

國 立 交 通 大 學

資訊工程系

碩 士 論 文

整體式結合迴圈與資料轉換

以提升陣列資料區域性

Improving Array Data Locality by Global Integrated

Approach of Loop and Data Transformations

研 究 生：沈 岳 霆

指導教授：單 智 君 博士

中 華 民 國 九 十 三 年 七 月

整體式結合迴圈與資料轉換

以提升陣列資料區域性

Improving Array Data Locality by Global Integrated

Approach of Loop and Data Transformations

研 究 生：沈 岳 霆 Student：Yueh-Ting Shen

指導教授：單 智 君 博士 Advisor：Dr. Jean, Jyh-Juin Shann

國 立 交 通 大 學

資 訊 工 程 學 系

碩 士 論 文

A Thesis

Submitted to Department of
Computer Science and Information Engineering

College of Electrical Engineering and Computer Science
National Chiao Tung University

in Partial Fulfillment of the Requirements
for the Degree of

Master
in

Computer Science and Information Engineering
July 2004

Hsinchu, Taiwan, Republic of China

中華民國 九十三 年 七 月

 II

整體式結合迴圈與資料轉換

以提升陣列資料區域性

學生：沈岳霆 指導教授：單智君 博士

國立交通大學資訊工程學系碩士班

摘要

今日高效能的電腦都大量的採用多層記憶體階層的概念。在這些機器上，存

取相鄰的記憶體位置將比存取距離較遠的記憶體位置來的快速。因此鼓勵設計者

去改變程式記憶體參考的樣式來增加存取相鄰記憶體位置的機會。人工來重新排

列程式碼需要清楚的了解機器的架構，是緩慢而且容易出錯的工作，同時也減少

了程式的可移植性。因此，使用編譯器來幫助重新排列程式碼是非常值得研究的

課題，特別是針對那些有規則資料存取的程式。

在這篇論文裡，我們提出了一個整體式結合迴圈與資料轉換的方法來提升資

料區域性，基於一個新的區域性模型與簡單的線性代數的技巧。我們提出的區域

性模型使用記憶體參考的距離來作量化區域性的標準。對於迴圈內陣列特性我們

以跨距向量來表示。然後一個成本的函數就可以從跨距向量導出，以評估程式內

不同的陣列參考特性。

模擬的結果顯示我們提出來的方法比純粹迴圈或純粹資料的方法有改善。而

且這個整體式的考量也比過去的區域考量來的有進步。

 i

Improving Array Data Locality by Global Integrated

Approach of Loop and Data Transformations

Student：Yueh-Ting Shen Advisor：Jean, J.J Shann

Institute of Computer Science and Information Engineering
National Chiao-Tung University

Abstract

High performance computers of today extensively use multiple levels of memory

hierarchies. On these machines, the references to a nearby memory location are faster

than to a farther location, encourages programmers to modify the references pattern of

a program so that the majority of references are made to the nearby memory location.

Manual restructuring requires a clear understanding of the impact of the machine

architecture, is tedious and error-prone, and results in severely reduced portability.

Therefore, compiler optimizations aimed at restructuring code have been very

attractive, particularly for programs that exhibit regular data access patterns.

In this thesis, we propose a global integrated approach of loop and data

transformation to improve data locality, based on a new locality model and simple

linear algebra techniques. Our proposed locality model uses reference distance as a

metric of the quantity of data locality. To representing data locality characteristics in a

loop nest, we use the concept of a stride vector. Then a cost function derived from a

stride vector is presented to quantify different occurrences of array references.

Simulation results shows our integrated approach does make a difference, and

improves over techniques based on pure loop or pure data transformations. Moreover,

the proposed global consideration improves over previous pure local consideration.

 ii

誌謝

 首先要感謝我的指導教授 單智君教授，在他辛勤的指導之下，本篇論文得

以順利誕生。同時也要感謝他在我研究所這兩年來的教導與勉勵，讓我在知識的

學習上有所精進。

 在此也要感謝實驗室的另一位大家長，也是我的口試委員的鐘崇斌教授，以

及口試委員謝萬雲博士，由於他們的指教與建議，才使得這篇論文可以更佳的完

整與確實。

 感謝陪伴我走過這段時間的每一個人，包括我的家人、朋友、實驗室裡一起

努力的同學們。有了你們，讓我在研究的路上走的更順利，進而能更無後顧之憂

的從容學習，使我能堅持追求自己的理想。

 所有支持我、勉勵我的師長與親友，所有幫助過我的人，奉上我最誠摯的感

謝與祝福，謝謝你們。

沈岳霆 2004.08.18

 iii

Table of Contents

摘要 .. i

Abstract .. ii

誌謝 .. iii

Table of Contents .. iv

List of Figures... vi

List of Tables.. vii

Chapter 1 Introduction ...1

1.1 Locality of Reference...2

1.2 Motivation..3

1.3 Objective ..4

1.4 Organization of This Thesis ...4

Chapter 2 Background ...5

2.1 The Transformation Fundamentals ..5

2.1.1 Linear Algebra Representation of Array References5

2.1.2 Unimodular Transformation ...6

2.2 Loop Transformation ...8

2.2.1 Loop Interchange ..10

2.2.2 Loop Reversal ...10

2.2.3 Loop Skewing ...11

2.3 Data Transformation ..12

2.3.1 Unimodular Data Transformations ...12

2.3.2 Hyperplane Concepts..14

2.4 Integrated Approach of Loop and Data Transformations15

2.5 Related Work..16
 iv

2.5.1 Exhaustive Search Approach ..16

2.5.2 Heuristic Approach ...17

2.6 Summary and Comparison...18

Chapter 3 Proposed Global Integrated Approach20

3.1 Problem Description ..20

3.1.1 Array Reference Representation...20

3.1.2 Temporal locality ..21

3.1.3 Spatial locality ..21

3.1.4 Integrated Approach..22

3.2 Locality Estimation Model ..23

3.2.1 Reference Distance ...24

3.2.2 Stride Vector..24

3.3 Framework of Proposed Approach ..26

3.4 Three Steps of Proposed Approach..27

3.4.1 Local Loop and Data Transformation Selection27

3.4.2 Global Data Transformation Decision29

3.4.3 Local Loop Transformation Refinement...................................30

Chapter 4 Simulation and Analysis..31

4.1 Simulation Environment ..31

4.2 Simulation Results and Analysis..36

4.2.1 Execution Times ...37

4.2.2 Cache Miss Rate ...38

4.2.3 Simulation Analysis ..40

Chapter 5 Conclusion and Future Works42

References...44

 v

List of Figures

Figure 2-1 An example of the array reference representation..6

Figure 2-2 Examples of three types of the unimodular matrix7

Figure 2-3 Examples of 2D space using unimodular transformations...........................8

