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整體式結合迴圈與資料轉換 

以提升陣列資料區域性 

 
學生：沈岳霆      指導教授：單智君 博士 

國立交通大學資訊工程學系碩士班 

 

摘要 
 

今日高效能的電腦都大量的採用多層記憶體階層的概念。在這些機器上，存

取相鄰的記憶體位置將比存取距離較遠的記憶體位置來的快速。因此鼓勵設計者

去改變程式記憶體參考的樣式來增加存取相鄰記憶體位置的機會。人工來重新排

列程式碼需要清楚的了解機器的架構，是緩慢而且容易出錯的工作，同時也減少

了程式的可移植性。因此，使用編譯器來幫助重新排列程式碼是非常值得研究的

課題，特別是針對那些有規則資料存取的程式。 

在這篇論文裡，我們提出了一個整體式結合迴圈與資料轉換的方法來提升資

料區域性，基於一個新的區域性模型與簡單的線性代數的技巧。我們提出的區域

性模型使用記憶體參考的距離來作量化區域性的標準。對於迴圈內陣列特性我們

以跨距向量來表示。然後一個成本的函數就可以從跨距向量導出，以評估程式內

不同的陣列參考特性。 

模擬的結果顯示我們提出來的方法比純粹迴圈或純粹資料的方法有改善。而

且這個整體式的考量也比過去的區域考量來的有進步。 
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Abstract 
 

High performance computers of today extensively use multiple levels of memory 

hierarchies. On these machines, the references to a nearby memory location are faster 

than to a farther location, encourages programmers to modify the references pattern of 

a program so that the majority of references are made to the nearby memory location. 

Manual restructuring requires a clear understanding of the impact of the machine 

architecture, is tedious and error-prone, and results in severely reduced portability. 

Therefore, compiler optimizations aimed at restructuring code have been very 

attractive, particularly for programs that exhibit regular data access patterns. 

In this thesis, we propose a global integrated approach of loop and data 

transformation to improve data locality, based on a new locality model and simple 

linear algebra techniques. Our proposed locality model uses reference distance as a 

metric of the quantity of data locality. To representing data locality characteristics in a 

loop nest, we use the concept of a stride vector. Then a cost function derived from a 

stride vector is presented to quantify different occurrences of array references. 

Simulation results shows our integrated approach does make a difference, and 

improves over techniques based on pure loop or pure data transformations. Moreover, 

the proposed global consideration improves over previous pure local consideration. 
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Chapter 1 Introduction 

 

High performance computers of today extensively use multiple levels of memory 

hierarchies. On these machines, references to a nearby memory location are usually 

faster than references to a farther location. This renders the performance of 

applications critically dependent on their memory access characteristics and 

encourages programmers to modify the references pattern of a program so that the 

majority of references are made to a nearby memory location. In particular, careful 

choice of memory-sensitive data layouts and code restructuring appear to be crucial. 

Unfortunately, the lack of automatic tools forces many programmers need to 

restructure their code manually. The problem is exacerbated by the increasing 

sophisticated nature of applications. Manual restructuring requires a clear 

understanding of the machine architecture, is tedious and error-prone, and results in 

severely reduced portability. Therefore, compiler optimizations aimed at restructuring 

code have been very attractive, particularly for programs that exhibit regular data 

access patterns. 

In this thesis, we propose a global integrated approach of loop and data 

transformations to improve data locality. The type of data transformations includes 

changing memory layouts such as row-major or column major storage of 

multi-dimensional arrays (which are common data structures in regular applications). 

In this chapter, we briefly introduce the locality property of reference, basic 

compiler transformation techniques to improve data locality, and the motivation and 

objective of this thesis. 
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1.1 Locality of Reference 

Over the last decade, the speed gap between processor and memory access has 

continued to widen. Computer architects have tuned increasing to the use of memory 

hierarchies with one or more levels of memory. Almost all general-purpose computer 

systems, from personal computers to workstations of large systems, have a memory 

hierarchy comprising different speed of memory levels. Main memory latencies for 

new machines are now more than hundred cycles. This has resulted in the increasing 

reliance on caches as a means to increase the overall memory bandwidth and reduce 

memory latency. These small, fast memories are only effective when programs exploit 

locality. Data locality is the property that references to the same memory location and 

nearby locations are reused within a short period of time. There are two types of 

locality—temporal locality and spatial locality. Temporal locality occurs when two 

reference refer to the same memory location. Spatial locality occurs when two 

references refer to nearby memory locations. 

Manual restructuring programs in order to improve locality requires a clear 

understanding of the detail of the machine architecture, which is a tedious and 

error-prone task. Instead, achieving good data locality should be the responsibility of 

the compiler. By placing the burden to the compiler, programs will be more portable 

because programmers will be able to achieve good performance without making 

machine-dependent source-level transformations. 

Previous research in compiler generally concentrated on iteration space 

transformations to improve locality. Among these techniques used are unimodular and 

non-unimodular iteration space transformations, tiling, and loop fusion. All these 

techniques focus on improving data locality indirectly as a result of modifying the 

iteration space traversal order. 

 2



Recently, data transformations have been proposed to improve data locality 

because loop transformations are not always effective. Instead of changing the order 

of loop iterations, data transformations modify the memory layouts of 

multi-dimensional arrays (form a language-defined default such as column-major in 

FORTRAN and row-major in C into a desired form). 

 

1.2 Motivation 

Compiler researchers have developed loop transformations that allow the 

conversion of programs to exploit locality. Recently, transformations that change the 

memory layouts of multi-dimensional arrays—called data transformations—have 

been proposed. While loop transformations can improve data locality, are 

well-understood and effective in many cases, they have at least three important 

drawbacks: (1) they are constrained by data dependencies; (2) complex imperfectly 

nested loops pose a challenge for loop transformations; and (3) they affect the locality 

characteristics of all the data sets accessed in a nest, some perhaps adversely. 

Nevertheless, data transformations have some disadvantages. Constructs such as 

pointer arithmetic in C and common blocks in FORTRAN may prevent memory 

layout transformations by exposing unmodifiable layouts to the compiler. A key draw 

back is that data transformations do not improve temporal locality. 

