg Lat T = Alg T, where Alg Lat T and Alg T denote, respectively, the weakly closed algebra of operators which leave invariant every invariant subspace of T and the weakly closed algebra generated by T and I. It was shown in [9] that every completely nonunitary (c.n.u.) C_{11} contraction with finite defect indices is reflexive and it was conjectured that the same is true for arbitrary C_{11} contractions. In this note we move one step closer to establish this conjecture by dropping the completely nonunitary assumption, i.e. we prove that any C_{11} contraction with finite defect indices (a direct sum of a unitary operator and a c.n.u. C_{11} contraction) is reflexive. Note that this is not entirely trivial since in general we do not know whether the direct sum of two reflexive operators is reflexive (cf. [3, Question 2]).

In the discussion below we will follow the notations established in [9]. We also need some more facts from [10]. Let T be a c.n.u. C_{11} contraction with defect indices $d_T = d_{T^*} \equiv n < \infty$. Then T can be considered as defined on $H \equiv [H_n^2 \oplus \Delta L_n^2] \ominus \{\Theta_T w \oplus \Delta w: w \in H_n^2\}$ by $T(f \oplus g) = P(e^{it}f \oplus e^{it}g)$ for $f \oplus g \in H$, where Θ_T denotes the characteristic function of $T, \Delta = (I - \Theta_T^* \Theta_T)^{1/2}$ and P denotes the (orthogonal) projection onto H. Since Θ_T is outer from both sides, there exists an outer scalar multiple δ of Θ_T (cf. [7, p. 217]). Let Ω be a contractive analytic function such that $\Omega \Theta_T = \Theta_T \Omega = \delta I$. Let U denote the operator of multiplication by e^{it} on $\overline{\Delta_* L_n^2}$, where $\Delta_* = (I - \Theta_T \Theta_T^*)^{1/2}$, and let $X: H \to \overline{\Delta_* L_n^2}$, $Y: \overline{\Delta_* L_n^2} \to H$ be the operators defined by $X(f \oplus g) = -\Delta_* f + \Theta_T g$ for $f \oplus g \in H$ and $Yu = P(0 \oplus \Omega u)$ for $u \in \overline{\Delta_* L_n^2}$. Then X and Y are quasi-affinities which intertwine T and U and satisfy $YX = \delta(T)$ and $XY = \delta(U)$ (cf. [10, Lemma 2.1]).

Any absolutely continuous unitary operator U_a on K is, by the spectral theorem, unitarily equivalent to the operator of multiplication by e^{it} on $L^2(E_1)$ $\oplus \cdots \oplus L^2(E_k)$, where k may be infinite and E_1, \ldots, E_k are Borel subsets of the

Received by the editors June 12, 1980; presented to the Society May 30, 1980.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 47A45; Secondary 47C05.

Key words and phrases. C_{11} contraction, reflexive operator, double commutant, invariant subspace, absolutely continuous and singular unitary operators.

¹During the preparation of this paper, the author was visiting Indiana University and received financial support from the National Science Council (Republic of China).

^{© 1981} American Mathematical Society 0002-9939/81/0000-0263/\$02.25

unit circle C with $E_1 \supseteq E_2 \supseteq \cdots \supseteq E_k$. In particular, U is unitarily equivalent to the operator of multiplication by e^{it} on $L^2(F_1) \oplus \cdots \oplus L^2(F_n)$, where $C \supseteq F_1 \supseteq$ $F_2 \supseteq \cdots \supseteq F_n$. Let $Z_1: K \to L^2(E_1) \oplus \cdots \oplus L^2(E_k)$ and $Z_2: \overline{\Delta_* L_n^2} \to L^2(F_1)$ $\oplus \cdots \oplus L^2(F_n)$ be the implementing unitary transformations.

Now we are ready to start. In the following lemmas we consider a C_{11} contraction with finite defect indices whose unitary part is absolutely continuous. We first find operators in its double commutant. Lemma 2 deals with the reflexivity and the double commutant property.