Figure 2-4 An example of loop interchange ..10

Figure 2-5 An example of loop reversal ..11

Figure 2-6 An example of loop skewing..11

Figure 2-7 Examples of unimodular data transformation ..13

Figure 3-1 The framework of proposed approach ...27

Figure 4-1 Compilation flow of proposed approach..32

Figure 4-2 Execution time with varying problem size...37

Figure 4-3 Speedup for the different version of transformations38

Figure 4-4 Memory reference percentage of different memory hierarchies................39

Figure 4-5 Cache miss ratio for L1 and L2 cache..40

 vi

List of Tables

Table 2-1 Array layouts of 2-dimensional array and associated hyperplanes..............15

Table 2-2 Summary of loop and data transformations...16

Table 2-3 Comparison between related works...19

Table 4-1 Platform used in the experiments to measure execution time33

Table 4-2 Platform used in the experiments to simulate cache behavior.....................35

Table 4-3 Benchmark programs used in the simulation...36

Table 4-4 Different transformed version used in the simulation36

 vii

Chapter 1 Introduction

High performance computers of today extensively use multiple levels of memory

hierarchies. On these machines, references to a nearby memory location are usually

faster than references to a farther location. This renders the performance of

applications critically dependent on their memory access characteristics and

encourages programmers to modify the references pattern of a program so that the

majority of references are made to a nearby memory location. In particular, careful

choice of memory-sensitive data layouts and code restructuring appear to be crucial.

Unfortunately, the lack of automatic tools forces many programmers need to

restructure their code manually. The problem is exacerbated by the increasing

sophisticated nature of applications. Manual restructuring requires a clear

understanding of the machine architecture, is tedious and error-prone, and results in

severely reduced portability. Therefore, compiler optimizations aimed at restructuring

code have been very attractive, particularly for programs that exhibit regular data

access patterns.

In this thesis, we propose a global integrated approach of loop and data

transformations to improve data locality. The type of data transformations includes

changing memory layouts such as row-major or column major storage of

multi-dimensional arrays (which are common data structures in regular applications).

In this chapter, we briefly introduce the locality property of reference, basic

compiler transformation techniques to improve data locality, and the motivation and

objective of this thesis.

 1

1.1 Locality of Reference

Over the last decade, the speed gap between processor and memory access has

continued to widen. Computer architects have tuned increasing to the use of memory

hierarchies with one or more levels of memory. Almost all general-purpose computer

systems, from personal computers to workstations of large systems, have a memory

hierarchy comprising different speed of memory levels. Main memory latencies for

new machines are now more than hundred cycles. This has resulted in the increasing

reliance on caches as a means to increase the overall memory bandwidth and reduce

memory latency. These small, fast memories are only effective when programs exploit

locality. Data locality is the property that references to the same memory location and

nearby locations are reused within a short period of time. There are two types of

locality—temporal locality and spatial locality. Temporal locality occurs when two

reference refer to the same memory location. Spatial locality occurs when two

references refer to nearby memory locations.

Manual restructuring programs in order to improve locality requires a clear

understanding of the detail of the machine architecture, which is a tedious and

error-prone task. Instead, achieving good data locality should be the responsibility of

the compiler. By placing the burden to the compiler, programs will be more portable

because programmers will be able to achieve good performance without making

machine-dependent source-level transformations.

Previous research in compiler generally concentrated on iteration space

transformations to improve locality. Among these techniques used are unimodular and

non-unimodular iteration space transformations, tiling, and loop fusion. All these

techniques focus on improving data locality indirectly as a result of modifying the

iteration space traversal order.

 2

Recently, data transformations have been proposed to improve data locality

because loop transformations are not always effective. Instead of changing the order

of loop iterations, data transformations modify the memory layouts of

multi-dimensional arrays (form a language-defined default such as column-major in

FORTRAN and row-major in C into a desired form).

1.2 Motivation

Compiler researchers have developed loop transformations that allow the

conversion of programs to exploit locality. Recently, transformations that change the

memory layouts of multi-dimensional arrays—called data transformations—have

been proposed. While loop transformations can improve data locality, are

well-understood and effective in many cases, they have at least three important

drawbacks: (1) they are constrained by data dependencies; (2) complex imperfectly

nested loops pose a challenge for loop transformations; and (3) they affect the locality

characteristics of all the data sets accessed in a nest, some perhaps adversely.

Nevertheless, data transformations have some disadvantages. Constructs such as

pointer arithmetic in C and common blocks in FORTRAN may prevent memory

layout transformations by exposing unmodifiable layouts to the compiler. A key draw

back is that data transformations do not improve temporal locality.

As mentioned above, neither loop nor data transformations are fully effective in

optimizing locality. For our observation, previous research about integrated loop and

data transformations did not concern the correlation between different loops and

between different types of transformations. This means that benefits for a single loop

nest may sacrifice benefits for another loop nest. If we can consider the effect of

different transformations globally, we may improve the data locality compared with

 3

previous research.

1.3 Objective

Many scientific programs and image processing applications operate on large

multi-dimensional arrays using multi-level nested loops. Both changing the execution

order and the data layout will affect data locality. The loop transformations involve

changing the execution order of loop iterations. The data transformations involve

changing the array layouts in memory. Our objective is to find a global integrated

approach of loop and data transformations to improve array data locality for all loops

in a whole program.

1.4 Organization of This Thesis

This thesis is organized as follows. Chapter 2 introduces the background of

compiler transformations and discusses previous related work on improving data

locality. In Chapter 3, we describe our global integrated approach in detail. Then the

simulation environment and simulation results are presented in chapter 4. Finally, we

summarized our conclusions and future works in Chapter 5.

 4

Chapter 2 Background

In this chapter, we first introduce the linear algebra representation of array

references in the loop nests. This representation and linear algebra techniques simplify

the transformation works. Then the fundamentals of loop transformations and data

transformations are described. The following sections present related works about the

integrated approach of loop and data transformations. Finally, we give a comparison

between loop transformations and data transformations and summarize previous

researches.

2.1 The Transformation Fundamentals

The main transformation method of previous research is based on linear algebra

techniques [9]. In this section we describe linear algebra representation of array

references and transformation matrices.

2.1.1 Linear Algebra Representation of Array References

Consider an array reference to an -dimensional array in a loop nest of depth

. We assume that the array subscript functions and loop bounds are affine functions

of enclosing loop indices and symbolic variables, which affine functions are the linear

combination of the index variables plus a constant. Let

m

n

I denotes the iteration

vector consisting of loop indices starting from the outermost loop to the innermost

loop; each array reference can be represented by

oAI +

where the nm × matrix A is called the array reference matrix and the

 5

m -element vector is called the array offset vector. Note that each row of o A

corresponds to a dimension of the array; and each column of A gives information of

array references about the corresponding loop index. In particular, the locality

behavior of the innermost loop is determined by the last column of A .