As mentioned above, neither loop nor data transformations are fully effective in 

optimizing locality. For our observation, previous research about integrated loop and 

data transformations did not concern the correlation between different loops and 

between different types of transformations. This means that benefits for a single loop 

nest may sacrifice benefits for another loop nest. If we can consider the effect of 

different transformations globally, we may improve the data locality compared with 
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previous research. 

 

1.3 Objective 

Many scientific programs and image processing applications operate on large 

multi-dimensional arrays using multi-level nested loops. Both changing the execution 

order and the data layout will affect data locality. The loop transformations involve 

changing the execution order of loop iterations. The data transformations involve 

changing the array layouts in memory. Our objective is to find a global integrated 

approach of loop and data transformations to improve array data locality for all loops 

in a whole program. 

 

1.4 Organization of This Thesis 

This thesis is organized as follows. Chapter 2 introduces the background of 

compiler transformations and discusses previous related work on improving data 

locality. In Chapter 3, we describe our global integrated approach in detail. Then the 

simulation environment and simulation results are presented in chapter 4. Finally, we 

summarized our conclusions and future works in Chapter 5.
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Chapter 2 Background 

 

In this chapter, we first introduce the linear algebra representation of array 

references in the loop nests. This representation and linear algebra techniques simplify 

the transformation works. Then the fundamentals of loop transformations and data 

transformations are described. The following sections present related works about the 

integrated approach of loop and data transformations. Finally, we give a comparison 

between loop transformations and data transformations and summarize previous 

researches. 

 

2.1 The Transformation Fundamentals 

The main transformation method of previous research is based on linear algebra 

techniques [9]. In this section we describe linear algebra representation of array 

references and transformation matrices. 

 

2.1.1 Linear Algebra Representation of Array References 

Consider an array reference to an -dimensional array in a loop nest of depth 

. We assume that the array subscript functions and loop bounds are affine functions 

of enclosing loop indices and symbolic variables, which affine functions are the linear 

combination of the index variables plus a constant. Let 

m

n

I  denotes the iteration 

vector consisting of loop indices starting from the outermost loop to the innermost 

loop; each array reference can be represented by 

oAI +  

where the nm ×  matrix A  is called the array reference matrix and the 
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m -element vector  is called the array offset vector. Note that each row of o A  

corresponds to a dimension of the array; and each column of A  gives information of 

array references about the corresponding loop index. In particular, the locality 

behavior of the innermost loop is determined by the last column of A . 

Here we give a program in Figure 2-1 (a) as an example and describe the 

representation of array references in Figure 2-1 (b). 

 

for i = 1, N 

for j = 1, N 

        for k = 1, N 

            X[i][j] = Y[j+k][i][j-1] + 2

(a) An example program

Array reference X Array reference Y 

 

Figure 2-1 An example of the array reference representation 

 

2.1.2 Unimodular Transformation 

If we describe array references in a program as matrices in linear algebra, then 

the transformations applied on a program can be represented as matrices in linear 

algebra, too. Each transformation matrix corresponds to a transformation method. The 

transformation method such as interchanging, reversal and skewing can all be unified 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
0
0

010
001

k
j
i

⎟
⎟
⎟
⎞

⎜
⎜
⎜

⎝

⎛
+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

1
0
0

00
001
110

k
j
i

X[ i ][ j ] Y[ j + k ][ i ][ j - 1 ] 

⎠−⎝1
 

yA     I      o   xA     I     o  x y

(b) Array reference representations 
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by casting them as the linear transformation method. Such a framework allows a 

compiler to perform several transformations in one step. In other words, if we want to 

do more than one transformation at the same time, it is only need to do one 

combination transformation, which is composed of all transformations we want to do. 

Composition of linear transformations is performed by multiplying the transformation 

matrices. These kinds of transformation matrices are all unimodular matrices [11]. We 

give an example of the transformation matrix of unimodular transformations as Figure 

2-2 shows. 

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

001
100
010

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

100
010
001

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

103
010
001

(a) Interchange (b) Reversal (c) Skewing 
 

Figure 2-2 Examples of three types of the unimodular matrix 

 

se three types of transformations are unimodular; that is, the 

transform

-dimensional 

space to ano

ponents, so it maps an integer 

point to another integer point. 

odular matrices is unimodular. 

All the

ation matrices are unimodular. The definition of unimodular transformation 

matrix is the absolute value of the determinant of a transformation matrix is 1. There 

are several characteristics of unimodular transformation matrices: 

(1) The transformations matrix is a square matrix which maps an n

ther n -dimensional space. 

(2) The transformation matrix has all integral com

(3) The product of two unim
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(4) The inverse of an unimodular matrix is unimodular. 

(a) Interchange   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
i
j

j
i

01
10

(b) Reversal     ⎜⎜
⎛  ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞

⎝ − j
i

j
i

10
01

⎝ ji
i

j
i

11
01

(c) Skewing     ⎜⎜
⎛  ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞

 

Figure 2-3 Examples of 2D space using unimodular transformations 

 

The unimodular transformation means that the integer points of the original 

iteration space will be mapped onto integer points in the transformed space (because 

the transformation matrix has integer entries), and the volume of the iteration space is 

preserved (because the determinant of the transformation is 1± ). For a dense 

iteration space, such as a normalized index set, every integer point in the image space 

corresponds to an integer point in the original iteration space. In other words, if the 

original iteration space is dense, so is the transformed space. The 2-dimensional space 

transformations using unimodular transformations are showed in Figure 2-3. 

 

2.2 Loop Transformation 

When optimizing the performance of programs, the most gains will come from 

optimizing the region of the program that requires the most time—the repetitive 

region of the program. These correspond either to iterative loop or recursive 

procedures. Here we concentrate on optimizing loops. For the most part we will focus 

 8



on countable loops, where the trip counts can be determined without executing the 

loop, as opposed to while loops. 

Most presentations of loop restructuring methods focus on the legality and 

benefits of performing a transformation or optimization. The benefits of a 

transformation cannot be determined until the target computer architecture is known. 

Likewise, the legality of a transformation depends on the semantics of the target 

machine and language. Most machines today comprise one or more sequential 

processors connected in some fashion, so we will concentrate on compiling for 

collections of sequential machines. The transformation is legal if it preserves the 

dependence relations. For sequential loops, this means that the dependence distance 

vector must still be lexicographically nonnegative. 

