

國 立 交 通 大 學

資訊工程系

碩 士 論 文

在 NCTUns 網路模擬器上支援光學網路模擬及命

令控制台

Supporting Optical Network Simulation and Command Console

on the NCTUns Network Simulator

研 究 生：虞孟正

指導教授：王協源 教授

中 華 民 國 九 十 三 年 六 月

 i

在 NCTUns 網路模擬器上支援光學網路模擬及命令控制台

Supporting Optical Network Simulation and Command Console on the
NCTUns Network Simulator

研 究 生：虞孟正 Student：Meng-Cheng Yu

指導教授：王協源 Advisor：Shie-Yuan Wang

國 立 交 通 大 學
資 訊 工 程 系
碩 士 論 文

A Thesis

Submitted to Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science and Information Engineering

June 2004

Hsinchu, Taiwan, Republic of China

中華民國九十三年六月

 ii

摘要

本篇論文的主要重點,是呈現在交大網路模擬器上設計和實作全光網路的

模擬環境.在本篇論文中,我們提供了兩種全光網路的環境:傳統全光網路

(traditional optical networks)和光突發交換網路(optical burst switching

networks). 傳統全光網路是使用迴線交換機制(circuit switching),而且在傳送

資料前必需設定好光路徑(light path).光突發交換網路的資料流是突發性的,它

兼顧迴線交換機制和封包交換機制(packet switching)的特色和優點,是全光網

的一大研究領域.

由於目前對全光網路的研究日趨熱門,一個輔助研究的工具是必須的.模擬

是具有便利性,精準度和彈性的最佳折衷辦法.數學推導方便但不具有實際應

用的考量,而真實機器的實驗亦太過耗費人力金錢,而且不具備彈性.因此,我們

發展這個模擬的模組,就是希望能夠題供研究者一個完整且便利的研究工具,

使他們能節省時間致力於研發和設計之上.

 iii

Abstract

This paper presents the development of the all-optical network simulation on

the NCTUns (NCTU network simulator). In this paper, we provide two simulation

environments for all-optical networks. One is traditional all-optical network, and

the other is optical burst switching network. The traditional all-optical network is

a kind of all-optical networks which is circuit switching and needs to assign light

paths before transmitting data. The traffic flow of the optical burst switching

networks is bursty, and the users need to reserve a wavelength of the light path

temporarily for transmitting bursts. Because the current simulation tools or

packages simulate the DWDM environment, traditional all-optical networks or

optical burst switching networks respectively, we want to provide a simulation

package which integrates these subsystems. By using our system, researchers can

simulate the behaviors of the optical internet or observe the performance of the

merged all-optical networks.

For traditional all-optical networks, we provide static and dynamic RWA

(Route and Wavelength Assignment) schemes so that the users can develop their

RWA methods or configure the light paths in their simulation cases. We also

provide the virtual ring protection mechanism for optical network survivability.

For optical burst switching networks, we provide the basic simulation

environment and several published methods and algorithms for burst reservation

and contention drop. Finally, we will show that our design and implementation are

reasonable and correct.

 iv

Besides that, we also provide a useful interface called command console for

controlling the devices of the simulated networks. With this interface, the users

can operate and monitor the nodes in the simulated network during simulation.

In this paper, we will present the design and implementation of traditional

all-optical networks, optical burst switching networks, and command console. We

also do the performance evaluation and the function validation of our system.

 v

致謝

 本篇論文能夠如期而且順利的完成，首先要感謝我的指導老師，王協源博士。

在規劃初期，王教授提供了數篇相關工作的文獻和一些設計上的想法，使我能夠

很順利的將整個系統架構建立起來。在實作和測試期間，和王教授的討論中也提

供許多這個系統在模擬器上可會出現的設計盲點，以及正確性、效能、擴充性的

探討。

感謝口試委員林華君博士、吳曉光博士與黃寶儀博士(按姓名筆畫排序)。經

由他們的指導和建議，使這篇論文能夠更加完善。

 我還要感謝黃鎮遠同學與蔡宏儒同學 (依姓氏筆劃排序)。 在實作上，他們

完成了不少程式碼的撰寫，並且在與我的討論中，發現初期設計的一些疏漏和不

合理的地方。

最後，我要感謝我的家人。有他們的支持，我才能夠完成本篇論文。

 謹此，本人在此向指導老師王協源博士和口試委員林華君博士、吳曉光博士

與黃寶儀博士，和黃鎮遠同學與蔡宏儒同學 (依姓氏筆劃排序)，我的家人，以

及每個提供模擬器架構和實作細節的學長和同學，表達深切的謝意。

 九十三年六月 研究生 虞孟正

 vi

Table of Contents
1. Introduction..1
2. Related Work and Design Issues ..4

2.1. Related Work...4
2.2. Our Design Issues..5

3. About NCTUns...7
4. High Level System Architecture ...10

4.1. System Design..10
4.2. New Added Modules in the NCTUns ..12

4.2.1. Optical Physical Module (named “ophy”)12
4.2.2. Optical Port Module (named “op”)...12
4.2.3. Management Module (named “opmanage”)12
4.2.4. Wavelength Assignment Modules (the one is named “wa” at
switches, and the other is named “rwa” at routers)................................13
4.2.5. Optical Switching Module (named “osw”)14
4.2.6. Optical Burst Switching Module (named “obsw”)14
4.2.7. Optical Burst Wavelength Assignment Module (named “obwa”)
 15

4.3. The Work Flow of Our System ..16
4.3.1. Traditional All-optical Networks ...16
4.3.2. Optical Burst Switching Networks ..17
4.3.3. The Scheme of Protection Ring ...18

5. Design and Implementation ..20
5.1. Packet format ..20
5.2. Global Functions and Modules ..21

5.2.1. Shortest Path RWA Object...21
5.2.2. The Ophy Module ...21
5.2.3. The Op Module ...29
5.2.4. The Osw Module ...30

5.3. New Added Node Types and Their Module Trees31
5.3.1. Traditional All-optical Switch ..31
5.3.2. Router Between All-optical Switches and Other Types of Subnet
 32
5.3.3. Optical Burst Switch...34

5.4. Optical Protection Modules and Mechanism ...35
5.4.1. Introduction...35
5.4.2. The Design of Management and Protection Layer36

 vii

5.5. Traditional All-optical Networks ...42
5.5.1. The Functions of the Rwa Module at Router43
5.5.2. The Functions of the Wa Module ..45
5.5.3. Some Other Considerations about Traditional All-optical
Networks ...49

5.6. Optical Burst Switching Networks ..49
5.6.1. The Obwa Module ..50
5.6.2. The Obsw Module ...54
5.6.3. The Work Flow of the Optical Burst Switching Networks57

5.7. The Design and Integration of the GUI for All-optical Networks59
5.8. Modifications of the NCTUns ..60

6. Performance Evaluation..64
6.1. System Information of Our Experiment Platform64
6.2. Analysis ..68
6.3. Scalability Test...70

7. Functionality Validation ..71
7.1. The Validation Analysis of the Ophy Module...71
7.2. The Validation Analysis of Protection Ring Behaviors............................74
7.3. The Validation Analysis of the Optical Burst Switching Networks........78

8. Command Console ...81
8.1. Introduction...81
8.2. Design Considerations ..81
8.3. Implementation ...84

8.3.1. System Architecture ..84
8.3.2. Design Considerations ..85
8.3.3. Details of The Program “script”..89

8.3.3.2. The Main Program Activities of Filter Process....................91
8.3.4. Combining with NCTUns and Operating System92

9. Scalability and Further Work ...94
10. Conclusion ..96
References:..97

 viii

List of Figures

Figure 3: The illustration of simulating the traffic in the NCTUns8
Figure 4: The graph of system architecture ...10
Figure 5.1: The illustration of none-store-and forward. ..26
Figure 5.2: the illustration of store-and-forward..26
Figure 5.3: The finite state machine of the ophy module ..29
Figure 5.4: The module tree of the optical traditional switch......................................32
Figure 5.5: The module tree of the border router type1...33
Figure 5.6: The module tree of the border router type2...34
Figure 5.7: The module tree of the optical burst switching switch..............................35
Figure 5.8: An example of protection ring...37
Figure 5.9: The illustration of the work of the protection module...............................40
Figure 5.10: The illustration of the work of the protection module.............................41
Figure 5.11: Traditional all-optical networks...43
Figure 5.12: The work flow of the rwa module. ..47
Figure 5.13: The work flow of the wa module ..48
Figure 5.14: The example case of optical burst switching network58
Figure 6.1: The case of performance evaluation..65
Figure 6.2: The changing factor is wavelength number...67
Figure 6.3: The changing factor is the bandwidth of optical wavelength channel.67
Figure 6.4: The changing factor is the traffic quantity...67
Figure 6.5: The changing factor is the status of packet trace log.................................68
Figure 6.6: The relationship between the real time needed and the simulated time68
Figure 7.1: The case of validation of the ophy module ...71
Figure 7.2: The simulation result of the ophy module...72
Figure 7.3: The capture of the packet trace..73
Figure 7.4: The case of validation of the protection mechanism.................................74
Figure 7.5: The normal situation of the traffic flow ..75
Figure 7.6: Step1 when protection activates ..75
Figure 7.7: Step2 when protection activates ..76
Figure 7.8: Step3 when protection activates ..76
Figure 7.9: Step4 when protection activates ..77
Figure 7.10: The case of the validation of the OBS...78
Figure 7.11: The simulation result of the OBS case ..79

 ix

Figure 8.1: The architecture of the command console...84
Figure 8.2: The illustration of the delayed response..86
Figure 8.3: The architecture of the filtering process..87
Figure 8.4: The work flow of the filtering process ..91

 x

1. Introduction

Simulation is an important way of researching and developing new

architectures or protocols. It is much closer to the real scenario than mathematical

modeling and costs much less than real hardware experiments. In fact, we do not

have the required hardware and equipments to do real experiment for non-existing

paradigms or architectures. In this case, simulation is the best choice to conduct

new researches and designs.

Because the growth of the scale and bandwidth requirement of the internet is

very high, the next generation equipments have to process data much faster and

transmit much more data than before. Besides, as more and more nodes join the

internet, it means that extremely high performance of routing and switching

abilities must be provided for the backbone network devices.

At present, the network backbone equipments are normally ATM switches and

Fast Ethernet routers. Optical transponder and optical fiber carry the optical signal

and need OEO (Optical-Electronic-Optical) processing to convert the optical

analog signal to digital data, and then the hardware can do computation to the

converted packets such as routing, switching, and QoS. Considering to the data

rate of the optical fiber and the transmission time of data on optical fiber, the OEO

processing time and packet processing time in the electronic domain

(segmentation, route computation, buffering, scheduling …etc) are the critical

bottleneck of the performance of the routers and switches with optical fibers. This

is because the electronic signal speed and silicon chip frequency can not match the

 1

light speed. If we want to take the full utilization of the data rate and bandwidth of

the optical products with current optical technologies, we have to reduce or

eliminate the electronic part as much as possible to reduce the loss of the

mismatch of data rate. Therefore, the next generation (or at current time)

backbone devices are all optical devices. For example, all-optical switches have

only mirrors to directly reflect the incoming light signal to the destined outgoing

port, and they do not need to do OEO processing. These switches base on circuit

switching paradigm. The network of this architecture saves the OEO time and the

store-and-forward time, and we call it “Traditional All Optical network”. This

paradigm has some feature such as circuit switching, RWA problem (Routing and

Wavelength Assignment), and protection to gain survivability.

And the next competition is: why don’t we use packet switching? The packet

switching architecture has a lot of benefits: 1. Connectionless. It needs less

management and control at setup. 2. Better utilization of the whole network

bandwidth. The main disadvantage of the circuit switching is the low utilization of

the circuit in each connection, and the traditional all optical networks have the

same disadvantage. Why don’t we use packet switching on the all optical

networks? This is because the packet switching devices need buffer to store

packets, and lacks of buffer will cause a very serious packet drop problem. The

current technologies of optical buffer are not very suitable for real application.

Therefore, another new paradigm comes out and merges the advantages of circuit

switching and packet switching. It is called optical burst switching. It uses control

packet to do a-period-of-time reservation of a switch port for transmitting

incoming bursts [4].

 2

The purpose of this paper is building the simulation environment for

traditional all-optical networks and optical burst switching networks in the

NCTUns. Chapter 3 describes the related work of simulation for all-optical

networks, and the design issues for our cases and environments. Chapter 4 is an

introduction to the NCTUns (NCTU network simulator), which is used as the

platform to develop our systems.

Chapter 5 contains the architecture overview of our system, added modules,

added nodes, and modifications of our system. Chapter 6 tells the detailed

implementation of our system, including the design consideration, packet format,

functions of modules, and cooperation among modules. Besides, the modifications

of the GUI and simulation engine will be shown.

