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Abstract

Statistical process control is often utilized to monitor an industrial process.
Control charts are important monitoring tools used to determine whether a process is
in a state of statistical control. An exponentially weighted moving average control
chart based on score test statistics to monitor general linear profilesis proposed in this
paper. - The performance of the proposed monitoring scheme is compared with
references through a simulation study.

KEY WORDS: Score test statistics, Exponentially weighted moving average
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1

Introduction

1.1  Motivation

Control charts are important monitoring tools used to determine whether a manufac-
turing or business process is in a state of statistical control. Roberts (1959) proposed an
exponentially weighted moving average (EWMA) control chart which is sensitive to a
small shift in the in-control process mean. The likelithood ratio (LR) test is a statistical
test used to compare the fit of two models.

Monitoring schemes by an EWMA control'chart based on the LR test statistics have
been proposed in the literature, e.g., Zou et al. (2006) proposed an-EWMA control
chart based on LR test statistics for monitoring simple linear profiles with unknown
in-control process parameters and Zou et al. (2007) proposed a multivariate EWMA
(MEWMA) control chart based on LR test statistics for monitoring general linear pro-
files with known in-control process parameters. The LR and score test statistics are
asymptotically equivalent under the null hypothesis. Sometimes, it is easier to evaluate
the score test statistic than the LR test statistie. The in-control process parameters are
usually unknown in practice. We would like to utilize the score test statistics to monitor
general linear profiles by an EWMA monitoring scheme, and then to investigate the

performance of the proposed methodology.



1.2  Literature Review

Statistical process control (SPC) is often utilized to monitor an industrial process.
How to construct a control chart is an important issue in SPC. The control chart is
used to determine whether a manufacturing or business process is in a state of statis-
tical control.

The control chart can be used in both phases I and II. In phase I, some reference
data are collected and ‘analyzed to assess whether they are in control. Then the in-
control process parameters and control limits are estimated from the in-control data
identified from those reference data. In phase II, the process is monitored over time to
see whether it is in control by using control limits. The average run length (ARL) is
usually used to appraise the process performance.

Shewhart (1931) proposed the X control chart which has been used to monitor the
process mean and has good performance for a large sample size or for detecting a large
shift in the process mean.

Page (1954) proposed the cumulative sum (CUSUM) control chart whose perfor-
mance is better than that of the Shewhart control chart in detecting a small sustained
shift in the process mean.

The EWMA control chart was proposed by Roberts (1959) for detecting a small sus-
tained shift in the process mean. Its performance for detecting a small sustained shift
in the process mean is better than that of the Shewhart control chart. As the in-control
process parameters are usually unknown in practice, Jones et al. (2001) investigated the

performance of the EWMA control chart utilizing estimated in-control process param-



eters and derived its run-length (RL) distribution. Castagliola et al. (2006) reviewed
the EWMA control chart for monitoring the process position and variability. Jensen et
al. (2006) reviewed the effect of parameter estimation and proposed some recommen-
dations for future research.

Sometimes, we are interested in the relationship between a response variable and
one or more explanatory variables in the process. Kim et al. (2003) proposed a method
based on three EWMA control charts, where these three charts were used for different
process parameters in simple linear profiles assuming the in-control process parameters
are known. Zou et al. (2006) proposed an LR-based control chart for a change-point
model to monitor simple linear profiles assuming the in-control process parameters are
unknown. Zou et al. (2007)proposed an MEWMA control chart for monitoring general
linear profiles assuming the in-control process parameters are known. Zou et al. (2009)
compared five control schemes for monitoring the process mean subject to drifts. Zou
et al. (2010) proposed a single chart that integrated the EWMA procedure with the
LR test statistics for monitoring both the process mean and variance. Huang (2012)
proposed an EWMA control chart based on LR test statistics for monitoring general
linear profiles.