The characteristics of the unimodular matrices explain why we use it as the 

category of our transformations. There are two advantages of unimodular loop 

transformations. First, combinations of multiple transformations can be represents as 

products of the elementary unimodular transformation matrices, so a compound 

transformation is simplified. Second, the legality test of loop transformations is 

simplified to matrix operations, so we can easily examine which transformation is 

legal or not. 

Let a loop transformation be represented by a square non-singular integer matrix 

. Assuming that LT I  is the original iteration vector and ITI L='  is the new 

iteration vector; each occurrence of I  in the loop body is replaced by ' . So 

each reference represented by 

1ITL
−

oAI +  is transformed to 

oIATL +− '1  

Loop transformations for locality are relatively well studied; we will only 

describe the fundamental principle here, for in-depth discussion of several approaches 

 9



can be found in [1][12][13]. 

 

2.2.1 Loop Interchange 

Perhaps the single most important loop restructuring transformation is the loop 

interchange. Interchanging two tightly nested loops switches the inner and outer loop; 

it was developed initially to help with automatic discovery of parallelism. Converting 

a sequential nested loop into parallel form would try to find a loop that carried no 

dependence relations. If one loop carried all the dependence relations, that loop would 

be interchanged to the outermost position, and the rest of the loops would be executed 

in parallel. The transformation matrix of interchanging we give an example as Figure 

2-4. 

for i = 0,N  for j = 0,N 

 for j = 0,N   for i = 0,N 

 

Figure 2-4 An example of loop interchange 

 

2.2.2 Loop Reversal 

The compiler can decide to run a loop backward; this is called loop reversal. If a 

sequential loop carries a dependence relation, revering the loop will reverse the 

direction of the dependence, violating that dependence relation. Thus, loop reversal is 

legal only when the loop carries no dependence relations. The transformation matrix 

of reversal we give an example as Figure 2-5. 

(b) Transformation matrix(a) Original program (c) Transformed program

 U[ i ][ j ] U[ i ][ j ] 

⎟
⎠

⎞

⎝

⎛
01
10
⎟⎜⎜
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for i = 0,N  for i = 0,N 

 for j = 0,N   for j = 0,-N 

 

Figure 2-5 An example of loop reversal 

 

2.2.3 Loop Skewing 

The normalization can change the shape of the iteration space. Because the shape 

of the iteration space changes, as does the dependence distances. It can affect the 

ability to interchange loops. If normalization can prevent interchanging, then perhaps 

unnormalization can enable interchanging. We call this loop skewing. Loop skewing 

changes the iteration vectors for each iteration by adding the outer loop index value to 

the inner loop index. Choosing whether to skew and the factor by which to skew is 

driven by the goal to enable other transformations or to improve parallelism after 

another interchanging. The transformation matrix of skewing we give an example as 

Figure 2-2 (c). 

 

Figure 2-6 An example of loop skewing 

 

(b) Transformation matrix(a) Original program (c) Transformed program

for i = 0,N  for i = 0,N 

 for j = 0,N   for j = i,i+N 

 U[ i ][ j ] U[ i ][ j ] 

⎟⎟⎜⎜
⎠

⎞

⎝

⎛
11
01

(b) Transformation matrix(a) Original program (c) Transformed program

 U[ i ][ j ] U[ i ][ j ] 

⎟
⎠

⎞

⎝

⎛
−10
01
⎟⎜⎜
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2.3 Data Transformation 

Data transformation [8][10] is another approach. Array is a general data structure 

and often seen in most programs because it is a simple and intuitional representation 

of data. Therefore, many scientific programs and image processing applications 

operate on large multi-dimensional arrays using multi-level nested loops. The 

meaning of data in this thesis is equally to array structure. In the following we use the 

term “data” and “array” alternately. 

Conceptually, a data transformation is applied by transforming array subscripts of 

the array reference . Let a data transformation be represented by s square non-singular 

integer matrix . Then each reference represented by DT oAI +  is transformed to 

oTAIT DD +  

Notice that in contrast to loop transformations, the iteration vector does not 

change but offset vector is transformed. 

 

2.3.1 Unimodular Data Transformations 

The data transformations we consider are as same as the loop transformations 

described in section 2.2. We only consider unimodular transformations including 

interchange, reversal and skewing. A similar example which the transformation matrix 

is as same as loop transformation but adopted by data transformation is showed in 

Figure 2-7. There are two advantages of unimodular data transformations. First, the 

array index computation is efficient because in unimodular transformations the 

variable must involve only integers. Second, the transformed data space is equal to the 

original one, so the memory usage is efficient. 
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Figure 2-7 Examples of unimodular data transformation 

 

We can divide the problem of optimizing array layouts into two independent 

sub-problems. First, determining optimal array layouts; and second, determining data 

transformation matrices to implement optimal array layouts. 

Each sub-problem can be solved independently. Previous research offered 

algorithms to handle the first sub-problem where as a few offered methods to handle 

the second problem. In fact, the second problem arises because there is no way of 

specifying the array layouts in conventional languages like FORTRAN and C. 

The main data transformation objective of this thesis is to find the optimal array 

layouts for all array references in the whole program. Once we decide a suitable array 

layout for each array, it is a mechanical process to find the corresponding data 

transformation matrices to implement the chosen layouts. This is the reason to make 

our approach easy to adapt to languages with different default layouts as well as to 

(b) Transformation matrix(a) Original program (c) Transformed program

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
11
01

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−10
01

⎟
⎠

⎜
⎝ 01

⎟⎜
⎞⎛ 10for i = 0,N  for i = 0,N 

 for j = 0,N   for j = i,i+N 

 U[ i ][ j ] Interchange  U[ j ][ i ] 

    for i = 0,N 

     for j = i,i+N 

  Reversal  U[ j ][ i ] 

    for i = 0,N 

     for j = i,i+N 

  Skewing  U[ j ][ i ] 
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have explicit memory layout representations. Next we will describe our representation 

of array layouts, called hyperplane. 