Chapter 7 is the performance evaluation. We change the scale of our

simulation cases to gain or loose the system load, and we collect the data of

performance variation. After that, we analyze the data and prove that the system

design is reasonable and acceptable. Chapter 8 is the functionality validation. In

chapter 8 we survey papers and analyze our system behaviors, and we prove that

the behaviors of our simulation system are correct and they match those of

all-optical networks operating in the real world.

Chapter 9 is the design and implementation of command console, which is a

useful tool for providing an interface between simulation world and users.

Through this interface users can give commands to the simulated devices at

runtime. Chapter 10 is about how we can expand our simulation system and the

future work.

 3

2.Related Work and Design Issues

2.1. Related Work

Optical Wavelength Division Multiplexing (WDM) Network Simulator [7],

which is built on the ns2, is a simulation environment for WDM (Wavelength

Divided Multiplexing) networks. It simulates the WDM environments and

behaviors such as RWA and light path setup.

“A Simulation Study of Access Protocols for Optical Burst-Switched Ring

Networks” [8] presents the case study of the protocols of optical burst

switching networks. It implements several protocols of optical burst switching

networks on WDM metro ring architecture.

“Simulation of Optical Burst Switching Protocol and Physical Layers” [9]

presents a simulation environment for optical burst switching network on the

OPNET network simulator.

WDMGuru of OPNET [10] provides a simulation environment for WDM

environment and traditional all-optical networks. It also provides SONET

standard in all-optical network simulation.

 4

2.2. Our Design Issues
I. NCTUns is a simulator which simulates mainly OSI layer-2 and layer-3

protocols such as routing and switching. About simulating OSI layer-1 (the

physical layer), we just simulate the bit error rate, bandwidth and

propagation delay. We do not simulate signal strength, power variation, or

other optical physical effects. Also, because we treat the layer-1 devices as

optical fibers, we do not simulate amplifier, repeater, coupler and other

layer-1 devices.

II. At present, there is no integrated package that provides simulation

environments for all-optical networks. They focus only on some aspects or

layers. In [7, 10], the systems simulate only DWDM environment and

traditional all-optical networks. In [8, 9], they simulate only optical burst

switching networks. However, we want to build an environment as real as

the wide area networks operating in the real world including end-user

hosts, border gateways, and switches for backbone networks. Therefore,

we have to provide optical nodes such as switches and routers for both

traditional all-optical networks and optical burst switching networks.

III. For DWDM environments, we have to divide optical fibers into several

wavelength channels. From the view point of the design, we do not treat it

as “a fiber between 2 nodes with many channels”, but “many links

between 2 nodes”. This is natural, because: 1. we need to transmit traffic

on many channels concurrently at the same time. If we use the first

concept to design our system, the traffic will never be transmitted

concurrently. It violates the event scheduling methods of the NCTUns.

Therefore, we have to simulate the DWDM environment by using the

 5

second concept. 2. Each channel may have different bit error rates or

bandwidths. The transponder of a wavelength channel may use different

modulation from the modulations of other channels. It is trivial that we

view one channel as a link object. It benefits modularity and system design.

Because the NCTUns does not support more than one dedicate links

between 2 adjacent nodes, we have to modify it to support such feature.

We will discuss this work at 6.8.

IV. Protection for optical network survivability is rarely implemented in

simulation domain. This is an interesting feature that affects performance,

error rate, and loss rate of the all-optical network. Because most all-optical

environments have such feature, we add this module to our design map.

V. For traditional all-optical networks, we have to focus on management

considerations. For example, light path setup and protection ring setup are

the main considerations. These are the main research areas of the

traditional all-optical networks. We provide optimized shortest-path

algorithm for static RWA scheme (it will be auto-generated when you

finish setting up your simulation topology), manual protection ring setup,

and dynamic RWA scheme of light path configuration.

VI. Optical burst switching network [4] is one of the most popular research

area in all optical networks. We simulate some basic, published popular

methods, such as segmentation [6] and JET (Just-Enough-Time) [5]. We

also simulate tunable parameters such as burst length, delay factor, and

packet processing time.

All design and implementation details are presented in chapter 5 and chapter 6.

 6

3.About NCTUns

NCTUns (NCTU network simulator) is a network simulator developed by

Network and System Laboratory, CSIE, NCTU. The differences among NCTUns

and other traditional network simulators such as ns2 and OPNET are the “real”

simulation methodology and module based structure [1]. Because the simulation

environment is “real”, NCTUns supports normal applications. Ns2 and OPNET

use a mathematical modeling program or the specified traffic generator which

generates traffic flow by mathematical computation to simulate the traffic flow.

We can run the general network applications such as ftp and some TCP/UDP

traffic generator programs to generate traffic flow on the NCTUns. It means that

you can use “ping” or “traceroute” program to manage or watch the simulated

networks, or you can run a server and a client program to send or receive packets.

The other network simulators do not have this feature.

The other scope of the “real” thing is the methodology of simulating the traffic

in the simulation networks. The NCTUns uses OSI layer-3 and layer-4 protocol

stacks of the operating system to simulate the TCP/IP protocol. In the real network

communications, the packet is generated by the socket, and the socket puts the

packet into the kernel. Then the packet is processed by the TCP/IP stack, and the

kernel puts the packet into the driver of the network interface card. At last the

driver pushes the packet into the network. What NCTUns does to a packet is

almost the same way, but the differences are: 1. all of the simulated hosts, routers,

and layer-3 devices use the same kernel TCP/IP stacks. This is because they are on

the same computer. 2. The behaviors of layer-2 and layer-1 protocols are

 7

simulated by the simulation engines and related modules. When the packets of

simulation networks enter a special network interface called “tunnel”, the tunnel

interface will grab the packets up to the simulation engine. The picture below

shows the work flow that a packet travels through simulated networks.

Figure 3: The illustration of simulating the traffic in the NCTUns

From the picture above, we can see that the kernel simulates layer-3 protocols

of the hosts and routers, and the simulation engine simulates the protocols of

layer-1 and layer-2. The developers of the NCTUns implement the layer-2 and

layer-1 modules for simulating the behaviors of the network interface cards and

the physical lines (or radio wave in the air). The “real” feature definitely makes

the NCTUns an extremely accurate simulator, and therefore we choose it as our

development platform. The other reasons that we choose this simulator as our

development platform are: 1. the NCTUns uses module based architecture, and 2.

NCTUns uses C++ as the development language. The existing modules save our

time of developing the other types of networks and some basic network functions.

We are familiar to the development language, C++, and therefore we can learn

how to use the API quickly. This feature saves our time of studying, and therefore

 8

we can focus on the system design and case analysis. Because all these features

make the NCTUns the best platform for developing our system, we choose it as

the simulation platform.

 9

4. High Level System Architecture

4.1. System Design

The picture below represents the high level architecture of our system

All-optical
Networks

 OBS structure

Figure 4: The graph of system architecture

 The whole system is divided into 2 subsystems, one is traditional

all-optical networks, and the other is optical burst switching networks.

Static
wavelength
assignment

Dynamic
wavelength
assignment

User
specified

GUI auto
generated

Dynamic
LP setup

Static
wavelength
assignment

Burst

assembling and

extracting

Control
packet setup
and time
scheduling

Ring protection for survivability

Traditional

All-optical networks

WDM environment

 10

 The traditional all-optical networks is all-optical. It is based on WDM

environment, without OEO signal transformation or the

store-and-forward schemes.

 The optical burst switching networks is the new paradigm for optical

internet. The traffic of optical burst switching network is bursty and

connectionless [4].

 In traditional all-optical networks, we configure circuit for data

transferring. The circuit is called light path. It contains the connectivity

of nodes and assignment of the wavelength channels. The way to build

a light path is static (at the beginning of the simulation) or dynamic (at

the incoming of traffic). Because building light paths have something

to do with routing, we call it RWA (Routing and Wavelength

Assignment).

 In optical burst switching networks, we concern about the burst

contention and the drop rate. How and when we build the light path is

not important, and dynamic RWA method may cause the incorrect

transmission of the bursts and control packets. Therefore we use static

RWA scheme.

 We can choose the way of assembling bursts, the way of dropping

contended bursts, the way of reserving the control packets, and the way

of scheduling the incoming bursts.

 Besides the transmitting and multiplexing functions, our system

provides optical protection mechanism for traditional all-optical

network survivability. The protection mechanism we provide are

SONET protection rings for ring protection and virtual rings for mesh

protection [2, 3].

 11

4.2. New Added Modules in the NCTUns

4.2.1.Optical Physical Module (named “ophy”)

I. The ophy module simulates optical fibers. It simulates the propagation

delay, the bit error rate, and the bandwidth. It also provides the function

that you can set the optical fiber failed during a certain period of time.

II. The ophy module provides packet trace log. It also provides

accumulation data log such as drop rates, collision rate, and throughput.

III. This module is used for any type of our all-optical networks.

4.2.2.Optical Port Module (named “op”)

I. The op module reads the optical header of a packet and it sends the

packet to the destined wavelength channel. From the view point of the

NCTUns, the op module decides which ophy module the packets should

go to.

II. When it receives a LPC (light path configuration) packet, it records the

coming-in wavelength number and the going-out wavelength number,

and it adds the information on the LPC packets.

III. This module is used for any type of our all-optical networks.

4.2.3.Management Module (named “opmanage”)

I. This module is the main body of optical network protection and

survivability.

II. The main functions of this module are constructing the protection ring

 12

and maintaining the survivability of the optical networks. The module

will re-switch the traffic to the protection paths if the working paths are

broken.

III. The opmanage module has a table of protection rings. This table contains

the mapping information of working path and protection path. In general

cases, working path is the default way to transmit traffic. The protection

path is the backup path when the working path is failed [2, 3].

IV. When the working path is normal, the opmanage module acts as a

port-layer multiplexing module. The work of this module is deciding

which port the packets should go to.

V. When the opmanage module detects a working-fiber failure, the module

will switch the traffic to the protection fiber.

VI. The module is used for our all-optical network systems, but the

protection feature is available only in traditional all-optical network. In

optical burst switching networks, it is only a module deciding which port

the packets should go to.

4.2.4. Wavelength Assignment Modules (the one is

named “wa” at switches, and the other is named

“rwa” at routers)

I. The two modules handle the routing and wavelength assignment

configurations. The rwa module is in the router, and the wa module is in

the switch. They are used only in the traditional all-optical networks.

II. The rwa module generates the optical header. The modules below the

rwa module will transmit the packets to the destined port and destined

 13

wavelength channel according to the information of optical header.

III. The wa module stores the light path configurations, and it helps the osw

module to build its switching table. For example, if there is a light path

“1-2-3-6-7, wave 1”, the wa module in node6 will remember “I will send

the packets to port 7, wavelength 1, if the packets come from port 3,

wavelength 1.”, and it updates the switching table in the osw module.

IV. We will discuss the cooperation of the 2 modules with dynamic RWA

scheme and static RWA scheme at Chapter 5.

4.2.5. Optical Switching Module (named “osw”)

I. It is the switching management module. The function of this module is

switching the incoming packets to the right light path according to the

switching table.

II. The osw module creates and maintains a switching table. The format of

this table is: [in-port][in-wave]-[out-port][out-wave].

III. The wa module will tell the osw module the switching information. This

is the only way that the osw module obtains the switching information.

The wa module creates switching information, and the osw module

stores the information and executes the traffic switching.

IV. It is used by all of our all-optical network system.

4.2.6. Optical Burst Switching Module (named

“obsw”)

I. This module is for optical burst switching networks only.

II. The main function of this module is the bursts reservation and contended

 14

bursts dropping.

III. It has a reservation table storing and managing the incoming control

packets and bursts.

IV. When control packet comes, this module decides to reserve the light path

for the burst or not. If the burst reservation is permitted, the obsw

module stores the control packet to the reservation table. When the data

bursts come, the obsw module decide to let the bursts pass or drop them

according to the reservation table.

4.2.7. Optical Burst Wavelength Assignment Module

(named “obwa”)

I. This module is only for the optical burst switching networks.

II. The module is responsible for generating control packets and

aggregating data bursts.

III. When the data packets come, the obwa module queues them in the burst

queue. When the burst length reaches the burst length limit or the

queuing timer is expired, the obwa module generates a control packet

and sends it to the next-hop switch for configuring the burst reservation.

After sending the control packet, the obwa module sends the data bursts

out.

IV. Of course, the obwa module always uses static RWA scheme to

determine which port and which wavelength channel the packets should

go to.

 15

4.3. The Work Flow of Our System

4.3.1. Traditional All-optical Networks

I. At the beginning, users have to set the configuration details of routers

and switches such as wavelength conversion, RWA scheme, and

protection ring assignment.

II. When the packets come to the border router of the optical networks from

other sub-networks, the rwa module checks the packets’ destination.

Then the rwa module decides which light path the packets should go to

according to the next-hop router IP.

III. The optical header (it is equal to the MAC header in Ethernet.) will be

created, and the rwa module will attach optical header to the front of the

packets. After this attaching process, the packets will be sent to the

opmanage module.

