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摘要 

 

本篇論文的主要重點,是呈現在交大網路模擬器上設計和實作全光網路的

模擬環境.在本篇論文中,我們提供了兩種全光網路的環境:傳統全光網路

(traditional optical networks)和光突發交換網路(optical burst switching 

networks). 傳統全光網路是使用迴線交換機制(circuit switching),而且在傳送

資料前必需設定好光路徑(light path).光突發交換網路的資料流是突發性的,它

兼顧迴線交換機制和封包交換機制(packet switching)的特色和優點,是全光網

的一大研究領域. 

由於目前對全光網路的研究日趨熱門,一個輔助研究的工具是必須的.模擬

是具有便利性,精準度和彈性的最佳折衷辦法.數學推導方便但不具有實際應

用的考量,而真實機器的實驗亦太過耗費人力金錢,而且不具備彈性.因此,我們

發展這個模擬的模組,就是希望能夠題供研究者一個完整且便利的研究工具,

使他們能節省時間致力於研發和設計之上.  
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Abstract 
 

This paper presents the development of the all-optical network simulation on 

the NCTUns (NCTU network simulator). In this paper, we provide two simulation 

environments for all-optical networks. One is traditional all-optical network, and 

the other is optical burst switching network. The traditional all-optical network is 

a kind of all-optical networks which is circuit switching and needs to assign light 

paths before transmitting data. The traffic flow of the optical burst switching 

networks is bursty, and the users need to reserve a wavelength of the light path 

temporarily for transmitting bursts. Because the current simulation tools or 

packages simulate the DWDM environment, traditional all-optical networks or 

optical burst switching networks respectively, we want to provide a simulation 

package which integrates these subsystems. By using our system, researchers can 

simulate the behaviors of the optical internet or observe the performance of the 

merged all-optical networks. 

 

For traditional all-optical networks, we provide static and dynamic RWA 

(Route and Wavelength Assignment) schemes so that the users can develop their 

RWA methods or configure the light paths in their simulation cases. We also 

provide the virtual ring protection mechanism for optical network survivability. 

For optical burst switching networks, we provide the basic simulation 

environment and several published methods and algorithms for burst reservation 

and contention drop. Finally, we will show that our design and implementation are 

reasonable and correct. 
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Besides that, we also provide a useful interface called command console for 

controlling the devices of the simulated networks. With this interface, the users 

can operate and monitor the nodes in the simulated network during simulation.  

 

In this paper, we will present the design and implementation of traditional 

all-optical networks, optical burst switching networks, and command console. We 

also do the performance evaluation and the function validation of our system. 
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1. Introduction 
 

Simulation is an important way of researching and developing new 

architectures or protocols. It is much closer to the real scenario than mathematical 

modeling and costs much less than real hardware experiments. In fact, we do not 

have the required hardware and equipments to do real experiment for non-existing 

paradigms or architectures. In this case, simulation is the best choice to conduct 

new researches and designs. 

 

Because the growth of the scale and bandwidth requirement of the internet is 

very high, the next generation equipments have to process data much faster and 

transmit much more data than before. Besides, as more and more nodes join the 

internet, it means that extremely high performance of routing and switching 

abilities must be provided for the backbone network devices. 

 

At present, the network backbone equipments are normally ATM switches and 

Fast Ethernet routers. Optical transponder and optical fiber carry the optical signal 

and need OEO (Optical-Electronic-Optical) processing to convert the optical 

analog signal to digital data, and then the hardware can do computation to the 

converted packets such as routing, switching, and QoS. Considering to the data 

rate of the optical fiber and the transmission time of data on optical fiber, the OEO 

processing time and packet processing time in the electronic domain 

(segmentation, route computation, buffering, scheduling …etc) are the critical 

bottleneck of the performance of the routers and switches with optical fibers. This 

is because the electronic signal speed and silicon chip frequency can not match the 
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light speed. If we want to take the full utilization of the data rate and bandwidth of 

the optical products with current optical technologies, we have to reduce or 

eliminate the electronic part as much as possible to reduce the loss of the 

mismatch of data rate. Therefore, the next generation (or at current time) 

backbone devices are all optical devices. For example, all-optical switches have 

only mirrors to directly reflect the incoming light signal to the destined outgoing 

port, and they do not need to do OEO processing. These switches base on circuit 

switching paradigm. The network of this architecture saves the OEO time and the 

store-and-forward time, and we call it “Traditional All Optical network”. This 

paradigm has some feature such as circuit switching, RWA problem (Routing and 

Wavelength Assignment), and protection to gain survivability. 

 

And the next competition is: why don’t we use packet switching? The packet 

switching architecture has a lot of benefits: 1. Connectionless. It needs less 

management and control at setup. 2. Better utilization of the whole network 

bandwidth. The main disadvantage of the circuit switching is the low utilization of 

the circuit in each connection, and the traditional all optical networks have the 

same disadvantage. Why don’t we use packet switching on the all optical 

networks? This is because the packet switching devices need buffer to store 

packets, and lacks of buffer will cause a very serious packet drop problem. The 

current technologies of optical buffer are not very suitable for real application. 

Therefore, another new paradigm comes out and merges the advantages of circuit 

switching and packet switching. It is called optical burst switching. It uses control 

packet to do a-period-of-time reservation of a switch port for transmitting 

incoming bursts [4]. 
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The purpose of this paper is building the simulation environment for 

traditional all-optical networks and optical burst switching networks in the 

NCTUns. Chapter 3 describes the related work of simulation for all-optical 

networks, and the design issues for our cases and environments. Chapter 4 is an 

introduction to the NCTUns (NCTU network simulator), which is used as the 

platform to develop our systems. 

 

Chapter 5 contains the architecture overview of our system, added modules, 

added nodes, and modifications of our system. Chapter 6 tells the detailed 

implementation of our system, including the design consideration, packet format, 

functions of modules, and cooperation among modules. Besides, the modifications 

of the GUI and simulation engine will be shown. 

 

Chapter 7 is the performance evaluation. We change the scale of our 

simulation cases to gain or loose the system load, and we collect the data of 

performance variation. After that, we analyze the data and prove that the system 

design is reasonable and acceptable. Chapter 8 is the functionality validation. In 

chapter 8 we survey papers and analyze our system behaviors, and we prove that 

the behaviors of our simulation system are correct and they match those of 

all-optical networks operating in the real world. 

 

Chapter 9 is the design and implementation of command console, which is a 

useful tool for providing an interface between simulation world and users. 

Through this interface users can give commands to the simulated devices at 

runtime. Chapter 10 is about how we can expand our simulation system and the 

future work. 
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2.Related Work and Design Issues 
 
2.1. Related Work 

Optical Wavelength Division Multiplexing (WDM) Network Simulator [7], 

which is built on the ns2, is a simulation environment for WDM (Wavelength 

Divided Multiplexing) networks. It simulates the WDM environments and 

behaviors such as RWA and light path setup. 

 

“A Simulation Study of Access Protocols for Optical Burst-Switched Ring 

Networks” [8] presents the case study of the protocols of optical burst 

switching networks. It implements several protocols of optical burst switching 

networks on WDM metro ring architecture. 

 

“Simulation of Optical Burst Switching Protocol and Physical Layers” [9] 

presents a simulation environment for optical burst switching network on the 

OPNET network simulator. 

 

WDMGuru of OPNET [10] provides a simulation environment for WDM 

environment and traditional all-optical networks. It also provides SONET 

standard in all-optical network simulation. 
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2.2. Our Design Issues 
I. NCTUns is a simulator which simulates mainly OSI layer-2 and layer-3 

protocols such as routing and switching. About simulating OSI layer-1 (the 

physical layer), we just simulate the bit error rate, bandwidth and 

propagation delay. We do not simulate signal strength, power variation, or 

other optical physical effects. Also, because we treat the layer-1 devices as 

optical fibers, we do not simulate amplifier, repeater, coupler and other 

layer-1 devices. 

II. At present, there is no integrated package that provides simulation 

environments for all-optical networks. They focus only on some aspects or 

layers. In [7, 10], the systems simulate only DWDM environment and 

traditional all-optical networks. In [8, 9], they simulate only optical burst 

switching networks. However, we want to build an environment as real as 

the wide area networks operating in the real world including end-user 

hosts, border gateways, and switches for backbone networks. Therefore, 

we have to provide optical nodes such as switches and routers for both 

traditional all-optical networks and optical burst switching networks. 

III. For DWDM environments, we have to divide optical fibers into several 

wavelength channels. From the view point of the design, we do not treat it 

as “a fiber between 2 nodes with many channels”, but “many links 

between 2 nodes”. This is natural, because: 1. we need to transmit traffic 

on many channels concurrently at the same time. If we use the first 

concept to design our system, the traffic will never be transmitted 

concurrently. It violates the event scheduling methods of the NCTUns. 

Therefore, we have to simulate the DWDM environment by using the 
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second concept. 2. Each channel may have different bit error rates or 

bandwidths. The transponder of a wavelength channel may use different 

modulation from the modulations of other channels. It is trivial that we 

view one channel as a link object. It benefits modularity and system design. 

Because the NCTUns does not support more than one dedicate links 

between 2 adjacent nodes, we have to modify it to support such feature. 

We will discuss this work at 6.8. 

IV. Protection for optical network survivability is rarely implemented in 

simulation domain. This is an interesting feature that affects performance, 

error rate, and loss rate of the all-optical network. Because most all-optical 

environments have such feature, we add this module to our design map. 

V. For traditional all-optical networks, we have to focus on management 

considerations. For example, light path setup and protection ring setup are 

the main considerations. These are the main research areas of the 

traditional all-optical networks. We provide optimized shortest-path 

algorithm for static RWA scheme (it will be auto-generated when you 

finish setting up your simulation topology), manual protection ring setup, 

and dynamic RWA scheme of light path configuration. 

VI. Optical burst switching network [4] is one of the most popular research 

area in all optical networks. We simulate some basic, published popular 

methods, such as segmentation [6] and JET (Just-Enough-Time) [5]. We 

also simulate tunable parameters such as burst length, delay factor, and 

packet processing time. 

All design and implementation details are presented in chapter 5 and chapter 6. 
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3.About NCTUns 
 

NCTUns (NCTU network simulator) is a network simulator developed by 

Network and System Laboratory, CSIE, NCTU. The differences among NCTUns 

and other traditional network simulators such as ns2 and OPNET are the “real” 

simulation methodology and module based structure [1]. Because the simulation 

environment is “real”, NCTUns supports normal applications. Ns2 and OPNET 

use a mathematical modeling program or the specified traffic generator which 

generates traffic flow by mathematical computation to simulate the traffic flow. 

We can run the general network applications such as ftp and some TCP/UDP 

traffic generator programs to generate traffic flow on the NCTUns. It means that 

you can use “ping” or “traceroute” program to manage or watch the simulated 

networks, or you can run a server and a client program to send or receive packets. 

The other network simulators do not have this feature. 

 

The other scope of the “real” thing is the methodology of simulating the traffic 

in the simulation networks. The NCTUns uses OSI layer-3 and layer-4 protocol 

stacks of the operating system to simulate the TCP/IP protocol. In the real network 

communications, the packet is generated by the socket, and the socket puts the 

packet into the kernel. Then the packet is processed by the TCP/IP stack, and the 

kernel puts the packet into the driver of the network interface card. At last the 

driver pushes the packet into the network. What NCTUns does to a packet is 

almost the same way, but the differences are: 1. all of the simulated hosts, routers, 

and layer-3 devices use the same kernel TCP/IP stacks. This is because they are on 

the same computer. 2. The behaviors of layer-2 and layer-1 protocols are 
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simulated by the simulation engines and related modules. When the packets of 

simulation networks enter a special network interface called “tunnel”, the tunnel 

interface will grab the packets up to the simulation engine. The picture below 

shows the work flow that a packet travels through simulated networks. 