LEMMA 1. Let $S = U_a \oplus T$, where U_a is an absolutely continuous unitary operator on K and T is a c.n.u. C_{11} contraction with finite defect indices on H. Then $\{S\}'' = \{\psi(U_a) \oplus P[_{B\psi}^{A \ 0}]: \psi \in L^{\infty}, A\Theta_T = \Theta_T A_0 \text{ and } B\Theta_T + \psi \Delta = \Delta A_0 \text{ for some}$ bounded analytic function A_0 .

PROOF. For any $V \in \{S\}^n$, $V = V_1 \oplus V_2$ where $V_1 \in \{U_a\}^n$ and $V_2 \in \{T\}^n$. Hence

$$V_1 = \psi_1(U_a)$$
 and $V_2 = P \begin{bmatrix} A & 0 \\ B & \psi_2 \end{bmatrix}$,

where $\psi_1, \psi_2 \in L^{\infty}$ and A, B satisfy $A\Theta_T = \Theta_T A_0$ and $B\Theta_T + \psi_2 \Delta = \Delta A_0$ for some bounded analytic function A_0 (cf. [9, Lemma 2]). Let $W = \delta(U_a)V_1 \oplus XV_2Y \equiv W_1$ $\oplus W_2$. For any $u \in \overline{\Delta_* L_n^2}$, we have

$$W_{2}u = XV_{2}Yu = XP\begin{bmatrix} A & 0 \\ B & \psi_{2} \end{bmatrix}P\begin{bmatrix} 0 \\ \Omega u \end{bmatrix}$$
$$= XP\begin{bmatrix} 0 \\ \psi_{2}\Omega u \end{bmatrix} = -\Delta_{*}0 + \Theta_{T}\psi_{2}\Omega u = \delta\psi_{2}u.$$

This shows that $W_2 = (\delta\psi_2)(U)$. Hence $W = (\delta\psi_1)(U_a) \oplus (\delta\psi_2)(U)$. Next we show that $W \in \{U_a \oplus U\}''$. Since $W_1 \in \{U_a\}''$ and $W_2 \in \{U\}''$, we have only to check that (i) any operator $Q: K \to \Delta_* L_n^2$ intertwining U_a and U intertwines W_1 and W_2 and (ii) any operator $R: \overline{\Delta_* L_n^2} \to K$ intertwining U and U_a intertwines W_2 and W_1 . To prove (i), note that $YQ: K \to H$ intertwines U_a and T. Since $V = V_1 \oplus V_2 \in \{S\}''$, we have $YQV_1 = V_2YQ$. Applying X from the left on both sides, we obtain $XYQV_1 = XV_2YQ$ or $\delta(U)QV_1 = W_2Q$. But $\delta(U)QV_1 = Q\delta(U_a)V_1 = QW_1$. Hence Q intertwines W_1 and W_2 , proving (i). (ii) can be proved in a similar fashion. Thus $W \in \{U_a \oplus U\}''$ as asserted and therefore $W = \xi(U_a \oplus U)$ for some $\xi \in L^\infty$. But we already have $W = (\delta\psi_1)(U_a) \oplus (\delta\psi_2)(U)$. It follows that $\xi = \delta\psi_1$ a.e. on E_1 and $\xi = \delta\psi_2$ a.e. on F_1 , whence $\psi_1 = \psi_2$ a.e. on F_1 . Then $V = \psi(U_a) \oplus P[B_{\psi}^{A_0}]$ as asserted.