IV. The opmanage module sends the packets to the destined op module.

V. When the packets go down to the op module, the module will send the

packets to the destined wavelength channel according to the optical

header.

VI. When the packets arrive at the ophy module, the ophy module simulates

the bit error, transmission time, and propagation delay. Then the ophy

module sends the packets to the next node.

VII. When the packets reach the switch, it will be received by the ophy

module, and the ophy module sends the packets up to the osw module.

The osw module will determine which port and which wavelength

channel the packets should go to. The osw module sends those packets

 16

down to the lower modules from wa module to ophy module, and the

packets go to the next node.

VIII. The step III to step VII will continue until the packets arrive at the

destination router port. The packets will be received by the interface

module and written into kernel when they reach the destination router.

4.3.2. Optical Burst Switching Networks

I. At the beginning, the users set the setting details of routers and switches

such as wavelength conversion, burst length, and reservation scheme.

II. When the packets come to the obwa module from another subnet, the

module will assemble them to create a burst. If the timer of burst

gathering is expired or the burst queue is full, the obwa module generates

a control packet and sends it to the next-hop switch. After sending the

control packet, the data burst is sent.

III. What the op module, ophy module, opmanage module and the osw

module do to the packets in optical burst switching networks is the same

as those modules do in the traditional all-optical networks.

IV. When the obsw module gets a control packet, it will check the

reservation scheme and the reservation table to decide to offer the

bandwidth resources for burst transmission or not.

V. The control packet travels through switches to do burst reservation for its

own burst. The travel of control packets ends up at the destination router.

VI. When the data burst (packets) comes to the obsw module, the module

sends the burst to the osw module or drops it according to the reservation

table and the contention drop scheme.

 17

VII. The burst data will reach the destination router if the destined path is

all reserved by its control packet. The burst will be dropped in the

middle of the burst transferring if reservation is denied by the obsw

module in any one of the optical burst switches.

4.3.3. The Scheme of Protection Ring

I. The users have to assign protection rings and set some parameters

manually before the simulation starts. The protection mechanism will not

work without these works.

II. At normal time, the traffic goes on the working path.

III. When the working path is broken, the opmanage module senses it from

the link failure signal triggered by ophy module. The opmanage module

automatically switches the traffic to the protection port when it knows

that the working path is failed.

IV. When the packets go to the opmanage module, the opmanage module

checks whether the packets come from working path or protection path.

If they come from working path, the module sends the packets to the

working path. If they come from protection path or they come from

working path but the working port of this switch is broken, the module

sends the packets to protection path.

V. The protection ring mechanism is available only in traditional all-optical

networks, but it is not available in optical burst switching networks.

Because in optical burst switching networks the transmission of data

burst needs to send control packet to each node on the path to the

destination to reserve light path for the burst, the changing of light path

 18

caused by protection switching will fail the reservation which is already

done. If one of the links on the light path is failed, the data burst has to

send control packet again to reserve a new light path for transmission.

 19

5. Design and Implementation

5.1. Packet format

The graphic below represents the format of optical header.

 The description of the frames:

I. SourceIP. It is the source port IP of the source router. Its length is 32 bits.

II. DestIP. It is the destination port IP of the next-hop router. Its length is 32

bits.

The sourceIP and destIP can be composed to form a unique ID for a light

path. Because RWA process assigns a light path for each route, we need a unique

key to represent each route. We choose the source router port IP and the

destination router port IP to be the light path ID. From the view of our system

architecture, it also means that packets which take the same route travel on the

same light path.

III. Wave. It represents the wavelength channel number of the light path that the

packets go on. Its length is 8 bits, and therefore we totally support 255

wavelength channels.

IV. Option. It contains the packet type and some configuration options. Its

length is 8 bits. The first 4 bits represent the packet type of the packet, and

the last 4 bits represent some configuration details. For example, the value

0x00 represents that the packet is data packet. None-zero value of this frame

sourceIP destIP wave option

 20

represents that the packet is for special purposes such as configuration or

handshaking messages for networks. We will give a detailed explanation

later.

5.2. Global Functions and Modules

5.2.1. Shortest Path RWA Object

It is a function object doing optimized route-and-wavelength assignment.

When the simulation network is ready, the number of wavelength channels and

the network topology will be input in this object. The object computes and

optimizes the RWA. Each assigned light path will take the smallest hop counts

(the “hop counts” we talk about here is not the layer-3 router hop counts, but it

means the layer-2 switch hop counts), and the whole optical networks use

wavelength channels as few as possible. This function will not work when we

use dynamic wavelength assignment scheme. This option will be forced to be

activated if the simulation networks contain optical burst switching networks.

Because the users can develop various route-and-wavelength-assignment

strategies for this function, it is designed as an object and it can be customized

for research.

5.2.2. The Ophy Module

Ophy module has three main parameters. One is “ProgaDelay” which

records the propagation delay of the optical fiber, another is “bw” which

contains the bandwidth of the channel, and the rest is “BitErr” which

 21

represents the bit error rate of the optical link.

The ophy module has 4 main functions: sending packets and receiving

packets, simulating propagation delay, bandwidth and bit error, recording the

packet trace file for playing traffic flow animation, and logging the

accumulation data of the packet flow.

I. Sending and receiving packets

It is the basic function of a module which simulates the physical line of

the networks. After executing the member function “init()” (its job is the

initialization of the module), the ophy module gets the IDs of nodes

connecting to this node, and it keeps the pointer of these nodes in the

variable “ConnNode_”. When the packets are ready, the ophy module calls

the “get()” function of the ophy module in the connected node to grab the

outgoing packets to the destined ophy.

II. Simulating the bandwidth

The ophy module has a variable named “txState” to show whether the

ophy module is “sending” the packet or not. We can not let another

incoming packet pass if there is a packet in transmission. The variable

“txState” is a lock to lock or unlock the outgoing port. When a packet from

upper module reaches the “send()” function in the ophy module, the ophy

module will check the variable “txState”. If it is false, it means that the

ophy module is idle. The ophy module allows the packet to pass when the

sending status is idle. Once the ophy module puts a packet on transmission,

it changes the value of “txState” to true (locked). Then other packets can

not pass until the txState is unlocked again.

 22

At the time the ophy module locks the variable “txState”, it also

triggers a timer to simulate the transmission time. The length of the time is

“packet length / bandwidth of the ophy module”. When the timer expires,

the ophy module calls a function named “TxHandler()”. The function

“TxHandler()” unlocks the variable “txState” and do several

post-processing.

The method of simulating the bandwidth of the receiving side is similar.

The packet is passed to upper module or not according to the variable

named “rxState”. The packet can pass if the variable “rxState” is false,

otherwise the packet can not. The function named “RxHandle()” controls

the status of the variable “rxState” and it is called when the receiving timer

is expired.

III. Simulating the propagation delay

 Actually, the ophy module do not “send” the packet to the connected

ophy module, but it calls the function “get()” of the connected ophy

module to grab the packets. It is the main consideration of simulating the

propagation delay. When the packet passes the function which simulates

bandwidth, it goes to the function of simulating propagation delay. This

function will trigger a timer, and the expiration time is the propagation

delay of this ophy module. When the timer expires, the ophy module calls

the get() function of the connected ophy module to grab the packet. The

ophy module of the other side will get the packet after the propagation

delay time.

 23

IV. Simulating the bit error

The variable named “BitErr” represents the bit error of the ophy

module. We set the bit error rate before the simulation starts. When the

packet comes to the ophy module, we add packet information to the packet.

The packet information contains the bit error rate recorded in the variable

“BitErr”.

When the packet is received by the destination ophy module, the bit

error information is extracted. The packet is dropped or not according to

the bit error information.

V. Simulation of store-and-forward and non-store-and-forward scheme

We know that the all-optical networks are buffer-less and the

transmission scheme is non-store-and-forward. We treat the light path

which passes through several optical switches as a straight optical fiber.

The inside structure of the all-optical switches are matrices of lens. The

incoming optical signal will be reflected to the outgoing port by the lens in

switch. From the point of view of all-optical switches, when the first bit is

received by the incoming port of the switch, the first bit is sent to the

outgoing port at the same time. If the switch uses store-and-forward

scheme, the first bit of the packet will not be sent to the outgoing port until

the last bit of the packet is received.

For simulating this scheme, we have to know what type this node is at

first. Only the traditional all-optical switches and optical burst switching

 24

switches have non-store-and-forward characteristic. If the node is a router,

the ophy module inside the node should follow store-and-forward scheme.

Even if it is an optical burst switch, the control packet needs to be

transformed to digital signals (OEO process) to configure the switch and

obviously it follows the store-and-forward scheme. Therefore we have

such conclusion: 1. the ophy modules in the router should follow

store-and-forward scheme. 2. The ophy modules which transmit control

packets should follow the store-and-forward scheme.

Now we explain how the ophy module simulates the store-and-forward

and none-store-and-forward behaviors. When the ophy module receives a

packet from the source another ophy module, it triggers a timer and calls

the function “RxHandler()” when the timer expires. If the packet needs to

follow store-and-forward scheme, the ophy module passes the packet to

the upper module in the function “RxHandler()”. If the packet needs to

follow none-store-and-forward scheme, the ophy module passes the packet

right now. We pass the packet to the upper module not waiting the last bit

of the packet is received in the non-store-and-forward scheme.

The pictures below illustrate these schemes. The doted line represents

the edge between receiving and sending. The left side of the dotted line

represents the time before receiving / sending. The right side of the dotted

line represents the time after receiving / sending.

 25

Incoming port

 Figure 5.1: The illustration of none-store-and forward.

Figure 5.2: the illustration of store-and-forward

In figure 5.1, we can see that when the first bit of the packet comes

into the incoming port, the first bit of the packet goes out of the outgoing

port. This is the non-store-and-forward scheme. From the view point of

optical devices, we treat the non-store-and-forward switches as “a coupler

time

time

Incoming port

Outgoing port

Incoming port

Outgoing port

time

Outgoing port

time

 26

that switches”. The incoming optical fiber and the outgoing optical fiber

can be seen as one optical fiber composed by these two.

In figure 5.2, it illustrates the store-and-forward scheme. The packet

will not be sent to outgoing port until the whole packet is received by the

incoming port. In our simulation environment, the optical burst switch has

a parameter named “packet processing time” which represents the sum of

the OEO time, the routing computation time, and the switching

computation time. In optical burst switching networks, this factor is very

important. The switch need to transform the control packet from optical

domain to electronic domain so that it can compute the burst reservation

and change some control information in the packet, and therefore the

control packet needs to follow store-and-forward rules. The time that

store-and-forward scheme takes is a critical factor to the optical burst

switching networks [5]. We have to simulate this feature to make sure that

our system is correct.

VI. The packet-trace file logging and accumulation data logging

In the NCTUns, we need to log the packet-trace file in order to provide

the GUI the packet streams and behaviors record so that the GUI can draw

the play-back animation. The packet-trace printing function in the GUI

shows the packet-trace log in detail, and we can inspect the behaviors of

the networks. The other log data is performance and accumulation log.

This data contains the performance and accumulation information such as

number of packet drop, number of packet collision, number of incoming or

outgoing packets, and throughput. The performance plotter in the GUI will

 27

use this data to draw graphs to show the variation of the data.

For packet-trace logging, we have to record the packets at 4 points: the

point of starting transmission, the point of finishing transmission, the point

of starting receiving, and the point of finishing receiving, to complete a

packet-trace entry. The ophy module calls the function named “sslog()”

(sending start log) at the function “send()”, selog() (sending end log) at

function “TxHandler()”, rslog (receiving start log) at the function “recv()”,

and relog() (receiving end log) at function “RxHandler()”.

For logging the performance data, the ophy module records the number

of incoming packets, the number of outgoing packets, and the number of

packets that all pass this ophy module. It not only records the number of

packets, but also the throughput. For logging the accumulation data, the

ophy module records the number of bit-error drop, and number of collision

drop.

The picture below shows the finite state machine of the ophy module.

 28

Figure 5.3: The finite state machine of the ophy module

5.2.3. The Op Module

The op module has 2 functions. One is that the op module marks the

packets with some information. When the packets are received by the op

module from the lower module, the op module will add packet information

named “From” to the packet. The information represents which port the

packets come from. This function is for providing information for switching.

The other function is that the op module directs the packets to the right

outgoing ports. When the packets are received by the op module from the

rxState = 0
txState = 0
rxTimer = none
txTimer = none

Get a packet from
upper mooule

rxState = 0
txState = 1
rxTimer = none
txTimer = trigger

txTimer
expired

rxState = 0
txState = 1
rxTimer = none
txTimer = expire

Call
TxHandler

rxState = 1
txState = 0
rxTimer = trigger

Receive packet

txTimer = none

rxTimer
expired

Call
rxHandler

rxState = 1
txState = 0
rxTimer = expire
txTimer = none

 29

upper module, the op module will check the optical header of the packets and

sends the packets to the correct wavelength channels.