 

2.3.2 Hyperplane Concepts 

We use the hyperplane concepts [6] to represents the layout of an array. In an 

m-dimensional space, a hyperplane can be defined as a set of tuples  

such that 

( )maaa ,...,, 21

cagagag mm =+++ ...2211 , where  are rational numbers 

called hyperplane coefficients and  is a rational number called hyperplane constant. 

A hyperplane vector  defines a hyperplane family where each member 

hyperplane has the same hyperplane vector but a different  value. For convenience, 

we use a row vector  to denote such a hyperplane family whereas 

mggg ,...,, 21

c

( mggg ,...,, 21 )

)

c

( m
T gggg ,...,, 21=

g  corresponds to the column vector representation of the same hyperplane family. 

We say that two data points (array elements)  and  (in a 

multi-dimensional array) belong to the same data hyperplane 

1d 2d

g  if 

  21 dgdg TT =

Two data points  and  are said to have spatial locality for a given data 

hyperplane  if above equation holds for them. 

1d 2d

Tg

For example, in a two-dimensional array space, a hyperplane vector such as 

 indicates that two array elements belong to the same hyperplane as long as they 

have the same value for the column index; the value of the row index does not matter. 

)1,0(

Two data elements may belong to more than one hyperplane as well. For example, 

in a three-dimensional array space, two data elements may belong to a hyperplane 

 as well as to another hyperplane ( 1,0,0 ) ( )0,1,0 . A few possible array layouts and 

their associated hyperplane vectors for two-dimensional case are given in Table 2-1. 
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Table 2-1 Array layouts of 2-dimensional array and associated hyperplanes 

row-major column-major Diagonal anti-diagonal 

(1,0) (0,1) (1,-1) (1,1) 

 

2.4 Integrated Approach of Loop and Data Transformations 

The loop and data transformation is different in many ways. The comparison is 

presented as follows. 

Loop transformation: 

(1) Constrained by data dependences 

(2) Difficulty applicable to complex imperfect nested loops 

(3) The effect is local, only affects the loop nest to which it is applied 

(4) Improve temporal and spatial locality 

Data transformation: 

(1) Not constrained by data dependences 

(2) Easily applicable to perfect and imperfect nested loops 

(3) The effect is global, affects every part of the program that access the array 

(4) Improve spatial locality 

These two approaches are not conflicting, so the combination of loop and data 

transformations is an attractive approach. But determining both loop and data 

transformation matrices are a non-linear problem. We now show that for a single 

reference, determining both a loop and a data transformation matrix simultaneously is 

equivalent to solving a non-linear system with some additional constraints in Table 

2-2. Suppose that the original reference is oAI + , and we would like to apply a loop 

transformation matrix  and a data transformation matrix . Then the 

transformation reference is . Omitting the offset vector part [4], since 

LT DT

oTIATT +− '1
DLD
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both  and  are unknown, determining a suitable  from the locality 

point of view involves solving a non-linear problem, with the additional constraints 

such that both  and  should be non-singular and  should observe all the 

data dependences in the original loop nest. 

DT 1−
LT 1−

LD LTT

DT LT LT

 

Table 2-2 Summary of loop and data transformations 

 

 Transformation 

Matrix 

Array Reference 

Representation 

Change 

oAI +  Original none  

LT  Loop 

Transformation 

Loop iteration 

vector 

oIAT +− '1
L  

DT  oTAIT DD +  Array reference 

and offset vector 

Data 

Transformation 

DL TT &  Integrated 

Approach 

oTIATT +− '1
DLD  Both 

 

2.5 Related Work 

ction we will introduce several previous research topics related to the 

integrated approach, including an exhaus

2.5.1 Exhaustive Search Approach 

This previous work [3] presents a unified approach to locality optimization that 

In this se

tive search approach and a heuristic 

approach. 
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employs both data and loop transformations. The compiler optimizations are based on 

an a

 ratio for 

a gi

data 

loca

ore traditional reuse vectors. Elements of 

the 

lgebraic representation of data mappings, and a new data locality model. 

They consider computers with large main memory and smaller, but faster cache 

memory. Cache hit ratio is one metric for quantifying data locality, but the hit

ven run of a program is a non-trivial function of machine parameters, operating 

system policies, load on the machine and the access pattern of the program itself. 

A more machine-independent metric, which can be used in compilers, is 

reference distance. They use reference distance as a metric of the quality of 

lity. This metric is not as accurate for a given machine as the locality hit ratio, but 

it has the advantage of being relatively independent from machine parameters. 

Reference distance for a given memory access is defined to be the number of distinct 

cache lines accessed since the last access to the same cache line (or 0 if the cache line 

has not been accessed before). The goal of the locality optimization is to decrease the 

distances for critical references. Note that to decrease the distance for some reference 

may lead to increase the distance for others. 

Their approach to representing data locality for different data mappings uses a 

new concept of stride vector instead of the m

stride vector give us information about data locality. If an element is 0, then this 

loop carries temporal locality, if an element is less than the size of a cache line, then 

the loop has spatial locality. So their solution is to find the transformation matrix and 

array layout vector to satisfy AmvTL = . The desired reference vector is presented by 

v  and the array layout vector is presented by m . 

 

.5.2 Heuristic Approach 2

his paper [5] describes an integrated compiler approach to enhance cache 

locality. Their approach combines loop and data transformations, but specializes the 

T
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loop transformations for optimizing temporal locality. Once the potential temporal 

loca

d to determine an order of processing the nests, if a nest is more important 

(costly) than another one, they optimize the more important nest first. Profiling can be 

used

t resolution scheme as discussed in the previous 

hyperplane based approach can be used. 

ations 

and previous research. Loop transformations involve changing the execution order of 

anging the array layout in memory. The 

com

lity is exploited, their approach uses data transformations to optimize available 

spatial reuse in the loop nest. This technique can be extended to work with cases in 

which some subset of the arrays referenced in the loop nest had fixed memory 

layouts. 

Multiple loop nests 

When there are many loop nests in a program, their approach is rather simple. 

They nee

 to determine the estimated cost of a loop nest. After optimizing this nest, it is 

possible that the memory layouts of some of the arrays referenced will be fixed. Then, 

they consider the next important nest and optimize it. Take all the layouts determined 

so far into account, and so on. 