Here we give a program in Figure 2-1 (a) as an example and describe the

representation of array references in Figure 2-1 (b).

for i = 1, N

for j = 1, N

 for k = 1, N

 X[i][j] = Y[j+k][i][j-1] + 2

(a) An example program

Array reference X Array reference Y

Figure 2-1 An example of the array reference representation

2.1.2 Unimodular Transformation

If we describe array references in a program as matrices in linear algebra, then

the transformations applied on a program can be represented as matrices in linear

algebra, too. Each transformation matrix corresponds to a transformation method. The

transformation method such as interchanging, reversal and skewing can all be unified

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
0
0

010
001

k
j
i

⎟
⎟
⎟
⎞

⎜
⎜
⎜

⎝

⎛
+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

1
0
0

00
001
110

k
j
i

X[i][j] Y[j + k][i][j - 1]

⎠−⎝1

yA I o xA I o x y

(b) Array reference representations

 6

by casting them as the linear transformation method. Such a framework allows a

compiler to perform several transformations in one step. In other words, if we want to

do more than one transformation at the same time, it is only need to do one

combination transformation, which is composed of all transformations we want to do.

Composition of linear transformations is performed by multiplying the transformation

matrices. These kinds of transformation matrices are all unimodular matrices [11]. We

give an example of the transformation matrix of unimodular transformations as Figure

2-2 shows.

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

001
100
010

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

100
010
001

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

103
010
001

(a) Interchange (b) Reversal (c) Skewing

Figure 2-2 Examples of three types of the unimodular matrix

se three types of transformations are unimodular; that is, the

transform

-dimensional

space to ano

ponents, so it maps an integer

point to another integer point.

odular matrices is unimodular.

All the

ation matrices are unimodular. The definition of unimodular transformation

matrix is the absolute value of the determinant of a transformation matrix is 1. There

are several characteristics of unimodular transformation matrices:

(1) The transformations matrix is a square matrix which maps an n

ther n -dimensional space.

(2) The transformation matrix has all integral com

(3) The product of two unim

 7

(4) The inverse of an unimodular matrix is unimodular.

(a) Interchange ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
i
j

j
i

01
10

(b) Reversal ⎜⎜
⎛ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞

⎝ − j
i

j
i

10
01

⎝ ji
i

j
i

11
01

(c) Skewing ⎜⎜
⎛ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞

Figure 2-3 Examples of 2D space using unimodular transformations

The unimodular transformation means that the integer points of the original

iteration space will be mapped onto integer points in the transformed space (because

the transformation matrix has integer entries), and the volume of the iteration space is

preserved (because the determinant of the transformation is 1±). For a dense

iteration space, such as a normalized index set, every integer point in the image space

corresponds to an integer point in the original iteration space. In other words, if the

original iteration space is dense, so is the transformed space. The 2-dimensional space

transformations using unimodular transformations are showed in Figure 2-3.

2.2 Loop Transformation

When optimizing the performance of programs, the most gains will come from

optimizing the region of the program that requires the most time—the repetitive

region of the program. These correspond either to iterative loop or recursive

procedures. Here we concentrate on optimizing loops. For the most part we will focus

 8

on countable loops, where the trip counts can be determined without executing the

loop, as opposed to while loops.

Most presentations of loop restructuring methods focus on the legality and

benefits of performing a transformation or optimization. The benefits of a

transformation cannot be determined until the target computer architecture is known.

Likewise, the legality of a transformation depends on the semantics of the target

machine and language. Most machines today comprise one or more sequential

processors connected in some fashion, so we will concentrate on compiling for

collections of sequential machines. The transformation is legal if it preserves the

dependence relations. For sequential loops, this means that the dependence distance

vector must still be lexicographically nonnegative.

The characteristics of the unimodular matrices explain why we use it as the

category of our transformations. There are two advantages of unimodular loop

transformations. First, combinations of multiple transformations can be represents as

products of the elementary unimodular transformation matrices, so a compound

transformation is simplified. Second, the legality test of loop transformations is

simplified to matrix operations, so we can easily examine which transformation is

legal or not.

Let a loop transformation be represented by a square non-singular integer matrix

. Assuming that LT I is the original iteration vector and ITI L=' is the new

iteration vector; each occurrence of I in the loop body is replaced by ' . So

each reference represented by

1ITL
−

oAI + is transformed to

oIATL +− '1

Loop transformations for locality are relatively well studied; we will only

describe the fundamental principle here, for in-depth discussion of several approaches

 9

can be found in [1][12][13].

2.2.1 Loop Interchange

Perhaps the single most important loop restructuring transformation is the loop

interchange. Interchanging two tightly nested loops switches the inner and outer loop;

it was developed initially to help with automatic discovery of parallelism. Converting

a sequential nested loop into parallel form would try to find a loop that carried no

dependence relations. If one loop carried all the dependence relations, that loop would

be interchanged to the outermost position, and the rest of the loops would be executed

in parallel. The transformation matrix of interchanging we give an example as Figure

2-4.

for i = 0,N for j = 0,N

 for j = 0,N for i = 0,N

Figure 2-4 An example of loop interchange

2.2.2 Loop Reversal

The compiler can decide to run a loop backward; this is called loop reversal. If a

sequential loop carries a dependence relation, revering the loop will reverse the

direction of the dependence, violating that dependence relation. Thus, loop reversal is

legal only when the loop carries no dependence relations. The transformation matrix

of reversal we give an example as Figure 2-5.

(b) Transformation matrix(a) Original program (c) Transformed program

 U[i][j] U[i][j]

⎟
⎠

⎞

⎝

⎛
01
10
⎟⎜⎜

 10

for i = 0,N for i = 0,N

 for j = 0,N for j = 0,-N

Figure 2-5 An example of loop reversal

2.2.3 Loop Skewing

The normalization can change the shape of the iteration space. Because the shape

of the iteration space changes, as does the dependence distances. It can affect the

ability to interchange loops. If normalization can prevent interchanging, then perhaps

unnormalization can enable interchanging. We call this loop skewing. Loop skewing

changes the iteration vectors for each iteration by adding the outer loop index value to

the inner loop index. Choosing whether to skew and the factor by which to skew is

driven by the goal to enable other transformations or to improve parallelism after

another interchanging. The transformation matrix of skewing we give an example as

Figure 2-2 (c).

Figure 2-6 An example of loop skewing

(b) Transformation matrix(a) Original program (c) Transformed program

for i = 0,N for i = 0,N

 for j = 0,N for j = i,i+N

 U[i][j] U[i][j]

⎟⎟⎜⎜
⎠

⎞

⎝

⎛
11
01

(b) Transformation matrix(a) Original program (c) Transformed program

 U[i][j] U[i][j]

⎟
⎠

⎞

⎝

⎛
−10
01
⎟⎜⎜

 11

2.3 Data Transformation

Data transformation [8][10] is another approach. Array is a general data structure

and often seen in most programs because it is a simple and intuitional representation

of data. Therefore, many scientific programs and image processing applications

operate on large multi-dimensional arrays using multi-level nested loops. The

meaning of data in this thesis is equally to array structure. In the following we use the

term “data” and “array” alternately.

