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A b s t r a c t :  The damped least-squares method has frequently been used to solve the 
singularity problem of resolved-acceleration control schemes. It works by damping only 
the joint accelerations, so that the joint accelerations in the degenerated directions 
(the end-effector cannot move along these directions) are zero at a singular point. 
However, the joint velocities in the degenerated directions may be nonzero in some 
situations, in which case they will create fluctuations around the singular point. In 
this paper, a damped-rate resolved-acceleration control scheme (DRRAC) is proposed 
to overcome this drawback. The paper also shows that the DRRAC is asymptotically 
stable, and its convergent property is discussed. Experiments were undertaken to 
verify the proposed control scheme. Copyright © 1997 Elsevier Science Ltd 
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1. INTRODUCTION (1986) and Wampler (1986). 

Resolved-rate control and resolved-acceleration 
control (Luh, et al., 1980) are two general control 
schemes for the control of robots in Cartesian 
space. The resolved-rate control scheme is suitable 
only for low-speed motion control, since it ignores 
the manipulator dynamics. This paper, however, 
considers only the resolved-acceleration control 
scheme, which is known to break down when the 
Jacobian matrix is singular. In the neighborhood 
of the singularity, very large joint speeds are re- 
quired to produce small changes in some end- 
effector positions or orientations. 

An effective strategy that allows motion control 
of the manipulator in the neighborhood of sin- 
gularities is the damped least-squares method, 
originally proposed by Nakamura and Hanafusa 

Most researchers in this area (Chiaverini, 1993; 
Chiaverini, et al., 1994; Maciejewski and Klein, 
1988) have used the damped least-squares method 
to solve the singular problem of the resolved-rate 
control scheme. An overview of the damped least- 
squares method for inverse kinematics of manip- 
ulators was presented by Deo and Walker (1995). 
Wampler and Leifer (1988) presented the applica- 
tion of the damped least-squares method to both 
the resolved-rate control scheme and the resolved- 
acceleration control scheme. 

In this paper the resolved-acceleration con- 
trol scheme using the damped least-squares 
method is named "damped-acceleration resolved- 
acceleration control scheme" (DARAC). Lin and 
Wu (1995) proposed a degenerated-direction 
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version of the damped least-squares method to 
deal with the singularity of the resolved-acceleration 
control scheme. They first tried to find the de- 
generated directions of a manipulator, and then 
applied the damped least-squares method only in 
these directions, while the accuracy of the motion 
along the other directions was maintained. Lin 
and Wu also pointed out in their experiments 
that there were fluctuations around the workspace 
boundary for the DARAC if the target was at the 
unreachable region (i.e., outside the workspace). 

In industry, robot operators seldom know what 
the singular point is, or where it is. The workspace 
boundary of nonredundant manipulators is com- 
posed of the singular points. The operators may 
therefore ask the end-effector to pass outside 
the workspace, and then fluctuations will occur 
around the boundary of the workspace. These 
fluctuations may make the system unstable. 

2. BACKGROUND 

2.1 Resolved-acceleration control 

Tile relationship between the end-effector veloci- 
ties and the joint rates for robotic manipulators 
(:an be represented as 

[,] :i: ~ = .lq (1) 
¢0 

where ÷ and w are the end-effector velocity and 
tile angular velocity, respectively, 0 is the joint 
rate vector, and J is the Jacobian matrix. Differ- 
entiating eq. (1) gives 

a =~ = .]ij + J q  ( 2 )  
OL 

where i: and a are the end-effector acceleration 
and the angular acceleration, respectively. 

Another problem of the DARAC is self-motion 
(Lin and Wu, 1995). The motions of the joints 
which produce no movement of the end-effector 
are referred to as self-motion. When the self- 
motion occurs, some joints will rotate indefinitely, 
thus exceeding their limits. 

In this paper, the singular value decomposition 
(SVD) is used to show that the fluctuations 
and the self-motion are due to the unnecessary 
nonzero joint velocities in the degenerated direc- 
tions when the manipulator is at a singularity. 
The damped-rate resolved-acceleration control 
(DRRAC) is proposed to remove these unneces- 
sary joint velocities. The example of a two-link 
arm will illustrate the physical characteristics of 
this control law. The fluctuations and the self- 
motion in DARAC are remedied, at the cost of 
an insignificantly small error in a long decaying 
period, if the target is in the neighborhood of 
a singularity. The stability is studied by means 
of Lyapunov's second method. Finally, the pro- 
posed control scheme is implemented on a PUMA 
560 manipulator,  and is tested by three experi- 
ments. 