Conflict-free layouts solution 

If the references to the same array in a loop nest span more than one uniformly 

generated set, then a conflic

 

2.6 Summary and Comparison 

This section we summarize the difference between loop and data transform

programs but data transformations involve ch

parison of related work is described in Table 2-3. 

 

 

 18



Table 2-3 Comparison between related works 

 Loop 

Transformation 

Data 

Transformation 

Locality Characteristics Scope Conflict 

Array 

Layouts 

1995 

Exhaustive 

ormaiton 

s 

only 0 and 1 

hange h 

between temporal and 

spatial locality  

Transf

matrix contain

Interc

transformation 

Do not distinguis Local Default 

array 

layout 

1998 

Heuristics 

Unimodular 

transformation 

Unimodular 

transformation 

Temporal locality has 

higher priority than 

spatial locality 

Local Majority

array 

layout 

 

Proposed

approach 

 

 spatial 

 

tion 

Unimodular 

transformation 

Unimodular 

transformation 

Use a locality estimation 

model to quantify 

temporal and

locality 

Global Locality 

estima

model 
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Chapter 3 Proposed Global Integrated Approach 

 

In this chapter, we present our global integrated approach to enhance array data 

locality for whole program. There are four sections in this chapter. The first one is 

problem description, which describes the problem formulation and the difficulty. The 

second part is the basic concept of locality estimation model, including reference 

distance and stride vector. The third one describes the framework of proposed 

integrated approach. Finally, we showed three steps in the framework in detail. 

 

3.1 Problem Description 

The global consideration problem is to decide the array layout which exploits 

most data locality in the whole program. The preferred array layout in the local 

consideration may not identical between different loop nests. 

 

3.1.1 Array Reference Representation 

Consider an array reference to an -dimensional array in a loop nest of depth 

. We assume the array subscript functions and loop bounds are affine functions of 

enclosing loop indices and symbolic variables. Our approach uses the same 

presentation from previous research discussed in Chap 2. An array reference can be 

represented by 

m

n

oAI +  

where I  denotes the iteration vector (consisting of loop indices starting form the 

outermost loop), the  matrix nm× A  denotes the reference matrix of an array 

reference and the -element vector o  denotes an array offset vector. As offset m
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vectors are irrelevant from the locality analysis point of view, for simplify, the 

constant part is ignored. 

 

3.1.2 Temporal locality 

We treat the property of temporal locality as the natural characteristics of the 

program, in other words, it never changes no matter what data transformations applied. 

An array reference in a loop nest could exploit temporal locality if and only if 

{ }Aker∉∅  

Let  denote the first to the last column of inverse of the loop 

transformation matrix, respectively. The innermost loop exhibits temporal locality 

with respect to a reference if 

naa ,...,1

{ }Aan ker∈  

The outermost loop exhibits temporal locality with respect to a reference R  if 

{ }Aa ker1 ∈  

 

3.1.3 Spatial locality 

We view the iteration space of a loop nest of depth  as an -dimensional 

space where each point is denoted by an 

n n

1×n  column vector. Let is now concentrate 

on two consecutive iterations I  and  of a given loop nest of depth . Such 

two iterations have identical values for each loop index except for the innermost loop, 

i.e.,  and 

nextI n

( )Tnn iiiI 11 ... −= ( )Tnnnext iiiI 1... 11 += − . In order to exploit the 

locality for reference denoted by a reference matrix , two consecutive iterations A I  

and  defined above should reference two data elements that have spatial locality 

in the data space. In particular, we want the distance of referenced elements is as close 

as possible so that the possibilities they can reside on the same (or at least neighboring) 

nextI
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block of the same memory level increased. 

We use the hyperplane concept to represent array layouts. The innermost loop 

exhibits spatial locality with respect to a reference (denoted by an  reference 

matrix ) to an -dimensional array, if, for each hyperplane vector 

nm×

A m g  defining 

the memory layout, 

{ }mag ker∈  

where  is the row vector form of the last column of ma A . 

The outermost loop exhibits spatial locality with respect to a reference to an 

-dimensional array for each hyperplane vector m g  defining the memory layout, 

{ }1ker ag ∈  

where  is the row vector form of the first column of . 1a A

 

3.1.4 Integrated Approach 

As previous related work results show, data transformations can only affect 

spatial locality. A key drawback is that data transformations do not improve temporal 

locality. Although loop transformations can affect both temporal and spatial locality, 

but loop transformations mainly focus on temporal locality. The effect of loop 

transformations on spatial locality is based on the default array data layout, i.e., 

FORTRAN is column major, C is row major. 

Our framework first optimized the temporal locality in a loop nest for most 

number of references. It then focuses on exploiting spatial locality for all references 

(including references which have temporal locality) in a loop nest. We pay more 

attention to inner loop than to outer loop. Given the fact that the innermost loop is 

concerned obtaining temporal locality is more important (and better) than obtaining 

just spatial locality, we have improvement over the original programs. 

After each loop nest is analyzed, we can select a local array layout is most 
 22



suitable for the array reference in a loop nest. For a global data array, if array layouts 

selected in all loop nests are all the same, then the solution of global array layout is 

trivial. But if array layouts selected in different loop nests are different, then the 

conflict situation occurs, we use a cost function to decide which layout is better for 

array data locality. 

We divide the problem of improving locality by data transformations into two 

independent sub-problems: 

(1) Determination of the optimal array data layouts that are defined by 

hyperplanes 

(2) Data space transformation matrices to obtain (or implement) the optimal 

layouts 

 Our research mainly focuses on the first problem, finding global array layouts for 

improving data locality. An integrated approach of loop and data transformations has 

great effect on the locality analysis. 

 

3.2 Locality Estimation Model 

We want to optimize programs for execution time. To exploit the memory 

hierarchy, data locality has to be maximized. To simplify our discussion, we only 

consider computers with large main memory and smaller, but faster cache memory. 

Cache hit ratio is one metric for quantifying data locality. The hit ratio for a given run 

of a program is a non-trivial function of machine parameters, operating system 

policies, load on the machine and the access pattern of the program itself. 

A more machine-independent metric, which can be used in compilers, is 

reference distance. We measure how many different data elements are separated 

between two contiguous data reference. We observe that this reference distance can be 
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used to guild program transformations. 