Conceptually, a data transformation is applied by transforming array subscripts of

the array reference . Let a data transformation be represented by s square non-singular

integer matrix . Then each reference represented by DT oAI + is transformed to

oTAIT DD +

Notice that in contrast to loop transformations, the iteration vector does not

change but offset vector is transformed.

2.3.1 Unimodular Data Transformations

The data transformations we consider are as same as the loop transformations

described in section 2.2. We only consider unimodular transformations including

interchange, reversal and skewing. A similar example which the transformation matrix

is as same as loop transformation but adopted by data transformation is showed in

Figure 2-7. There are two advantages of unimodular data transformations. First, the

array index computation is efficient because in unimodular transformations the

variable must involve only integers. Second, the transformed data space is equal to the

original one, so the memory usage is efficient.

 12

Figure 2-7 Examples of unimodular data transformation

We can divide the problem of optimizing array layouts into two independent

sub-problems. First, determining optimal array layouts; and second, determining data

transformation matrices to implement optimal array layouts.

Each sub-problem can be solved independently. Previous research offered

algorithms to handle the first sub-problem where as a few offered methods to handle

the second problem. In fact, the second problem arises because there is no way of

specifying the array layouts in conventional languages like FORTRAN and C.

The main data transformation objective of this thesis is to find the optimal array

layouts for all array references in the whole program. Once we decide a suitable array

layout for each array, it is a mechanical process to find the corresponding data

transformation matrices to implement the chosen layouts. This is the reason to make

our approach easy to adapt to languages with different default layouts as well as to

(b) Transformation matrix(a) Original program (c) Transformed program

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
11
01

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−10
01

⎟
⎠

⎜
⎝ 01

⎟⎜
⎞⎛ 10for i = 0,N for i = 0,N

 for j = 0,N for j = i,i+N

 U[i][j] Interchange U[j][i]

 for i = 0,N

 for j = i,i+N

 Reversal U[j][i]

 for i = 0,N

 for j = i,i+N

 Skewing U[j][i]

 13

have explicit memory layout representations. Next we will describe our representation

of array layouts, called hyperplane.

2.3.2 Hyperplane Concepts

We use the hyperplane concepts [6] to represents the layout of an array. In an

m-dimensional space, a hyperplane can be defined as a set of tuples

such that

()maaa ,...,, 21

cagagag mm =+++ ...2211 , where are rational numbers

called hyperplane coefficients and is a rational number called hyperplane constant.

A hyperplane vector defines a hyperplane family where each member

hyperplane has the same hyperplane vector but a different value. For convenience,

we use a row vector to denote such a hyperplane family whereas

mggg ,...,, 21

c

(mggg ,...,, 21)

)

c

(m
T gggg ,...,, 21=

g corresponds to the column vector representation of the same hyperplane family.

We say that two data points (array elements) and (in a

multi-dimensional array) belong to the same data hyperplane

1d 2d

g if

 21 dgdg TT =

Two data points and are said to have spatial locality for a given data

hyperplane if above equation holds for them.

1d 2d

Tg

For example, in a two-dimensional array space, a hyperplane vector such as

 indicates that two array elements belong to the same hyperplane as long as they

have the same value for the column index; the value of the row index does not matter.

)1,0(

Two data elements may belong to more than one hyperplane as well. For example,

in a three-dimensional array space, two data elements may belong to a hyperplane

 as well as to another hyperplane (1,0,0) ()0,1,0 . A few possible array layouts and

their associated hyperplane vectors for two-dimensional case are given in Table 2-1.

 14

Table 2-1 Array layouts of 2-dimensional array and associated hyperplanes

row-major column-major Diagonal anti-diagonal

(1,0) (0,1) (1,-1) (1,1)

2.4 Integrated Approach of Loop and Data Transformations

The loop and data transformation is different in many ways. The comparison is

presented as follows.

Loop transformation:

(1) Constrained by data dependences

(2) Difficulty applicable to complex imperfect nested loops

(3) The effect is local, only affects the loop nest to which it is applied

(4) Improve temporal and spatial locality

Data transformation:

(1) Not constrained by data dependences

(2) Easily applicable to perfect and imperfect nested loops

(3) The effect is global, affects every part of the program that access the array

(4) Improve spatial locality

These two approaches are not conflicting, so the combination of loop and data

transformations is an attractive approach. But determining both loop and data

transformation matrices are a non-linear problem. We now show that for a single

reference, determining both a loop and a data transformation matrix simultaneously is

equivalent to solving a non-linear system with some additional constraints in Table

2-2. Suppose that the original reference is oAI + , and we would like to apply a loop

transformation matrix and a data transformation matrix . Then the

transformation reference is . Omitting the offset vector part [4], since

LT DT

oTIATT +− '1
DLD

 15

both and are unknown, determining a suitable from the locality

point of view involves solving a non-linear problem, with the additional constraints

such that both and should be non-singular and should observe all the

data dependences in the original loop nest.

DT 1−
LT 1−

LD LTT

DT LT LT

Table 2-2 Summary of loop and data transformations

 Transformation

Matrix

Array Reference

Representation

Change

oAI + Original none

LT Loop

Transformation

Loop iteration

vector

oIAT +− '1
L

DT oTAIT DD + Array reference

and offset vector

Data

Transformation

DL TT & Integrated

Approach

oTIATT +− '1
DLD Both

2.5 Related Work

ction we will introduce several previous research topics related to the

integrated approach, including an exhaus

2.5.1 Exhaustive Search Approach

This previous work [3] presents a unified approach to locality optimization that

In this se

tive search approach and a heuristic

approach.

 16

employs both data and loop transformations. The compiler optimizations are based on

an a

 ratio for

a gi

data

loca

ore traditional reuse vectors. Elements of

the

lgebraic representation of data mappings, and a new data locality model.

They consider computers with large main memory and smaller, but faster cache

memory. Cache hit ratio is one metric for quantifying data locality, but the hit

ven run of a program is a non-trivial function of machine parameters, operating

system policies, load on the machine and the access pattern of the program itself.

A more machine-independent metric, which can be used in compilers, is

reference distance. They use reference distance as a metric of the quality of

lity. This metric is not as accurate for a given machine as the locality hit ratio, but

it has the advantage of being relatively independent from machine parameters.

Reference distance for a given memory access is defined to be the number of distinct

cache lines accessed since the last access to the same cache line (or 0 if the cache line

has not been accessed before). The goal of the locality optimization is to decrease the

distances for critical references. Note that to decrease the distance for some reference

may lead to increase the distance for others.