5.2.4. The Osw Module

The osw module is the module which switches the incoming traffic in

optical switches. The jobs of the module are maintaining the switching table

and switching packets according to the switching table. The text below

describes the two jobs of the osw module.

I. Creating and maintaining the switching table

The wa module or obsw module will send the light path information to

the osw module and the osw module will create a switching table

according to these information. A table entry contains source port ID,

source wavelength ID, destination port ID, and destination wavelength ID.

II. Switching packets

The osw module extracts the packet information named “FROM”

which is added by op module. The osw module gets the source port ID and

it extracts the wavelength ID from the optical header of the packet.

Therefore it knows the source port and the source wavelength. Then the

destination port ID and the destination wavelength ID will be obtained by

checking the switching table. The osw module updates the optical header

and it adds packet information named “TO” for the lower module. After

these processing, the modules below the osw module know that which port

and which wavelength channel the packets should go to.

 30

5.3. New Added Node Types and Their Module

Trees
We add 3 new nodes for our all-optical network system.

5.3.1. Traditional All-optical Switch

The node is only for the traditional all-optical networks. It connects only to

the router node or other traditional all-optical switches. The graphic below

shows the module tree of this node. The number of the module named

“OPT_PORT” is according to the number of the fiber connected to this switch,

and the number of module named “OPT_PHY” is according to the number of

wavelength channel.

 31

Figure 5.4: The module tree of the optical traditional switch

5.3.2. Router Between All-optical Switches and Other

Types of Subnet

This router node looks the same as the other router nodes, but the module

tree of the router node is different to the other router nodes. The module tree in

the router nodes changes according to the type of the connected subnets.

Figure 5.5 represents the module tree of the router node which is between

Ethernet and traditional all-optical networks. Figure 5.6 represents the module

tree of the router node between Ethernet and optical burst switching networks.

 32

Figure 5.5: The module tree of the border router type1.

 33

Figure 5.6: The module tree of the border router type2

5.3.3. Optical Burst Switch

This node is for optical burst switching networks only. It connects only to

the routers node and other optical burst switches. Figure 5.7 shows the detailed

module tree of the optical burst switches.

 34

Figure 5.7: The module tree of the optical burst switching switch

5.4. Optical Protection Modules and Mechanism

5.4.1. Introduction

The bandwidth of all-optical networks is extremely high. If accidental link

failures happened at the network devices, a lot of data would be lost even the

devices crash for a very short time. Therefore, the protection and backup

functions for optical network survivability are very important. SONET has the

standard called SONET protection ring which defines the ring protection

standard [2]. The standard of mesh protection and virtual ring protection are

 35

still in development. In our protection simulating cases, we provide a method

to support virtual ring protection. Our scheme of the virtual ring protection

also supports ring protection and mesh protection.

5.4.2. The Design of Management and Protection

Layer

I. The main function of our protection management protocol is doing

protection with virtual-ring architecture. We need to assign protection

virtual rings manually and we have to follow certain rules [3].

II. Each switch has a module named “opmanage” which manages the work of

protection and the ring structure. If no ring is assigned or the working port

is normal, the module is only a bridge module to the upper modules and

the lower modules. If we assign several rings as the protection rings, the

GUI generates a file that contains information of protection rings. The

opmanage module of each node reads the file and selects the needed

information of the ring as a node. Assuming that we assign a ring

“2-3-1-2”, node1 is in ring number 1 and so do node2 and node3. The

upper neighbor of node1 is node3, and the lower neighbor of node1 is

node2. Now we take a look at the opmanage module in node1. The

opmanage module will select the data “3” and “2” as its upper neighbor

and lower neighbor on the ring “2-3-1-2”. Because the ring is

unidirectional, the opmanage module has to know its upper and lower

neighbor. Only optical switches with the same type can be assigned to be a

ring.

 36

III. Now we show how the protection ring is assigned and how it works.

Figure g illustrates a network topology.

Figure 5.8: An example of protection ring

NodeA, nodeB, nodeC, nodeD, nodeE, and nodeF are assigned as a

virtual ring “A-B-C-D-E-F-A”, and nodeA, nodeB, nodeE, and nodeF are

assigned as a virtual ring “A-B-E-F-A”. Assuming that we assign the two

rings “A-B-C-D-E-F-A” and “A-B-E-F-A“ in this case and the opmanage

module creates a protection table in the opmanage module. We now take a

look at the opmanage module at node B. The opmanage module at node B

has these table entries: {working B E, protection B A, ring 1},

{working B C, protection B A, ring2}. These entries contain the

information of the ring as a ring member. Taking entry1 for example,

“{working B E, protection B A, ring 1}” means that it is the

information of ring1, the direction of working path is B to E, and the

direction of protection path is B to A. Because node B joins two virtual

rings, the ring table of node B has 2 entries.

When the working port is failed, the opmanage module checks the

table. If the node joins a ring, the traffic route will be changed to the

B C

A

F E

D

 37

protection path. Each packet has packet information that represents which

ring and which path the packet goes on. Switching now is no more handled

by the osw module, but handled by the opmanage module. The switching

table in osw module is replaced temporarily by the protection table until

the link failure is recovered, or the packets arrive at another node which is

not in the ring that suffers working path failure.

IV. Light path is unidirectional, and therefore the direction of the light path

must not be against the direction of the protection ring. For example, light

path “D C B A” is not allowed to be assigned if the ring

“A-B-E-F-A” exists. The step of virtual ring setup by the GUI is clicking

the ring member sequentially. For example, if we want to assign ring

“1-2-3-1”, we have to click the node by following the sequence “node1

node2 node3 node1”. Different sequence represents different ring.

V. Because there are some limitations in the topology drawer, we support

only one bi-directional optical link between two adjacent nodes. Because

one bi-directional optical link can be assigned to at most two rings, the

direction of one ring on this link must be opposite to another. Taking figure

5.8 as an example, we can assign ring “A-B-C-D-E-F-A” and

“A-F-E-B-A”. The two rings “A-B-C-D-E-F-A” and “A-B-E-F-A” can’t

be assigned at the same time. We must follow the double cycle rules [3].

What problems will happen if we don’t follow such rules? If the ring

“A-B-C-D-E-F-A” and the ring “A-B-E-F-A” are assigned at the same

time and the network status are normal, the node B will not know which is

the right working path, B-C, B-E, or both? The protection switching may

 38

suffer the link overloading problem.

Assuming that the “B C” and “B E” are full-utilized and the 2 links

break down. Their protection path “B A” can’t afford the data flow that

is double to its bandwidth limit. The overflowed packets will be dropped,

and therefore the protection is meaningless. IF the ring “A-F-E-D-C-B-A”

and the ring “A-F-E-B-A” are assigned at the same time and the link

“A B” crashes, the opmanage module will not know which protection

path is valid, B-C, B-E, or both? When user set up the protection ring, they

should follow these rules to avoid these problems.

The graph below represents the working flow chart of the opmanage

module.

 39

Figure 5.9: The illustration of the work of the protection module

VI. For supporting mesh protection, we design a smart way to select the path.

The picture below ilustrates a hive-structured mesh topology. We will

take the picture as our explanation.

Get a packet
from upper
module

Listen an
ophy down
massage

Initial

Check the
node is joined
a ring??

no

yes

Trigger the
protection
machanism

The node’s
protection is on,
and the working

port for the
lightpath the packet

goes is fail??

yes

Working port
for the lightpath
the packet goes
is available?

Send to
protect port

Send to
working port

no

Get a packet
from lower
module

Yes

No

Check the ring table
and switch the
packet to the

protection port

Send the packet to
the upper module

 40

Figure 5.10: The illustration of the work of the protection module

The yellow line is the light path that we assigned manually, and the

protection rings are assigned for each hive cell. For example, “1-2-4-5-17-3-1”

is assigned as a ring and “4-6-7-9-8-5-4” is assigned a ring. There are total

five clockwise rings and each optical link joins at most two rings whose

directions are different. This assignment satisfies our rule. We assume that the

link “6 7” is broken. When the packet reaches node6, the packet is marked as

“from working port” and “taking the ring “4-6-7-9-8-5-4””. After the

opmanage module tags the information on the packet, the packet is sent back

to node4 and the packet will follow the protection direction until it arrives at

node7.

When the packet reaches node7, we know that if the packet went back to

node6, the packet would travel in a loop and never reach the destination. We

 41

call node7 “the last station of the protection travel of ring “4-6-7-9-8-5-4””. At

node7, the packet is marked as “going on the working port” and the opmanage

module chooses a working path of another ring that node7 joins. For example,

we choose the ring “7-16-10-12-11-9-7”. This is because the link “7 16” is

on the light path that the packet takes. Because the node is on the light path or

no traffic passes the node, we can always find another ring which the node

joins in that its working path overlaps with the light path. Taking the

hive-structured topology as an example, node7 is the node on the light path. If

node7 is not on the light path, we even don’t take the link “6 7” to the

destination. The rules of our working and protection path switching are:

I. If the working path is broken, the opmanage module adds a tag “protection,

ring1” on the packets, which represents that the packets will travel on the

protection path of ring1.

II. When the packets arrive at the last station of the protection travel, the

opmanage module changes the tag to “working, ring3”on the packets,

which means that the working path of ring3 is the next working path that

the packets will take. Of course, the working path of ring3 in this node

overlaps with light path of the packet.

III. If the working path is normal, the traffic follows the path that the osw

module decides according to the switching table.

5.5. Traditional All-optical Networks
In this section we descript the design and implementation of traditional

all-optical networks. This subsystem is composed of edge routers, optical

traditional switches, and other types of networks. Most functions of the

 42

subsystem are handled by the rwa modules and the wa modules. Figure 5.11

shows a topology of traditional all-optical networks, and we take it as the

example of our description.

Figure 5.11: Traditional all-optical networks

5.5.1. The Functions of the Rwa Module at Router

We have discussed the function of generating optical header at chapter 4.

Besides the functions of rwa module are the configuration of the RWA scheme,

which we can set to static (it is done by the users or GUI auto-generated) or

dynamic (it finds out a light path automatically at run time). We know that

traditional all-optical networks are circuit-switching, and therefore the traffic

can reach the destination only if the connection is built up. The RWA must be

done before sending the data.

 43

When the packets come to the rwa module, the rwa module finds the

destined next-hop router port IP of the packets. The rwa module checks the

light path table for free or connected light paths to transmit packets. If there is

no such light path, the packet will be dropped.

If we use dynamic RWA scheme, the light path table is empty at start. The

rwa module does not drop the packets at the first time, but stores them and

creates a light path configure packet (we call it LPC packet) to broadcast to the

whole optical subnet. Because we flood the LPC packets, one of the LPC

packets will finally arrive at the destination router and we will find a light path

for this route. The light path searching process will continue until the rwa

module finds a suitable light path or there is no resource for building up a light

path. The text below shows the steps of light path configuration.

Step1. The rwa module sends out a LP-request packet. The value of option in

optical header is 16.

Step2. The LP-request packet is broadcasted to the whole subnet, and each

clone of the LP-request packet will record value in the packet

information which contains the outgoing and incoming port and

wavelength channel of each node.

Step3. When the LPC packet arrives at the destination router at the first time,

the rwa module reserves the light path resources for the LP-request

packet and the rwa module changes the LP-request packet to the

LP-reply packet. After that the rwa module sends the LP-reply packet

back along the path which it came along and reserves the resource for

the light path at each switch.

 44

Step4. When the LP-reply packet goes back to the source router which sent it,

the rwa module of the router sends a LP-accomplished packet to the

destination router along the path that the LP-request packet went on.

The LP-accomplished packet will build the light path permanently.

If the resource reservation is failed during the travel of the LP-reply packet,

the source router will send a failure massage to cancel the temporary

reservation and send another LP-request packet another RWA request.

The dynamic RWA methodology is three-ways handshaking, and it will

never stop until it has tried all the wavelengths we have. When the light path is

built, the source router will add an entry in the LP table and the destination

router will add an entry to the WA table (wavelength assigned table).

5.5.2. The Functions of the Wa Module

The main function of wa module in dynamic RWA scheme is reserving the

wavelength channels and telling the osw module the information of the light

path for building switching table. The text below is the behavior details of the

wa module in dynamic RWA scheme.

I. When the wa module gets a LP-request packet, the wa module just

broadcast it and sets up a flag to avoid duplicated packet caused by

flooding.

II. When the wa module gets a LP-reply packet, it checks the reservation

table to make sure that the required wavelength channel is occupied or not.

If the wavelength channel is free, the wa module temporary reserves it. If

 45

the wavelength channel is occupied, the wa module change the flag of the

LP-reply packet to “failure”.

III. When the wa module gets a LP-accomplished packet from source router, it

reserves the temporarily-reserved wavelength permanently. The wa

module tells the osw module which port and wavelength it reserved for

building the switching table.