Kim et al. (2003) proposed three EWMA control charts for monitoring simple linear
profiles as follows: Suppose that data {(x;,v;;) : i =1,2,...,n} are available at time
j =1,2,...,7, where x;s are not all the same and an out-of-control signal occurs at

time 7. The process is called in control at time j if

yz-jzﬁo—i-ﬁlxi—l—asij, z':1,2,...,n, (11)



where ¢;;s are independent standard normal random variables. Model (1.1) is equivalent
to

Y, =0+ Bl +osy,  i=1,2,....n, (1.2)

where B = [y + b1z, By = (1, and =, = x; — T with £ = X" x;/n. At time j, the

least-squares estimator of ), 3] , and ¢ are

and

where y wriables, they

proposed. tl

and

EWMAE(j) = \ | JEWMAR(j — 1), In(0)},

where EWMA;{(0) = 3, EWMAg(0) = 3}, EWMAEg(0) = In(0?), and X is a smoothing
parameter in (0, 1]. Those three EWMA control charts are proposed to monitor 3}, (1,
and o, respectively, using the same in-control ARL for each control chart.

Zou et al. (2007) proposed an MEWMA control chart for monitoring general linear



profiles as follows: Suppose that data (X, y,) are available at time j = 1,2,...,7,
where an out-of-control signal occurs at time 7. The process is called in control at time
jif

Yy =XB+oeg;, j=12,...,71, (1.3)

where gy, is an n x 1 response vector and X is an n x p known model (or design) matrix

of rank p (< n;), B = (b, 51, I"is a known. in-control p X 1 process regression

parameter vector, ¢ . trol positive proce

independent st

e parameter, and ¢;s are

and

where 3; = (X' X' y., 07 ), @ '(-) is the inverse
u fon (¢.d.£.), and Fyz2_ ()
0 ‘:“% = (27 (B), Zi(0))", a

(p+1) x 1 random vector. V’ el in control at time j, Z; is multivariate

function of the

is the chi-squared i [

normally distributed with mean vector O(,41)x1 and covariance matrix

(XTX)™' 0ps1
Y=

0]_><p ].
(p+1)x(p+1)



Then the MEWMA sequence is defined as

where Wy = 0(,41)x1 and A is a smoothing parameter in (0, 1]. An out-of-control signal

occurs at time j if

where L (> 0)
In Sectio A control chart
based o r profiles. In

Section

odology. In

is suggested.



2 An EWMA control chart for monitoring general

linear profiles

In this section, general linear profiles are described and then an EWMA control chart

based on score test statistics is proposed for monitoring linear profiles.

2.1 Mode

Suppose

where y;; i

variable(s), a

-5 1, (21)

where 30, 5 parameters at time
VEORIQ IS ' an unknown positive

process scale parame 5 a y » ' andardized errors.

Example 1: Model (2.

— p—1 -
Yij = Bjo + Bjnwyg + -+ Bjpaxyy; +ojey5 i=12,... 0,



for simple linear profiles if p = 2 or for polynomial profiles if p > 3.

Example 2: Model (2.1) has the form

k k
2 .
Yij = ﬁjO + § ﬁjumiju + E 6juu$iju + § ﬁjuu’xijuxiju’ + 0 Eij, 1= 17 27 ceey Ny
u=1 u=1

1<u<u’ <k

with @;; = (241, ..., 2,)" for quadratic polynomial profiles if k& > 2.

For simplicity of notation, model (2.1) is rewritten as
yj :Xjﬁj—f—O'jZEj, (22)

where y; (= (yj1,¥2, ...,yjnj)T) is an n; X 1 response vector at time 7, X; is an known
n; X p model (or design) matrix of full rank p (< n;) at time j, 3,

(= (BjosBiss -, Bip—1)T) is a p x 1 parameter vector of unknown real-valued process
regression parameters at time j, o; is an unknown positive process scale parameter at
time 7, and ¢;s are independent standardized error vectors with g; ~ Nnj(()njxl, Inj).
Set 6; = (,Bf,aj)T (€ RP X (0,00) = ©), the process-parameter vector at time j. Set

0 = (B",0)" (€ @), the inscontrol process parameter vector:

2.2 Known in-control process parameters without constraint
In this subsection, assume that the in-control process parameter vector @ is known.
The process is called in control at time j if 8; = @ or out of control at time j if 8; # 6.