Their approach to representing data locality for different data mappings uses a

new concept of stride vector instead of the m

stride vector give us information about data locality. If an element is 0, then this

loop carries temporal locality, if an element is less than the size of a cache line, then

the loop has spatial locality. So their solution is to find the transformation matrix and

array layout vector to satisfy AmvTL = . The desired reference vector is presented by

v and the array layout vector is presented by m .

.5.2 Heuristic Approach 2

his paper [5] describes an integrated compiler approach to enhance cache

locality. Their approach combines loop and data transformations, but specializes the

T

 17

loop transformations for optimizing temporal locality. Once the potential temporal

loca

d to determine an order of processing the nests, if a nest is more important

(costly) than another one, they optimize the more important nest first. Profiling can be

used

t resolution scheme as discussed in the previous

hyperplane based approach can be used.

ations

and previous research. Loop transformations involve changing the execution order of

anging the array layout in memory. The

com

lity is exploited, their approach uses data transformations to optimize available

spatial reuse in the loop nest. This technique can be extended to work with cases in

which some subset of the arrays referenced in the loop nest had fixed memory

layouts.

Multiple loop nests

When there are many loop nests in a program, their approach is rather simple.

They nee

 to determine the estimated cost of a loop nest. After optimizing this nest, it is

possible that the memory layouts of some of the arrays referenced will be fixed. Then,

they consider the next important nest and optimize it. Take all the layouts determined

so far into account, and so on.

Conflict-free layouts solution

If the references to the same array in a loop nest span more than one uniformly

generated set, then a conflic

2.6 Summary and Comparison

This section we summarize the difference between loop and data transform

programs but data transformations involve ch

parison of related work is described in Table 2-3.

 18

Table 2-3 Comparison between related works

 Loop

Transformation

Data

Transformation

Locality Characteristics Scope Conflict

Array

Layouts

1995

Exhaustive

ormaiton

s

only 0 and 1

hange h

between temporal and

spatial locality

Transf

matrix contain

Interc

transformation

Do not distinguis Local Default

array

layout

1998

Heuristics

Unimodular

transformation

Unimodular

transformation

Temporal locality has

higher priority than

spatial locality

Local Majority

array

layout

Proposed

approach

 spatial

tion

Unimodular

transformation

Unimodular

transformation

Use a locality estimation

model to quantify

temporal and

locality

Global Locality

estima

model

 19

Chapter 3 Proposed Global Integrated Approach

In this chapter, we present our global integrated approach to enhance array data

locality for whole program. There are four sections in this chapter. The first one is

problem description, which describes the problem formulation and the difficulty. The

second part is the basic concept of locality estimation model, including reference

distance and stride vector. The third one describes the framework of proposed

integrated approach. Finally, we showed three steps in the framework in detail.

3.1 Problem Description

The global consideration problem is to decide the array layout which exploits

most data locality in the whole program. The preferred array layout in the local

consideration may not identical between different loop nests.

3.1.1 Array Reference Representation

Consider an array reference to an -dimensional array in a loop nest of depth

. We assume the array subscript functions and loop bounds are affine functions of

enclosing loop indices and symbolic variables. Our approach uses the same

presentation from previous research discussed in Chap 2. An array reference can be

represented by

m

n

oAI +

where I denotes the iteration vector (consisting of loop indices starting form the

outermost loop), the matrix nm× A denotes the reference matrix of an array

reference and the -element vector o denotes an array offset vector. As offset m

 20

vectors are irrelevant from the locality analysis point of view, for simplify, the

constant part is ignored.

3.1.2 Temporal locality

We treat the property of temporal locality as the natural characteristics of the

program, in other words, it never changes no matter what data transformations applied.

An array reference in a loop nest could exploit temporal locality if and only if

{ }Aker∉∅

Let denote the first to the last column of inverse of the loop

transformation matrix, respectively. The innermost loop exhibits temporal locality

with respect to a reference if

naa ,...,1

{ }Aan ker∈

The outermost loop exhibits temporal locality with respect to a reference R if

{ }Aa ker1 ∈

3.1.3 Spatial locality

We view the iteration space of a loop nest of depth as an -dimensional

space where each point is denoted by an

n n

1×n column vector. Let is now concentrate

on two consecutive iterations I and of a given loop nest of depth . Such

two iterations have identical values for each loop index except for the innermost loop,

i.e., and

nextI n

()Tnn iiiI 11 ... −= ()Tnnnext iiiI 1... 11 += − . In order to exploit the

locality for reference denoted by a reference matrix , two consecutive iterations A I

and defined above should reference two data elements that have spatial locality

in the data space. In particular, we want the distance of referenced elements is as close

as possible so that the possibilities they can reside on the same (or at least neighboring)

nextI

 21

block of the same memory level increased.

We use the hyperplane concept to represent array layouts. The innermost loop

exhibits spatial locality with respect to a reference (denoted by an reference

matrix) to an -dimensional array, if, for each hyperplane vector

nm×

A m g defining

the memory layout,

{ }mag ker∈

where is the row vector form of the last column of ma A .

The outermost loop exhibits spatial locality with respect to a reference to an

-dimensional array for each hyperplane vector m g defining the memory layout,

{ }1ker ag ∈

where is the row vector form of the first column of . 1a A

3.1.4 Integrated Approach

As previous related work results show, data transformations can only affect

spatial locality. A key drawback is that data transformations do not improve temporal

locality. Although loop transformations can affect both temporal and spatial locality,

but loop transformations mainly focus on temporal locality. The effect of loop

transformations on spatial locality is based on the default array data layout, i.e.,

FORTRAN is column major, C is row major.

Our framework first optimized the temporal locality in a loop nest for most

number of references. It then focuses on exploiting spatial locality for all references

(including references which have temporal locality) in a loop nest. We pay more

attention to inner loop than to outer loop. Given the fact that the innermost loop is

concerned obtaining temporal locality is more important (and better) than obtaining

just spatial locality, we have improvement over the original programs.

After each loop nest is analyzed, we can select a local array layout is most
 22

suitable for the array reference in a loop nest. For a global data array, if array layouts

selected in all loop nests are all the same, then the solution of global array layout is

trivial. But if array layouts selected in different loop nests are different, then the

conflict situation occurs, we use a cost function to decide which layout is better for

array data locality.

We divide the problem of improving locality by data transformations into two

independent sub-problems:

(1) Determination of the optimal array data layouts that are defined by

hyperplanes

(2) Data space transformation matrices to obtain (or implement) the optimal

layouts

 Our research mainly focuses on the first problem, finding global array layouts for

improving data locality. An integrated approach of loop and data transformations has

great effect on the locality analysis.

3.2 Locality Estimation Model

We want to optimize programs for execution time. To exploit the memory

hierarchy, data locality has to be maximized. To simplify our discussion, we only

consider computers with large main memory and smaller, but faster cache memory.

Cache hit ratio is one metric for quantifying data locality. The hit ratio for a given run

of a program is a non-trivial function of machine parameters, operating system

policies, load on the machine and the access pattern of the program itself.