IV. The wa module may take wavelength conversion or no wavelength

conversion, and it affects the result of the RWA. If the wavelength

conversion is allowed, the required wavelength at this switch and that of

the whole light path can be different wavelength channels. If the

wavelength conversion is not allows, the required wavelength at this

switch and that of the whole light path must be the same.

Figure 5.12 represents the work flow of the rwa module. Figure 5.13

represents the work flow of the wa module.

 46

Figure 5.12: The work flow of the rwa module.

Get a packet
from lower
module

Is a data
packet??

Initial yes

Get a packet
from upper
module

Check light
path available

no yes

Form the header
and send out Send out a

LP-request
packet, and
queue the
data packet

no
1. a LP
request :
check the
resource, and
send the reply

Receive it

2. a LP reply :
check the flag
and send the 3rd
handshake
packet

3. a 3rd massage
erase temporary
reservation or
keep it due to the
option flag

 47

Figure 5.13: The work flow of the wa module

Get a packet
from lower
module

Is a data
packet??

Initial yes

Get a packet
from upper
module

Pass it to the
lower module

no 1. a LP request
broadcast it
out

Pass it

2. a LP reply :
check the resource
is available and
change the packet
flag due to it

3. a 3 massage
erase temporary
reservation or
keep it due to the
option flag

rd

Back to
Initial

 48

5.5.3. Some Other Considerations about Traditional

All-optical Networks

I. All-optical network is pure optical and it has no buffer, and therefore the

maximum buffer length of the packet scheduling module in the optical

switch node is forced to set to zero. The queue length of the default packet

scheduling module of optical networks is zero at start.

II. In dynamic RWA scheme, the light path is not built permanently. It will be

torn down when the timer expired or the light path is rarely-used. Of

course, the connection will be built again when the rwa module has

packets to send. There is parameter to decide the maximum life time of a

light path.

III. The RWA can be done by users or by the shortest path RWA tools. It can

also be done dynamically by the rwa module and the wa module.

IV. The optical system type of the same subnet must be the same. For example,

the number of wavelength channels, network types, and switch types of

nodes in the same subnet must be the same.

V. The host node can not connect to the optical switches directly. Only

routers and the same type of optical switches can be connected to each

other.

5.6. Optical Burst Switching Networks
Optical burst switching is a new paradigm for all-optical networks [4]. It

provides new network architecture, and it combines the advantages of circuit

switching (traditional all-optical networks) and packet switching. In this new

architecture it is easy to handle the management and the quality of service

 49

which are the advantages of circuit switching. It also reaches the high

bandwidth and resources utilization and this feature is the advantage of packet

switching. By the way, the reservation schemes and the algorithms of choosing

delay factors are various and it is hard to choose the appropriate strategies.

Therefore this becomes a very important research area in all-optical networks.

Our optical burst switching networks has two main modules. The obwa

module is in routers, and the obsw module is in optical burst switches. The

detail functions of the two modules will be described below.

5.6.1. The Obwa Module

 The main functions of this module are assembling burst, generating

control packet, and assigning wavelength channel.

 When packets come into this module, the packets will be queued at the

burst queue. The module will not send the packets at once, but it will

gather more packets to compose a burst.

 We have to create a mechanism to send the bursts. We define 2 conditions

to send out bursts. The burst is the aggregation of the packets in the burst

queue. One condition is that the queue length reaches the limit that is set

by users. The other condition is that the queuing timer is expired. When

the first packet of the burst comes, the obwa module triggers a timer.

When the timer expires, no matter how small this burst is, the obwa

module sends the burst out. We use the timer method for making sure that

the traffic will not die in the networks if the traffic is sparse, or making

sure that TCP ACK and SYNC packets will always be sent out on time.

The length method and the timer method can be used alternatively to gain

 50

performance and utilization [insert ref].

 When the burst is ready to be sent out, the first thing is creating a control

pack of this burst. We know that the transmission admission and priority

of a burst in the optical burst switching networks are based on the

configure result between switches and the control packet of this burst,

and therefore we generate the control packet. A control packet contains

such information:

I. Burst ID represents the burst.

II. Burst transmission time presents how long this burst transmits.

III. Burst arriving time shows when the burst will arrive.

IV. Wavelength contains what channel the data burst takes.

V. The start router of the burst

VI. The end router of the burst

The information is extracted by the optical burst switches and the

switches can find that there is contention among bursts or not. After that

the optical burst switches can decide to reserve the resources for this

burst or not.

 After sending the control packet, the burst is pushed to lower module.

There is a delay factor between the control packet and the burst. Because

the longer the delay time is and the probability that the burst gets the

resources gets higher, the delay factor is important. For JET scheme [5],

if the delay time is too short, the burst may arrive at switches earlier than

control packet and the burst will be dropped.

 The obwa module also has to decide which wavelength channel the

traffic takes. The obwa module will call the static RWA function to give

a light path to it. Only static wavelength assignment is available in

 51

optical burst switching networks.

 This paragraph describes the design considerations of the obwa module.

I. The burst can be a period of time of transmission or aggregation of

packets. We “gather” the burst, but we do not merge the packets

together and encapsulate a new header to construct a burst. We only

send these packets continuously and each packet has a tag of burst

ID. Assuming each packet transmits for 100 micro seconds and we

define 10 packets to be a burst. If the burst arrive at the 2000th

micro second, the burst mean “the packets arrive at 2000~2100

micro second” from the view point of time. The burst means “the

packets ID 1~10 or a burst data” from the view point of packet. The

Old conception only treats bursts as the combination of packets, and

the contention problem makes the all packets dropped. The time

concept reduces the drop unit from “contented bursts” to “contented

packets (time)”, which is the concept of burst segmentation [6].

II. The control packet has its own wavelength channel in the design of

the devices. This is because that the control packet needs to take

OEO processing and it has to take different transponder to transmit

it. The receiver of the control channel transforms the optical signal,

and the transponder of the control channel transforms the electronic

signal to optical signal. Those of the data burst channel are

all-optical and they handle only optical signals. So we design our

module that control packets are sent on their own wave length

channels. The transmission of the control packet follows

store-and-forward scheme, which we discussed at 6.2.2, sectionV.

III. We have to set the queue length of the FIFO module below the obwa

 52

module in the router to zero. In traditional all-optical networks, the

queue length of the FIFO modules below the rwa module can be

nonzero. This is because the data burst needs accurate timing to

transmit and it can not be delayed at the fifo queue. If the FIFO

queue length is not zero, the burst may be queued and delayed at the

FIFO module for a certain time. The burst will miss the period of

time during which the reservation is valid. For example, the control

packet reserves the 2000th to 2100th micro second for its burst and

the FIFO queue length is not zero. The burst may be queued in the

FIFO and delayed for a while, and the arriving time to the switch of

the burst may not be the same to the time the control packet reserved.

The most of the burst may be dropped.

IV. The delay factor between control packet and burst is important. This

is because we have to confirm that the control packet will arrive at

the end router before the burst. We know the transmission time pf

the control packet contains OEO time, store-and-forward time, and

packet processing time. Even if the control packet goes earlier, it

will reach the end router later if the delay factor is too small.

Therefore we provide some parameters that can help finding the

appropriate delay factor. They are packet process time, OEO time,

and store-and forward time. These 3 parameters are set on the obsw

module and it uses a global way to share these parameters with the

obwa module. Propagation delay and hop counts are provided by the

ophy module and the static RWA object.

V. The RWA scheme in obwa module is rather different to that in the

rwa module. In rwa module, the RWA object gives the route a light

 53

path and assigns the incoming / outgoing port and incoming /

outgoing wavelength. The packet follows the path to the destination

router. However, in obwa module, the RWA object only provides the

incoming and outgoing port, because the resources (wavelengths)

need to be reserved before using them and the wavelengths are

assigned temporarily. The text below describes the method of the

wavelength assignment. When the wavelength channel A is busy

during the required reservation period, the module tries to assign

wavelength channel B. if wavelength channel B is not available

during that time, it tries to assign wavelength channel C. the

checking loop continues until that the module finds that all the data

burst wavelength channels are occupied.

VI. Each light path has its own burst queue. For example, there are 3

routers in a simulation network. There are 2 assigned light paths

“router1 router2” and “router1 router3”. Each light path has its

own burst queue and the router1 has 2 burst queues. Because the

packets may take different light path, we can not merge all the

incoming packets into only one burst queue.

5.6.2. The Obsw Module

 The obsw module is in the optical burst switches. Its main functions are

deciding the burst reservation and handling burst transfer controlling.

 The control packet tells the obsw module when and how the burst comes.

The information in the control packet contains when the burst comes, what

light path the burst takes, and how long the burst will transmit. The

 54

module will decide to reserve the light path for the burst or not according

to the information that control packet provides.

 The obsw module has a table called reservation table. This table contains

the data of the wavelength status of each optical port. When a control

packet comes, the obsw module reads the control packet to know the

needed resources that the burst asks for, and the obsw module checks the

reservation table if there is contention or not. If there are free wavelength

channels at that burst period, the obsw module reserves it and adds the

current reservation to the table. If the required wavelength channel is

occupied, it rejects the reservation request (original method) or offers the

non-contented time of this wavelength channel (burst segmentation). After

the control packet being processed, the obsw module sends the control

packet to the next node.

 When the obsw module receives an incoming burst packet, it checks the

arriving time and the burst ID of the packet. The obsw module searches the

reservation table for the entry of the burst. If there is no such burst entry, it

means that the burst is not allowed to use the resource to transmit. The

obsw module drops the packet. If the obsw module finds an entry contains

the burst ID but the packet incoming time does not fall on the reservation

period, it means that the packet comes too late or too soon and the resource

may be used by other bursts. Only the burst packet that has the mapped

reservation entry and arrives at accurate time can be transmitted to the next

node. The job when the obsw module receives outgoing packets from the

osw module is the same.

 This paragraph lists the design considerations for obsw module.

I. We need to simulate a special processing for control packets. The

 55

control packet spends more time on OEO processing,

store-and-forward transmitting, and computation in the optical burst

switches. The OEO processing time and store-and-forward features are

handled by the ophy module, and therefore the only factor that the

obsw module has to simulate is the computation time in electronic

domain. The obsw module has a parameter to represent the factor and

has a timer to simulate the computation of each control packet.

II. Because the reservation and burst dropping algorithms are various and

this field is one of the most popular research areas in optical burst

switching networks, we implement several simple methods and reserve

some frames of header and empty functions for the researchers to

develop their own algorithms. For example, we only implement burst

segmentation for dropping algorithms. We implement only random and

first-come-first-serve methods for reservation algorithms. In the future

we can add priority features and some prediction patterns for

supporting QoS or developing flexible and low-drop-rate algorithms.

III. The jobs of RWA in the obsw module are a little different to traditional

all-optical networks. The wavelength channel is assigned dynamically

in the router, and the control packet asks for the same wavelength

channel which is given in the router. This is because the default value

of wavelength conversion is “No” in the obsw module. If the required

wavelength channel is not free, the contention happens and the

late-arriving or low-priority packets are dropped. If the value of

wavelength conversion is “Yes”, the obsw module can assign another

wavelength channel to the burst and the data channel of this burst has

to be changed to the current assignment.

 56

5.6.3. The Work Flow of the Optical Burst Switching

Networks

 At the start of simulation, the obwa module gets the value of control

packet processing time from the obsw module, and this factor can be used

as one of the burst assembling considerations.

 When the obwa module receives an incoming packet from the upper

module, it means that the packet comes from the interface module and

needs to be sent out. The obwa module calls the function “rt_gateway()” to

find the next-hop router interface and it puts the packet into the burst

queue of this route.

 When the burst length is long enough or the burst gathering timer expires,

the bust is formed and it is ready to be sent. The obwa module generates a

control packet of this burst and the obwa module sends it out. The RWA

object here gives the obwa module the destined outgoing port and the hop

count of the light path. By feeding the control packet processing time,

OEO time, and the hop counts, the delay factor can be computed. The

obwa module sends out the burst later for a period of time that the delay

factor represents.

 When the control packet reaches the obsw module in the optical burst

switch, the obsw module reads the information in the control packet and

checks the resources reservation table. If the information matches the

conditions and rules of the reservation, the obsw module schedules the

burst of this control packet into its reservation table. If the required

resources are not available, the control packet will be dropped. The

 57

reservation rules can be user-defined or default.

 After the delay the data burst is sent out from the obwa module. When the

packets of the burst arrive at the obsw module, the obsw module checks

the reservation table and figures out that the packets are allowed to

transmit or not. If the answer is yes, the obsw module passes them to the

osw module to do the switching. Otherwise the obsw module drops them.

 The burst will reaches the destination if all of the reservations are

successful and the burst is not dropped by the optical burst switches.