For model (2.2), the joint probability density function (p.d.f.) of y; at time j is



— X.4.112
[(4:0) = -exp{——”yj X0 }

(2m)mi/207 207
1 (:33' - :Bj)TX]TXj(I@j - ﬂj) + ”1612'
= sy SXP Y — 5 ;
(2m)nil20}’ 207

where (B;, ;)" (= 6;) is the maximum likelihood estimator (MLE) of ; such that Bj

is independent of 7; with

(2.3)
and
(2.4)
Then t
Bl
The corres
and

00"

J

(%j(ej)covg? (8@ 0j)) 0¢;(8;)

06, ) 06,



respectively, where 0¢;(0,)/00; is the score function for 8; at time j such that

04;(0;) _ Xj(y —XiBy) (0 X]TX7>
3,3j 0'J2- P X1 0_]2 9
at;(6;) _ ly; — X8| o X%j Ny
Jdo; a? o o;j

and 0¢;(0;)/0B; is independent of 9¢,(0;)/00;.

When the process is in control at_time j

(2.5)
as nj — 00
2
W = nj
(2.6)
where H;
Hj X;(8; — :3)/032) (2.7)
and
. " U'
— 2
Hjy = 2 U—JQan_p (2.8)

with (8; —By)" X[ X;(8,;—B,)/0; being the noncentrality parameter for the noncentral

10



x; distribution if (8; — B8,)" X[ X;(8; — By)/o7 > 0. Set

o B BIXIXB,-B)

-
g;

Note that the distribution of W; depends only on all of p, n;, o;/0, and ’er. When the
process is in control at time 7, the distribution of W; depends only on both p and n;.

Set

(2.9)

where both Eg.

2.3 own i Cess pe 3 i onstraint

or 6 is known.
In practi 2 1t1ve C ameter o; at
onal occurs, o

should be larger tl b ¢ this subsection,

the process is ecall ~ f ol at time j if 8; # 6
and o; > o . The correspo 0 i : 0

11



where 8; (= (83;,6;)) is given in subsection 2.2 and 0 (= (8", 00)" = (,3;[, max{d;,0})7)

is the corresponding MLE of 8;. The corresponding score test statistic is

= 96(05) (3@(9]')) 0t5(0;)

0;

_045(0) (f%j(ej)) 9t;(0;)

7007 90, 90, 00T %\ 06, 80, oo
= W; — Wy(07), (2.10)
where W; is given in subseetic
‘ 2
with ng De
, (2.11)

where depends only on

all of p, n he process is in

control at tim d n;. Set

(2.12)

where both Eg, (W} )|e,—¢ and Varg, (W5)|e,—e are given in Appendix B.1.

12



2.4  Unknown in-control process parameters without constraint
In this subsection, assume that the in-control process parameter vector @ is un-
known. Assume that the historical in-control process data { Xy, y,} are available. The

relationship between y, and X, is assumed to be

Yy = Xo,@ + g€y, (213)

model (or design) matrix
of full rank p ‘ 0) i ' 0 in-control process
parameter 6 of €1, €9, ..., with
g0 ~ Nyl = 0 or out of

control e

Then the joint p.d.f. o

B = (X5 X)g" Xg gy ~ Ny(B,0* (X5 X)) (2.14)

13



and

b= = XBP [ = XEX) Xl o, g
No Mo ng "