This paper is organized as follows. The resolved- 
acceleration control scheme and the damped least- 
squares method are reviewed in Section 2. Section 
3 analyzes the performance of the DARAC in 
a neighborhood of a singular point, the results 
of which motivate the formulation of the DRRAC 
scheme. A two-link arm illustrates the physical 
insights gained. The stability analysis is presented 
in Section 4. Some experiments concerning motion 
near the singularities are reported in Section 5, 
and conclusions are drawn in the final section. 

It is well-known that the dynamics of a manipu- 
lator can be modelled in the form of 

M(q)i~ + f(gl, q) -: r (3) 

where M(q)  is the positive definite, symmetric 
inertia matrix, f(0,  q) is the vector comprising 
Coriolis, centrifugal and gravity forces, ~- is the 
vector of the actuator forces, and q is the vector 
of joint displacements. The second-order nonlinear 
coupled dynamic equation (3) can be linearized 
and decoupled by inputting the inverse dynamics: 

I" = M(q)il* + f((l, q) (4) 

where/]* is the vector of the desired joint acceler- 
ations, so that 

0 = 0". (5) 

That  means that by adding the inverse dynamics 
as a compensator in a conventional controller, the 
trajectory tracking in the joint coordinates is then 
guaranteed. This technique is called the computed 
torque scheme. 

Luh, et al. (1980) proposed the resolved-acceler- 
ation control scheme as 

KD and K p  are gain matrices, subscript "d" de- 
notes the desired value, e,. = rd -- r is the posi- 
tional error, and ee is the orientation error. The 
orientation error can be Ou, u tan 0/2 (Rodrigues 
parameters), u sin0 (the parameters of Luh, et 
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al.), or u s i n 0 / 2  (Euler parameters), where 0 is 
the rotational angle, and u is the unit vector of 
the rotational axis (Lin, 1995). Unfortunately, this 
control scheme breaks down when j - 1  does not 
exist, which occurs at a singular configuration. 

2.2 Damped least-squares method 

velocities q are not infinitely large. 

3-1 in eq. (6) is replaced by J]  to obtain the 
following control scheme (Kirdanski, et al., 1994; 
Lin and Wu, 1995): 

6 

/ = 1  0-2 "~ 

The damped least-squares method for the inverse 
problem of eq. (1) is applied to solve the following 
optimization problem (Nakamura and Hanafusa, 
1986; Wampler, 1986): 

The v e c t o r / ~  in eq. (12) is actually the solution 
to the optimization problem of 

min(I [ J~* - a* II 2 +p2 II/]* 112) • (13) 
4* 

m in(ll Jq - ~ II 2 +p2 II q II 2) (7) 
q 

where p is the damping factor. The solution to eq. 
(7) is 

The control scheme given by eq. (12) is referred 
to as DARAC. Note that if an ideal computed- 
torque control is used, the joint acceleration ~ is 
equal to/]~a, by eq. (5). 

where 

j~ = ( j T  j + p2 i ) - l  j T  (9) 

which always exists for p ¢ 0. This solution is a 
compromise between the residual error, Jq  - ~, 
and the magnitudes of the joint velocities, q, by 
p. 

The singular value decomposition (SVD) can pro- 
vide an insight into the singularities of the inverse 
Jacobian (Maciejewski and Klein, 1989). This pa- 
per deals with nonredundant manipulators, so J 
is a 6 x 6 matrix. By the theory of SVD, there 
are two orthogonal matrices U = [ul . . .  u~] and 
V = Iv1 . . .  v6], such that 

6 

: = u ~ v  T = ~ 0-,~,vT (10) 
, = 1  

where E = d iag[a l , . . . , a6] ,  a, are the singular 
values of J .  The vectors u~ and vi are the / - th  left 
singular vector and the / - t h  right singular vector, 
respectively. Substituting eq. (10) into (9) gives 

6 
o'i v"u T (11) 

i = l  0-` 

where Etp = diag[al/(a~ + p2) , . . . ,  a6/(a26 + p2)]. 