 

 
Figure 3: The illustration of simulating the traffic in the NCTUns  

 

From the picture above, we can see that the kernel simulates layer-3 protocols 

of the hosts and routers, and the simulation engine simulates the protocols of 

layer-1 and layer-2. The developers of the NCTUns implement the layer-2 and 

layer-1 modules for simulating the behaviors of the network interface cards and 

the physical lines (or radio wave in the air). The “real” feature definitely makes 

the NCTUns an extremely accurate simulator, and therefore we choose it as our 

development platform. The other reasons that we choose this simulator as our 

development platform are: 1. the NCTUns uses module based architecture, and 2. 

NCTUns uses C++ as the development language. The existing modules save our 

time of developing the other types of networks and some basic network functions. 

We are familiar to the development language, C++, and therefore we can learn 

how to use the API quickly. This feature saves our time of studying, and therefore 
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we can focus on the system design and case analysis. Because all these features 

make the NCTUns the best platform for developing our system, we choose it as 

the simulation platform. 
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4. High Level System Architecture 
 
4.1. System Design 

The picture below represents the high level architecture of our system 

 

All-optical 
Networks 

 OBS structure 

 

Figure 4: The graph of system architecture 

 

 The whole system is divided into 2 subsystems, one is traditional 

all-optical networks, and the other is optical burst switching networks. 
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 The traditional all-optical networks is all-optical. It is based on WDM 

environment, without OEO signal transformation or the 

store-and-forward schemes. 

 The optical burst switching networks is the new paradigm for optical 

internet. The traffic of optical burst switching network is bursty and 

connectionless [4]. 

 In traditional all-optical networks, we configure circuit for data 

transferring. The circuit is called light path. It contains the connectivity 

of nodes and assignment of the wavelength channels. The way to build 

a light path is static (at the beginning of the simulation) or dynamic (at 

the incoming of traffic). Because building light paths have something 

to do with routing, we call it RWA (Routing and Wavelength 

Assignment). 

 In optical burst switching networks, we concern about the burst 

contention and the drop rate. How and when we build the light path is 

not important, and dynamic RWA method may cause the incorrect 

transmission of the bursts and control packets. Therefore we use static 

RWA scheme. 

 We can choose the way of assembling bursts, the way of dropping 

contended bursts, the way of reserving the control packets, and the way 

of scheduling the incoming bursts. 

 Besides the transmitting and multiplexing functions, our system 

provides optical protection mechanism for traditional all-optical 

network survivability. The protection mechanism we provide are 

SONET protection rings for ring protection and virtual rings for mesh 

protection [2, 3]. 
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4.2. New Added Modules in the NCTUns 

 

4.2.1.Optical Physical Module (named “ophy”) 

I. The ophy module simulates optical fibers. It simulates the propagation 

delay, the bit error rate, and the bandwidth. It also provides the function 

that you can set the optical fiber failed during a certain period of time. 

II. The ophy module provides packet trace log. It also provides 

accumulation data log such as drop rates, collision rate, and throughput. 

III. This module is used for any type of our all-optical networks. 

 

4.2.2.Optical Port Module (named “op”) 

I. The op module reads the optical header of a packet and it sends the 

packet to the destined wavelength channel. From the view point of the 

NCTUns, the op module decides which ophy module the packets should 

go to. 

II. When it receives a LPC (light path configuration) packet, it records the 

coming-in wavelength number and the going-out wavelength number, 

and it adds the information on the LPC packets. 

III. This module is used for any type of our all-optical networks. 

 

4.2.3.Management Module (named “opmanage”) 

I. This module is the main body of optical network protection and 

survivability. 

II. The main functions of this module are constructing the protection ring 
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and maintaining the survivability of the optical networks. The module 

will re-switch the traffic to the protection paths if the working paths are 

broken. 

III. The opmanage module has a table of protection rings. This table contains 

the mapping information of working path and protection path. In general 

cases, working path is the default way to transmit traffic. The protection 

path is the backup path when the working path is failed [2, 3]. 

IV. When the working path is normal, the opmanage module acts as a 

port-layer multiplexing module. The work of this module is deciding 

which port the packets should go to. 

V. When the opmanage module detects a working-fiber failure, the module 

will switch the traffic to the protection fiber. 

VI. The module is used for our all-optical network systems, but the 

protection feature is available only in traditional all-optical network. In 

optical burst switching networks, it is only a module deciding which port 

the packets should go to. 

 

4.2.4. Wavelength Assignment Modules (the one is  

named “wa” at switches, and the other is named 

“rwa” at routers) 

I. The two modules handle the routing and wavelength assignment 

configurations. The rwa module is in the router, and the wa module is in 

the switch. They are used only in the traditional all-optical networks. 

II. The rwa module generates the optical header. The modules below the 

rwa module will transmit the packets to the destined port and destined 
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wavelength channel according to the information of optical header. 

III. The wa module stores the light path configurations, and it helps the osw 

module to build its switching table. For example, if there is a light path 

“1-2-3-6-7, wave 1”, the wa module in node6 will remember “I will send 

the packets to port 7, wavelength 1, if the packets come from port 3, 

wavelength 1.”, and it updates the switching table in the osw module. 

IV. We will discuss the cooperation of the 2 modules with dynamic RWA 

scheme and static RWA scheme at Chapter 5. 

 

4.2.5. Optical Switching Module (named “osw”) 

I. It is the switching management module. The function of this module is 

switching the incoming packets to the right light path according to the 

switching table. 

II. The osw module creates and maintains a switching table. The format of 

this table is: [in-port][in-wave]-[out-port][out-wave]. 

III. The wa module will tell the osw module the switching information. This 

is the only way that the osw module obtains the switching information. 

The wa module creates switching information, and the osw module 

stores the information and executes the traffic switching. 

IV. It is used by all of our all-optical network system. 

 

4.2.6. Optical Burst Switching Module (named 

“obsw”) 

I. This module is for optical burst switching networks only. 

II. The main function of this module is the bursts reservation and contended 
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bursts dropping. 

III. It has a reservation table storing and managing the incoming control 

packets and bursts. 

IV. When control packet comes, this module decides to reserve the light path 

for the burst or not. If the burst reservation is permitted, the obsw 

module stores the control packet to the reservation table. When the data 

bursts come, the obsw module decide to let the bursts pass or drop them 

according to the reservation table. 

 

4.2.7. Optical Burst Wavelength Assignment Module 

(named “obwa”) 

I. This module is only for the optical burst switching networks. 

II. The module is responsible for generating control packets and 

aggregating data bursts. 

III. When the data packets come, the obwa module queues them in the burst 

queue. When the burst length reaches the burst length limit or the 

queuing timer is expired, the obwa module generates a control packet 

and sends it to the next-hop switch for configuring the burst reservation. 

After sending the control packet, the obwa module sends the data bursts 

out. 

IV. Of course, the obwa module always uses static RWA scheme to 

determine which port and which wavelength channel the packets should 

go to. 
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4.3. The Work Flow of Our System 

 

4.3.1. Traditional All-optical Networks 

I. At the beginning, users have to set the configuration details of routers 

and switches such as wavelength conversion, RWA scheme, and 

protection ring assignment. 

II. When the packets come to the border router of the optical networks from 

other sub-networks, the rwa module checks the packets’ destination. 

Then the rwa module decides which light path the packets should go to 

according to the next-hop router IP. 

III. The optical header (it is equal to the MAC header in Ethernet.) will be 

created, and the rwa module will attach optical header to the front of the 

packets. After this attaching process, the packets will be sent to the 

opmanage module. 

IV. The opmanage module sends the packets to the destined op module. 

V. When the packets go down to the op module, the module will send the 

packets to the destined wavelength channel according to the optical 

header. 

VI. When the packets arrive at the ophy module, the ophy module simulates 

the bit error, transmission time, and propagation delay. Then the ophy 

module sends the packets to the next node. 

VII. When the packets reach the switch, it will be received by the ophy 

module, and the ophy module sends the packets up to the osw module. 

The osw module will determine which port and which wavelength 

channel the packets should go to. The osw module sends those packets 
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down to the lower modules from wa module to ophy module, and the 

packets go to the next node. 

VIII. The step III to step VII will continue until the packets arrive at the 

destination router port. The packets will be received by the interface 

module and written into kernel when they reach the destination router. 

 

4.3.2. Optical Burst Switching Networks 

I. At the beginning, the users set the setting details of routers and switches 

such as wavelength conversion, burst length, and reservation scheme. 

II. When the packets come to the obwa module from another subnet, the 

module will assemble them to create a burst. If the timer of burst 

gathering is expired or the burst queue is full, the obwa module generates 

a control packet and sends it to the next-hop switch. After sending the 

control packet, the data burst is sent. 

III. What the op module, ophy module, opmanage module and the osw 

module do to the packets in optical burst switching networks is the same 

as those modules do in the traditional all-optical networks. 

IV. When the obsw module gets a control packet, it will check the 

reservation scheme and the reservation table to decide to offer the 

bandwidth resources for burst transmission or not. 

V. The control packet travels through switches to do burst reservation for its 

own burst. The travel of control packets ends up at the destination router. 

VI. When the data burst (packets) comes to the obsw module, the module 

sends the burst to the osw module or drops it according to the reservation 

table and the contention drop scheme. 
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VII. The burst data will reach the destination router if the destined path is 

all reserved by its control packet. The burst will be dropped in the 

middle of the burst transferring if reservation is denied by the obsw 

module in any one of the optical burst switches. 

 

4.3.3. The Scheme of Protection Ring 

I. The users have to assign protection rings and set some parameters 

manually before the simulation starts. The protection mechanism will not 

work without these works. 

II. At normal time, the traffic goes on the working path. 

III. When the working path is broken, the opmanage module senses it from 

the link failure signal triggered by ophy module. The opmanage module 

automatically switches the traffic to the protection port when it knows 

that the working path is failed. 

IV. When the packets go to the opmanage module, the opmanage module 

checks whether the packets come from working path or protection path. 

If they come from working path, the module sends the packets to the 

working path. If they come from protection path or they come from 

working path but the working port of this switch is broken, the module 

sends the packets to protection path. 

V. The protection ring mechanism is available only in traditional all-optical 

networks, but it is not available in optical burst switching networks. 

Because in optical burst switching networks the transmission of data 

burst needs to send control packet to each node on the path to the 

destination to reserve light path for the burst, the changing of light path 
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caused by protection switching will fail the reservation which is already 

done. If one of the links on the light path is failed, the data burst has to 

send control packet again to reserve a new light path for transmission. 
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5. Design and Implementation 
 
5.1.  Packet format 

The graphic below represents the format of optical header. 

    

   The description of the frames: 

I. SourceIP. It is the source port IP of the source router. Its length is 32 bits. 

II. DestIP. It is the destination port IP of the next-hop router. Its length is 32 

bits. 

 

The sourceIP and destIP can be composed to form a unique ID for a light 

path. Because RWA process assigns a light path for each route, we need a unique 

key to represent each route. We choose the source router port IP and the 

destination router port IP to be the light path ID. From the view of our system 

architecture, it also means that packets which take the same route travel on the 

same light path. 

 

III. Wave. It represents the wavelength channel number of the light path that the 

packets go on. Its length is 8 bits, and therefore we totally support 255 

wavelength channels. 

IV. Option. It contains the packet type and some configuration options. Its 

length is 8 bits. The first 4 bits represent the packet type of the packet, and 

the last 4 bits represent some configuration details. For example, the value 

0x00 represents that the packet is data packet. None-zero value of this frame 

sourceIP destIP wave option 
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represents that the packet is for special purposes such as configuration or 

handshaking messages for networks. We will give a detailed explanation 

later.  

 

5.2. Global Functions and Modules 

 

5.2.1. Shortest Path RWA Object 

It is a function object doing optimized route-and-wavelength assignment. 

When the simulation network is ready, the number of wavelength channels and 

the network topology will be input in this object. The object computes and 

optimizes the RWA. Each assigned light path will take the smallest hop counts 

(the “hop counts” we talk about here is not the layer-3 router hop counts, but it 

means the layer-2 switch hop counts), and the whole optical networks use 

wavelength channels as few as possible. This function will not work when we 

use dynamic wavelength assignment scheme. This option will be forced to be 

activated if the simulation networks contain optical burst switching networks. 