The picture below shows the optical burst switching networks on the

NCTUns:

Figure 5.14: The example case of optical burst switching network

 58

5.7. The Design and Integration of the GUI for

All-optical Networks
The GUI of the NCTUns is an interface between simulation engine and

users. It helps users building their simulation topology and setting the

parameter values. It also helps users monitoring and controlling the simulation,

and it analyzes and illustrates the performance and behavior data after

simulation. Because we add the all-optical network simulation package, we

have to add some functions of the GUI to support our system.

 We add the 2 new node types of traditional all-optical switch and optical

burst switch to the node tool bar. The color of traditional all-optical switch

is gray and the color of optical burst switch is pink.

 We define new module trees of our all-optical networks. After drawing the

network topology, the GUI will transform the topology to the set of

modules. Therefore we add new module trees for generating the tcl content

for the optical switches and the routers that connect to optical networks.

 We provide the new mdf (module definition file) containing our new

modules. The mdf contains is the file that provides the GUI the details of

module information. We add our new modules to the mdf and the GUI can

identify our new modules.

 We add a new option on the pop-up menu, and we can decide the number

of wavelength channel. Users can decide how many wavelengths the

system has by their own.

 We add protection ring and light path setup utility on the tool bar. After

pressing the light path setup bottom, we choose a router as the head of the

light path, several optical switches as the body of the light path, and a

 59

router as the end of the light path. That is how we set up a light path. Of

course these selected nodes must be connected and the optical switches

must be the same type. After pressing the protection ring setup bottom, we

choose several optical switches to form a protection ring. Of course the

selected optical switches must be connected, the same type, and their

selecting sequences must be circular.

 The animation playback now can display the format of the packet trace file

of the optical networks, and it can render the traffic flow animation of the

optical networks. We also add a useful tool to specify the display of

wavelength channels, and then we can watch the traffic flow on the

specified wavelength channel. If the GUI shows all the traffic flow on all

wavelength channels, the screen will be a mass and the simulation result is

not easy to be identified.

5.8. Modifications of the NCTUns
The most challenge to develop our system on the NCTUns is the syntax

limitation of the tcl file. For providing multi-port and multi-wavelength

channel simulation environment, we can find that the module trees of the

new-added nodes have multi-level branches. However, the old tcl parser does

not support such structure. The old module tree has only one level branch. The

engine itself can support multi-level branches of the module trees in a node,

but the simulation data of our system can not be translated from tcl file to the

engine data structure unless the tcl parser supports it. The old tcl parser can

identify only one level branch and it will ignore other levels of branches. The

tcl file of our system also may cuase parsing error if we use the old tcl parser.

 60

This is because the old tcl parser does not support net-structured syntax like

this:

Module test

Define port 1

 Module test1

 Define port 1

 …

 EndDefine

 …

EndDefine

We modify the tcl parser and several data structures, variables, objects for

supporting multi-branches architecture.

 We enhance the tcl parser, and now it can identify the net declaring of

“Define port”. The parser can parse the tcl file of our system to the

multi-branches data structure of the simulation engine.

 We modify the basic module object named “NslObject”. One of its

constructor parameter is the port number that represents under which port

this module lies. This parameter is now expanded to a “traversing list”. For

example, a switch module of the Ethernet switch has only one level branch,

and the port number of the phy module under branch 4 is 4. If we just use

the old object structure containing only the nearest level of branch as the

port number, some identification of the objects and the relationships

among objects will be confused. So we have to change this parameter of

the object for helping us obtaining the whole traversing list. For example,

 61

if the ophy module is in the port2 of the switch and wavelength channel4

of port2, the port traversing list is (2, 3) and the tcl parser passes these

parameters to construct a module object.

 We change the way of the sorting, searching, and registering of variables.

Variable registry is for inter-module communication in a node. Each

module object is independent, and it has no idea what the other modules do

and what information the other modules have. If we want to share a

variable among many modules, we have to register this variable. For

example, the obwa module wants to know the bandwidth and the

propagation delay of the wavelength channel, but the information is stored

at ophy module. Therefore we register “BW” and “prop_delay” at the ophy

module to share these variables among modules in the node. This is how

the module communicates with other modules in a node. The searching

key of the registered variables in the old engine is port number and

variable name. Because we change the type of port number, we have to

change the way using the port number as a search key. The whole port

traversing list has to be compared.

 Also we have to care about the capability of the old syntax and old module.

A lot of modules use old syntax and structure, and therefore our modified

engine has to support them. The multi-level branches syntax and structure

are the generalized expansion of single branch syntax. Obviously the

syntax is compatible to old module and the port ID is a kind of traversal

list that contains only one member. The only things we have to care about

are the APIs, functions and macros. We have to fix the name and the

parameters to match our new APIs. We check all the modules and

substitute new functions for old functions.

 62

 Besides the new syntax and data structure, the new storage format is

needed. The packet trace file for animation playing and the logging

function of the packet trace file has to be modified for supporting

all-optical networks. In old version of the NCTUns, the packet trace file

format contains only 802.3 the Ethernet and 802.11 the Wireless LAN.

All-optical networks have additional information to present in the packet

trace file. For example, optical networks has multiple wavelength channel

as wireless LAN, but it has the wired LAN features that each channel can

send data in parallel. Optical network has light path configuration packet

for traditional all-optical networks and control packet for optical burst

switching networks. Therefore we add the new defined macro of these

optical packet types, and new field for wave length channel in the packet

trace file. We also modify the PrintPtr program so that it can parse and

print the new format of the packet trace files of optical networks.

 63

6. Performance Evaluation
We will discuss the performance of our system in this chapter. We list several

results and analyze the performance data. We show that our system design is

reasonable and efficient according to the analysis result.

6.1. System Information of Our Experiment

Platform
CPU: Pentium Celeron 2.4GHz

Memory: 512MB DDR RAM with clock rate 400 MHz

OS: Linux, Fedora Core 1 with kernel 2.4.22

The simulation needs only one computer, and therefore the bandwidth of

the network interface card is not in the consideration. The factors that affect

the simulation speed are the CPU clock rate and memory size and clock rate.

We use Linux as our operating system.

The Figure 6.1 represents the topology of our simulation case.

 64

Figure 6.1: The case of performance evaluation

The red icon represents routers, and the gray small box with ‘X’ on it

represents the traditional all-optical switch. The icon which looks like a

computer represents the end host.

There are three TCP connections in the “3 TCP connections” case. They

are connection from node21 to node25, connection from node19 to node24,

and connection from node13 to node23.

There are four TCP connections in the “4 TCP connections” case. They are

connection from node21 to node25, connection from node19 to node24,

connection from node13 to node23, and connection from node12 to node22.

There are five TCP connections in the “5 TCP connections” case. They are

connection from node21 to node25, connection from node19 to node24,

connection from node13 to node23, connection from node12 to node22, and

 65

connection from node9 to node15.

There are six TCP connections in the “6 TCP connections” case. They are

connection from node21 to node25, connection from node19 to node24,

connection from node13 to node23, connection from node12 to node22,

connection from node9 to node15, and connection from node16 to node26.

The factors that changes in our simulation cases are:

 The number of wavelength channel

 The quantity of traffic flow

 The bandwidth of each wavelength channel

 The operation status of packet trace log

 The network type

Because NCTUns is an event-triggered network simulator, more events in

a simulation case needs more system resources and time to complete

simulation. We can predict that the simulation takes more time to finish and it

needs more memory space and CPU cycles if the factors we listed above

become larger. Also we want to do some experiments and we analyze the

growth of time and space that simulation takes. We will prove that the

performance data is reasonable. In this simulation case we use the static RWA

scheme and no wavelength conversion scheme. The packet trace log function

needs a lot of IO time and a lot of CPU cycles, and therefore we only do some

comparison to make sure the additional time needed is in reasonable range.

The virtual tick is set to 10 nano second per tick, and the length of simulation

time is 10 second (virtual time). The bandwidth of each link between host and

 66

router of Ethernet is 100 Mbps, and the data rate of greedy TCP connection

will be about 70 to 80 Mbps.

The tables below shows the experiments result.

6 greedy TCP, channel bandwidth is 1000 Mbps, trace log off, all opt traditional

3 wavelengths 8240K RAM take 245 sec to finish 76.5 Mbps / each

4 wavelengths 8240K RAM take 243 sec to finish 77.0 Mbps /each

5 wavelengths 8241K RAM take 242 sec to finish 73.0 Mbps /each

6 wavelengths 8241K RAM take 247 sec to finish 75.4 Mbps /each

Figure 6.2: The changing factor is wavelength number.

6 greedy TCP, 3 wavelength channels, trace log off, all opt traditional

100 Mbps / wave 8021K RAM take 151 sec to finish 41.7 Mbps / each

200 Mbps / wave 8239K RAM take 249 sec to finish 78.1 Mbps /each

500 Mbps / wave 8240K RAM take 247 sec to finish 77.2 Mbps /each

1000 Mbps /wave 8240K RAM take 242 sec to finish 74.4 Mbps /each

Figure 6.3: The changing factor is the bandwidth of optical wavelength channel.

3 wavelengths, channel bandwidth is 1000 Mbps, trace log off, all opt traditional

3 TCP connection 8020K RAM take 98 sec to finish 74.5 Mbps / each

4 TCP connection 8088K RAM take 143 sec to finish 71.3 Mbps /each

5 TCP connection 8163K RAM take 189 sec to finish 78.0 Mbps /each

6 TCP connection 8240K RAM take 240 sec to finish 76.0 Mbps /each

Figure 6.4: The changing factor is the traffic quantity.

 67

3 wavelengths with 1000Mbps each, all opt traditional, 6 TCP connections

Trace log off 8241K RAM take 241 sec to finish 77.6 Mbps / each

Trace log on 26525K RAM take 671 sec to finish 78.0 Mbps / each

Figure 6.5: The changing factor is the status of packet trace log.

3 wavelengths with 1000Mbps each, all opt traditional, 6 TCP connections, log off

Simulate 10 sec 8239K RAM take 241 sec to finish 77.6 Mbps / each

Simulate 12 sec 8241 K RAM take 289 sec to finish 76.0 Mbps / each

Simulate 14 sec 8240 K RAM take 327 sec to finish 79.9 Mbps / each

Simulate 16 sec 8240 K RAM take 380 sec to finish 76.2 Mbps / each

Figure 6.6: The relationship between the real time needed and the simulated time

6.2. Analysis
From the view point of the NCTUns, the requirement of the memory space

depends on the number of events in the simulation engine. Taking a look at

figure 6.2, the number of wavelength channels does not cost much memory

size. This is because the module object size is not big as the space needed

when the events comes in, and the growth of wavelength channel number has

nothing to do with the growth of event quantity in engine.

Taking a look at figure 6.3, the time needed column in the row “100 Mbps

each wave” is much smaller than those in other rows. This is because the 6

TCP connections are given only about half bandwidth. The events are half and

the needed time is in direct ratio to the event number. The number of events in

the engine in a certain time is not large (it is according to the propagation

 68

delay), and therefore the column of memory space is not so affected as the

column of executing time. The same reason explains the data in the figure 6.4.

The data in figure 6.6 shows that the time needed is linear to the simulation

time. The growth is linear and it is the same as that of other simulation cases

in the NCTUns. The data in figure 6.5 shows that the packet trace log needs a

lot of resources. The packet trace log generates log events and some stack

overhead, and it costs a lot of IO time and CPU cycle. The memory space and

time needed are much less if we turn the packet trace log off.

We have proved that our system design and implementation does not

decrease the original performance of NCTUns in traditional all-optical

networks.

The cases in the optical burst switching networks are similar. The only

difference is the traffic behavior is not the same as that in the traditional

all-optical networks. However it is the problem of functionality, and it is

related to the network behavior. Therefore it is not in the consideration of the

performance evaluation. Besides, the performance analysis result is the same

as that in traditional all-optical networks.

I. The executing time needed is linear to the traffic quantity (average speed *

connections).

II. The time needed is linear to the simulation length

III. The number of wavelengths is independent to the memory space and

executing time.

IV. The system does not affect the original performance result of the other

cases in the NCTUns.

 69

6.3. Scalability Test
Looking at Figure 6.1, we want to test that if the numbers of nodes

becomes large, the performance can be still the same or it is affected heavily.

We add two routers and eight nodes at each optical switch. We add total 40

nodes to expand this simulation case. We find that the simulation time is still

the same (with difference about one to three seconds), and therefore we know

that the number of nodes does not affect the simulation time. The memory

space used by simulation engine is increased to 9000K byte around, and we

can explain that the increased memory space is taken by the added nodes in

this case.

 70

7. Functionality Validation
We will discuss the analysis of the network behaviors of our all-optical system

in this chapter.

7.1. The Validation Analysis of the Ophy Module
We have to prove that the simulation of propagation delay, bandwidth,

store-and-forward scheme, and the circuit and packet switching schemes are

correct. We use the network topology below as our study case.

Figure 7.1: The case of validation of the ophy module

This case tests the validation of the ophy module, and therefore we use a

rather simple case. There is only one wavelength channel in this case, and we

set the bandwidth of the wavelength channel to 20Mbps for each optical link.