Suppose that  p is moderately small. When the 
manipulator is far from a singularity (i.e., a, >> p), 
then a , / ( a  2 + p2) ~ l / a , ,  which implies that  
apt .~ j - 1  (see eq. (11)). When the manipulator 
is in a neighborhood of a singular point, it can be 
seen from eq. (11) that  the solutions of the joint 

Wampler and Leifer (1988) proposed another op- 
timization problem as 

min(ll J#* - a* II 2 +p~ II # + cO II ~) (14) 
q 

where C = KdI  + B, B(q, t) is a positive-definite 
symmetric damping matrix. In their literature, 
the stability was proved; however, the solution of 
this optimization problem was not solved, and the 
choice of the damping factor p and the damping 
matrix B was omitted. 

3. DAMPED-RATE CONTROL SCHEME 

3.1 Motivation 

In this section, the motion problem of the DARAC 
in the neighborhood of a singularity is stated, and 
the reason for this problem is analyzed. First, from 
eq. (12), it is known that any vectors in the joint 
space can be represented as a linear combination 
of the right singular vectors Vl , . . . ,  vs. And the 
vectors in Cartesian space can be represented as 
a linear combination of the left singular vectors 
u l , . . .  ,u6. Thus, in eq. (6), a* can be represented 
a s  

6 

a* = ~ ~,% (15) 
i = 1  

Substituting eqs (11) and (15) into (12) gives 

6 

"'~ E qda = "7iVi 

i - 1  

where 7i = aiAi / (a  2 + p2). 

(16) 

Applying the DARAC, if the manipulator is at 
the singularity, say a~ = 0, then % = 01 since 
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"~k = akAk/ (a~  + p2). This implies that the 
component of q~a along vk is zero. Thus, the 
component of ~ along vk is zero by eq. (5) if 
an ideal computed torque control is used. In this 
configuration, the component of 0 along vk is 
uncontrollable, i.e., the value of q along v~ cannot 
be changed. This component of 0 may be nonzero 
in some situations. In general, if the target is 
outside the workspace, or there is an unreachable 
region between the initial position and the desired 
position, the component of 0"along vk is nonzero 
when the end-effector approaches the workspace 
boundary containing the singular point ~rk = 0. 
These nonzero components of q are unnecessary, 
and will create some problems, which can be 
stated as follows. 

~Y 
Unre~hab~ , T ~ t  

. . . , "  " * . %  
. .  ° 

,~ k "°° 

x 

. ° o ,  

(a) 

l y  

~° • ,  ° 
°° 

~ x  v 

°°° • 

B ~  4 

B " ~ " "  "" " t  

~y 

|°°°°% 
p, 

°° 

T.._ x 

0,) 

I °. .  o. °% 

@) (d) 

The degeneration (or singularity) of a manipula- 
tor with a spherical wrist can be classified into 
two parts: wrist-center degeneration and orienta- 
tion degeneration. In the following discussion, the 
problems of the DARAC in these two degenera- 
tion configurations will be shown. 

(1) The  w r i s t - c e n t e r  d e g e n e r a t i o n :  Consider 
a two-link arm, shown in Fig. l(a),  whose symbolic 
singular value decomposition of the Jacobian ma- 
trix can be found in (Kirdanski and Borid, 1993). 
From there, the second left singular vector is 

U 2 

where 

-s ign(S2p)C12u21 - $12u22 ] 
-s ign(S2p)S12u21 + C12u22 ] 

(17) 

S 2 ~ s in  02 , 

S12 = sin (81 + 02), 

C12 ~-~ cos (01 --[- 02), 

P =/1 + 12, 

Equations (15) and (16) are rewritten as 

Fig. 1. The motion of a two-link arm from (a), (b), 
(c) to (d) through the singular point B. 

become zero by eq. (5) if an ideal computed-torque 
control is used. The component of q along v2 is 
nonzero, since this component of 0 was not prop- 
erly decelerated. So, link 1 moves continuously in 
a counterclockwise direction, and link 2 moves in 
a clockwise direction. Thus, the tip is drawn from 
the singular point B to point C (Fig. l(c)). As this 
happens, the controller will command the arm to 
return to the target; link 1 then moves in a clock- 
wise direction and link 2 in a counterclockwise 
direction. When the tip returns to the singular 
point B (Fig. l(d)), the velocities of the two links 
will remain nonzero, and the tip will then leave the 
singular point B again. Clearly, slowly decaying 
fluctuations do occur around the singular point 
B. 