Because the users can develop various route-and-wavelength-assignment 

strategies for this function, it is designed as an object and it can be customized 

for research. 

 

5.2.2. The Ophy Module 

Ophy module has three main parameters. One is “ProgaDelay” which 

records the propagation delay of the optical fiber, another is “bw” which 

contains the bandwidth of the channel, and the rest is “BitErr” which 
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represents the bit error rate of the optical link. 

 

The ophy module has 4 main functions: sending packets and receiving 

packets, simulating propagation delay, bandwidth and bit error, recording the 

packet trace file for playing traffic flow animation, and logging the 

accumulation data of the packet flow. 

I.  Sending and receiving packets 

It is the basic function of a module which simulates the physical line of 

the networks. After executing the member function “init()” (its job is the 

initialization of the module), the ophy module gets the IDs of nodes 

connecting to this node, and it keeps the pointer of these nodes in the 

variable “ConnNode_”. When the packets are ready, the ophy module calls 

the “get()” function of the ophy module in the connected node to grab the 

outgoing packets to the destined ophy. 

 

II. Simulating the bandwidth 

The ophy module has a variable named “txState” to show whether the 

ophy module is “sending” the packet or not. We can not let another 

incoming packet pass if there is a packet in transmission. The variable 

“txState” is a lock to lock or unlock the outgoing port. When a packet from 

upper module reaches the “send()” function in the ophy module, the ophy 

module will check the variable “txState”. If it is false, it means that the 

ophy module is idle. The ophy module allows the packet to pass when the 

sending status is idle. Once the ophy module puts a packet on transmission, 

it changes the value of “txState” to true (locked). Then other packets can 

not pass until the txState is unlocked again. 
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At the time the ophy module locks the variable “txState”, it also 

triggers a timer to simulate the transmission time. The length of the time is 

“packet length / bandwidth of the ophy module”. When the timer expires, 

the ophy module calls a function named “TxHandler()”. The function 

“TxHandler()” unlocks the variable “txState” and do several 

post-processing. 

 

The method of simulating the bandwidth of the receiving side is similar. 

The packet is passed to upper module or not according to the variable 

named “rxState”. The packet can pass if the variable “rxState” is false, 

otherwise the packet can not. The function named “RxHandle()” controls 

the status of the variable “rxState” and it is called when the receiving timer 

is expired. 

 

III. Simulating the propagation delay 

          Actually, the ophy module do not “send” the packet to the connected 

ophy module, but it calls the function “get()” of the connected ophy 

module to grab the packets. It is the main consideration of simulating the 

propagation delay. When the packet passes the function which simulates 

bandwidth, it goes to the function of simulating propagation delay. This 

function will trigger a timer, and the expiration time is the propagation 

delay of this ophy module. When the timer expires, the ophy module calls 

the get() function of the connected ophy module to grab the packet. The 

ophy module of the other side will get the packet after the propagation 

delay time. 

 23



 

IV. Simulating the bit error 

The variable named “BitErr” represents the bit error of the ophy 

module. We set the bit error rate before the simulation starts. When the 

packet comes to the ophy module, we add packet information to the packet. 

The packet information contains the bit error rate recorded in the variable 

“BitErr”. 

 

When the packet is received by the destination ophy module, the bit 

error information is extracted. The packet is dropped or not according to 

the bit error information. 

 

V. Simulation of store-and-forward and non-store-and-forward scheme 

We know that the all-optical networks are buffer-less and the 

transmission scheme is non-store-and-forward. We treat the light path 

which passes through several optical switches as a straight optical fiber. 

The inside structure of the all-optical switches are matrices of lens. The 

incoming optical signal will be reflected to the outgoing port by the lens in 

switch. From the point of view of all-optical switches, when the first bit is 

received by the incoming port of the switch, the first bit is sent to the 

outgoing port at the same time. If the switch uses store-and-forward 

scheme, the first bit of the packet will not be sent to the outgoing port until 

the last bit of the packet is received. 

 

For simulating this scheme, we have to know what type this node is at 

first. Only the traditional all-optical switches and optical burst switching 
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switches have non-store-and-forward characteristic. If the node is a router, 

the ophy module inside the node should follow store-and-forward scheme. 

Even if it is an optical burst switch, the control packet needs to be 

transformed to digital signals (OEO process) to configure the switch and 

obviously it follows the store-and-forward scheme. Therefore we have 

such conclusion: 1. the ophy modules in the router should follow 

store-and-forward scheme. 2. The ophy modules which transmit control 

packets should follow the store-and-forward scheme. 

 

Now we explain how the ophy module simulates the store-and-forward 

and none-store-and-forward behaviors. When the ophy module receives a 

packet from the source another ophy module, it triggers a timer and calls 

the function “RxHandler()” when the timer expires. If the packet needs to 

follow store-and-forward scheme, the ophy module passes the packet to 

the upper module in the function “RxHandler()”. If the packet needs to 

follow none-store-and-forward scheme, the ophy module passes the packet 

right now. We pass the packet to the upper module not waiting the last bit 

of the packet is received in the non-store-and-forward scheme. 

 

The pictures below illustrate these schemes. The doted line represents 

the edge between receiving and sending. The left side of the dotted line 

represents the time before receiving / sending. The right side of the dotted 

line represents the time after receiving / sending. 
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Incoming port 

 

 Figure 5.1: The illustration of none-store-and forward.  

 

 

Figure 5.2: the illustration of store-and-forward 

 

In figure 5.1, we can see that when the first bit of the packet comes 

into the incoming port, the first bit of the packet goes out of the outgoing 

port. This is the non-store-and-forward scheme. From the view point of 

optical devices, we treat the non-store-and-forward switches as “a coupler 

time 

time 

Incoming port 

Outgoing port 

Incoming port 

Outgoing port 

time 

Outgoing port 

time 
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that switches”. The incoming optical fiber and the outgoing optical fiber 

can be seen as one optical fiber composed by these two. 

 

In figure 5.2, it illustrates the store-and-forward scheme. The packet 

will not be sent to outgoing port until the whole packet is received by the 

incoming port. In our simulation environment, the optical burst switch has 

a parameter named “packet processing time” which represents the sum of 

the OEO time, the routing computation time, and the switching 

computation time. In optical burst switching networks, this factor is very 

important. The switch need to transform the control packet from optical 

domain to electronic domain so that it can compute the burst reservation 

and change some control information in the packet, and therefore the 

control packet needs to follow store-and-forward rules. The time that 

store-and-forward scheme takes is a critical factor to the optical burst 

switching networks [5]. We have to simulate this feature to make sure that 

our system is correct. 

 

VI. The packet-trace file logging and accumulation data logging 

In the NCTUns, we need to log the packet-trace file in order to provide 

the GUI the packet streams and behaviors record so that the GUI can draw 

the play-back animation. The packet-trace printing function in the GUI 

shows the packet-trace log in detail, and we can inspect the behaviors of 

the networks. The other log data is performance and accumulation log. 

This data contains the performance and accumulation information such as 

number of packet drop, number of packet collision, number of incoming or 

outgoing packets, and throughput. The performance plotter in the GUI will 
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use this data to draw graphs to show the variation of the data. 

 

For packet-trace logging, we have to record the packets at 4 points: the 

point of starting transmission, the point of finishing transmission, the point 

of starting receiving, and the point of finishing receiving, to complete a 

packet-trace entry. The ophy module calls the function named “sslog()” 

(sending start log) at the function “send()”, selog() (sending end log) at 

function “TxHandler()”, rslog (receiving start log) at the function “recv()”,  

and relog() (receiving end log) at function “RxHandler()”. 

 

For logging the performance data, the ophy module records the number 

of incoming packets, the number of outgoing packets, and the number of 

packets that all pass this ophy module. It not only records the number of 

packets, but also the throughput. For logging the accumulation data, the 

ophy module records the number of bit-error drop, and number of collision 

drop. 

 

The picture below shows the finite state machine of the ophy module. 
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Figure 5.3: The finite state machine of the ophy module 

 

5.2.3. The Op Module 

The op module has 2 functions. One is that the op module marks the 

packets with some information. When the packets are received by the op 

module from the lower module, the op module will add packet information 

named “From” to the packet. The information represents which port the 

packets come from. This function is for providing information for switching. 

The other function is that the op module directs the packets to the right 

outgoing ports. When the packets are received by the op module from the 
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upper module, the op module will check the optical header of the packets and 

sends the packets to the correct wavelength channels. 

 

5.2.4. The Osw Module 

The osw module is the module which switches the incoming traffic in 

optical switches. The jobs of the module are maintaining the switching table 

and switching packets according to the switching table. The text below 

describes the two jobs of the osw module. 

 

I. Creating and maintaining the switching table 

The wa module or obsw module will send the light path information to 

the osw module and the osw module will create a switching table 

according to these information. A table entry contains source port ID, 

source wavelength ID, destination port ID, and destination wavelength ID. 

 

II. Switching packets 

The osw module extracts the packet information named “FROM” 

which is added by op module. The osw module gets the source port ID and 

it extracts the wavelength ID from the optical header of the packet. 

Therefore it knows the source port and the source wavelength. Then the 

destination port ID and the destination wavelength ID will be obtained by 

checking the switching table. The osw module updates the optical header 

and it adds packet information named “TO” for the lower module. After 

these processing, the modules below the osw module know that which port 

and which wavelength channel the packets should go to. 
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5.3. New Added Node Types and Their Module 

Trees 
We add 3 new nodes for our all-optical network system. 

 

5.3.1. Traditional All-optical Switch 

The node is only for the traditional all-optical networks. It connects only to 

the router node or other traditional all-optical switches. The graphic below 

shows the module tree of this node. The number of the module named 

“OPT_PORT” is according to the number of the fiber connected to this switch, 

and the number of module named “OPT_PHY” is according to the number of 

wavelength channel. 
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Figure 5.4: The module tree of the optical traditional switch 

 

5.3.2. Router Between All-optical Switches and Other 

Types of Subnet 

This router node looks the same as the other router nodes, but the module 

tree of the router node is different to the other router nodes. The module tree in 

the router nodes changes according to the type of the connected subnets. 

Figure 5.5 represents the module tree of the router node which is between 

Ethernet and traditional all-optical networks. Figure 5.6 represents the module 

tree of the router node between Ethernet and optical burst switching networks. 
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Figure 5.5: The module tree of the border router type1. 
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Figure 5.6: The module tree of the border router type2 

 

5.3.3. Optical Burst Switch 

This node is for optical burst switching networks only. It connects only to 

the routers node and other optical burst switches. Figure 5.7 shows the detailed 

module tree of the optical burst switches. 
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Figure 5.7: The module tree of the optical burst switching switch 

 

5.4.  Optical Protection Modules and Mechanism 

 

5.4.1. Introduction 

The bandwidth of all-optical networks is extremely high. If accidental link 

failures happened at the network devices, a lot of data would be lost even the 

devices crash for a very short time. Therefore, the protection and backup 

functions for optical network survivability are very important. SONET has the 

standard called SONET protection ring which defines the ring protection 

standard [2]. The standard of mesh protection and virtual ring protection are 
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still in development. In our protection simulating cases, we provide a method 

to support virtual ring protection. Our scheme of the virtual ring protection 

also supports ring protection and mesh protection. 

 

5.4.2. The Design of Management and Protection 

Layer 

I. The main function of our protection management protocol is doing 

protection with virtual-ring architecture. We need to assign protection 

virtual rings manually and we have to follow certain rules [3]. 

II. Each switch has a module named “opmanage” which manages the work of 

protection and the ring structure. If no ring is assigned or the working port 

is normal, the module is only a bridge module to the upper modules and 

the lower modules. If we assign several rings as the protection rings, the 

GUI generates a file that contains information of protection rings. The 

opmanage module of each node reads the file and selects the needed 

information of the ring as a node. Assuming that we assign a ring 

“2-3-1-2”, node1 is in ring number 1 and so do node2 and node3. The 

upper neighbor of node1 is node3, and the lower neighbor of node1 is 

node2. Now we take a look at the opmanage module in node1. The 

opmanage module will select the data “3” and “2” as its upper neighbor 

and lower neighbor on the ring “2-3-1-2”. Because the ring is 

unidirectional, the opmanage module has to know its upper and lower 

neighbor. Only optical switches with the same type can be assigned to be a 

ring. 
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III. Now we show how the protection ring is assigned and how it works. 