For the converse, let $V = V_1 \oplus V_2 = \psi(U_a) \oplus P[{}^A_B {}^0_{\psi}]$ for some $\psi \in L^{\infty}$. Again, we consider $W = \delta(U_a)V_1 \oplus XV_2Y$. As before, it can be shown that $W = (\delta\psi)(U_a \oplus U) \in \{U_a \oplus U\}^n$. Since $V_1 \in \{U_a\}^n$ and $V_2 \in \{T\}^n$ (cf. [9, Lemma 2]), to show that $V \in \{S\}^n$ we have to check (i) any operator $Q: K \to H$ intertwining U_a and T intertwines V_1 and V_2 and (ii) any operator $R: H \to K$

intertwining T and U_a intertwines V_2 and V_1 . Here we only prove (i). Since XQ: $K \rightarrow \overline{\Delta_* L_a^2}$ intertwines U_a and U and $W \in \{U_a \oplus U\}^n$, we have $XQ\delta(U_a)V_1 = XV_2YXQ$. It follows from the injectivity of X that $Q\delta(U_a)V_1 = V_2YXQ$. But $V_2YXQ = V_2\delta(T)Q = V_2Q\delta(U_a)$ and hence we have $QV_1\delta(U_a) = V_2Q\delta(U_a)$. Since $\delta(U_a)$ has dense range, we conclude that $QV_1 = V_2Q$ as asserted. Similarly for (ii). Hence $V \in \{S\}^n$, completing the proof.

LEMMA 2. Let $S = U_a \oplus T$ be as in Lemma 1.

(1) If $E_1 \cup F_1 \neq C$ a.e., then Alg Lat $S = Alg S = \{S\}^n$.

(2) If $E_1 \cup F_1 = C$ a.e., then Alg Lat $S = \text{Alg } S = \{\varphi(S) : \varphi \in H^{\infty}\}.$

In particular, S is reflexive and $\{S\}'' = \text{Alg } S$ if and only if $E_1 \cup F_1 \neq C$ a.e.

PROOF. (1) In this case, it suffices to show that Alg Lat $S \subseteq \{S\}^n$ and $\{S\}^n \subseteq$ Alg S. To prove the former, let $V \in$ Alg Lat S. Then $V = V_1 \oplus V_2$, where $V_1 \in$ Alg Lat $U_a =$ Alg U_a and $V_2 \in$ Alg Lat T = Alg T since U_a and T are both reflexive (cf. [6] and [9]). Hence

$$V_1 = \psi_1(U_a)$$
 and $V_2 = P\begin{bmatrix} A & 0\\ B & \psi_2 \end{bmatrix}$

where $\psi_1, \psi_2 \in L^{\infty}$ and A, B satisfy $A\Theta_T = \Theta_T A_0$ and $B\Theta_T + \psi_2 \Delta = \Delta A_0$ for some A_0 .

Consider the subspace

$$\mathfrak{N} = \left\{ Z_1^{-1}(\chi_{E_1} f \oplus \cdots \oplus \chi_{E_k} f) \oplus Z_2^{-1}(\chi_{F_1} f \oplus \cdots \oplus \chi_{F_n} f) : f \in L^2 \right\}$$

$$K \oplus \overline{\Delta_* L_n^2}. \text{ Note that } \mathfrak{N} \text{ is a (closed) invariant subspace for } U_a \oplus U. 1$$

of $K \oplus \Delta_* L_n^2$. Note that \mathfrak{N} is a (closed) invariant subspace for $U_a \oplus U$. Let $\mathfrak{M} = \overline{(\delta(U_a) \oplus Y)\mathfrak{N}}$. Then \mathfrak{M} is invariant for S and hence $\overline{V\mathfrak{M}} \subseteq \mathfrak{M}$. Applying $I \oplus X$ on both sides, we obtain $\overline{(I \oplus X)V\mathfrak{M}} \subseteq (\overline{I \oplus X})\mathfrak{M}$. But

$$\overline{(I \oplus X)V\mathfrak{M}} = \overline{(I \oplus X)(V_1 \oplus V_2)(\delta(U_a) \oplus Y)\mathfrak{N}} = \overline{(V_1\delta(U_a) \oplus XV_2Y)\mathfrak{N}} = \overline{(\psi_1(U_a) \oplus \psi_2(U))\delta(U_a \oplus U)\mathfrak{N}},$$

where the last equality was proved in Lemma 1, and

$$\overline{(I \oplus X)\mathfrak{M}} = \overline{(I \oplus X)(\delta(U_a) \oplus Y)\mathfrak{N}} = \overline{\delta(U_a \oplus U)\mathfrak{N}}.$$