(2) T h e  o r i e n t a t i o n  d e g e n e r a t i o n :  Consider 
the spherical wrist that is shown in Fig. 2. The sin- 
gularity occurs when the first and third rotational 
axes are colinear, i.e., the angle of the second 
joint is zero. In this configuration, the component 
of the angular velocity of the wrist, along the 
first rotational axis, can be achieved by infinite 
combinations of the joint velocities of the first and 

a* = Alul + A2u2 (18) 

alA1 G2A2 (19) 

The tip of the two-link arm will move from a point 
A on the y-axis to a target point that is also on 
y-axis and outside the workspace. When the tip 
reaches the singular point B on the boundary of 
the workspace (see Fig. l(b)),  then u2 = [0 - 
1] T and A2 is nonzero, since the positional error 
along u2 is nonzero. However, the component of 
~ along v2 is forced to zero since a2 = 0 (see 
eq. (19)). Then the component of ~ along v2 will 

~ J 4  

Fig. 2. The spherical wrist. 
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third axes, since one of these two joint velocities 
can be cancelled by the other in the opposite 
direction. Suppose the spherical wrist is ordered 
to stay in the singular configuration. When the 
angle of the second joint approaches zero, the 
joint accelerations of the first and third joints also 
approach zero, controlled by the DARAC. At the 
same time, the joint velocities of the first and third 
joints are uncontrollable. If one of these two joint 
velocities is nonzero, due to an external torque or 
a numerical error in the controller computation, 
the other joint will rotate at the same speed in 
the opposite direction. As the controller cannot 
stop them since they are uncontrollable, these 
two joints will rotate indefinitely in the singular 
configuration. 

3.2 The damped-rate resolved-acceleration control 
scheme 

The above analysis reveals that  a good robot 
Cartesian control scheme should restrict the joint 
velocities as well as the joint accelerations. If 
the joint velocities are restricted, then so are 
the joint accelerations. The converse is, however, 
not true. This concept motivated the formulation 
of a control scheme that  solves the following 
optimization problem: 

min(ll - a *  II 2 +p2 II q* 112) • (20) 
4" 

In order to solve the solutions of this optimiza- 
tion problem in a closed form, the discrete-time 
technique was used. In discrete-time control, the 
back difference is always used to approximate the 
derivative, so that  

4*(k) = ~1--7 ((1" (k) - q*(k - 1)) (21) 

where At  is the sampling time. Note that,  by the 
assumption of ideal computed-torque control, the 
measured value of q(k) in this sampling interval 
is equal to the command q*(k - 1) in the last 
sampling interval. Then 

q*(k) = ~l-~(O*(k) - O(k)). (22) 

For convenience, the index k is dropped in the 
subsequent expressions; hence eq. (22) becomes 

, t  

~* = -x~7(O * - q). (23) 

Substituting eq. (23) into (20), the solution of the 
optimization problem (20) is 

1 . 1 . (24) = J?p. (a* + Jq )  - 

where the damping factor Pr ~ pAt.  Equation 
(24) is the control law of the DRRAC. 

Actually, the DRRAC (24) has one more term 
than the DARAC (12). Equation (24) is rewritten 
a s  

. . ,  . . ,  . . ,  

qdr  = qd= + qc 

= J~a* - ~ t ( J T J  + p2I)-10. (25) 

If p~ is equal to p of the DARAC, then the first 
term on the right-hand side in the above equation 
is equal to the solution of the DARAC, and the 
second term on the right-hand side (~*) is an 
additional term from the DRRAC. ~* is rewritten 
in terms of the singular value decomposition of J 
a s  

1 6 2 
"'* E --Pr [vT ~vz  = ~ - - - ~  i J "" q~ - ~  ~=I a~ + p~ (26) 

If the manipulator is far away from any singular 
point, i.e., a, >> Pr > 0, p2/ (a2+p2)  ~ O, 
i = 1 , . . . ,  6, ~* is zero, and then the DRRAC is 
identical to the DARAC. When the manipulator 
is near or at the singular point, ai >> Pr > 0 ,  i = 

1 , . . . , k  a n d a j  ~ 0 , j  = k + l , . . . , 6 .  Then eq. (26) 
can be reduced to 

6 
- 1  

q; = (vTo)v,.  (27) 
i=k+l  

/j~ is the sum of the negative multiples of the 
components of ~ along Vk+l, . . . ,v6 .  From the 
discussion in the last section, it can be deduced 
that  the components ofq along v j , j  = k + l , . . . ,  6, 
are unnecessary. The DRRAC uses ~* to remove 
the unnecessary components of q. 