The log-likelihood function for (87, OI)T at time j is

(0;(0,0;) = log [f(yy;0)- f(y;:0;)] = log[f(yy;0)] +log [f(y;;6;)]

ol at time 7 with

(7
- |l — XoB)2 + Iy

Un +nj
no6? + ;6% + (8 — B)" X Xo(B - B) + (B; — B)TXTX,(8, — B)

\/ no—l-nj

no6? + 1,67 + (B; — B)TI(XF Xo) ! + (X]X;) "1 -1(8; — B)

; 2.16
ng + n; ( )

14



and 90y ;(6,6;)/0(6",07)" is the score function for (8",07)" at time j such that

900;(0,0;)  X{(y — XoB) ~ N (0 XTI Xo
B - o2 p | Ypx1, 0_2 )
04,(0,6;) _ 9o — XoBII? _ o Xy = 10
oo o3 o o

0lo,;(6,6;) X/ (y;, — X;B;) ~N, [0, X7 X;
813] 2 p pxLly ’

When the proce

(2.17)

15



where

WO,J
_B-BTXIXB-B) 1 [(B B XIX(B-B) | md® ] 2
- =2 =2 =2 0
o 2ng o o
+ (B] - Bj)TXJTXJ’(Bj - ,Bg) + L (BJ - Bj)TXfXj(IBj - Bg) + "1632' s ;
5?2 2n; 2 a7

(no +n;)(B; — B)T Aoy (B;

’I’l()a'2 + n](?? + (B] -

with

and

16



When the process is in control at time j, the distribution of W, ; depends only on all

of p, ng, n; and p eigenvalues of (XgXO)*1/2XfXj(XOTXO)*l/Q. Set

_ Wo; — Ee.e,(Woi)lo—g 6,4,
Wo
\/ Varg,,(Wo,;)lo—g,0,-4,

, (2.18)

where both Ege,(Wo,;)[g_g0,g, and Vargjgj(WOJ)b:gﬁj:gj do not depend on the un-

known in-control process parameter vector @ and are given in Appendix C.1.

2.5 Unknown in-control process parameters with constraint
In this subsection, assume that the in-control process parameter vector 0 is unknown.
And the positive scale parameter o; at time j (j > 1) is larger than or-equal to the in-
control process parameter o if the process has not been adjusted until time j. Therefore,
in this subsection, the process is called in control at time j if 8; = 6 or out of control

at time j if @; # 0 and o; > o . The corresponding LR test statistic at time j is
2 | 4o;(67,0%) —Loy(0, 53‘)] =2 [fo,j(éa 0,) — (o;(0. éj)] =2 [ﬁo,j(a 0,) — (o;(07,07)

where 6, éj, 6, and éj are given in subsection 2.3, (0%, 07) (= (8%, o*, B, 0})) are

J7 70

the MLE of (0, 6;) under out-of-control status with

XoBI2 + ly; — X;8;]2
Un +nj

: 1{5’j<5‘}7

B* :/éa ocf=¢0- 1{5‘j25‘} + \/Hyo -

17



and

o — XoB1* + lly; — X,8 |2 .
TLO+TLj

1{39‘ <6}~

B; =8, 0] =) Lis,20) + \/|

The corresponding score test statistic is

W(;k,j = WOJ — Wo,j(o*, 0;),

=5 ' 1 _ Lis<6-
(2.19)

epends only on p,

(2.20)

where both Eyg g 9—0.0,0), and Varg g, (Wg j)|0=§,0j— in Appendix D.1.