Since δ is an outer function, $\delta(U_a \oplus U)|\mathfrak{N}$ is a quasi-affinity on \mathfrak{N} (cf. [10, Lemma 2.3]). We conclude from above that $\overline{(\psi_1(U_a) \oplus \psi_2(U))\mathfrak{N}} \subseteq \mathfrak{N}$. Hence for any $f \in L^2$, there exists $\psi \in L^2$ such that $\chi_{E_1}\psi_1 f = \chi_{E_1}\psi$ a.e. and $\chi_{F_1}\psi_2 f = \chi_{F_1}\psi$ a.e. In particular, for $f \equiv 1$ this implies that $\psi_1 = \psi$ a.e. on E_1 and $\psi_2 = \psi$ a.e. on F_1 . Therefore, $V = \psi(U_a) \oplus P[\begin{smallmatrix} 4 & 0 \\ B & \psi \end{smallmatrix}] \in \{S\}^r$ by Lemma 1.

Next we show that $\{S\}'' \subseteq \text{Alg } S$. Let $V \in \{S\}''$. By [5, Theorem 7.1], it suffices to show that Lat $S^{(n)} \subseteq \text{Lat } V^{(n)}$ for any $n \ge 1$, where

$$S^{(n)} = \underbrace{S \oplus \cdots \oplus S}_{n}$$
 and $V^{(n)} = \underbrace{V \oplus \cdots \oplus V}_{n}$.

Since $S^{(n)}$ is an operator of the same type as S and $V^{(n)} \in \{S^{(n)}\}^n$, it is clear that we have only to check for n = 1, i.e. Lat $S \subseteq \text{Lat } V$. To prove this, let $\mathfrak{N} \in$ Lat S. By Lemma 1, $V = V_1 \oplus V_2 = \psi(U_a) \oplus P[{}^{A \ 0}_{B \ \psi}]$ for some $\psi \in L^{\infty}$ and A, B.

Let $W = \delta(U_a)V_1 \oplus XV_2Y$. As proved in Lemma 1, $W = (\delta\psi)(U_a \oplus U) \in \{U_a \oplus U\}''$. Since by our assumption $E_1 \cup F_1 \neq C$ a.e., every invariant subspace for $U_a \oplus U$ is bi-invariant, i.e. invariant for any operator in $\{U_a \oplus U\}''$. In particular, $\mathfrak{N} \equiv \overline{(I \oplus X)\mathfrak{N}}$ is invariant for W, i.e. $\overline{W\mathfrak{N}} \subseteq \mathfrak{N}$. Applying $\delta(U_a) \oplus Y$ on both sides, we obtain $\overline{(\delta(U_a) \oplus Y)W\mathfrak{N}} \subseteq \overline{(\delta(U_a) \oplus Y)\mathfrak{N}}$. But

$$\overline{(\delta(U_a) \oplus Y)W\mathfrak{N}} = \overline{(\delta(U_a)V_1\delta(U_a) \oplus YXV_2YX)\mathfrak{N}}$$
$$= \overline{(V_1 \oplus V_2)\delta(U_a \oplus T)^2\mathfrak{N}} = \overline{(V_1 \oplus V_2)\mathfrak{N}}$$

where the last equality follows from the fact that $\delta(U_a \oplus T) | \mathfrak{M}$ is a quasi-affinity on \mathfrak{M} . (This can be proved in the same fashion as [10, Lemma 2.3].) On the other hand, $\overline{(\delta(U_a) \oplus Y)\mathfrak{M}} = \overline{\delta(U_a \oplus T)\mathfrak{M}} = \mathfrak{M}$. We conclude that $\overline{(V_1 \oplus V_2)\mathfrak{M}} \subseteq \mathfrak{M}$ whence $\mathfrak{M} \in \text{Lat } V$. This completes the proof of (1).