Figure g illustrates a network topology. 

 

Figure 5.8: An example of protection ring 

 

NodeA, nodeB, nodeC, nodeD, nodeE, and nodeF are assigned as a 

virtual ring “A-B-C-D-E-F-A”, and nodeA, nodeB, nodeE, and nodeF are 

assigned as a virtual ring “A-B-E-F-A”. Assuming that we assign the two 

rings “A-B-C-D-E-F-A” and “A-B-E-F-A“ in this case and the opmanage 

module creates a protection table in the opmanage module. We now take a 

look at the opmanage module at node B. The opmanage module at node B 

has these table entries: {working B E, protection B A, ring 1}, 

{working B C, protection B A, ring2}. These entries contain the 

information of the ring as a ring member. Taking entry1 for example, 

“{working B E, protection B A, ring 1}” means that it is the 

information of ring1, the direction of working path is B to E, and the 

direction of protection path is B to A. Because node B joins two virtual 

rings, the ring table of node B has 2 entries. 

 

When the working port is failed, the opmanage module checks the 

table. If the node joins a ring, the traffic route will be changed to the 

B C

A 

F E 

D
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protection path. Each packet has packet information that represents which 

ring and which path the packet goes on. Switching now is no more handled 

by the osw module, but handled by the opmanage module. The switching 

table in osw module is replaced temporarily by the protection table until 

the link failure is recovered, or the packets arrive at another node which is 

not in the ring that suffers working path failure. 

 

IV. Light path is unidirectional, and therefore the direction of the light path 

must not be against the direction of the protection ring. For example, light 

path “D C B A” is not allowed to be assigned if the ring 

“A-B-E-F-A” exists. The step of virtual ring setup by the GUI is clicking 

the ring member sequentially. For example, if we want to assign ring 

“1-2-3-1”, we have to click the node by following the sequence “node1  

node2  node3  node1”. Different sequence represents different ring. 

 

V. Because there are some limitations in the topology drawer, we support 

only one bi-directional optical link between two adjacent nodes. Because 

one bi-directional optical link can be assigned to at most two rings, the 

direction of one ring on this link must be opposite to another. Taking figure 

5.8 as an example, we can assign ring “A-B-C-D-E-F-A” and 

“A-F-E-B-A”. The two rings “A-B-C-D-E-F-A” and “A-B-E-F-A” can’t 

be assigned at the same time. We must follow the double cycle rules [3]. 

What problems will happen if we don’t follow such rules? If the ring 

“A-B-C-D-E-F-A” and the ring “A-B-E-F-A” are assigned at the same 

time and the network status are normal, the node B will not know which is 

the right working path, B-C, B-E, or both? The protection switching may 
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suffer the link overloading problem. 

Assuming that the “B C” and “B E” are full-utilized and the 2 links 

break down. Their protection path “B A” can’t afford the data flow that 

is double to its bandwidth limit. The overflowed packets will be dropped, 

and therefore the protection is meaningless. IF the ring “A-F-E-D-C-B-A” 

and the ring “A-F-E-B-A” are assigned at the same time and the link 

“A B” crashes, the opmanage module will not know which protection 

path is valid, B-C, B-E, or both? When user set up the protection ring, they 

should follow these rules to avoid these problems. 

 

The graph below represents the working flow chart of the opmanage 

module. 
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Figure 5.9: The illustration of the work of the protection module 

 

VI. For supporting mesh protection, we design a smart way to select the path. 

The picture below ilustrates a hive-structured mesh topology. We will 

take the picture as our explanation. 
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Figure 5.10: The illustration of the work of the protection module 

 

The yellow line is the light path that we assigned manually, and the 

protection rings are assigned for each hive cell. For example, “1-2-4-5-17-3-1” 

is assigned as a ring and “4-6-7-9-8-5-4” is assigned a ring. There are total 

five clockwise rings and each optical link joins at most two rings whose 

directions are different. This assignment satisfies our rule. We assume that the 

link “6 7” is broken. When the packet reaches node6, the packet is marked as 

“from working port” and “taking the ring “4-6-7-9-8-5-4””. After the 

opmanage module tags the information on the packet, the packet is sent back 

to node4 and the packet will follow the protection direction until it arrives at 

node7. 

 

When the packet reaches node7, we know that if the packet went back to 

node6, the packet would travel in a loop and never reach the destination. We 
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call node7 “the last station of the protection travel of ring “4-6-7-9-8-5-4””. At 

node7, the packet is marked as “going on the working port” and the opmanage 

module chooses a working path of another ring that node7 joins. For example, 

we choose the ring “7-16-10-12-11-9-7”. This is because the link “7 16” is 

on the light path that the packet takes. Because the node is on the light path or 

no traffic passes the node, we can always find another ring which the node 

joins in that its working path overlaps with the light path. Taking the 

hive-structured topology as an example, node7 is the node on the light path. If 

node7 is not on the light path, we even don’t take the link “6 7” to the 

destination. The rules of our working and protection path switching are: 

I. If the working path is broken, the opmanage module adds a tag “protection, 

ring1” on the packets, which represents that the packets will travel on the 

protection path of ring1. 

II. When the packets arrive at the last station of the protection travel, the 

opmanage module changes the tag to “working, ring3”on the packets, 

which means that the working path of ring3 is the next working path that 

the packets will take. Of course, the working path of ring3 in this node 

overlaps with light path of the packet. 

III. If the working path is normal, the traffic follows the path that the osw 

module decides according to the switching table. 

 

5.5.  Traditional All-optical Networks 
In this section we descript the design and implementation of traditional 

all-optical networks. This subsystem is composed of edge routers, optical 

traditional switches, and other types of networks. Most functions of the 
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subsystem are handled by the rwa modules and the wa modules. Figure 5.11 

shows a topology of traditional all-optical networks, and we take it as the 

example of our description.  

 

   

 

Figure 5.11: Traditional all-optical networks  

 

5.5.1. The Functions of the Rwa Module at Router 

We have discussed the function of generating optical header at chapter 4. 

Besides the functions of rwa module are the configuration of the RWA scheme, 

which we can set to static (it is done by the users or GUI auto-generated) or 

dynamic (it finds out a light path automatically at run time). We know that 

traditional all-optical networks are circuit-switching, and therefore the traffic 

can reach the destination only if the connection is built up. The RWA must be 

done before sending the data. 
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When the packets come to the rwa module, the rwa module finds the 

destined next-hop router port IP of the packets. The rwa module checks the 

light path table for free or connected light paths to transmit packets. If there is 

no such light path, the packet will be dropped. 

 

If we use dynamic RWA scheme, the light path table is empty at start. The 

rwa module does not drop the packets at the first time, but stores them and 

creates a light path configure packet (we call it LPC packet) to broadcast to the 

whole optical subnet. Because we flood the LPC packets, one of the LPC 

packets will finally arrive at the destination router and we will find a light path 

for this route. The light path searching process will continue until the rwa 

module finds a suitable light path or there is no resource for building up a light 

path. The text below shows the steps of light path configuration. 

Step1. The rwa module sends out a LP-request packet. The value of option in   

optical header is 16. 

Step2. The LP-request packet is broadcasted to the whole subnet, and each 

clone of the LP-request packet will record value in the packet 

information which contains the outgoing and incoming port and 

wavelength channel of each node. 

Step3. When the LPC packet arrives at the destination router at the first time, 

the rwa module reserves the light path resources for the LP-request 

packet and the rwa module changes the LP-request packet to the 

LP-reply packet. After that the rwa module sends the LP-reply packet 

back along the path which it came along and reserves the resource for 

the light path at each switch. 
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Step4. When the LP-reply packet goes back to the source router which sent it, 

the rwa module of the router sends a LP-accomplished packet to the 

destination router along the path that the LP-request packet went on. 

The LP-accomplished packet will build the light path permanently. 

 

If the resource reservation is failed during the travel of the LP-reply packet, 

the source router will send a failure massage to cancel the temporary 

reservation and send another LP-request packet another RWA request. 

 

The dynamic RWA methodology is three-ways handshaking, and it will 

never stop until it has tried all the wavelengths we have. When the light path is 

built, the source router will add an entry in the LP table and the destination 

router will add an entry to the WA table (wavelength assigned table).  

 

5.5.2. The Functions of the Wa Module 

The main function of wa module in dynamic RWA scheme is reserving the 

wavelength channels and telling the osw module the information of the light 

path for building switching table. The text below is the behavior details of the 

wa module in dynamic RWA scheme. 

I. When the wa module gets a LP-request packet, the wa module just 

broadcast it and sets up a flag to avoid duplicated packet caused by 

flooding. 

II. When the wa module gets a LP-reply packet, it checks the reservation 

table to make sure that the required wavelength channel is occupied or not. 

If the wavelength channel is free, the wa module temporary reserves it. If 
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the wavelength channel is occupied, the wa module change the flag of the 

LP-reply packet to “failure”. 

III. When the wa module gets a LP-accomplished packet from source router, it 

reserves the temporarily-reserved wavelength permanently. The wa 

module tells the osw module which port and wavelength it reserved for 

building the switching table. 

IV. The wa module may take wavelength conversion or no wavelength 

conversion, and it affects the result of the RWA. If the wavelength 

conversion is allowed, the required wavelength at this switch and that of 

the whole light path can be different wavelength channels. If the 

wavelength conversion is not allows, the required wavelength at this 

switch and that of the whole light path must be the same.  

 

Figure 5.12 represents the work flow of the rwa module. Figure 5.13 

represents the work flow of the wa module. 
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Figure 5.12: The work flow of the rwa module. 
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Figure 5.13: The work flow of the wa module 
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5.5.3. Some Other Considerations about Traditional 

All-optical Networks 

I. All-optical network is pure optical and it has no buffer, and therefore the 

maximum buffer length of the packet scheduling module in the optical 

switch node is forced to set to zero. The queue length of the default packet 

scheduling module of optical networks is zero at start. 

II. In dynamic RWA scheme, the light path is not built permanently. It will be 

torn down when the timer expired or the light path is rarely-used. Of 

course, the connection will be built again when the rwa module has 

packets to send. There is parameter to decide the maximum life time of a 

light path. 

III. The RWA can be done by users or by the shortest path RWA tools. It can 

also be done dynamically by the rwa module and the wa module. 

IV. The optical system type of the same subnet must be the same. For example, 

the number of wavelength channels, network types, and switch types of 

nodes in the same subnet must be the same. 

V. The host node can not connect to the optical switches directly. Only 

routers and the same type of optical switches can be connected to each 

other. 

 

5.6.  Optical Burst Switching Networks 
Optical burst switching is a new paradigm for all-optical networks [4]. It 

provides new network architecture, and it combines the advantages of circuit 

switching (traditional all-optical networks) and packet switching. In this new 

architecture it is easy to handle the management and the quality of service 

 49



which are the advantages of circuit switching. It also reaches the high 

bandwidth and resources utilization and this feature is the advantage of packet 

switching. By the way, the reservation schemes and the algorithms of choosing 

delay factors are various and it is hard to choose the appropriate strategies. 

Therefore this becomes a very important research area in all-optical networks. 

Our optical burst switching networks has two main modules. The obwa 

module is in routers, and the obsw module is in optical burst switches. The 

detail functions of the two modules will be described below. 

 

5.6.1. The Obwa Module 

 The main functions of this module are assembling burst, generating 

control packet, and assigning wavelength channel. 

 When packets come into this module, the packets will be queued at the 

burst queue. The module will not send the packets at once, but it will 

gather more packets to compose a burst. 

 We have to create a mechanism to send the bursts. We define 2 conditions 

to send out bursts. The burst is the aggregation of the packets in the burst 

queue. One condition is that the queue length reaches the limit that is set 

by users. The other condition is that the queuing timer is expired. When 

the first packet of the burst comes, the obwa module triggers a timer. 