As a locality model, we use the stride vector concept to measure the locality of 

array references in a loop nest. We will show how reference distance and stride vector 

concept to quantify different types of locality, between different loop nests and 

between different array references. 

 

3.2.1 Reference Distance 

The reference distance can be used as a metric of the quality of data locality. This 

metric is not as accurate for a given machine as the cache hit ratio, but it has the 

advantage of being relatively independent from machine parameters. Reference 

distance for a given array is defined to be the number of distinct elements between 

contiguous references to the same array element (or 0 if the array element has not 

been referenced before). 

To analyze the program behavior, we examine all memory reference of the array 

data. Note that to decrease the distance for some references may have to increase the 

distance for others. The goal of the locality optimization is to decrease the global 

reference distance for whole program. 

The definition of reference distance in this thesis is different from previous 

research. Previous definition of reference distance is how many different data 

elements are referenced between two references to the same data. The previous 

concept of reference distance is about the relationship in time domain; however, our 

proposed scheme is concern about the spatial relationship between memory 

references. 

 

3.2.2 Stride Vector 

Our approach to represent data locality for different array layouts uses a concept 
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of a stride vector instead of the traditional reuse vectors. Stride vector is defined as 

array layouts memory reference distance, for a given array layouts, the reference 

distance between two contiguous memory references. Elements of the stride vector 

give us information about data locality. If an element is 0, then this loop carries 

temporal locality, if an element is less than the block size of a memory hierarchy, then 

the loop has spatial locality. 

The stride vector of an array reference can be calculated from the reference 

matrix, the array size of each array dimension, and the hyperplane vector from the 

array layouts. To simplify our discussion, we only consider the array size of each 

dimension is equal, that is, a 2-dimensional array is like a square matrix. 

Let the reference matrix is denoted by an nm ×  matrix ,  the size of each 

array dimension is all equal by , the array layout is denoted by vector 

A

k g , then the 

stride of an array reference can be compute as 

( ) ( )mggg kkkgutVectorMemoryLayo ,...,, 21=  

( ) ( ) nAgutVectorMemortLayogstride •=  

Let the reference matrix is denoted by , the vector of the last column of  is 

denoted by , the hyperplane vector of -dimensional array layouts 

 is denoted by 

A A

ma m

( T
mggg ,..., 21 ) g , the size of each array dimension is denoted by , 

the stride vector of this array reference is denoted by . 

k

S

( )Tggg mkkkS ,...,, 21=  

The locality of an array reference in a loop nest is estimated by: 

( ) ( )gstrideiterationsgAityArrayLocal ×=,  

So the global locality of an array is the summation of locality in all loop nests, 

estimated by: 
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( ) ( )∑=
all

loops

gAityArrayLocalgAyLocalityGlobalArra ,,  

But we need to adjust the quantity score to an inverse ratio so that the higher 

score means the better locality. This is the nature representation. So the locality 

estimation function is presented by 

( )∑
all

loops

gAityArrayLocal ,

1  

 

3.3 Framework of Proposed Approach 

In this section, we describe the framework of proposed global integrated 

approach of loop and data transformations. First, we will describe our array reference 

representation which is based on previous research. Next, we will have a brief 

introduction about how to exploit temporal and spatial locality and what is the global 

integrated approach. The global integrated approach is further divided into two stages, 

the first stage is called local transformation selection stage, and the second stage is 

called global transformation decision stage. In the local stage, we exploit temporal 

and spatial locality on a single loop nest without considering other loop nests. In the 

global stage, we examine selections from the first stage and check whether there are 

conflict array layouts or not. If there are conflict array layouts in the program, we 

resolve the conflict by a cost function. 
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Local Loop and Data Transformation Selection 

Global Data Transformation Decision 

Local Loop Transformation Refinement 

 

Figure 3-1 The framework of proposed approach 

 

3.4 Three Steps of Proposed Approach 

ent our integrated approach to enhance data locality in a 

single loop nest. This local l

atrix 

simu

3.4.1 Local Loop and Data Transformation Selection 

oop transformation 

concept to explore tem

In this section, we pres

oop and data selection stage is used to produce necessary 

information to guild transformations in the next global data transformation stage, this 

part only focus on a single loop nest without considering other loop nests. Finally, we 

need to do a local loop transformation refinement to adapt global inconsistency. 

For a single reference, determining both a loop and a data transformation m

ltaneously is equivalent to solving a non-linear system with some additional 

constraints. As mentioned earlier, our approach is based on optimizing temporal 

locality using loop transformations and optimizing spatial locality via data 

transformations. 

 

We divided this stage into two phases. The first phase uses l

poral locality; the second phase uses data transformation 

 27



concept to explore spatial locality. 

(1) Temporal locality exploration 

Loop transformation can improve both temporal and spatial locality, however, at 

this phase we only want to explore the potential temporal locality of loop 

transformations. Our framework first finds the temporal locality in the innermost loop 

nest for most number of references. 

Let the reference matrices of array references in the loop nest be . 

Our approach first computes the spanning vectors for the kernel sets of these 

reference matrices. Consider all references, from among all spanning vectors, we 

choose the one which occurs most frequently. This approach tends to maximize the 

number of references for which temporal locality can be exploited. 

kLLL ,...,, 21

(2) Spatial Locality Exploration 

Data transformation can only improve spatial locality, at this phase, we want to 

explore the potential spatial locality of data transformations. A data transformation 

matrix we exploited for an array reference implies an associated array layout. 

Previous research only exploit spatial locality for array references without temporal 

locality, however, our approach exploit spatial locality for all references no matter 

they have temporal locality or not. Nevertheless, references without temporal locality 

have higher priorities over the references with temporal locality. 

We use hyperplane concept to represent array layouts, that is, for any given array 

layout, there is an associated hyperplane vector correspond to. To simplify our 

discussion, we consider in each loop nest there is a hyperplane vector corresponding 

to one optimal array layout. Our search for potential spatial locality starts at the last 

nonzero column denotes by , from inner loop to outer loop. Because a zero 

column simply implies the array reference corresponding to the loop nest exhibits 

temporal locality. 

ma
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3.4.2 Global Data Transformation Decision 

There are many loop nests and data arrays in the whole program, different loop 

nests maybe reference the same array; different arrays could be referenced in the same 

loop nest. In the previous related work, they do not consider the conflict situation 

when the array data layout determined by different loop nest is different. 