The Ethernet links are set to 30Mbps, and we can see that the traffic will be

bound by the optical link. If the traffic between node5 and node6 takes greedy

scheme, the data flow will be bound at optical link and the data rate is about

20Mbps at most. We use this trick to prove that the bandwidth simulation in

the ophy module is valid.

 71

We set the propagation delay of each optical link to 100 micro second, and

we can predict that if the packet size is 1000 byte, the time that transmit from

router3 to router 4 is (8000 / 20M + 3*100) micro seconds. This is because the

non-store-and-forward scheme makes the path “3 1 2 4” like a direct link

from node3 to node4 with propagation delay of 300 micro seconds. The graph

below shows the throughput of one greedy TCP connection between node5

and node6.

10
11
12
13
14
15
16
17
18
19
20

1 2 3 4 5 6 7 8 9 10

Figure 7.2: The simulation result of the ophy module

The X axis represents the time and unit is second. The Y axis represents

the throughput and unit is mega bits per second. The traffic pattern is greedy

UDP connection from node 5 to node 6.

From this graph we can see the throughput is about 18.8 Mbps. The

bandwidth of the optical link is 20 Mbps. The range between these 2 is due to

the overhead of Ethernet frame and IP header. The random back-off

mechanism will gain the delay time of each packet from 1 tick to its 1/10

 72

transmission time and therefore the bandwidth will be wasted about 1/10.

From the data analysis above we prove that the simulating of bandwidth is

correct.

We now take a look at the packet trace file to observe behavior of the

traffic flow. The graphic below is the capture of the packet trace viewer.

Figure 7.3: The capture of the packet trace

Here we introduce the packet trace format quickly. The third field is the

time point that this packet is sent or received, and the 7th field is the source and

destination node of the current hop. From this capture we can find that the

time of the first bit of the packet 113 being sent from node3 is 43007th tick,

and the time of the first bit of the packet 113 being receive by node 4 is

43307th tick. The time that the travel takes from node3 to node4 is 300 ticks

(43307 - 43007). Because one tick is equal to100 nano seconds, 300 ticks is

equal to 30 micro second. The result fits our prediction. Now we take a look at

the last row of this picture. The packet ID 114 was sent from node3 at 47167th

tick, and the packet ID 113 was sent from the same ophy module at 43007th

tick, their range is 4160 which is equal to (1040*8/20)/0.1 (the unit is tick) fits

the transmission time of the packet. The validation of simulating propagation

delay, bandwidth and transmission schemes are all proved

 73

7.2. The Validation Analysis of Protection Ring

Behaviors
In this section we take a mesh ring protection case for an example. The

graphic below shows the topology of our simulation case.

Figure 7.4: The case of validation of the protection mechanism

The ring assignment is that “2 3 6 7” is a ring, “3 4 5 6” is a

ring, “7->6 9 8” is a ring, and “6 5 10 9” is a ring. The link fail will

be at link “4 5” during 3rd to 5th second, and the TCP traffic from node12 to

node13 will take “1 2 3 4 5 10 11” as its light path. When the

simulation starts, the traffic flow on the networks looks like the picture below

during 1st ~3rd second.

 74

Figure 7.5: The normal situation of the traffic flow

When the 3rd second comes and the link “4 5” crashes, nodes senses that

the working path of this ring is broken and it commands the traffic to take

another route. The three pictures below shows the progress of the protection

switching.

Figure 7.6: Step1 when protection activates

 75

Step1. Link 4 5 is broken and the traffic take protection path. We can see the

traffic is switched back to node3

Figure 7.7: Step2 when protection activates

Step2. The traffic follows the protection path to node 6. The direction of

protection path is “3 6 5 4”.

Figure 7.8: Step3 when protection activates

 76

Step3. The data flow comes to node 5, and it finds the next node is node 4.

Because node5 is the final destination of the protection path, we have to find

another virtual ring to continue the journey.

Figure 7.9: Step4 when protection activates

Step4. We find that node 5 joins another ring and one of this ring’s (the ring is

“6 5 10 9 6”) working path (it is link “5 10”) is on the light path from

router 1 to router 11, and therefore node5 switched the traffic to node 10 and

the traffic will take the original light path to the destination.

We find that the virtual ring protection is successful, and the ring

protection is one special case of the mesh virtual ring protection. The

behaviors of the ring protection are the same as we respected, and therefore

this function is valid.

 77

7.3. The Validation Analysis of the Optical Burst

Switching Networks

The special behavior of the optical burst switching networks is burst

contention and the behavior changes with various scheduling schemes and

parameters. The picture below represents the topology of our simulation case.

Figure 7.10: The case of the validation of the OBS

There are two UDP connections, one is from node8 to node11 from 0th to

20th second, and the other is from node10 to node9 from 3rd to 20th second.

The light path assignment is that “5-2-1-3-6” is a light path, and “7-4-3-6” is a

light path. The bandwidth of each optical channel is 10Mbps, and the

propagation delay of each optical link is 1 microsecond. The value of the

parameter in Ethernet links is the same. The burst length is 16000 bytes, and

the burst gathering timeout is 10 micro second. Each optical link has only one

data wavelength channel for data bursts.

At the start of the simulation, the “8-11” UDP connection will get the full

 78

speed to transmit packet, but when the third second comes up, the data flows

of the 2 UDP connections will content at switch3. The burst reservation and

dropping algorithms will affect the traffic distribution. The graph below shows

the detail.

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10

Figure 7.11: The simulation result of the OBS case

The X axis represents the time (seconds) and the Y axis represents the

throughput (Mbps). This result is based on using random drop for contended

part of bursts and burst segmentation. In this case, the line with hollow square

dots represents UDP connection 1 which is from node10 to node9 and the line

with hollow triangle dots represents UDP connection 2 which is from node8 to

node11. In the first two seconds, UDP connection 1 can get full speed, but

after the 3rd second, UDP connection 2 rises and the two UDP connections

start competing the resource at node3. Because the UDP connection 2 takes

the shorter path, its reserving rate is higher and the UPD connection gets more

bandwidth. The random drop algorithm for contending bursts will randomly

select a contended burst to drop, and therefore the competition of the 2 UDP

connections will reach a dynamic balance that they are in the ratio of 1:2

 79

sharing the whole bandwidth. The reason why the UDP2 can have double

bandwidth than the other is that the control packet travel time from node7 to

node3 of UDP 2 is 5 micro second, and the travel time of UDP1 from node

node5 to node3 is 9 micro second. It means that the average reservation rate of

UDP1: UDP2 is about 5: 9, and therefore the bandwidth usage ratio is about 5:

9.

Now let us take a look at the result of dropping without segmentation. The

line with solid square points represents UDP1 without segmentation, and the

line with solid triangle points represents UDP2 without segmentation. We find

that the throughput is very low and there is no special relationship between the

2 UDP connections. This is because the drop is not only drop the contending

part, but also the whole burst. We do not implement any arrangement

mechanism among bursts, and therefore most of bursts crush and the

throughput is very low.

 80

8. Command Console

8.1. Introduction

The NCTUns provides a few interfaces for observing the simulated nodes

at runtime, and most of them are used for watching modules. For example, we

can watch the routing table and look at the current routing entry, or we can

query the current queue length in the packet scheduling module. However, this

is not enough. Sometimes we want to take a look at the whole information of

network interfaces, but NCTUns does not provide such function. We not only

want to schedule the applications on the application list, but also we want to

give several commands or run applications on nodes at runtime. For providing

users a convenient way of operating the simulation nodes, we develop an

interface called command console to do such work.

Command console is a very convenient tool, and it is a shell program that

you can type your commands and execute your applications on the command

console, such as traffic generators, ifconfig program, and ping program. The

picture below is a capture of command console.

8.2. Design Considerations
To design such an interface program, we have some considerations:

 The main goal of developing the command console is providing users an

interface which is operated like a normal computer. The operating methods

must be the same or similar to those of the current devices, and the

 81

interface must look like that of the shell program of the computers.

Therefore we pick the TCSH program as the reference of our system

design. Besides the source code of TCSH program is available and we

need only to modify the program for our specified features.

 The simulation of NCTUns is based on the virtual time, and we know that

the applications running on the simulation nodes need to be given the

virtual clock to make the performance and functionality correct. Therefore,

we need to add the virtual-time-compatible feature to the TCSH program.

When our shell forks a new process, the shell has to register the new

processes by the system call which is provided by the NCTUns for giving

the process virtual time.

 Because NCTUns is a network simulator and it does not use the general

network interfaces, the processes have to tell the operating system that

they run on the NCTUns and please do not treat us as normal applications.

When our command console forks new processes (especially traffic

generators), it has to register the new processes by the system call which is

provided by the NCTUns. After that the operating system will know the

processes are forked by the NCTUns and the packets they generate are put

into the mapped tunnel interfaces.

 The command console has to present the view point of a node. When

entering a node and opening its command console, this command console

is treated as the node. For example, we click the command console bottom

and login node1, the shell program in this command console must be

presented as node1. However, we know that all nodes in simulation are in

the same computer. If we want to tell the differences of these nodes, we

have to complete some modifications:

 82

I. The command console needs to know what node it lies on. When we

open the command console, we have to bring the node ID into the

command console.

II. We have to provide the mapping among virtual network interfaces and

the tunnel interfaces of the operating system. When we run ifconfig on

the original TCSH program, the all tunnel interfaces that the simulation

case uses will be shown. A node has only one tunnel interface as an

end host or several tunnel interfaces as a router. Therefore, we need to

use the system calls that the NCTUns provides to find virtual network

such mapping for command console.

III. We use the ifconfig program watching or configuring interfaces of a

node, or we use tcpdump program listening the network interface or

capturing the packets from certain interface of a node. This

consideration is similar to consideration II. We have to convert the

names of the tunnels to those that are viewed from a node. For example,

a router uses tunnel interfaces tun3, tun4, tun5, and tun6 as its network

interfaces, but we can’t display “tun3”, “tun4”, “tun5”, and “tun6” on

the command console. When we type “ifconfig –a” on the command

console, it should display “fxp1”, “fxp2”, “fxp3” and “fxp4” on

FreeBSD, or “eth1”, “eth2”, “eth3” and “eth4” on Linux. That is the

appropriate display of interface name. Also, we won’t type

“tcpdump –i tun4” (we even barely know what tun4 represents) on the

command console. What we know is that we want to listen on the

second interface of the router, and we will type “tcpdump –i fxp2” on

FreeBSD or “tcpdump –i eth2” on Linux. Therefore, we have to find

the mapping among the virtual interfaces and tunnel interfaces. After

 83

that the command console converts the input and output strings to the

appropriate name.

8.3. Implementation

8.3.1. System Architecture

rlogin shell

Filter process

Figure 8.1: The architecture of the command console

The graph above represents the architecture of the command console. There

are three main parts of the command console. One is the filter process, another

is modified TCSH program, and the other is the cooperation with system and

the GUI of the NCTUns.

Now we explain how these blocks make command console work. Remote

login daemon and rlogin shell are system provided. In this part, what we have

to do is adding some system configuration so that the remote login shell can

automatically fork the filter process when command console executes. We do

not want to input password at each time that command console logins, and

therefore we also add some configurations to the system to ignore the

password. The filter process is forked by the rlogin shell, and this process is

Remote login daemon

Modified TCSH

 84

used mainly for converting and filtering strings to the appropriate content. The

modified TCSH program is the main part of the command console, and we

give the commands and execute them on it. The main works of the modified

TCSH program are the process registry and changing the priority of the

processes.

8.3.2. Design Considerations

 Modified TCHS:

I. At first, we have to know what node this command console is on. We

modify the parameter structure of the program to bring the node

number to the program.

II. Each process forked by the modified TCSH on command console

should be given virtual clock which is generated by the simulation

engine. After the processes being forked, the command console needs

to register the processes to the kernel to tell the operating system that

the processes are running on the simulation engine and based on the

virtual time. Another system-call for registry provides the mapping

among virtual interfaces and tunnel interfaces, and therefore the naming

simulation IP can be identified and converted to SSDD format in the

kernel [1].

There are two forking points for TCSH program. One is in the function

“pfork()” of the file “sh.proc.c” and the other is in the function

“execute()” of the file “sh.sem.c”. We find the forking points and add

system call 261 and system call 262 to register the process.

III. Another problem is the priority consideration. The events of simulation

 85

have to be processed as quickly as possible, or we will face the problem

of the dead traffic generator. Therefore, the simulation engine has to get

higher priority than normal processes for the correct simulation results.

Besides, all the simulation related processes need higher priority than

the simulation engine. If we don’t give these processes a higher priority,

we will face problem of getting an incorrect round-trip time. For

example, the ping program will get a wrong round-trip time because the

ping program can not return the ICPM packets back immediately due to

the lower priority. The RTT time will become too big. The picture

below is the illustration of the problem. We have to know that all the

processes, including normal processes, simulation engine, command

console, and simulation related processes are in the same operating

system, and they need to be scheduled to run.