When the timer expires, no matter how small this burst is, the obwa 

module sends the burst out. We use the timer method for making sure that 

the traffic will not die in the networks if the traffic is sparse, or making 

sure that TCP ACK and SYNC packets will always be sent out on time. 

The length method and the timer method can be used alternatively to gain 
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performance and utilization [insert ref]. 

 When the burst is ready to be sent out, the first thing is creating a control 

pack of this burst. We know that the transmission admission and priority 

of a burst in the optical burst switching networks are based on the 

configure result between switches and the control packet of this burst, 

and therefore we generate the control packet. A control packet contains 

such information: 

I. Burst ID represents the burst. 

II. Burst transmission time presents how long this burst transmits. 

III. Burst arriving time shows when the burst will arrive. 

IV. Wavelength contains what channel the data burst takes. 

V. The start router of the burst 

VI. The end router of the burst 

The information is extracted by the optical burst switches and the 

switches can find that there is contention among bursts or not. After that 

the optical burst switches can decide to reserve the resources for this 

burst or not. 

 After sending the control packet, the burst is pushed to lower module. 

There is a delay factor between the control packet and the burst. Because 

the longer the delay time is and the probability that the burst gets the 

resources gets higher, the delay factor is important. For JET scheme [5], 

if the delay time is too short, the burst may arrive at switches earlier than 

control packet and the burst will be dropped. 

 The obwa module also has to decide which wavelength channel the 

traffic takes. The obwa module will call the static RWA function to give 

a light path to it. Only static wavelength assignment is available in 
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optical burst switching networks. 

 This paragraph describes the design considerations of the obwa module. 

I. The burst can be a period of time of transmission or aggregation of 

packets. We “gather” the burst, but we do not merge the packets 

together and encapsulate a new header to construct a burst. We only 

send these packets continuously and each packet has a tag of burst 

ID. Assuming each packet transmits for 100 micro seconds and we 

define 10 packets to be a burst. If the burst arrive at the 2000th 

micro second, the burst mean “the packets arrive at 2000~2100 

micro second” from the view point of time. The burst means “the 

packets ID 1~10 or a burst data” from the view point of packet. The 

Old conception only treats bursts as the combination of packets, and 

the contention problem makes the all packets dropped. The time 

concept reduces the drop unit from “contented bursts” to “contented 

packets (time)”, which is the concept of burst segmentation [6]. 

II. The control packet has its own wavelength channel in the design of 

the devices. This is because that the control packet needs to take 

OEO processing and it has to take different transponder to transmit 

it. The receiver of the control channel transforms the optical signal, 

and the transponder of the control channel transforms the electronic 

signal to optical signal. Those of the data burst channel are 

all-optical and they handle only optical signals. So we design our 

module that control packets are sent on their own wave length 

channels. The transmission of the control packet follows 

store-and-forward scheme, which we discussed at 6.2.2, sectionV. 

III. We have to set the queue length of the FIFO module below the obwa 
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module in the router to zero. In traditional all-optical networks, the 

queue length of the FIFO modules below the rwa module can be 

nonzero. This is because the data burst needs accurate timing to 

transmit and it can not be delayed at the fifo queue. If the FIFO 

queue length is not zero, the burst may be queued and delayed at the 

FIFO module for a certain time. The burst will miss the period of 

time during which the reservation is valid. For example, the control 

packet reserves the 2000th to 2100th micro second for its burst and 

the FIFO queue length is not zero. The burst may be queued in the 

FIFO and delayed for a while, and the arriving time to the switch of 

the burst may not be the same to the time the control packet reserved. 

The most of the burst may be dropped. 

IV. The delay factor between control packet and burst is important. This 

is because we have to confirm that the control packet will arrive at 

the end router before the burst. We know the transmission time pf 

the control packet contains OEO time, store-and-forward time, and 

packet processing time. Even if the control packet goes earlier, it 

will reach the end router later if the delay factor is too small. 

Therefore we provide some parameters that can help finding the 

appropriate delay factor. They are packet process time, OEO time, 

and store-and forward time. These 3 parameters are set on the obsw 

module and it uses a global way to share these parameters with the 

obwa module. Propagation delay and hop counts are provided by the 

ophy module and the static RWA object. 

V. The RWA scheme in obwa module is rather different to that in the 

rwa module. In rwa module, the RWA object gives the route a light 
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path and assigns the incoming / outgoing port and incoming / 

outgoing wavelength. The packet follows the path to the destination 

router. However, in obwa module, the RWA object only provides the 

incoming and outgoing port, because the resources (wavelengths) 

need to be reserved before using them and the wavelengths are 

assigned temporarily. The text below describes the method of the 

wavelength assignment. When the wavelength channel A is busy 

during the required reservation period, the module tries to assign 

wavelength channel B. if wavelength channel B is not available 

during that time, it tries to assign wavelength channel C. the 

checking loop continues until that the module finds that all the data 

burst wavelength channels are occupied. 

VI. Each light path has its own burst queue. For example, there are 3 

routers in a simulation network. There are 2 assigned light paths 

“router1  router2” and “router1 router3”. Each light path has its 

own burst queue and the router1 has 2 burst queues. Because the 

packets may take different light path, we can not merge all the 

incoming packets into only one burst queue. 

 

5.6.2. The Obsw Module 

  The obsw module is in the optical burst switches. Its main functions are 

deciding the burst reservation and handling burst transfer controlling. 

  The control packet tells the obsw module when and how the burst comes. 

The information in the control packet contains when the burst comes, what 

light path the burst takes, and how long the burst will transmit. The 
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module will decide to reserve the light path for the burst or not according 

to the information that control packet provides. 

  The obsw module has a table called reservation table. This table contains 

the data of the wavelength status of each optical port. When a control 

packet comes, the obsw module reads the control packet to know the 

needed resources that the burst asks for, and the obsw module checks the 

reservation table if there is contention or not. If there are free wavelength 

channels at that burst period, the obsw module reserves it and adds the 

current reservation to the table. If the required wavelength channel is 

occupied, it rejects the reservation request (original method) or offers the 

non-contented time of this wavelength channel (burst segmentation). After 

the control packet being processed, the obsw module sends the control 

packet to the next node. 

  When the obsw module receives an incoming burst packet, it checks the 

arriving time and the burst ID of the packet. The obsw module searches the 

reservation table for the entry of the burst. If there is no such burst entry, it 

means that the burst is not allowed to use the resource to transmit. The 

obsw module drops the packet. If the obsw module finds an entry contains 

the burst ID but the packet incoming time does not fall on the reservation 

period, it means that the packet comes too late or too soon and the resource 

may be used by other bursts. Only the burst packet that has the mapped 

reservation entry and arrives at accurate time can be transmitted to the next 

node. The job when the obsw module receives outgoing packets from the 

osw module is the same. 

  This paragraph lists the design considerations for obsw module. 

I. We need to simulate a special processing for control packets. The 
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control packet spends more time on OEO processing, 

store-and-forward transmitting, and computation in the optical burst 

switches. The OEO processing time and store-and-forward features are 

handled by the ophy module, and therefore the only factor that the 

obsw module has to simulate is the computation time in electronic 

domain. The obsw module has a parameter to represent the factor and 

has a timer to simulate the computation of each control packet.  

II. Because the reservation and burst dropping algorithms are various and 

this field is one of the most popular research areas in optical burst 

switching networks, we implement several simple methods and reserve 

some frames of header and empty functions for the researchers to 

develop their own algorithms. For example, we only implement burst 

segmentation for dropping algorithms. We implement only random and 

first-come-first-serve methods for reservation algorithms. In the future 

we can add priority features and some prediction patterns for 

supporting QoS or developing flexible and low-drop-rate algorithms. 

III. The jobs of RWA in the obsw module are a little different to traditional 

all-optical networks. The wavelength channel is assigned dynamically 

in the router, and the control packet asks for the same wavelength 

channel which is given in the router. This is because the default value 

of wavelength conversion is “No” in the obsw module. If the required 

wavelength channel is not free, the contention happens and the 

late-arriving or low-priority packets are dropped. If the value of 

wavelength conversion is “Yes”, the obsw module can assign another 

wavelength channel to the burst and the data channel of this burst has 

to be changed to the current assignment. 
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5.6.3. The Work Flow of the Optical Burst Switching 

Networks 

  At the start of simulation, the obwa module gets the value of control 

packet processing time from the obsw module, and this factor can be used 

as one of the burst assembling considerations. 

  When the obwa module receives an incoming packet from the upper 

module, it means that the packet comes from the interface module and 

needs to be sent out. The obwa module calls the function “rt_gateway()” to 

find the next-hop router interface and it puts the packet into the burst 

queue of this route. 

  When the burst length is long enough or the burst gathering timer expires, 

the bust is formed and it is ready to be sent. The obwa module generates a 

control packet of this burst and the obwa module sends it out. The RWA 

object here gives the obwa module the destined outgoing port and the hop 

count of the light path. By feeding the control packet processing time, 

OEO time, and the hop counts, the delay factor can be computed. The 

obwa module sends out the burst later for a period of time that the delay 

factor represents. 

  When the control packet reaches the obsw module in the optical burst 

switch, the obsw module reads the information in the control packet and 

checks the resources reservation table. If the information matches the 

conditions and rules of the reservation, the obsw module schedules the 

burst of this control packet into its reservation table. If the required 

resources are not available, the control packet will be dropped. The 
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reservation rules can be user-defined or default. 

  After the delay the data burst is sent out from the obwa module. When the 

packets of the burst arrive at the obsw module, the obsw module checks 

the reservation table and figures out that the packets are allowed to 

transmit or not. If the answer is yes, the obsw module passes them to the 

osw module to do the switching. Otherwise the obsw module drops them. 

  The burst will reaches the destination if all of the reservations are 

successful and the burst is not dropped by the optical burst switches. 

 

The picture below shows the optical burst switching networks on the 

NCTUns: 

   

 
Figure 5.14: The example case of optical burst switching network 
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5.7. The Design and Integration of the GUI for 

All-optical Networks 
The GUI of the NCTUns is an interface between simulation engine and 

users. It helps users building their simulation topology and setting the 

parameter values. It also helps users monitoring and controlling the simulation, 

and it analyzes and illustrates the performance and behavior data after 

simulation. Because we add the all-optical network simulation package, we 

have to add some functions of the GUI to support our system. 

 We add the 2 new node types of traditional all-optical switch and optical 

burst switch to the node tool bar. The color of traditional all-optical switch 

is gray and the color of optical burst switch is pink. 

 We define new module trees of our all-optical networks. After drawing the 

network topology, the GUI will transform the topology to the set of 

modules. Therefore we add new module trees for generating the tcl content 

for the optical switches and the routers that connect to optical networks. 

 We provide the new mdf (module definition file) containing our new 

modules. The mdf contains is the file that provides the GUI the details of 

module information. We add our new modules to the mdf and the GUI can 

identify our new modules. 

 We add a new option on the pop-up menu, and we can decide the number 

of wavelength channel. Users can decide how many wavelengths the 

system has by their own. 

 We add protection ring and light path setup utility on the tool bar. After 

pressing the light path setup bottom, we choose a router as the head of the 

light path, several optical switches as the body of the light path, and a 
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router as the end of the light path. That is how we set up a light path. Of 

course these selected nodes must be connected and the optical switches 

must be the same type. After pressing the protection ring setup bottom, we 

choose several optical switches to form a protection ring. Of course the 

selected optical switches must be connected, the same type, and their 

selecting sequences must be circular. 

 The animation playback now can display the format of the packet trace file 

of the optical networks, and it can render the traffic flow animation of the 

optical networks. We also add a useful tool to specify the display of 

wavelength channels, and then we can watch the traffic flow on the 

specified wavelength channel. If the GUI shows all the traffic flow on all 

wavelength channels, the screen will be a mass and the simulation result is 

not easy to be identified. 