In this section we discuss the main technique how we extend our approach to 

handle the multiple loop nest case. In the local stage, we have found all potential 

temporal and spatial locality. However, not all potential locality can exist at the same 

time. Our proposed method would use a global array layout solution to avoid conflict 

array layout situation, in other words, we do not consider changing array layouts at 

run time. 

Conflict Array Layouts 

The problem of determining of the optimal array data layouts has some factor 

which needs to consider separately. Because the effect of a data transformation is 

global in the sense that decisions regarding the memory layout of an array influence 

the locality characteristics of every part of the program that references the array. So 

we need to consider the following situation: layouts of some of the array references 

are constrained or fixed. If an array references is fixed, the changing of array data 

layout of that array is illegal because this transformation cannot guarantee the result is 

correct. If an array reference in a loop nest is constrained by other loop nest, then we 

need to decide which array layout will be used. 

Resolution of Conflict Situation 

If the references to the same array have more than one solution, then a conflict 

situation occurs. When there are conflict array layouts, we should make a decision to 

resolve the conflict situation. We need to decide which array layout is better. The 

resolution is based the following cost function. We use a cost function to analyze 
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different types of locality and relationship between different loop nests. Among all 

local layout possibilities of an array, we choose the one with minimal cost to be a best 

choice. 

iterationsreft d ×=cos  

 

3.4.3 Local Loop Transformation Refinement 

After all array data layout is known, we can further change loop nests to adapt 

the data transformations. This phase is necessary because at the first stage we only 

adopt local consideration. But if a loop nest has conflict with other loop nests, there 

will be at least one loop nest need to be changed due to the conflict results. So we 

finalize the transformation task at this phase. 

Loop transformations only consider exploiting the temporal locality; the spatial 

locality is unknown because the array layout is not decided yet. After we decide the 

global array data layout, then we know the spatial locality we can exploit. Finally, we 

have completed our approach by the resolution of conflict array layouts due to local 

consideration.
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Chapter 4 Simulation and Analysis 

 

In this chapter, we present the simulation results of the proposed approach. First, 

the experiment methodology and the simulation environment are described. Then the 

simulation results and the analysis are presented. 

 

4.1 Simulation Environment 

In this section, we discuss the simulation environment including the benchmark 

programs, the compiler parameter, and the hardware platform. Our proposed global 

integrated approach is implemented by source-to-source translation, in other words, 

we restructure the original source code to the transformed form, both them are high 

level languages, like C. We use SUIF as our front-end code analyzer and 

transformation tool, and GNU C compiler as our back-end code generator. We 

performed two types of experiments as follows. 

(1) Execution times: Running the applications on a real machine shows that 

improving data locality implies increase performance. 

(2) Memory hierarchy characteristics: We use a detailed simulation of L1, L2 

caches in our systems to show how data locality affects memory 

hierarchy characteristics such as cache miss rate. 

The complete flow of the compilation presented in Figure 2-1. 
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Original Source Program (High Level Language) 

Proposed Approach 

Transformed Source Program (High Level Language) 

Compiler 

Source-Source Translation 

Machine Code 
 

Figure 4-1 Compilation flow of proposed approach  

 

The experiment hardware platform that we used to evaluate our global integrated 

approach is an x86 Linux platform. We used a 2.4Ghz Intel Pentium4 processor, with 

8KB L1 data cache and 512KB L2 unified cache. The processor equipped with 12K 

L1 trace cache. The benchmark programs we used are compiled using GNU C 

compiler. The detailed parameters of our platform are given in Table 4-1. 
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Table 4-1 Platform used in the experiments to measure execution time 

Processor Intel Pentium4 2.4Ghz 

L1 I-Cache (trace cache) 12K µops 8-way associative 

L1 D-Cache 8 KB 4-way associative 

L1 D-Cache line size 64 bytes 

L1 latency 2 cycles 

L2 cache unified 512 KB 8-way associative 

L2 cache line size 64 bytes 

L2 latency 18 cycles 

Main Memory 1 GB 

Operating System Linux 2.4.22 

Compiler GCC 2.95.3 

 

We use Valgrind as our cache simulator to analyze memory hierarchy 

characteristics. The Valgrind distribution includes five useful debugging and profiling 

tools including Memcheck, Addrcheck, Cachegrind, Massif and Helgrind. Detailed 

cache profiling can be very useful for analyzing the performance of your program. 

Valgrind contains Cachegrind which is used as a tool for doing cache simulations. 

Cachegrind is a cache profiler. It performs detailed simulation of the I1, D1 and L2 

caches in your CPU and so can accurately pinpoint the sources of cache misses in 

your code. It identifies the number of cache misses, memory references and 

instructions executed for each line of source code, with per-function, per-module and 

whole-program summaries. It is useful with programs written in any language. 

Cachegrind runs programs about 20 -- 100x slower than normal. 

In particular, it records:  
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(1) L1 instruction cache reads and misses;  

(2) L1 data cache reads and read misses, writes and write misses;  

(3) L2 unified cache reads and read misses, writes and writes misses.  

Cachegrind uses a simulation for a machine with a split L1 cache and a unified 

L2 cache. This configuration is used for all modern x86-based machines we are aware 

of. The more specific characteristics of the simulation are as follows. 

(1) Write-allocate: When a write miss occurs, the block written to is brought 

into the D1 cache. Most modern caches have this property.  

(2) Bit-selection hash function: The line(s) in the cache to which a memory 

block maps is chosen by the middle bits from M  to ( ) of the 

byte address, where: line size =  bytes and (cache size / line size) = 

 bytes 

1−+ NM

M2

N2

(3) Inclusive L2 cache: The L2 cache replicates all the entries of the L1 

cache. This is standard on Pentium chips, but AMD Athlons use an 

exclusive L2 cache that only holds blocks evicted from L1. 