3.3 Illustration for a two-link arm 

A two-link arm was simulated under control by 
the DARAC and the DRRAC, to observe the 
performance of the two control schemes. The 
lengths of the first and second links were 0.55 m 
and 0.45 m, respectively. The initial position of 
the tip was (0, 0.5). The controller parameters 
were defined as follows: K p  = 100I, KD = 201, 
the sampling period was 5 ms. p of the DARAC 
and Pr of the DRRAC were both chosen for these 
simulations as in the case (Lin and Wu, 1995) 

0.02e- 1250(a,.~.-0.02)2 (28) 
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Fig. 3. The simulation results with DARAC, when 
the target is outside the workspace: (a) posi- 
tional error, (b) vT~, (c) vTq. 

Fig. 4. The simulation results with DRRAC, when 
the target is outside the workspace: (a) posi- 
tional error, (b) vT~, (c) v2Tq. 

where a,,~i n is the smallest singular value of J. 

Initially, the two control schemes were simulated 
for the target position outside the workspace. The 
target position was set (0, 1.2). Note that  (0, 1) 
is a singular point. The simulation results of the 
DARAC and the DRRAC are shown in Figs 3 
and 4, respectively. Figs 3 (a), (b), and (c) are 
the positional errors, vT~, and vTq, respectively, 
when using the DARAC. At t = 0.252 sec., 
the tip first reached a singular point (see Fig. 
3 (a)) and vT~ was damped to zero (see Fig. 
3 (b)). However, at the same time, since vTq 
was nonzero (see Fig. 3 (b)), the fluctuations 
occurred. On the other hand, when using the 
DRRAC, the tip reached the singular point at 
t -- 0.305 sec. (see Fig. 4 (a)) and both vT~ 
and vTq (see Fig. 4 (c), (d)) were damped to 
zero at the same time, so no fluctuation occurred. 
These simulation results demonstrate that  the 
DRRAC overcomes the fluctuation problem of 
the DARAC. Another simulation illustrated the 
phenomenon when the target position was at a 

singular point. The target position was set to 
(0, 1). The positional errors of the DARAC and 
the DRRAC are shown in Fig. 5. From this figure, 
it can be seen that  the convergent rate of the 
DRRAC is slower than that  of the DARAC when 
the tip is near the singular point. The DRRAC 
requires a very long time to reach the singular 
target, although the positional error is almost 
insignificantly small after 2 seconds. The same 
phenomenon occurs when the target is in the 
neighborhood of a singular point. The reason for 
this phenomenon is that  the joint velocity along 
the degenerated direction, v2, was damped when 
the tip was close to the singular point. This 
damped region is around the boundary of the 
workspace, and the size of this region depends on 
the damping factor. Fortunately, the size of the 
damped region is insignificantly smaller than that  
of the overall workspace, so that  the DRRAC is 
still useful in terms of practical applications. 
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0 ~  

£ 
0D4 

I o~ ~DRRAC 
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Fig. 5. The positional errors of DARAC and 
DRRAC for a target at a singular point. 

oA 

_ _ _  

1 - cos 0r, 

2 (1 - cos "~), 

forf(¢) = ¢, 

forf(¢) = tan ~,  (31) 

forf(¢) = sin ¢, 

forf(¢) = sin ~.  
/ 

L 

Clearly, L(q, (1) > O. It is recognized that  0e = u~- 
(wd -- w) (see Table I in  the literature of Spring, 
1986). Differentiating E in eq. (31) obtains 

OE. 
~- ~ e O e  ---- E e "  ( ~ d  - -  6g). ( 3 2 )  

Evaluating cOL~Or along solutions of (29) yields: 

4. STABILITY ANALYSIS 

This section will show that  the DRRAC is asymp- 
totically stable, and will discuss its convergent 
property. 

theoremTheorem Let the orientation error be 
ee = f(Oe)ue, where ue and 0e are, respectively, 
the rotational axis and the angle from the current 
orientation to the desired one, and 

/ Oe~ 

tan ~, 
/(Or) sinO~, 

sin ~ .  