 

5.8.  Modifications of the NCTUns 
The most challenge to develop our system on the NCTUns is the syntax 

limitation of the tcl file. For providing multi-port and multi-wavelength 

channel simulation environment, we can find that the module trees of the 

new-added nodes have multi-level branches. However, the old tcl parser does 

not support such structure. The old module tree has only one level branch. The 

engine itself can support multi-level branches of the module trees in a node, 

but the simulation data of our system can not be translated from tcl file to the 

engine data structure unless the tcl parser supports it. The old tcl parser can 

identify only one level branch and it will ignore other levels of branches. The 

tcl file of our system also may cuase parsing error if we use the old tcl parser. 
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This is because the old tcl parser does not support net-structured syntax like 

this: 

 

Module test 

Define port 1 

  Module test1 

   Define port 1 

    … 

   EndDefine 

       … 

EndDefine 

 

We modify the tcl parser and several data structures, variables, objects for 

supporting multi-branches architecture. 

 We enhance the tcl parser, and now it can identify the net declaring of 

“Define port”. The parser can parse the tcl file of our system to the 

multi-branches data structure of the simulation engine. 

 We modify the basic module object named “NslObject”. One of its 

constructor parameter is the port number that represents under which port 

this module lies. This parameter is now expanded to a “traversing list”. For 

example, a switch module of the Ethernet switch has only one level branch, 

and the port number of the phy module under branch 4 is 4. If we just use 

the old object structure containing only the nearest level of branch as the 

port number, some identification of the objects and the relationships 

among objects will be confused. So we have to change this parameter of 

the object for helping us obtaining the whole traversing list. For example, 
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if the ophy module is in the port2 of the switch and wavelength channel4 

of port2, the port traversing list is (2, 3) and the tcl parser passes these 

parameters to construct a module object. 

 We change the way of the sorting, searching, and registering of variables. 

Variable registry is for inter-module communication in a node. Each 

module object is independent, and it has no idea what the other modules do 

and what information the other modules have. If we want to share a 

variable among many modules, we have to register this variable. For 

example, the obwa module wants to know the bandwidth and the 

propagation delay of the wavelength channel, but the information is stored 

at ophy module. Therefore we register “BW” and “prop_delay” at the ophy 

module to share these variables among modules in the node. This is how 

the module communicates with other modules in a node. The searching 

key of the registered variables in the old engine is port number and 

variable name. Because we change the type of port number, we have to 

change the way using the port number as a search key. The whole port 

traversing list has to be compared. 

 Also we have to care about the capability of the old syntax and old module. 

A lot of modules use old syntax and structure, and therefore our modified 

engine has to support them. The multi-level branches syntax and structure 

are the generalized expansion of single branch syntax. Obviously the 

syntax is compatible to old module and the port ID is a kind of traversal 

list that contains only one member. The only things we have to care about 

are the APIs, functions and macros. We have to fix the name and the 

parameters to match our new APIs. We check all the modules and 

substitute new functions for old functions. 
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 Besides the new syntax and data structure, the new storage format is 

needed. The packet trace file for animation playing and the logging 

function of the packet trace file has to be modified for supporting 

all-optical networks. In old version of the NCTUns, the packet trace file 

format contains only 802.3 the Ethernet and 802.11 the Wireless LAN. 

All-optical networks have additional information to present in the packet 

trace file. For example, optical networks has multiple wavelength channel 

as wireless LAN, but it has the wired LAN features that each channel can 

send data in parallel. Optical network has light path configuration packet 

for traditional all-optical networks and control packet for optical burst 

switching networks. Therefore we add the new defined macro of these 

optical packet types, and new field for wave length channel in the packet 

trace file. We also modify the PrintPtr program so that it can parse and 

print the new format of the packet trace files of optical networks. 
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6. Performance Evaluation 
We will discuss the performance of our system in this chapter. We list several 

results and analyze the performance data. We show that our system design is 

reasonable and efficient according to the analysis result. 

 

6.1. System Information of Our Experiment 

Platform 
CPU: Pentium Celeron 2.4GHz 

Memory: 512MB DDR RAM with clock rate 400 MHz 

OS: Linux, Fedora Core 1 with kernel 2.4.22 

 

The simulation needs only one computer, and therefore the bandwidth of 

the network interface card is not in the consideration. The factors that affect 

the simulation speed are the CPU clock rate and memory size and clock rate. 

We use Linux as our operating system. 

 

The Figure 6.1 represents the topology of our simulation case.  
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Figure 6.1: The case of performance evaluation 

 

The red icon represents routers, and the gray small box with ‘X’ on it 

represents the traditional all-optical switch. The icon which looks like a 

computer represents the end host.  

 

There are three TCP connections in the “3 TCP connections” case. They 

are connection from node21 to node25, connection from node19 to node24, 

and connection from node13 to node23. 

 

There are four TCP connections in the “4 TCP connections” case. They are 

connection from node21 to node25, connection from node19 to node24, 

connection from node13 to node23, and connection from node12 to node22. 

There are five TCP connections in the “5 TCP connections” case. They are 

connection from node21 to node25, connection from node19 to node24, 

connection from node13 to node23, connection from node12 to node22, and 
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connection from node9 to node15. 

 

There are six TCP connections in the “6 TCP connections” case. They are 

connection from node21 to node25, connection from node19 to node24, 

connection from node13 to node23, connection from node12 to node22, 

connection from node9 to node15, and connection from node16 to node26. 

 

The factors that changes in our simulation cases are: 

 The number of wavelength channel 

 The quantity of traffic flow 

 The bandwidth of each wavelength channel 

 The operation status of packet trace log 

 The network type 

 

Because NCTUns is an event-triggered network simulator, more events in 

a simulation case needs more system resources and time to complete 

simulation. We can predict that the simulation takes more time to finish and it 

needs more memory space and CPU cycles if the factors we listed above 

become larger. Also we want to do some experiments and we analyze the 

growth of time and space that simulation takes. We will prove that the 

performance data is reasonable. In this simulation case we use the static RWA 

scheme and no wavelength conversion scheme. The packet trace log function 

needs a lot of IO time and a lot of CPU cycles, and therefore we only do some 

comparison to make sure the additional time needed is in reasonable range. 

The virtual tick is set to 10 nano second per tick, and the length of simulation 

time is 10 second (virtual time). The bandwidth of each link between host and 
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router of Ethernet is 100 Mbps, and the data rate of greedy TCP connection 

will be about 70 to 80 Mbps. 

 

The tables below shows the experiments result. 

6 greedy TCP, channel bandwidth is 1000 Mbps, trace log off, all opt traditional 

3 wavelengths 8240K RAM take 245 sec to finish 76.5 Mbps / each 

4 wavelengths 8240K RAM take 243 sec to finish 77.0 Mbps /each 

5 wavelengths 8241K RAM take 242 sec to finish 73.0 Mbps /each 

6 wavelengths 8241K RAM take 247 sec to finish 75.4 Mbps /each 

Figure 6.2: The changing factor is wavelength number. 

 

6 greedy TCP, 3 wavelength channels, trace log off, all opt traditional 

100 Mbps / wave 8021K RAM take 151 sec to finish 41.7 Mbps / each 

200 Mbps / wave 8239K RAM take 249 sec to finish 78.1 Mbps /each 

500 Mbps / wave 8240K RAM take 247 sec to finish 77.2 Mbps /each 

1000 Mbps /wave 8240K RAM take 242 sec to finish 74.4 Mbps /each 

Figure 6.3: The changing factor is the bandwidth of optical wavelength channel. 

 

3 wavelengths, channel bandwidth is 1000 Mbps, trace log off, all opt traditional 

3 TCP connection 8020K RAM take 98 sec to finish 74.5 Mbps / each 

4 TCP connection 8088K RAM take 143 sec to finish 71.3 Mbps /each 

5 TCP connection 8163K RAM take 189 sec to finish 78.0 Mbps /each 

6 TCP connection 8240K RAM take 240 sec to finish 76.0 Mbps /each 

Figure 6.4: The changing factor is the traffic quantity. 
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3 wavelengths with 1000Mbps each, all opt traditional, 6 TCP connections 

Trace log off 8241K RAM take 241 sec to finish 77.6 Mbps / each 

Trace log on 26525K RAM take 671 sec to finish 78.0 Mbps / each 

Figure 6.5: The changing factor is the status of packet trace log. 

 

3 wavelengths with 1000Mbps each, all opt traditional, 6 TCP connections, log off 

Simulate 10 sec 8239K RAM take 241 sec to finish 77.6 Mbps / each 

Simulate 12 sec 8241 K RAM take 289 sec to finish 76.0 Mbps / each 

Simulate 14 sec 8240 K RAM take 327 sec to finish 79.9 Mbps / each 

Simulate 16 sec 8240 K RAM take 380 sec to finish 76.2 Mbps / each 

Figure 6.6: The relationship between the real time needed and the simulated time 

 

6.2.  Analysis 
From the view point of the NCTUns, the requirement of the memory space 

depends on the number of events in the simulation engine. Taking a look at 

figure 6.2, the number of wavelength channels does not cost much memory 

size. This is because the module object size is not big as the space needed 

when the events comes in, and the growth of wavelength channel number has 

nothing to do with the growth of event quantity in engine. 

 

Taking a look at figure 6.3, the time needed column in the row “100 Mbps 

each wave” is much smaller than those in other rows. This is because the 6 

TCP connections are given only about half bandwidth. The events are half and 

the needed time is in direct ratio to the event number. The number of events in 

the engine in a certain time is not large (it is according to the propagation 
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delay), and therefore the column of memory space is not so affected as the 

column of executing time. The same reason explains the data in the figure 6.4. 

The data in figure 6.6 shows that the time needed is linear to the simulation 

time. The growth is linear and it is the same as that of other simulation cases 

in the NCTUns. The data in figure 6.5 shows that the packet trace log needs a 

lot of resources. The packet trace log generates log events and some stack 

overhead, and it costs a lot of IO time and CPU cycle. The memory space and 

time needed are much less if we turn the packet trace log off. 

 

We have proved that our system design and implementation does not 

decrease the original performance of NCTUns in traditional all-optical 

networks. 

 

The cases in the optical burst switching networks are similar. The only 

difference is the traffic behavior is not the same as that in the traditional 

all-optical networks. However it is the problem of functionality, and it is 

related to the network behavior. Therefore it is not in the consideration of the 

performance evaluation. Besides, the performance analysis result is the same 

as that in traditional all-optical networks. 

I. The executing time needed is linear to the traffic quantity (average speed * 

connections). 

II. The time needed is linear to the simulation length 

III. The number of wavelengths is independent to the memory space and 

executing time. 

IV. The system does not affect the original performance result of the other 

cases in the NCTUns. 
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6.3.  Scalability Test 
Looking at Figure 6.1, we want to test that if the numbers of nodes 

becomes large, the performance can be still the same or it is affected heavily. 

We add two routers and eight nodes at each optical switch. We add total 40 

nodes to expand this simulation case. We find that the simulation time is still 

the same (with difference about one to three seconds), and therefore we know 

that the number of nodes does not affect the simulation time. The memory 

space used by simulation engine is increased to 9000K byte around, and we 

can explain that the increased memory space is taken by the added nodes in 

this case. 
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7. Functionality Validation 
We will discuss the analysis of the network behaviors of our all-optical system 

in this chapter. 

 

7.1.  The Validation Analysis of the Ophy Module 
We have to prove that the simulation of propagation delay, bandwidth, 

store-and-forward scheme, and the circuit and packet switching schemes are 

correct. We use the network topology below as our study case. 

 

Figure 7.1: The case of validation of the ophy module 

 

This case tests the validation of the ophy module, and therefore we use a 

rather simple case. There is only one wavelength channel in this case, and we 

set the bandwidth of the wavelength channel to 20Mbps for each optical link. 