A more machine-independent metric, which can be used in compilers, is

reference distance. We measure how many different data elements are separated

between two contiguous data reference. We observe that this reference distance can be

 23

used to guild program transformations.

As a locality model, we use the stride vector concept to measure the locality of

array references in a loop nest. We will show how reference distance and stride vector

concept to quantify different types of locality, between different loop nests and

between different array references.

3.2.1 Reference Distance

The reference distance can be used as a metric of the quality of data locality. This

metric is not as accurate for a given machine as the cache hit ratio, but it has the

advantage of being relatively independent from machine parameters. Reference

distance for a given array is defined to be the number of distinct elements between

contiguous references to the same array element (or 0 if the array element has not

been referenced before).

To analyze the program behavior, we examine all memory reference of the array

data. Note that to decrease the distance for some references may have to increase the

distance for others. The goal of the locality optimization is to decrease the global

reference distance for whole program.

The definition of reference distance in this thesis is different from previous

research. Previous definition of reference distance is how many different data

elements are referenced between two references to the same data. The previous

concept of reference distance is about the relationship in time domain; however, our

proposed scheme is concern about the spatial relationship between memory

references.

3.2.2 Stride Vector

Our approach to represent data locality for different array layouts uses a concept
 24

of a stride vector instead of the traditional reuse vectors. Stride vector is defined as

array layouts memory reference distance, for a given array layouts, the reference

distance between two contiguous memory references. Elements of the stride vector

give us information about data locality. If an element is 0, then this loop carries

temporal locality, if an element is less than the block size of a memory hierarchy, then

the loop has spatial locality.

The stride vector of an array reference can be calculated from the reference

matrix, the array size of each array dimension, and the hyperplane vector from the

array layouts. To simplify our discussion, we only consider the array size of each

dimension is equal, that is, a 2-dimensional array is like a square matrix.

Let the reference matrix is denoted by an nm × matrix , the size of each

array dimension is all equal by , the array layout is denoted by vector

A

k g , then the

stride of an array reference can be compute as

() ()mggg kkkgutVectorMemoryLayo ,...,, 21=

() () nAgutVectorMemortLayogstride •=

Let the reference matrix is denoted by , the vector of the last column of is

denoted by , the hyperplane vector of -dimensional array layouts

 is denoted by

A A

ma m

(T
mggg ,..., 21) g , the size of each array dimension is denoted by ,

the stride vector of this array reference is denoted by .

k

S

()Tggg mkkkS ,...,, 21=

The locality of an array reference in a loop nest is estimated by:

() ()gstrideiterationsgAityArrayLocal ×=,

So the global locality of an array is the summation of locality in all loop nests,

estimated by:

 25

() ()∑=
all

loops

gAityArrayLocalgAyLocalityGlobalArra ,,

But we need to adjust the quantity score to an inverse ratio so that the higher

score means the better locality. This is the nature representation. So the locality

estimation function is presented by

()∑
all

loops

gAityArrayLocal ,

1

3.3 Framework of Proposed Approach

In this section, we describe the framework of proposed global integrated

approach of loop and data transformations. First, we will describe our array reference

representation which is based on previous research. Next, we will have a brief

introduction about how to exploit temporal and spatial locality and what is the global

integrated approach. The global integrated approach is further divided into two stages,

the first stage is called local transformation selection stage, and the second stage is

called global transformation decision stage. In the local stage, we exploit temporal

and spatial locality on a single loop nest without considering other loop nests. In the

global stage, we examine selections from the first stage and check whether there are

conflict array layouts or not. If there are conflict array layouts in the program, we

resolve the conflict by a cost function.

 26

Local Loop and Data Transformation Selection

Global Data Transformation Decision

Local Loop Transformation Refinement

Figure 3-1 The framework of proposed approach

3.4 Three Steps of Proposed Approach

ent our integrated approach to enhance data locality in a

single loop nest. This local l

atrix

simu

3.4.1 Local Loop and Data Transformation Selection

oop transformation

concept to explore tem

In this section, we pres

oop and data selection stage is used to produce necessary

information to guild transformations in the next global data transformation stage, this

part only focus on a single loop nest without considering other loop nests. Finally, we

need to do a local loop transformation refinement to adapt global inconsistency.

For a single reference, determining both a loop and a data transformation m

ltaneously is equivalent to solving a non-linear system with some additional

constraints. As mentioned earlier, our approach is based on optimizing temporal

locality using loop transformations and optimizing spatial locality via data

transformations.

We divided this stage into two phases. The first phase uses l

poral locality; the second phase uses data transformation

 27

concept to explore spatial locality.

(1) Temporal locality exploration

Loop transformation can improve both temporal and spatial locality, however, at

this phase we only want to explore the potential temporal locality of loop

transformations. Our framework first finds the temporal locality in the innermost loop

nest for most number of references.

Let the reference matrices of array references in the loop nest be .

Our approach first computes the spanning vectors for the kernel sets of these

reference matrices. Consider all references, from among all spanning vectors, we

choose the one which occurs most frequently. This approach tends to maximize the

number of references for which temporal locality can be exploited.

kLLL ,...,, 21

(2) Spatial Locality Exploration

Data transformation can only improve spatial locality, at this phase, we want to

explore the potential spatial locality of data transformations. A data transformation

matrix we exploited for an array reference implies an associated array layout.

Previous research only exploit spatial locality for array references without temporal

locality, however, our approach exploit spatial locality for all references no matter

they have temporal locality or not. Nevertheless, references without temporal locality

have higher priorities over the references with temporal locality.

We use hyperplane concept to represent array layouts, that is, for any given array

layout, there is an associated hyperplane vector correspond to. To simplify our

discussion, we consider in each loop nest there is a hyperplane vector corresponding

to one optimal array layout. Our search for potential spatial locality starts at the last

nonzero column denotes by , from inner loop to outer loop. Because a zero

column simply implies the array reference corresponding to the loop nest exhibits

temporal locality.

ma

 28

3.4.2 Global Data Transformation Decision

There are many loop nests and data arrays in the whole program, different loop

nests maybe reference the same array; different arrays could be referenced in the same

loop nest. In the previous related work, they do not consider the conflict situation

when the array data layout determined by different loop nest is different.

In this section we discuss the main technique how we extend our approach to

handle the multiple loop nest case. In the local stage, we have found all potential

temporal and spatial locality. However, not all potential locality can exist at the same

time. Our proposed method would use a global array layout solution to avoid conflict

array layout situation, in other words, we do not consider changing array layouts at

run time.

Conflict Array Layouts

The problem of determining of the optimal array data layouts has some factor

which needs to consider separately. Because the effect of a data transformation is

global in the sense that decisions regarding the memory layout of an array influence

the locality characteristics of every part of the program that references the array. So

we need to consider the following situation: layouts of some of the array references

are constrained or fixed. If an array references is fixed, the changing of array data

layout of that array is illegal because this transformation cannot guarantee the result is

correct. If an array reference in a loop nest is constrained by other loop nest, then we

need to decide which array layout will be used.