Suppose that  pr > 0 when the manipulator is 
at the singular point. A sufficient condition for 
the global asymptotic convergence of the DRRAC 
in the whole workspace of the robot under the 
situation of ~;d -~- rd = 0 and ot d = oJ d ~ 0 is that  
g o  is a positive-definite matrix and 

[ k~, Ia 0 ] 
Kp -- 0 kpeI3 " 

k~, and kpe are positive. The equilibrium is at 
the point where q = 0. Proof: Let a Lyapunov 
function be 

L(q, dl) -- l kgrET er + kpeE 

+ l  dlT(jT j + p216)Cl (29) 

where 

~ r  ~ r d  - -  r 

0~ 

E -- f f (¢ )d¢  
0 

(30) 

OL : kpr£T(~, d _ ~.) -4- kpef(Oe)uTe (l.t3d -- ¢M) 
Ot 

A-(IT(jT j -4- p2Is)q "4- qTjT j4. (33) 

If the ideal computed-torque control is used, ~ -- 
q*, then eq. (25) can be substituted into (33), 
giving 

cOL = kpreTf'd-k kPe~Twd A-qT jT  [ 6d l o g  Otd 

1 2 . T -  
~tPrq q" 

If ~:d = ÷d = 

OL 
Ot 

0 a n d  ot  d : oJ d : 0 ,  t h e n  

= -- f ITjTKDJq-  l p 2 o T o .  
A t  

(34)  

(35) 

Since KD is a positive-definite matrix, COLIOt < 0 
for all 4 and COLIOt = 0 only for q = 0. 

Combining the above results and L(q, el) >- 0, 
one can say, by the Lyapunov theorem, that  q is 
asymptotically stable and the equilibrium point is 
4 = 0 .  

If the DARAC is used and the Lyapunov function 
also adopts eq. (29), then 

O__LL = _~IT jT  KDJ~I. (36) 
0t 

When the manipulator is at the singular point, 
0.k+l . . . . .  0" 6 = 0, and t~ is spanned by vl, 
i = k + 1 , . . . , 6 ,  then cOL~Or = 0. This implies 
that  the equilibrium solution of the DARAC may 
be ~ # 0 when the manipulator is at  the singular 
point. However, cOL~Or for the DRRAC has an 
additional term (--(1/At)p~flT4) more than that  
of the DARAC to ensure that  OL/Ot is zero only 
for 4 = 0, i.e., the equilibrium solution of the 
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D R R A C i s q = 0 .  

The equilibrium solution q = 0 suggests that  all 
joints are stationary as t -+ c¢ and 

(1) if the target position is in the workspace or 
at the workspace boundary, the Lyapunov 
function L will decrease to zero as t --+ oc, 
i.e., the final position and orientation errors 
will be zero; 

(2) if the target position is outside the workspace, 
L will decrease to a constant as t -~ c~. This 
means that  the end-effector will converge to 
a singular point which is at the boundary and 
the target position is in the degenerated di- 
rection. The positional error cannot continue 
to decrease. 

5. IMPLEMENTATION AND 
EXPERIMENTAL RESULTS 

A modular integrated robot control system 
(MIRCS) (Wu and Lin, 1994) is used to imple- 
ment the DARAC and the DRRAC on the PUMA 
560 six-joint robot. Because the values of the in- 
ertia parameters are unavailable from the man- 
~facturer, it has been impossible to implement 
the computed-torque scheme in the laboratory. In- 
stead, a robust independent joint controller (Hsia, 
et  al., 1991; Tsai and Lin, 1990) was used to 
replace the computed-torque scheme for robot 
control in the joint space. 

The input commands in all the experiments were 
step commands. The actuator force of each actu- 
ator is constrained by its physical limits, so that 
saturation will occur if the controller output is 
large. To remedy the saturation problem, the 
speed-constraint function (Khatib, 1987) was 
joined to the controller for the large step com- 
mand. This function is described as follows: 

a* = K D r  [--÷ + K p ~ K D ~ V ( r d  - r)] (37) 

where 

Y~ax 
V = min(1, k_2z " II rd -- r I[ )" (38) 

k dr 

k ~  and kdr are the diagonal elements of g p r  and 
K D r ,  respectively. V,~a~ is the maximum velocity. 
Here, Vmax = 0.1 m/s.  The controller parameters 
were defined as follows: K p  = 641, K D  : 16I, 
the sampling period was 3 ms. p of the DARAC 
and Pr of the DRRAC were both chosen to be the 
same as eq. (28). 