The Ethernet links are set to 30Mbps, and we can see that the traffic will be 

bound by the optical link. If the traffic between node5 and node6 takes greedy 

scheme, the data flow will be bound at optical link and the data rate is about 

20Mbps at most. We use this trick to prove that the bandwidth simulation in 

the ophy module is valid. 
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We set the propagation delay of each optical link to 100 micro second, and 

we can predict that if the packet size is 1000 byte, the time that transmit from 

router3 to router 4 is (8000 / 20M + 3*100) micro seconds. This is because the 

non-store-and-forward scheme makes the path “3 1 2 4” like a direct link 

from node3 to node4 with propagation delay of 300 micro seconds. The graph 

below shows the throughput of one greedy TCP connection between node5 

and node6.  
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Figure 7.2: The simulation result of the ophy module 

 

The X axis represents the time and unit is second. The Y axis represents 

the throughput and unit is mega bits per second. The traffic pattern is greedy 

UDP connection from node 5 to node 6. 

 

From this graph we can see the throughput is about 18.8 Mbps. The 

bandwidth of the optical link is 20 Mbps. The range between these 2 is due to 

the overhead of Ethernet frame and IP header. The random back-off 

mechanism will gain the delay time of each packet from 1 tick to its 1/10 
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transmission time and therefore the bandwidth will be wasted about 1/10. 

From the data analysis above we prove that the simulating of bandwidth is 

correct. 

 

We now take a look at the packet trace file to observe behavior of the 

traffic flow. The graphic below is the capture of the packet trace viewer. 

 

Figure 7.3: The capture of the packet trace 

 

Here we introduce the packet trace format quickly. The third field is the 

time point that this packet is sent or received, and the 7th field is the source and 

destination node of the current hop. From this capture we can find that the 

time of the first bit of the packet 113 being sent from node3 is 43007th tick, 

and the time of the first bit of the packet 113 being receive by node 4 is 

43307th tick. The time that the travel takes from node3 to node4 is 300 ticks 

(43307 - 43007). Because one tick is equal to100 nano seconds, 300 ticks is 

equal to 30 micro second. The result fits our prediction. Now we take a look at 

the last row of this picture. The packet ID 114 was sent from node3 at 47167th 

tick, and the packet ID 113 was sent from the same ophy module at 43007th 

tick, their range is 4160 which is equal to (1040*8/20)/0.1 (the unit is tick) fits 

the transmission time of the packet. The validation of simulating propagation 

delay, bandwidth and transmission schemes are all proved 
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7.2. The Validation Analysis of Protection Ring 

Behaviors 
In this section we take a mesh ring protection case for an example. The 

graphic below shows the topology of our simulation case. 

 

Figure 7.4: The case of validation of the protection mechanism 

 

The ring assignment is that “2 3 6 7” is a ring, “3 4 5 6” is a 

ring, “7->6 9 8” is a ring, and “6 5 10 9” is a ring. The link fail will 

be at link “4 5” during 3rd to 5th second, and the TCP traffic from node12 to 

node13 will take “1 2 3 4 5 10 11” as its light path. When the 

simulation starts, the traffic flow on the networks looks like the picture below 

during 1st ~3rd second. 
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Figure 7.5: The normal situation of the traffic flow 

 

When the 3rd second comes and the link “4 5” crashes, nodes senses that 

the working path of this ring is broken and it commands the traffic to take 

another route. The three pictures below shows the progress of the protection 

switching. 

 

Figure 7.6: Step1 when protection activates 
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Step1. Link 4 5 is broken and the traffic take protection path. We can see the 

traffic is switched back to node3 

 

Figure 7.7: Step2 when protection activates 

 

Step2. The traffic follows the protection path to node 6. The direction of 

protection path is “3 6 5 4”. 

 

Figure 7.8: Step3 when protection activates 
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Step3. The data flow comes to node 5, and it finds the next node is node 4. 

Because node5 is the final destination of the protection path, we have to find 

another virtual ring to continue the journey.  

 

Figure 7.9: Step4 when protection activates 

 

Step4. We find that node 5 joins another ring and one of this ring’s (the ring is 

“6 5 10 9 6”) working path (it is link “5 10”) is on the light path from 

router 1 to router 11, and therefore node5 switched the traffic to node 10 and 

the traffic will take the original light path to the destination. 

 

We find that the virtual ring protection is successful, and the ring 

protection is one special case of the mesh virtual ring protection. The 

behaviors of the ring protection are the same as we respected, and therefore 

this function is valid. 
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7.3. The Validation Analysis of the Optical Burst 

Switching Networks 

 
The special behavior of the optical burst switching networks is burst 

contention and the behavior changes with various scheduling schemes and 

parameters. The picture below represents the topology of our simulation case.  

 

Figure 7.10: The case of the validation of the OBS 

 

There are two UDP connections, one is from node8 to node11 from 0th to 

20th second, and the other is from node10 to node9 from 3rd to 20th second. 

The light path assignment is that “5-2-1-3-6” is a light path, and “7-4-3-6” is a 

light path. The bandwidth of each optical channel is 10Mbps, and the 

propagation delay of each optical link is 1 microsecond. The value of the 

parameter in Ethernet links is the same. The burst length is 16000 bytes, and 

the burst gathering timeout is 10 micro second. Each optical link has only one 

data wavelength channel for data bursts. 

At the start of the simulation, the “8-11” UDP connection will get the full 
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speed to transmit packet, but when the third second comes up, the data flows 

of the 2 UDP connections will content at switch3. The burst reservation and 

dropping algorithms will affect the traffic distribution. The graph below shows 

the detail.  
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Figure 7.11: The simulation result of the OBS case 

 

The X axis represents the time (seconds) and the Y axis represents the 

throughput (Mbps). This result is based on using random drop for contended 

part of bursts and burst segmentation. In this case, the line with hollow square 

dots represents UDP connection 1 which is from node10 to node9 and the line 

with hollow triangle dots represents UDP connection 2 which is from node8 to 

node11. In the first two seconds, UDP connection 1 can get full speed, but 

after the 3rd second, UDP connection 2 rises and the two UDP connections 

start competing the resource at node3. Because the UDP connection 2 takes 

the shorter path, its reserving rate is higher and the UPD connection gets more 

bandwidth. The random drop algorithm for contending bursts will randomly 

select a contended burst to drop, and therefore the competition of the 2 UDP 

connections will reach a dynamic balance that they are in the ratio of 1:2 
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sharing the whole bandwidth. The reason why the UDP2 can have double 

bandwidth than the other is that the control packet travel time from node7 to 

node3 of UDP 2 is 5 micro second, and the travel time of UDP1 from node 

node5 to node3 is 9 micro second. It means that the average reservation rate of 

UDP1: UDP2 is about 5: 9, and therefore the bandwidth usage ratio is about 5: 

9. 

 

Now let us take a look at the result of dropping without segmentation. The 

line with solid square points represents UDP1 without segmentation, and the 

line with solid triangle points represents UDP2 without segmentation. We find 

that the throughput is very low and there is no special relationship between the 

2 UDP connections. This is because the drop is not only drop the contending 

part, but also the whole burst. We do not implement any arrangement 

mechanism among bursts, and therefore most of bursts crush and the 

throughput is very low. 
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8. Command Console 
 
8.1.  Introduction 

The NCTUns provides a few interfaces for observing the simulated nodes 

at runtime, and most of them are used for watching modules. For example, we 

can watch the routing table and look at the current routing entry, or we can 

query the current queue length in the packet scheduling module. However, this 

is not enough. Sometimes we want to take a look at the whole information of 

network interfaces, but NCTUns does not provide such function. We not only 

want to schedule the applications on the application list, but also we want to 

give several commands or run applications on nodes at runtime. For providing 

users a convenient way of operating the simulation nodes, we develop an 

interface called command console to do such work. 

 

Command console is a very convenient tool, and it is a shell program that 

you can type your commands and execute your applications on the command 

console, such as traffic generators, ifconfig program, and ping program. The 

picture below is a capture of command console. 

 

8.2.  Design Considerations 
To design such an interface program, we have some considerations: 

 The main goal of developing the command console is providing users an 

interface which is operated like a normal computer. The operating methods 

must be the same or similar to those of the current devices, and the 

 81



interface must look like that of the shell program of the computers. 

Therefore we pick the TCSH program as the reference of our system 

design. Besides the source code of TCSH program is available and we 

need only to modify the program for our specified features. 

 The simulation of NCTUns is based on the virtual time, and we know that 

the applications running on the simulation nodes need to be given the 

virtual clock to make the performance and functionality correct. Therefore, 

we need to add the virtual-time-compatible feature to the TCSH program. 

When our shell forks a new process, the shell has to register the new 

processes by the system call which is provided by the NCTUns for giving 

the process virtual time. 

 Because NCTUns is a network simulator and it does not use the general 

network interfaces, the processes have to tell the operating system that 

they run on the NCTUns and please do not treat us as normal applications. 

When our command console forks new processes (especially traffic 

generators), it has to register the new processes by the system call which is 

provided by the NCTUns. After that the operating system will know the 

processes are forked by the NCTUns and the packets they generate are put 

into the mapped tunnel interfaces. 

 The command console has to present the view point of a node. When 

entering a node and opening its command console, this command console 

is treated as the node. For example, we click the command console bottom 

and login node1, the shell program in this command console must be 

presented as node1. However, we know that all nodes in simulation are in 

the same computer. If we want to tell the differences of these nodes, we 

have to complete some modifications: 
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I. The command console needs to know what node it lies on. When we 

open the command console, we have to bring the node ID into the 

command console. 

II. We have to provide the mapping among virtual network interfaces and 

the tunnel interfaces of the operating system. When we run ifconfig on 

the original TCSH program, the all tunnel interfaces that the simulation 

case uses will be shown. A node has only one tunnel interface as an 

end host or several tunnel interfaces as a router. Therefore, we need to 

use the system calls that the NCTUns provides to find virtual network 

such mapping for command console. 

III. We use the ifconfig program watching or configuring interfaces of a 

node, or we use tcpdump program listening the network interface or 

capturing the packets from certain interface of a node. This 

consideration is similar to consideration II. We have to convert the 

names of the tunnels to those that are viewed from a node. For example, 

a router uses tunnel interfaces tun3, tun4, tun5, and tun6 as its network 

interfaces, but we can’t display “tun3”, “tun4”, “tun5”, and “tun6” on 

the command console. When we type “ifconfig –a” on the command 

console, it should display “fxp1”, “fxp2”, “fxp3” and “fxp4” on 

FreeBSD, or “eth1”, “eth2”, “eth3” and “eth4” on Linux. That is the 

appropriate display of interface name. Also, we won’t type 

“tcpdump –i tun4” (we even barely know what tun4 represents) on the 

command console. What we know is that we want to listen on the 

second interface of the router, and we will type “tcpdump –i fxp2” on 

FreeBSD or “tcpdump –i eth2” on Linux. Therefore, we have to find 

the mapping among the virtual interfaces and tunnel interfaces. After 
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that the command console converts the input and output strings to the 

appropriate name. 

 

8.3.  Implementation 

 

8.3.1. System Architecture 

rlogin shell 

Filter process 

 

Figure 8.1: The architecture of the command console 

 

The graph above represents the architecture of the command console. There 

are three main parts of the command console. One is the filter process, another 

is modified TCSH program, and the other is the cooperation with system and 

the GUI of the NCTUns. 

Now we explain how these blocks make command console work. Remote 

login daemon and rlogin shell are system provided. In this part, what we have 

to do is adding some system configuration so that the remote login shell can 

automatically fork the filter process when command console executes. We do 

not want to input password at each time that command console logins, and 

therefore we also add some configurations to the system to ignore the 

password. The filter process is forked by the rlogin shell, and this process is 

Remote login daemon 

Modified TCSH 
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used mainly for converting and filtering strings to the appropriate content. The 

modified TCSH program is the main part of the command console, and we 

give the commands and execute them on it. The main works of the modified 

TCSH program are the process registry and changing the priority of the 

processes. 

 

8.3.2. Design Considerations 

 Modified TCHS: 

I. At first, we have to know what node this command console is on. We 

modify the parameter structure of the program to bring the node 

number to the program. 