2.6 Proposed monitoring

The EWMA sequence is defined as

(2.21)
UJE(l—)\)U]_l-I-)\WJ, j=1,2,"',

18



where A is a smoothing parameter in (0, 1], and VT/J = W; in subsection 2.2, or W} = W']*
in subsection 2.3, W; = Wy in subsection 2.4, W; = W;, in subsection 2.5. Then,

standardize the statistic and define the control chart statistic as

Ur= 2120 (2.22)

where

and

for known 6

and

1 896 1+k _kl,VT/,»_kz),

0<ky <ko<j—1

for unknown 6 case. Beca Vi_y, and W; elative, so the calculation of

Cov(Wj_k,, Wj_p,) will be'w ] - are not design matrix. Therefore,

19



here recommend X, and X as

(X \ /X

Xo=1: Xj=1 J =21

X X
\ )(mn)xp \ /(mjn)xp

where X is a nxXp design matri 7 i—k,) will only depend on n, p, m, mj_y,, m;_g,

Out-of-control signal o

where only depend on

ARLy,

by Ty, Mo, ...

for unkn

20



3

A Simulation Study

In this Section, we explain how to simulate the proposed EWMA control chart for
comparison with the Kim et al. (2003) and Zou et al. (2007). Consider the case of
constrained EWMA control chart with known parameters first. If the process is in
control, in equation (2.11), the Hj; follows chi-squared distribution with p degrees of
freedom, Hj, follows'chi-squared distribution with n; = p degrees. Use this property to
generate test statistic and find control limit C.

Step 1 : Choose the specifie ARLy and smoothing parameter A, here given ARL;=200
and A=0.2 and 50,000 simulations, The same assumptions with Kim et al. (2003) and
Zou et al.(2006)

Step 2 : Generate 200 Hj and Hjp, and calculated 200 W7, Uj, and Uy, for j =
1,2,...1200

Step 3 : egi=max{U},U3,..., Usp} -

Step 4 : Repeat Step (2) ~ Step (3) 50,000 times, obtain 50,000 ¢, and make them to
sort (cay < c(2) <ia.. < €E0000))-

Step 5 : Choose the median of the 50,000 ¢ as the control limit. Use this control limit,
make 50,000 time simulation, then obtain 50,000 Run Length, and compute the ARL.
Step 6 : Use bisection method if the ARL > 200 then make control limit as the smaller
¢ in 50,000 ¢, if the ARL < 200 then make control limit as the bigger ¢ in 50,000 c.
Step 7 : Repeat step (5) ~ (6), until the 199.5<ARL<200.5, then obtain-control limit

C.

21



It can be easily generate the out-of-control W} by equation (2.11), and use the con-
trol limit which obtained previously to calculate the out-of control ARL (ARL;) with
50,000 simulations.

Next, consider the case of constrained EWMA control chart with unknown param-
eters. The procedure is same as case of constrained EWMA control chart with known

parameters except the generation of U*. In subsection 2.5, Wy, consists of ,(;‘, ﬁj, o,

and o;, where

and the; nog, N1, ...(J #

j'), and er erate U* through
above prope

We consider the case fi et-al. (2007), the simplest case

of model (2.2) with p = 2 ol paramete Bos 51)T = (3,2)T, o = 1, fixed

22
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4

Conclusions

4.1  Monitoring performance comparisons

Compared proposed EWMA chart with the KMW, ZTW and Huang (2012) EWMA
chart by out of control ARL (ARLy), the ARL; of three control chart with known pa-
rameters are given in Table 5.1~5.3. The process parameter (3, is changed to Gy + dgo,
and (3 is changed to #; +d10 in Table 5.1 and Table 5.2. The ARL; of different ratio
with o and o are presented in Table 5.3.

First focus on the KMW and ZTW, In “Table 5.1 and Table 5:2.  The proposed
EWMA ;¢hart is favorable for-detecting large shift in 5y and (;, but when shift is mod-
erate or small, proposed EWMA chart has.a significant adverse, it maybe cause by the
property of score test and LR test: In the case of large shift or n;, the performance
should be good, on the other hand, the case of small shift and n;, have the opposite
result. The n; is fixed to 4, and n; — p = 2, therefore, this result is not surprising.

In the table 5:3. show that performance in all change case of the proposed EWMA
chart are superior to others chart. In equation (2.7) and (2.8) show that changes of
and £y only affect the H;1, but changes of 0% affect not only H;; but also Hjs, therefore,
the proposed EWMA chart is more sensitive when o shifted.