Resolution of Conflict Situation

If the references to the same array have more than one solution, then a conflict

situation occurs. When there are conflict array layouts, we should make a decision to

resolve the conflict situation. We need to decide which array layout is better. The

resolution is based the following cost function. We use a cost function to analyze
 29

different types of locality and relationship between different loop nests. Among all

local layout possibilities of an array, we choose the one with minimal cost to be a best

choice.

iterationsreft d ×=cos

3.4.3 Local Loop Transformation Refinement

After all array data layout is known, we can further change loop nests to adapt

the data transformations. This phase is necessary because at the first stage we only

adopt local consideration. But if a loop nest has conflict with other loop nests, there

will be at least one loop nest need to be changed due to the conflict results. So we

finalize the transformation task at this phase.

Loop transformations only consider exploiting the temporal locality; the spatial

locality is unknown because the array layout is not decided yet. After we decide the

global array data layout, then we know the spatial locality we can exploit. Finally, we

have completed our approach by the resolution of conflict array layouts due to local

consideration.

 30

Chapter 4 Simulation and Analysis

In this chapter, we present the simulation results of the proposed approach. First,

the experiment methodology and the simulation environment are described. Then the

simulation results and the analysis are presented.

4.1 Simulation Environment

In this section, we discuss the simulation environment including the benchmark

programs, the compiler parameter, and the hardware platform. Our proposed global

integrated approach is implemented by source-to-source translation, in other words,

we restructure the original source code to the transformed form, both them are high

level languages, like C. We use SUIF as our front-end code analyzer and

transformation tool, and GNU C compiler as our back-end code generator. We

performed two types of experiments as follows.

(1) Execution times: Running the applications on a real machine shows that

improving data locality implies increase performance.

(2) Memory hierarchy characteristics: We use a detailed simulation of L1, L2

caches in our systems to show how data locality affects memory

hierarchy characteristics such as cache miss rate.

The complete flow of the compilation presented in Figure 2-1.

 31

Original Source Program (High Level Language)

Proposed Approach

Transformed Source Program (High Level Language)

Compiler

Source-Source Translation

Machine Code

Figure 4-1 Compilation flow of proposed approach

The experiment hardware platform that we used to evaluate our global integrated

approach is an x86 Linux platform. We used a 2.4Ghz Intel Pentium4 processor, with

8KB L1 data cache and 512KB L2 unified cache. The processor equipped with 12K

L1 trace cache. The benchmark programs we used are compiled using GNU C

compiler. The detailed parameters of our platform are given in Table 4-1.

 32

Table 4-1 Platform used in the experiments to measure execution time

Processor Intel Pentium4 2.4Ghz

L1 I-Cache (trace cache) 12K µops 8-way associative

L1 D-Cache 8 KB 4-way associative

L1 D-Cache line size 64 bytes

L1 latency 2 cycles

L2 cache unified 512 KB 8-way associative

L2 cache line size 64 bytes

L2 latency 18 cycles

Main Memory 1 GB

Operating System Linux 2.4.22

Compiler GCC 2.95.3

We use Valgrind as our cache simulator to analyze memory hierarchy

characteristics. The Valgrind distribution includes five useful debugging and profiling

tools including Memcheck, Addrcheck, Cachegrind, Massif and Helgrind. Detailed

cache profiling can be very useful for analyzing the performance of your program.

Valgrind contains Cachegrind which is used as a tool for doing cache simulations.

Cachegrind is a cache profiler. It performs detailed simulation of the I1, D1 and L2

caches in your CPU and so can accurately pinpoint the sources of cache misses in

your code. It identifies the number of cache misses, memory references and

instructions executed for each line of source code, with per-function, per-module and

whole-program summaries. It is useful with programs written in any language.

Cachegrind runs programs about 20 -- 100x slower than normal.

In particular, it records:

 33

(1) L1 instruction cache reads and misses;

(2) L1 data cache reads and read misses, writes and write misses;

(3) L2 unified cache reads and read misses, writes and writes misses.

Cachegrind uses a simulation for a machine with a split L1 cache and a unified

L2 cache. This configuration is used for all modern x86-based machines we are aware

of. The more specific characteristics of the simulation are as follows.

(1) Write-allocate: When a write miss occurs, the block written to is brought

into the D1 cache. Most modern caches have this property.

(2) Bit-selection hash function: The line(s) in the cache to which a memory

block maps is chosen by the middle bits from M to () of the

byte address, where: line size = bytes and (cache size / line size) =

 bytes

1−+ NM

M2

N2

(3) Inclusive L2 cache: The L2 cache replicates all the entries of the L1

cache. This is standard on Pentium chips, but AMD Athlons use an

exclusive L2 cache that only holds blocks evicted from L1.

Because Cachegrind can’t simulate trace cache for L1 I-Cache of Intel Pentium4

processor, we described the parameter we used for Cachegrind in Table 4-2.

 34

Table 4-2 Platform used in the experiments to simulate cache behavior

Processor Intel Pentium4 2.4Ghz

L1 I-Cache 16 KB 8-way associative

L1 I-Cache line size 32 bytes

L1 D-Cache 8 KB 4-way associative

L1 D-Cache line size 64 bytes

L2 cache unified 512 KB 8-way associative

L2 cache line size 64 bytes

Main Memory 1 GB

Operating System Linux 2.4.22

Compiler GCC 2.95.3

We have used several C programs which containing multi-dimensional arrays

referenced by multi-level nested loops have conflict array layout situations to be our

benchmark programs. Because pointer arithmetic constructs in C prevent memory

layouts transformations by compiler, our benchmark would not use this type of

operations to reference data arrays. In order to observe memory hierarchy

characteristics, we evaluate performance of proposed global integrated approach using

benchmark programs with large input size. The detailed information about benchmark

programs are given in Table 4-3.

 35

Table 4-3 Benchmark programs used in the simulation

Program Code Description

Matrix matrix1 2-dim matrix manipulations

 matrix2 2-dim matrix manipulations

 matrix3 2-dim matrix manipulations

FFT cdft2d 2-dim Complex Discrete Fourier Transform

 rdft2d 2-dim Real Discrete Fourier Transform

 ddct2d 2-dim Discrete Cosine Transform

 ddst2d 2-dim Discrete Sine Transform

For each benchmark programs, we experimented with five different versions

summarized in Table 4-4.

Table 4-4 Different transformed version used in the simulation

Version Description

original Compiled without any optimizations

Loop Compiled with loop transformations

local Compiled with integrated approach of pure local consideration

global Our approach: global integrated approach

4.2 Simulation Results and Analysis

In this section, we discuss the simulation results and analyze the execution time

and memory hierarchy characteristics of our proposed approach compared with

previous research.