(2) As in (1), let

$$V = \psi_1(U_a) \oplus P \begin{bmatrix} A & 0 \\ B & \psi_2 \end{bmatrix}$$

be an operator in Alg Lat S. This time we consider the subspace

$$\mathfrak{N} = \left\{ Z_1^{-1}(\chi_{E_1}f \oplus \cdots \oplus \chi_{E_k}f) \oplus Z_2^{-1}(\chi_{F_1}f \oplus \cdots \oplus \chi_{F_k}f) : f \in H^2 \right\}$$

of $K \oplus \overline{\Delta_* L_n^2}$. Since $E_1 \cup F_1 = C$ a.e., it is easy to check that \mathfrak{N} is closed and invariant for $U_a \oplus U$. As in the first part of (1), we derive that for any $f \in H^2$ there exists $\varphi \in H^2$ such that $\chi_{E_1} \psi_1 f = \chi_{E_1} \varphi$ a.e. and $\chi_{F_1} \psi_2 f = \chi_{F_1} \varphi$ a.e. Hence for $f \equiv 1$, we have $\psi_1 = \varphi$ a.e. on E_1 and $\psi_2 = \varphi$ a.e. on F_1 . Therefore $V = \varphi(U_a) \oplus$ $P[_{B_{\varphi}}^{A_0}]$. Using the fact that $\{P(0 \oplus g): g \in \Delta L_n^2\}$ is dense in H (cf. [9, proof of Lemma 2]), we can easily show that $P[_{B_{\varphi}}^{A_0}] = \varphi(T)$. Hence $V = \varphi(U_a \oplus T) = \varphi(S)$, completing the proof.

Now comes our main result.

THEOREM 3. Any C_{11} contraction S with finite defect indices is reflexive. Moreover, $\{S\}'' = \text{Alg } S$ if and only if $E_1 \cup F_1 \neq C$ a.e.

PROOF. Let $S = U_s \oplus U_a \oplus T$ on $L \oplus K \oplus H$ be such that U_s and U_a are singular and absolutely continuous unitary operators, respectively, and T is a c.n.u. C_{11} contraction (cf. [7, p. 9] and [4]). We first show that Alg $U_s \oplus \text{Alg}(U_a \oplus T) =$ Alg S. By [5, Theorem 7.1], this is equivalent to Lat $U_s^{(n)} \oplus \text{Lat}(U_a \oplus T)^{(n)} =$ Lat $S^{(n)}$ for all $n \ge 1$. Since $S^{(n)} = U_s^{(n)} \oplus (U_a \oplus T)^{(n)}$ is of the same type as $S = U_s \oplus (U_a \oplus T)$, it suffices to check for n = 1, i.e. Lat $U_s \oplus \text{Lat}(U_a \oplus T) =$ Lat S. Let $\mathfrak{M} \in \text{Lat } S$. We can decompose the C_1 contraction $S | \mathfrak{M}$ as $S | \mathfrak{M} =$ $S_1 \oplus S_2 \oplus S_3$ on $\mathfrak{M} = \mathfrak{M}_1 \oplus \mathfrak{M}_2 \oplus \mathfrak{M}_3$, where S_1 and S_2 are singular and absolutely continuous unitary operators and S_3 is a c.n.u. C_1 contraction. Note that \mathfrak{M}_1 and $\mathfrak{M}_2 \oplus \mathfrak{M}_3$ are invariant for S. To complete the proof, we have to show that $\mathfrak{M}_1 \subseteq L$ and $\mathfrak{M}_2 \oplus \mathfrak{M}_3 \subseteq K \oplus H$.