Table 5.4 presented ARL; with process parameters 8 and o change simultane-
ously. And the unknown in-control process parameters case also presented. When

the m = 125, ARL; performance will be very close the known in-control process pa-

24



rameters case.

4.2  Modify monitoring scheme (1)
In Huang (2012), he proposed an EWMA control chat based on LR test statistic,
it is similar with the method we proposed. It should be similar results in theory, but

according to Table 5.1~5.3, they are a little difference. The HEWMA is better than

proposed EWMA when the 3 shifte is worse than proposed EWMA when the
o shifted.
stic to make it more

Here propea

sensitive

for one-sided case, where a € (0,00). When the process is in control at time j, the
distribution of W; and W depend only on p and n;. The greater a is, and the more

sensitive for the detection of ¢. On the other hand, here needing to a more sensitive

25



detection of 3, and therefore the ARL; performance with 0 < a < 1 are given in Table
5.6 and Table 5.7. When a the smaller, the performance will be almost the same as
with the HEWMA or better. We found very bad performance for the detection of o
shifted in table 5.8. When the emphasis on the sift of 3, we recommend the use this
method, and when the emphasis on the shift of o, we recommend using the methods

mentioned earlier.

4.3  Modify monitoring scheme (2)

In the previous subsection, even the use of the modified statistic 3 shifted ARL;
performance still worse than KMW and ZTW. And think it is (BJ — B)TXJTXj(Bj —
B)/c? terms caused. It makes-all the factors of 3 changes into a single value. Then

propose a improve method. First use the MEWMA Chart. Let

Wo = Opgaxa
le \
agj/aﬁj’(%:@
W, = : B + I =MW, j=1,2,3,---
o1 (Fafj/aaj\ej:g (6£j/8aj|gj:9;0))
Wj,p—l—l

XJ(y; — X;B)/0°
= A +(1—)\)Wj_1,j:1,2,3,---,

v (B, (s = X811/)

26
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where X7 (y; — X;8)/0* and &~ (Fx%j (ly; — Xj,6||2/02)) are not independent but

Covg,—g (Xf(yj - X;8)/0%, & (Fx%j (ly; — Xj:@||2/02)>) = Upx1,

and

A)26-) X Xifo® Opar

.....

.
Uj— A)26-F)
-
\ V!

(4.2)

and the one-sided score

Wj,p+1
A o (1= A2

U*

(4.3)
where a € (0, oo). Similar with before, the greater a is, and the more sensitive for the
detection of o, whereas other is sensitive for the detection of 3. The simulation results

are presented in Table 5.9~5.11.

27



In table 5.9 and table 5.10 shows the simulation results of the @ shifted with two-
sided case. The ARL; performance of the improve method is very close with ZTW and
KMW, and when the constant a is getting smaller even better than their. In table 5.11
shows the simulation results of the o shifted with two-sided and one-sided case. When

constant a = 1, one-sided case more sensitive than two-sided, and the they are better

than ZTW and KMW, but slightly worse than HEMWA. And the greater constant a

od can be seen here in the case

of whether 3 shift o shifted ha O | on detection of shifts in the 3
.

or o by by adjust

is, the worse performance become

nt a.
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5

Future Work

In this paper, the MEWMA performance seems better than the performance of
EWMA based on score test statistics. In future work, it can focus on MEWMA. Con-
sider the nonlinear model. e.g., y; = u;(X;;3;) + o;&;, where u;(- ; -) is a known

function for j =1,2,---. onsider “ error term is not a normal distribution.

A

e.g., t-distribution. ased on score test statistics

will have a good
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Table 5.1: Out of control ARL comparisons between EWMA with known in-control parameters and
constraint case, ZTW, KMW and HEWMA charts for shifts in 5y, where 8; = (8y + o0, b1, )T and
7']-2 =462 for j > 1.