Figure 8.2: The illustration of the delayed response

Ping query Ping should reply

Ping reply

 86

IV. From this picture, we can see that the blue blocks are the scheduled

time slots for simulation engine execution, and green blocks are the

time slots for ping program. We know that the simulation network runs

on one computer, and the ping program won’t reply the ICMP messages

until it gets its execution time. In this case the ping program is

considered to reply at the time that the white block points, but the

simulation engine is still on execution. Therefore, the ping program will

be delayed and the returned RTT is wrong.

In Linux, we give these simulation related processes real-time process

priority, and the operating system will use round-robin algorithm to

schedule these processes. This problem is now solved.

 Filtering Process:

The graph below illustrates the interactivity between filtering process and

modified TCSH.

Figure 8.3: The architecture of the filtering process

Filter process TCSH

Master Slave

STDIN STDOUT

I. We use the psudo terminal library to build a stream pipe between the

 87

filtering process and the modified TCHS, and we can intercept and

filter the input characters from STDIN and output strings from

STDOUT.

II. Taking a look at the graph above, the doted line represents as the

output of the process forked by the modified TCSH, and the physical

line is the input from STDIN.

When we key in a alphabet from the keyboard, the STDIN gets a

character and goes to the filter process though the master terminal. The

way that the input character goes from filtering process to modified

TCSH is “the master terminal the slave terminal modified

TCSH”, and the character follows the same way back to filtering

process. After that the iput character will be sent to STDOUT through

the master terminal.

III. The output string will be caught by the filtering process, and the

filtering process will convert the string to the appropriate one. For

example, when we use ifconfig, we type “ifconfig -a”. The output of

the program will be the whole activating tunnel interfaces. This output

is wrong, and therefore we have to discard the strings of the real

network interfaces of the computer and the tunnel interfaces which are

not used as interfaces of this node. At last the filtering process changes

the name of those tunnel interfaces to virtual network interfaces, such

as “eth4” or “fxp4”, for example. The sequence of tunnel interfaces is

converted to the sequence of the node’s network interfaces.

IV. The input will be caught by the filtering process, and the filtering

process will convert the information to the appropriate information.

For example, we want that users can operate the simulated nodes as

 88

normal computers. If the user want to use tcpdump to catch the packets,

they will type “tcpdump –i eth(number)” (in Linux). However, we

know that the virtual network interfaces are all named “tun(number)”

in the kernel. We have to convert the string “eth” to “tun”, and the

sequence number of node’s interfaces to the real tunnel interface

number. After such processing the system can identify the names and

provide the information of the tunnel interfaces.

8.3.3. Details of The Program “script”

The program “script” is the main body of the filtering process.

8.3.3.1. Functions of the Program

I. Int convert_fxp_tun(): This function converts the virtual interface

port number to the tunnel interface port number. The filter process

has a table containing the mapping of the virtual port numbers and

tunnel interface numbers. This function gets its job done by

checking this table.

II. Int convert_tun_fxp(): This function converts the tunnel interface

port number to the virtual interface port number. It is the inverse

function to “convert_fxp_tun()”.

III. Void Inttostr(): This function converts the integer to string of

decimal digits.

IV. Void getcommand(): The work of this function is gathering the

typed-in characters from STDIN.

 The filter process has a variable named “mode”. When we push

 89

the “Enter” key on the keyboard, the variable “mode” will

change to “1” to represent that the command input is finished.

After receiving the “Return” character, the function sends the

command to the filtering process.

 The filter process has a variable named “command_type”,

which is used to record type of the input command. After

variable “mode” changes to 1, the command string will be

parsed to see what type it is. If the string contains “ifconfig”,

the fi.ter process marks the variable “command_type” to 1. It

means that the command is “ifconfig”. The value “2” of

“command_type” represents that the command is “tcpdump”,

and the value “0” means the command the other types.

 When receiving a character, this function checks the input

character. If it is a control character, the function ignores it and

continues the gathering work. Of course, control character

should not be added to the command string. Besides, the special

control pattern which represents some special key on the key

board such as “Esc”, “ ”, and “ ” must be blocked.

 The graph below illustrates the work flow of the

“getcommand()” function.

 90

Figure 8.4: The work flow of the filtering process

8.3.3.2. The Main Program Activities of Filter Process

I. At first, the filter process uses system calls to get the mapping

among the virtual interface port and tunnel interface port. The filter

process uses this information to create a mapping table.

II. In the main program body, we use the function “select()” to poll

between STDIN and STDOUT. If there is input or output appearing

on the STDIN and STDOUT, the program grabs them and handles

the conversion and filtering.

III. In polling STDIN, if the program intercepts some characters from

the keyboard, it uses the “getcommand()” function to gather the

input string and handles the string conversion. For example, if we

type “ifconfig eth1”, the program has to convert this string to

“ifconfig tun3” (we assume that the virtual-tunnel port mapping is

1 3) and sends the string to the TCSH. If we type “tcpdump –i

eth1”, the program has to convert the string to “tcpdump –i tun3”

and tells the simulation engine to open the tcpdump module flag.

Get a character

Is it ASCII 13?

Identify character Normal??

No Yes

No
Yes

Identify the command type

No Add
character
to string

Special process
for control
character

 91

IV. How and when does the program convert the input command? The

answer is that when we type the “enter” key, the “getcommand()”

function will pack the input string and identify what command it is,

and it calls the “convert_fxp_tun()” function to convert the string.

V. In polling STDOUT, the program has to discard the information

which is not needed and converts the filtered information to the

node’s point of view. For example, when we type “ifconfig -a” in

the normal shell, the shell will list all the network interfaces of the

computer. However, in the simulation environment, what we need

are only the virtual interface data of a node. We want the program

to list only the interfaces of the node, and discard the rest strings.

For example, node1 has three ports and the three interfaces are

called “eth1”, “eth2”, and “eth3”. In the operating system they are

presented as “tun5”, “tun6”, and “tun7”. The program needs to

wipe the fxp0, lo, tun0~4, and tun8~tun4095 and converts the

strings “tun5”, “tun6”, and “tun7” to “eth1”, “eth2”, and “eth3”.

8.3.4. Combining with NCTUns and Operating System

 When we want to execute the command console, the GUI has to send

the node number and user name to the coordinator. The command

console then logins the computer with the user account and node ID.

 This paragraph discusses the configuration of the environment.

I. When we start the command console, the command console

obtains the IP of the computer, node number, and user name, and

it calls a program to configure the remote login environment.

 92

II. The environment setup program “tsetenv” will create a file called

“NCTUNS_SETENV”, and the file contains the information of

configuring the environment. The information includes the

environment variables and the calling of filter process. The file

“.bashrc” (or “.tcshrc” for TCSH) will be added a line to execute

the batch file “NCTUNS_SETENV”.

III. For supporting starting command console without entering

password, we need to add a file “.rhosts” in the home directory of

that user with a line “(GUI IP) (username)”. After that the remote

login from the GUI by this username will no longer need

password. However, in Linux, we have some extra work to do for

supporting such feature. We have to add “rlogin” this service to

the configuration file “/etc/securetty”, and then the authentication

will be passed from operation system to rlogin daemon.

 93

9. Scalability and Further Work

Because our system is based on the NCTUns, the growth of the system load in

our simulation case is the same as that of other cases in the NCTUns. The length

of the simulation time depends on the number of the events. If the traffic load is

large, the NCTUns needs much time to finish the simulation. The NCTUns uses

the kernel of the operating system to simulate the TCP/IP protocols, and therefore

the simulation result is accurate. However, the simulation is costly. If there are

more than 100 TCP connections with average bandwidth 20Mbps or higher, the

computer needs a lot of time to finish the simulation. How do we simulate the

internet with thousand nodes and connections? The solution is that the user can

develop their own traffic modeling program and traffic generator to simulate

hundred or more traffic flows.

So far we implement the optical burst switching network system and the

traditional all-optical network system. We provide several empty program

functions for users to specify their algorithms for burst scheduling, burst

assembling method and contention drop choice in optical burst switching

networks. We also provide the same things for users to specify their ring

management methods, RWA algorithms and the protection mechanisms in

traditional all-optical networks. Also we can add the QoS module which the

NCTUns provides in our simulated nodes, or we can modify our modules to

support the QoS in the all-optical networks. You can draw an extra-large network

with all-optical networks in the backbone to simulate an internet operating in the

real world.

 94

We can develop more new subsystems or functions. We only use JET method

(Just-Enough-Time) in the optical burst switching networks, and we can develop

Tell-and-Go method as our control packet sending method. For the simulation of

fiber delay line and optical packet switching networks, the current method is

changing the queue length in the optical FIFO module to non-zero and activating

the store-and-forward function. However, the most accurate way is setting a timer

for each simulated fiber delay line and stretching the propagation delay of the

buffered packets longer. Using only a queue to simulate optical packet switching

networks is rough, and therefore we can work on developing the accurate scheme

of simulating fiber delay line.

 95

10. Conclusion

Nowadays the scale of internet grows very fast, and therefore the bandwidth of

backbone networks and the processing speed of network devices need to power up

to handle such huge traffic flows. All-optical devices are the most suitable

equipments and the all-optical networks are one of the most popular computer

network research areas. Therefore, the tools which help researchers to research

all-optical networks become more and more important.

Simulation is a way of analyzing and gathering the research data. It is more

convenient than experiments with the real hardware and more accurate than the

mathematical modeling. We use a famous simulator, NCTUns, to develop our

system. Because the NCTUns uses real-simulation method, we can get more

accurate simulation result. It uses C++ as its developing language, and therefore

we save a lot of time and we can focus on our system design and implementation.

We design the system of all-optical networks, including circuit switching

scheme, protection ring mechanism, optical burst switching networks, RWA

algorithm, and several tools. Also we develop a command console program for

monitoring the traffic and controlling the device dynamically.

The performance is reasonable and acceptable. The resources requirement of

our system is not exceed that of the NCTUns, and the growth of the requirement

depends on the traffic flow. It is the same as the NCTUns. Also we analyze our

system. The data of our simulation result is explainable, and the performance and

 96

the behaviors of the networks fit system design and the network architecture.

Our system can cooperate with other systems. We can combine other modules

or other nodes to simulate merged networks. We also provide some function

points so that users can develop their own algorithms or protocols. We hope that

our work can help saving the experiment and data analyzing time of the research

in all-optical networks, and researchers can focus on their design and

implementation.

References:
[1]. S.Y. Wang, C.L. Chou, C.H. Huang, C.C. Hwang, Z.M. Yang, C.C. Chiou, and

C.C. Lin, “The Design and Implementation of the NCTUns 1.0 Network
Simulator”, Computer Networks, Vol. 42, Issue 2, June 2003, pp. 175-197. (EI)

[2]. Rajiv Ramaswami, Kumar N. Sivarajan, San Francisco, “Optical networks: a

practical perspective.” Morgan Kaufmann Publishers, c1998

[3]. Guido Maier, Achille Pattavina, Simone De Patre, Mario Martinelli, “Optical
Network Survivability: Protection Techniques in WDM Layer”, Photonic
Network Communications, 4:3/4, 251-269, 2002.

[4]. C. Qiao and M. Yoo, "Optical Burst Switching - A New Paradigm for an
Optical Internet", Journal of High Speed Networks, Special Issue on Optical
Networks, Vol. 8, No. 1, pp.69-84, 1999

[5]. M. Yoo and C. Qiao, "Just-Enough-Time (JET): A High Speed Protocol for

Bursty Traffic in Optical Networks", IEEE/LEOS Conf. on Technologies for a
Global Information Infrastructure, pp. 26-27, Aug. 1997

 97

[6]. Vinod Vokkarane, Jason Jue, Sriranjani Sitaraman, "Burst Segmentation: an
Approach for Reducing Packet Loss in Optical Burst Switched Networks",
Proceedings IEEE, International Conference on Conference (ICC) 2002, New
York, NY, April-May 2002.

[7]. Bo Wen, Nilesh M. Bhide, Ramakrishna K. Shenai, and Krishna M. Sivalingam,

“Optical Wavelength Division Multiplexing (WDM) Network Simulator
(OWns): Architecture and Performance Studies”, School of Electrical Engineering
& Computer Science Washington State University, Pullman, WA 99164.

[8]. Lisong Xu, Harry G. Perros, George N. Rouskas, "A Simulation Study of Access
Protocols for Optical Burst-Switched Ring Networks", Proceedings of
Networking 2002, May 19-24, 2002, Pisa, Italy.

[9]. Alexios Louridas, Kalliopi Panagiotidou and Nathan J. Gomes, “Simulation of

Optical Burst Switching Protocol and Physical Layers”, London
Communications Symposium 2002, 2002

[10]. Web Site http://www.opnet.com/products/wdmguru/roi.html Guru: Simulation

of WDM environment of optical networks on OPNET

 98