Let W be the operator of multiplication by e^{it} on $L_n^2 \oplus \overline{\Delta L_n^2}$. Then $Z \equiv U_s \oplus U_a \oplus W$ is the minimal unitary dilation of S. It follows that Z is a unitary dilation of

 $S_2 \oplus S_3$. There exists a reducing subspace \mathcal{L} for Z such that $Z|\mathcal{L}$ is the minimal unitary dilation of $S_2 \oplus S_3$ (cf. [7, p. 13]). Since S_2 is absolutely continuous and S_3 is c.n.u., $Z|\mathcal{L}$ must be absolutely continuous (cf. [7, p. 84]). On the other hand, we have Lat $U_s \oplus \text{Lat}(U_a \oplus W) = \text{Lat } Z$ (cf. [2, Lemma 1]). Hence we infer that $\mathcal{L} \subseteq K \oplus (L_n^2 \oplus \Delta L_n^2)$. Therefore $\mathfrak{M}_2 \oplus \mathfrak{M}_3 \subseteq \mathcal{L} \cap (L \oplus K \oplus H) \subseteq K \oplus H$. Along the same line, an even simpler argument can be applied to \mathfrak{M}_1 and shows that $\mathfrak{M}_1 \subseteq L$. Thus we have Alg $U_s \oplus \text{Alg}(U_a \oplus T) = \text{Alg } S$.

If $V \in \text{Alg Lat } S$, then $V = V_1 \oplus V_2$ where $V_1 \in \text{Alg Lat } U_s = \text{Alg } U_s$ and $V_2 \in \text{Alg Lat}(U_a \oplus T) = \text{Alg}(U_a \oplus T)$ by Lemma 2. From above we conclude that $V \in \text{Alg } S$ whence S is reflexive. Since $\{U_s\}'' = \text{Alg } U_s$ (cf. [8]) and $\{U_s\}'' \oplus \{U_a \oplus T\}'' = \{S\}''$ (cf. [1, Proposition 1.3]), Lemma 2 implies that $\{S\}'' = \text{Alg } S$ if and only if $E_1 \cup F_1 \neq C$ a.e.

References

1. J. B. Conway and P. Y. Wu, The splitting of $\mathscr{C}(T_1 \oplus T_2)$ and related questions, Indiana Univ. Math. J. 26 (1977), 41-56.

2. J. A. Deddens, Every isometry is reflexive, Proc. Amer. Math. Soc. 28 (1971), 509-512.

3. _____, Reflexive operators, Indiana Univ. Math. J. 20 (1971), 887-889.

4. P. R. Halmos, Introduction to Hilbert space and the theory of spectral multiplicity, Chelsea, New York, 1951.

5. H. Radjavi and P. Rosenthal, *Invariant subspaces*, Ergebnisse der Math. und ihrer Grenzgebiete, Bd. 77, Springer-Verlag, New York, 1973.

6. D. Sarason, Invariant subspaces and unstarred operator algebras, Pacific J. Math. 17 (1966), 511-517.

7. B. Sz.-Nagy and C. Foiaş, Harmonic analysis of operators on Hilbert space, North-Holland, Amsterdam; Akadémiai Kiadó, Budapest, 1970.

8. J. Wermer, On invariant subspaces of normal operators, Proc. Amer. Math. Soc. 3 (1952), 270-277.

9. P. Y. Wu, C₁₁ contractions are reflexive, Proc. Amer. Math. Soc. 77 (1979), 68-72.

10. ____, On a conjecture of Sz.-Nagy and Foiaş, Acta Sci. Math. (Szeged) 42 (1980).

DEPARTMENT OF APPLIED MATHEMATICS, NATIONAL CHIAO TUNG UNIVERSITY, HSINCHU, TAIWAN, REPUBLIC OF CHINA