Experiment 1 illustrates the responses of the ma- 
nipulator when there was an unreachable region 

between the desired position and the initial po- 
sition. The orientation was ignored. The initial 
and target positions were (-0.1,  0.2, 0.8) and 
(0.15, -0.15, 0.8), respectively; they are illus- 
trated in Fig. 6. The singular circle in the figure 
is the boundary of the workspace, the unreach- 
able region is inside it, and the workspace of the 
manipulator i's outside it. The positional errors of 
the DARAC and the DRRAC are shown in Figs 
7(a) and (b), respectively. From these two figures, 
it was found that  the positional errors of the two 
methods had converged to zero, though the con- 
vergent rate of the DARAC was faster than that  of 
the DRRAC. After the end-effector had touched 
the circle, there were some fluctuations around the 
singular circle when the DARAC was used. For the 
DRRAC, the trajectory just had one very slight 
fluctuation, since the unnecessary joint velocities 
were removed. However, the convergent rate of 
the DRRAC was slow when the target was close 
to the singular point. This occurred because the 
joint velocities along the degenerated directions 
were damped when the end-effector moved into 
the neighborhood of the singularity. 

In Experiment 2, the target was outside the work- 
space of the manipulator. The initial position v~as 

(-0.1, 0.2, 0.8) and the target was (-0.05, 0.05, 
0.8); these are illustrated in Fig. 8. The posi- 
tional errors of the DARAC and the DRRAC are 
shown in Fig. 9. When the DARAC was used, 
after the end-effector had touched the singular 
circle, fluctuations occurred around the workspace 
boundary. However, when the DRRAC was used, 
after the end-effector had touched the circle, the 
end-effector moved along the workspace boundary 
without fluctuations. Finally, the end-effector con- 
verged to the singular point nearest to the target. 

Experiment 3 illustrates the response of the ma- 
nipulator in the face of orientation degenera- 
tion. The initial position and the target were 
(-0.1, 0.2, 0.8) and (-0.0203, 0.1501, 0.8649), 
respectively. The orientation was held towards the 
+Z axis. At the target, q5 was zero, i.e., a singular 
point. The joint displacements of the joints 4, 5, 
and 6 for the DARAC are shown in Fig. 10(a). In 
this figure, when q5 -- 0, joints 4 and 6 rotated 
at the same speed in the opposite directions. This 
is because the DARAC forces //~ and ~ to zero 
when q5 = 0; however, q4 and q6 were nonzero. 
The results with the DRRAC are shown in Fig. 
10(b). When q5 approached 0, both joints then 
stopped at the same time. 

The results of these three experiments show that  
the proposed method also has satisfactory results 
even if the perfect computed-torque scheme is not 
used. 
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for Experiment 1. 
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for Experiment 2. 
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Fig. 7. Experiment 1; the positional errors of (a) 
DARAC and (b) DRRAC. 

6. CONCLUSION 

This paper has presented the DRRAC to over- 
come the motion problems of the DARAC in the 
neighborhood of a singular point. The proposed 
method directly damps the velocities instead of 
the accelerations, such that unnecessary joint ve- 
locities are removed at the singular point. The 
DRRAC solves the fluctuation and self-motion 
problems of the DARAC. That the proposed con- 
trol scheme is asymptotically stable is also proved 
in this paper. Three experimental results show 
that the DRRAC makes the resolved-acceleration 
control scheme more practical for using in indus- 

• n ~  ~) 

Fig. 9. Experiment 2; the positional errors of 
DARAC and DRRAC. 
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Fig. 10. Experiment 3; the histories of q4, qs, q6 of 
(a) DARAC, (b) DRRAC. 
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trial manipulators. 

The main advantage of the DRRAC is that the 
robot control system does not need to plan its 
path to avoid the unreachable region, since the 
controller will command the end-effector to move 
along the boundary of the workspace with the 
minimum trajectory error if the desired path is 
outside the workspace. Also, the proposed ap- 
proach is so simple that it can easily upgrade 
the existing acceleration control technique by im- 
proving the performance of the motion in the 
neighborhood of the singularity. An insignificant 
drawback of the DRRAC is that if the target is 
in the neighborhood of a singularity, then a small 
error will remain for a long decaying period. This 
problem will be resolved in future work. 
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