Because Cachegrind can’t simulate trace cache for L1 I-Cache of Intel Pentium4 

processor, we described the parameter we used for Cachegrind in Table 4-2. 
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Table 4-2 Platform used in the experiments to simulate cache behavior 

Processor Intel Pentium4 2.4Ghz 

L1 I-Cache 16 KB 8-way associative 

L1 I-Cache line size 32 bytes 

L1 D-Cache 8 KB 4-way associative 

L1 D-Cache line size 64 bytes 

L2 cache unified 512 KB 8-way associative 

L2 cache line size 64 bytes 

Main Memory 1 GB 

Operating System Linux 2.4.22 

Compiler GCC 2.95.3 

 

We have used several C programs which containing multi-dimensional arrays 

referenced by multi-level nested loops have conflict array layout situations to be our 

benchmark programs. Because pointer arithmetic constructs in C prevent memory 

layouts transformations by compiler, our benchmark would not use this type of 

operations to reference data arrays. In order to observe memory hierarchy 

characteristics, we evaluate performance of proposed global integrated approach using 

benchmark programs with large input size. The detailed information about benchmark 

programs are given in Table 4-3. 
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Table 4-3 Benchmark programs used in the simulation 

Program Code Description 

Matrix matrix1 2-dim matrix manipulations 

 matrix2 2-dim matrix manipulations 

 matrix3 2-dim matrix manipulations 

FFT cdft2d 2-dim Complex Discrete Fourier Transform 

 rdft2d 2-dim Real Discrete Fourier Transform 

 ddct2d 2-dim Discrete Cosine Transform 

 ddst2d 2-dim Discrete Sine Transform 

 

For each benchmark programs, we experimented with five different versions 

summarized in Table 4-4. 

 

Table 4-4 Different transformed version used in the simulation 

Version Description 

original Compiled without any optimizations 

Loop Compiled with loop transformations 

local Compiled with integrated approach of pure local consideration 

global Our approach: global integrated approach 

 

4.2 Simulation Results and Analysis 

In this section, we discuss the simulation results and analyze the execution time 

and memory hierarchy characteristics of our proposed approach compared with 

previous research.  
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4.2.1 Execution Times 

We present execution time with varying program size in Figure 4-2. The x-axis 

represents the problem size from 500 to 2000, the array size is the square of the 

problem size, and the execution time is the cube of the problem size. The y-axis 

represents the execution time. From the execution results, we observe that the loop 

transformations approach and the integrated local approach have similar result; 

however, our approach has much better results over the previous research. 
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Figure 4-2 Execution time with varying problem size 

 

We show the speedup of our approach and previous research at Figure 4-3. The 

results shows that the speedup of our proposed approach is about 26% compared with 

approach of loop transformations, but the speedup of previous approach is about 7%.  
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Figure 4-3 Speedup for the different version of transformations 

 

4.2.2 Cache Miss Rate 

The direct effect of improving data locality is to change memory hierarchy 

characteristics. The cache hit (miss) ratio represents one metric to quantifying data 

locality. We present cache simulator results of some benchmark programs in Figure 

4-4. For the original programs, most array reference falls into L1 cache memory, 

however, programs with loop transformations exhibit temporal locality in innermost 

loops so that the data can place in a register. Our approach further improve spatial 

locality by increase cache hit ratio. 
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Figure 4-4 Memory reference percentage of different memory hierarchies 

 

Since our global integrated approach only improve spatial locality, both L1 and 

L2 cache miss rate is further decreased. The detailed L1 and L2 cache miss rate is 

presented in Figure 4-5. 
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Figure 4-5 Cache miss ratio for L1 and L2 cache 

 

This figure shows the impact of spatial locality affect only L1 cache miss rate, the 

L2 cache miss rate is unchanged. The reason is the size of L2 cache used in 

simulation is very large, which is 512 KB. 

 

4.2.3 Simulation Analysis 

 We suppose that the speedup of our global integrated approach is based on the 

new program exhibits better data locality. The simulation results show that the 

transformed program have less L1 cache miss rate, unless L2 cache miss rate 

unchanged. Suppose L1, L2 cache memory access latency is 2 and 20 cycles, and L1 

cache access occupies 40% memory reference, and proposed approach can reduce L1 

cache miss rate from 5% to 2%, then the expect value of each L1 access will be 

reduced from 2.9 cycles to 2.34 cycles. That is 20% reduction, and multiply the 

frequency 40%, we will get 8% improvement, very approximate to the simulation 
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results. According to the explanation above, although the locality estimation model is 

very simple, but it is accurate.  
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Chapter 5 Conclusion and Future Works 

 

In this thesis, we present a global integrated compiler framework to improve data 

locality. Our approach combines loop and data transformations, based on a new 

locality model and simple linear algebra techniques. Our proposed locality model uses 

reference distance as a metric of the quality of data locality. To representing data 

locality characteristics in a loop nest, we use the concept of a stride vector. Then a 

cost function derived from a stride vector is presented to quantify different 

occurrences of array references. 

Our approach divides the compiler framework into two stages: (1) local 

transformation selection stage; and (2) global transformation decision stage. We use 

this mechanism to resolve conflict situation of pure local approach. When considering 

loop and data transformations simultaneously, our approach specializes in the loop 

transformations for optimizing temporal locality. Once the potential temporal locality 

is exploited, our approach uses data transformations to exploit potential spatial 

locality in a loop nest. 

The main difference between our research and previous research is our techniques 

focuses on the correlation between different loop nests and between different types of 

data locality, in other words, how the integrated approach can be adapted to work with 

multiple loop nests. Simulation results shows our integrated approach does make a 

difference, and improves over techniques based on pure loop or pure data 

transformations. Moreover, the proposed global consideration improves over previous 

pure local consideration. 

The information required by the compiler to apply our techniques is easily 
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obtained during dependence analysis, which is performed by almost every optimizing 

compiler. Once the information is obtained, our approach uses simple linear algebraic 

techniques to manipulate loop nests and array references. This technique can be 

applied to any architecture with a memory hierarchy. 

There are still several researches could be further studied. An important future 

direction is to consider non-linear transformations to restructuring code. The impact 

of non-linear transformations merits further investigation. Another important question 

is whether or not data transformation can be applied on low level of compilation 

process. Transforming memory layouts at code generation phase, not at source level, 

is a challenging task.
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