 36

4.2.1 Execution Times

We present execution time with varying program size in Figure 4-2. The x-axis

represents the problem size from 500 to 2000, the array size is the square of the

problem size, and the execution time is the cube of the problem size. The y-axis

represents the execution time. From the execution results, we observe that the loop

transformations approach and the integrated local approach have similar result;

however, our approach has much better results over the previous research.

0

200

400

600

800

1000

1200

1400

1600

500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Problem size

E
xe

cu
ti

on
 t

im
e

original

loop

local

global

Figure 4-2 Execution time with varying problem size

We show the speedup of our approach and previous research at Figure 4-3. The

results shows that the speedup of our proposed approach is about 26% compared with

approach of loop transformations, but the speedup of previous approach is about 7%.

 37

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

matrix1 matrix2 matrix3 FFT

Sp
ee

du
p

local

global

Figure 4-3 Speedup for the different version of transformations

4.2.2 Cache Miss Rate

The direct effect of improving data locality is to change memory hierarchy

characteristics. The cache hit (miss) ratio represents one metric to quantifying data

locality. We present cache simulator results of some benchmark programs in Figure

4-4. For the original programs, most array reference falls into L1 cache memory,

however, programs with loop transformations exhibit temporal locality in innermost

loops so that the data can place in a register. Our approach further improve spatial

locality by increase cache hit ratio.

 38

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

original loop local global

R
ef

er
en

ce
 p

er
ce

nt
ag

e

Memory

L2 cache

L1 cache

Register

Figure 4-4 Memory reference percentage of different memory hierarchies

Since our global integrated approach only improve spatial locality, both L1 and

L2 cache miss rate is further decreased. The detailed L1 and L2 cache miss rate is

presented in Figure 4-5.

 39

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

10.00%

L1 typical L1 large L2 typical L2 large

C
ac

he
 m

is
s

ra
te

local

global

Figure 4-5 Cache miss ratio for L1 and L2 cache

This figure shows the impact of spatial locality affect only L1 cache miss rate, the

L2 cache miss rate is unchanged. The reason is the size of L2 cache used in

simulation is very large, which is 512 KB.

4.2.3 Simulation Analysis

 We suppose that the speedup of our global integrated approach is based on the

new program exhibits better data locality. The simulation results show that the

transformed program have less L1 cache miss rate, unless L2 cache miss rate

unchanged. Suppose L1, L2 cache memory access latency is 2 and 20 cycles, and L1

cache access occupies 40% memory reference, and proposed approach can reduce L1

cache miss rate from 5% to 2%, then the expect value of each L1 access will be

reduced from 2.9 cycles to 2.34 cycles. That is 20% reduction, and multiply the

frequency 40%, we will get 8% improvement, very approximate to the simulation

 40

results. According to the explanation above, although the locality estimation model is

very simple, but it is accurate.

 41

Chapter 5 Conclusion and Future Works

In this thesis, we present a global integrated compiler framework to improve data

locality. Our approach combines loop and data transformations, based on a new

locality model and simple linear algebra techniques. Our proposed locality model uses

reference distance as a metric of the quality of data locality. To representing data

locality characteristics in a loop nest, we use the concept of a stride vector. Then a

cost function derived from a stride vector is presented to quantify different

occurrences of array references.

Our approach divides the compiler framework into two stages: (1) local

transformation selection stage; and (2) global transformation decision stage. We use

this mechanism to resolve conflict situation of pure local approach. When considering

loop and data transformations simultaneously, our approach specializes in the loop

transformations for optimizing temporal locality. Once the potential temporal locality

is exploited, our approach uses data transformations to exploit potential spatial

locality in a loop nest.

The main difference between our research and previous research is our techniques

focuses on the correlation between different loop nests and between different types of

data locality, in other words, how the integrated approach can be adapted to work with

multiple loop nests. Simulation results shows our integrated approach does make a

difference, and improves over techniques based on pure loop or pure data

transformations. Moreover, the proposed global consideration improves over previous

pure local consideration.

The information required by the compiler to apply our techniques is easily

 42

obtained during dependence analysis, which is performed by almost every optimizing

compiler. Once the information is obtained, our approach uses simple linear algebraic

techniques to manipulate loop nests and array references. This technique can be

applied to any architecture with a memory hierarchy.

There are still several researches could be further studied. An important future

direction is to consider non-linear transformations to restructuring code. The impact

of non-linear transformations merits further investigation. Another important question

is whether or not data transformation can be applied on low level of compilation

process. Transforming memory layouts at code generation phase, not at source level,

is a challenging task.

 43

References

[1] U. Banerjee. Unimodular transformations of double loops. In Advances in
Languages and Compilers for Parallel Processing, edited by A. Nicolau et al., MIT
Press, 1991.
[2] S. Carr, K. McKinley, and C.-W. Tseng. Compiler optimizations for improving
data locality. In Proc. the 6th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 252–262, October 1994.
[3] M. Cierniak, and W. Li. Unifying data and control transformations for distributed
shared memory machines. In Proc. SIGPLAN ’95 Conference on Programming
Language Design and Implementation (PLDI), June 1995.
[4] D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache and local memory
management by global program transformations. Journal of Parallel and Distributed
Computing, 5:587–616, 1988.
[5] M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee. Improving locality
using loop and data transformations in an integrated framework. In Proc.
International Symposium on Microarchitecture, December, 1998.
[6] M. Kandemir, A. Choudhary, N. Shenoy, P. Banerjee, and J. Ramanujam. A
hyperplane based approach for optimizing spatial locality in loop nests. In Proc. 12th
ACM International Conference on Supercomputing, 1998.
[7] M. Kandemir, J. Ramanujam, and A. Choudhary. Compiler algorithms for
optimizing locality and parallelism on shared and distributed memory machines. In
Proc. 1997 Int. Conf. Parallel Architectures and Compilation Techniques (PACT 97),
pages 236–247, San Francisco, CA, November 1997.
[8] S-T. Leung, and J. Zahorjan. Optimizing data locality by array restructuring.
Technical Report TR 95-09-01, CSE Dept., University of Washinton, 1995.
[9] W. Li. Compiling for NUMA parallel machines. Ph.D. Thesis, Cornell University,
1993.
[10] M. O’Boyle, and P. Knijnenburg. Non-singular data transformations: Definition,
validity, applications. In Proc. 6th Workshop on Compilers for Parallel Computers
(CPC 96), pages 287–297, Aachen, Germany, 1996.
[11] A. Schrijver. Theory of linear and integer programming, John Wiley, 1986.
[12] M. Wolf and M. Lam. A data locality optimizing algorithm. In Proc. ACM
SIGPLAN 91 Conf. Programming Language Design and Implementation, pages
30–44, June 1991.
[13] M. Wolfe. High Performance Compilers for Parallel Computing,
Addison-Wesley Publishing Company, 1996.

 44