II. Each process forked by the modified TCSH on command console 

should be given virtual clock which is generated by the simulation 

engine. After the processes being forked, the command console needs 

to register the processes to the kernel to tell the operating system that 

the processes are running on the simulation engine and based on the 

virtual time. Another system-call for registry provides the mapping 

among virtual interfaces and tunnel interfaces, and therefore the naming 

simulation IP can be identified and converted to SSDD format in the 

kernel [1]. 

There are two forking points for TCSH program. One is in the function 

“pfork()” of the file “sh.proc.c” and the other is in the function 

“execute()” of the file “sh.sem.c”. We find the forking points and add 

system call 261 and system call 262 to register the process. 

III. Another problem is the priority consideration. The events of simulation 
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have to be processed as quickly as possible, or we will face the problem 

of the dead traffic generator. Therefore, the simulation engine has to get 

higher priority than normal processes for the correct simulation results. 

Besides, all the simulation related processes need higher priority than 

the simulation engine. If we don’t give these processes a higher priority, 

we will face problem of getting an incorrect round-trip time. For 

example, the ping program will get a wrong round-trip time because the 

ping program can not return the ICPM packets back immediately due to 

the lower priority. The RTT time will become too big. The picture 

below is the illustration of the problem. We have to know that all the 

processes, including normal processes, simulation engine, command 

console, and simulation related processes are in the same operating 

system, and they need to be scheduled to run. 

 

Figure 8.2: The illustration of the delayed response 

 

 

Ping query Ping should reply 

Ping reply 
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IV. From this picture, we can see that the blue blocks are the scheduled 

time slots for simulation engine execution, and green blocks are the 

time slots for ping program. We know that the simulation network runs 

on one computer, and the ping program won’t reply the ICMP messages 

until it gets its execution time. In this case the ping program is 

considered to reply at the time that the white block points, but the 

simulation engine is still on execution. Therefore, the ping program will 

be delayed and the returned RTT is wrong. 

In Linux, we give these simulation related processes real-time process 

priority, and the operating system will use round-robin algorithm to 

schedule these processes. This problem is now solved. 

 

 Filtering Process: 

The graph below illustrates the interactivity between filtering process and 

modified TCSH. 

 

 

Figure 8.3: The architecture of the filtering process 

 

 

Filter process TCSH 

Master Slave 

STDIN STDOUT

I. We use the psudo terminal library to build a stream pipe between the 
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filtering process and the modified TCHS, and we can intercept and 

filter the input characters from STDIN and output strings from 

STDOUT. 

II. Taking a look at the graph above, the doted line represents as the 

output of the process forked by the modified TCSH, and the physical 

line is the input from STDIN. 

When we key in a alphabet from the keyboard, the STDIN gets a 

character and goes to the filter process though the master terminal. The 

way that the input character goes from filtering process to modified 

TCSH is “the master terminal  the slave terminal  modified 

TCSH”, and the character follows the same way back to filtering 

process. After that the iput character will be sent to STDOUT through 

the master terminal. 

III. The output string will be caught by the filtering process, and the 

filtering process will convert the string to the appropriate one. For 

example, when we use ifconfig, we type “ifconfig -a”. The output of 

the program will be the whole activating tunnel interfaces. This output 

is wrong, and therefore we have to discard the strings of the real 

network interfaces of the computer and the tunnel interfaces which are 

not used as interfaces of this node. At last the filtering process changes 

the name of those tunnel interfaces to virtual network interfaces, such 

as “eth4” or “fxp4”, for example. The sequence of tunnel interfaces is 

converted to the sequence of the node’s network interfaces. 

IV. The input will be caught by the filtering process, and the filtering 

process will convert the information to the appropriate information. 

For example, we want that users can operate the simulated nodes as 
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normal computers. If the user want to use tcpdump to catch the packets, 

they will type “tcpdump –i eth(number)” (in Linux). However, we 

know that the virtual network interfaces are all named “tun(number)” 

in the kernel. We have to convert the string “eth” to “tun”, and the 

sequence number of node’s interfaces to the real tunnel interface 

number. After such processing the system can identify the names and 

provide the information of the tunnel interfaces. 

 

8.3.3. Details of The Program “script” 

The program “script” is the main body of the filtering process. 

 

8.3.3.1. Functions of the Program 

I. Int convert_fxp_tun(): This function converts the virtual interface 

port number to the tunnel interface port number. The filter process 

has a table containing the mapping of the virtual port numbers and 

tunnel interface numbers. This function gets its job done by 

checking this table. 

II. Int convert_tun_fxp(): This function converts the tunnel interface 

port number to the virtual interface port number. It is the inverse 

function to “convert_fxp_tun()”. 

III. Void Inttostr(): This function converts the integer to string of 

decimal digits. 

IV. Void getcommand(): The work of this function is gathering the 

typed-in characters from STDIN. 

 The filter process has a variable named “mode”. When we push 
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the “Enter” key on the keyboard, the variable “mode” will 

change to “1” to represent that the command input is finished. 

After receiving the “Return” character, the function sends the 

command to the filtering process. 

 The filter process has a variable named “command_type”, 

which is used to record type of the input command. After 

variable “mode” changes to 1, the command string will be 

parsed to see what type it is. If the string contains “ifconfig”, 

the fi.ter process marks the variable “command_type” to 1. It 

means that the command is “ifconfig”. The value “2” of 

“command_type” represents that the command is “tcpdump”, 

and the value “0” means the command the other types.  

 When receiving a character, this function checks the input 

character. If it is a control character, the function ignores it and 

continues the gathering work. Of course, control character 

should not be added to the command string. Besides, the special 

control pattern which represents some special key on the key 

board such as “Esc”, “ ”, and “ ” must be blocked. 

 The graph below illustrates the work flow of the 

“getcommand()” function. 
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Figure 8.4: The work flow of the filtering process 

 

 

8.3.3.2. The Main Program Activities of Filter Process 

I. At first, the filter process uses system calls to get the mapping 

among the virtual interface port and tunnel interface port. The filter 

process uses this information to create a mapping table. 

II. In the main program body, we use the function “select()” to poll 

between STDIN and STDOUT. If there is input or output appearing 

on the STDIN and STDOUT, the program grabs them and handles 

the conversion and filtering. 

III. In polling STDIN, if the program intercepts some characters from 

the keyboard, it uses the “getcommand()” function to gather the 

input string and handles the string conversion. For example, if we 

type “ifconfig eth1”, the program has to convert this string to 

“ifconfig tun3” (we assume that the virtual-tunnel port mapping is 

1  3) and sends the string to the TCSH. If we type “tcpdump –i 

eth1”, the program has to convert the string to “tcpdump –i tun3” 

and tells the simulation engine to open the tcpdump module flag. 

Get a character 

Is it ASCII 13? 

Identify character Normal?? 

No Yes 

No 
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IV. How and when does the program convert the input command? The 

answer is that when we type the “enter” key, the “getcommand()” 

function will pack the input string and identify what command it is, 

and it calls the “convert_fxp_tun()” function to convert the string. 

V. In polling STDOUT, the program has to discard the information 

which is not needed and converts the filtered information to the 

node’s point of view. For example, when we type “ifconfig -a” in 

the normal shell, the shell will list all the network interfaces of the 

computer. However, in the simulation environment, what we need 

are only the virtual interface data of a node. We want the program 

to list only the interfaces of the node, and discard the rest strings. 

For example, node1 has three ports and the three interfaces are 

called “eth1”, “eth2”, and “eth3”. In the operating system they are 

presented as “tun5”, “tun6”, and “tun7”. The program needs to 

wipe the fxp0, lo, tun0~4, and tun8~tun4095 and converts the 

strings “tun5”, “tun6”, and “tun7” to “eth1”, “eth2”, and “eth3”. 

 

8.3.4. Combining with NCTUns and Operating System 

  When we want to execute the command console, the GUI has to send 

the node number and user name to the coordinator. The command 

console then logins the computer with the user account and node ID. 

  This paragraph discusses the configuration of the environment. 

I. When we start the command console, the command console 

obtains the IP of the computer, node number, and user name, and 

it calls a program to configure the remote login environment. 
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II. The environment setup program “tsetenv” will create a file called 

“NCTUNS_SETENV”, and the file contains the information of 

configuring the environment. The information includes the 

environment variables and the calling of filter process. The file 

“.bashrc” (or “.tcshrc” for TCSH) will be added a line to execute 

the batch file “NCTUNS_SETENV”. 

III. For supporting starting command console without entering 

password, we need to add a file “.rhosts” in the home directory of 

that user with a line “(GUI IP) (username)”. After that the remote 

login from the GUI by this username will no longer need 

password. However, in Linux, we have some extra work to do for 

supporting such feature. We have to add “rlogin” this service to 

the configuration file “/etc/securetty”, and then the authentication 

will be passed from operation system to rlogin daemon. 
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9. Scalability and Further Work 
 

Because our system is based on the NCTUns, the growth of the system load in 

our simulation case is the same as that of other cases in the NCTUns. The length 

of the simulation time depends on the number of the events. If the traffic load is 

large, the NCTUns needs much time to finish the simulation. The NCTUns uses 

the kernel of the operating system to simulate the TCP/IP protocols, and therefore 

the simulation result is accurate. However, the simulation is costly. If there are 

more than 100 TCP connections with average bandwidth 20Mbps or higher, the 

computer needs a lot of time to finish the simulation. How do we simulate the 

internet with thousand nodes and connections? The solution is that the user can 

develop their own traffic modeling program and traffic generator to simulate 

hundred or more traffic flows. 

 

So far we implement the optical burst switching network system and the 

traditional all-optical network system. We provide several empty program 

functions for users to specify their algorithms for burst scheduling, burst 

assembling method and contention drop choice in optical burst switching 

networks. We also provide the same things for users to specify their ring 

management methods, RWA algorithms and the protection mechanisms in 

traditional all-optical networks. Also we can add the QoS module which the 

NCTUns provides in our simulated nodes, or we can modify our modules to 

support the QoS in the all-optical networks. You can draw an extra-large network 

with all-optical networks in the backbone to simulate an internet operating in the 

real world. 
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We can develop more new subsystems or functions. We only use JET method 

(Just-Enough-Time) in the optical burst switching networks, and we can develop 

Tell-and-Go method as our control packet sending method. For the simulation of 

fiber delay line and optical packet switching networks, the current method is 

changing the queue length in the optical FIFO module to non-zero and activating 

the store-and-forward function. However, the most accurate way is setting a timer 

for each simulated fiber delay line and stretching the propagation delay of the 

buffered packets longer. Using only a queue to simulate optical packet switching 

networks is rough, and therefore we can work on developing the accurate scheme 

of simulating fiber delay line. 
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10. Conclusion 
 

Nowadays the scale of internet grows very fast, and therefore the bandwidth of 

backbone networks and the processing speed of network devices need to power up 

to handle such huge traffic flows. All-optical devices are the most suitable 

equipments and the all-optical networks are one of the most popular computer 

network research areas. Therefore, the tools which help researchers to research 

all-optical networks become more and more important. 

 

Simulation is a way of analyzing and gathering the research data. It is more 

convenient than experiments with the real hardware and more accurate than the 

mathematical modeling. We use a famous simulator, NCTUns, to develop our 

system. Because the NCTUns uses real-simulation method, we can get more 

accurate simulation result. It uses C++ as its developing language, and therefore 

we save a lot of time and we can focus on our system design and implementation. 

 

We design the system of all-optical networks, including circuit switching 

scheme, protection ring mechanism, optical burst switching networks, RWA 

algorithm, and several tools. Also we develop a command console program for 

monitoring the traffic and controlling the device dynamically.  

 

The performance is reasonable and acceptable. The resources requirement of 

our system is not exceed that of the NCTUns, and the growth of the requirement 

depends on the traffic flow. It is the same as the NCTUns. Also we analyze our 

system. The data of our simulation result is explainable, and the performance and 
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the behaviors of the networks fit system design and the network architecture. 

 

Our system can cooperate with other systems. We can combine other modules 

or other nodes to simulate merged networks. We also provide some function 

points so that users can develop their own algorithms or protocols. We hope that 

our work can help saving the experiment and data analyzing time of the research 

in all-optical networks, and researchers can focus on their design and 

implementation. 
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