ARL;
do Tj2 EWMA 7ZTW KMW HEWMA
0.1000 0.0400 178.7  131.5 133.7 171.1
0.2000 0.1600 133.1 59.9 59.1 113.1
0.3000  0.3600 86.7 29.6 28.3 67.2

0.6400

Table 5. f control ARL co ith known i parameters and
constraint 2 W, K an n3y,-where 0 0,81 + 610,0)T and

ke \ " 1 896 /.

KMW

HEWMA

o 0750 1624 99.0 101 3.0
\ 1301 574 12.3

0 ln # 77.4

0.0625 ¢ 53.2
0.0750  0.6750 51 16 17.0 35.4
0.1000  1.2000 2%.2 98 103 17.4
0.1250 1.8750 142 69 7.2 9.5
0.1500  2.7000 84 53 5.5 5.8
0.2000  4.8000 36 37 3.8 2.8
0.2500  7.5000 22 29 2.9 1.8
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Table 5.3: Out of co o1 \ in-control parameters and
constraint case , ZTW, K ‘ - ‘ (Bo, Br,60)" for j > 1.
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Table 5.4: ARLs with unknown in-control parameters and constraint case for shifts in 8 with 8; =
(ﬁ;‘r,éa)T and Tj2 =72/52 for j > 1

m=2>5

m =25

m =125 1)

m = 00 1.1 1.1t 112 113 11t 11c 118 117 1a1® 1.1 1.1t 1ttt 1.2
0.0? 200.0 716 319 149 95 53 41 30 21 1.9 1.7 1.5 1.4

200.0 549 202 99 60 39 29 23 19 15 14 1.3 1.2
200.0 50.1 187 94 54 35 27 20 18 14 1.3 1.3 1.2
200.0 49.0 180 89 48 33 25 19 17 13 1.3 1.2 1.2

0.22 189.2 699 285 13.7- 92,.51 39 29 20 20 1.7 1.6 14
1843 520 _198 93 56 3.7,/ 28 23 18 1.5 1.4 1.3 1.2
182.2 471 180 - 89 53 32 25 .20 17 13 1.3 1.2 1.2
178.7+ 442 170 84 41 30 .22 16 14 13 1.3 1.2 1.2

0.42 150.1 -.62.1 273 129 88 49 37 27 20 19 1.6 1.5 1.4
140.1 543 180 9.1 54 35 27 22 17 _ 14 1.3 1.3 1.2
136.8° 49.2 170 85 48 31 25 20 17 13 1.3 1.2 1.2
133.1 40.1 141 79 39 26 20 15 14 13 1.3 1.2 1.2

0.62 999 452 227 109 " 83 "48 35 24 20 2.0 1.5 1.5 1.4
93.7 378 150 84 53 33 26 20 1.7 14 1.3 1.2 1.2
89.1 335...141. 75 46 28 22 18 16 1.3 1.3 1.2 1.2
8.7 308 131 71 34 25 19 15 14 13 1.3 1.2 1.2

0.82 70.2 43.1 209 101 71 41 .33 22 19 18 1.5 14 1.4
58.2 269 129 73 45 28 25 20 16 14 1.3 1.2 1.2
55.1 242 115 6.7+ 38 25 21 1.7 "16 13 1.3 1.2 1.2
534 221 /108 63 .32 23 18 15 14 13 1.3 1.2 1.2

2 |1.0% 50.2 241 139 95 67 40 31 20 18 /16 1.4 1.4 1.4
371 1568 92 60 42 27 23 18 16 /14 1.3 1.2 1.2
33.2 149 79 56 3.7 "247 2016 15/ 13 1.3 1.2 1.2
329 137 6.7 54 30 21 18 15 14 13 1.3 1.2 1.2

1.22 306 142 105 78 58 38 3.0 20 1.8 1.6 1.4 1.4 1.3
25.6 . 10.1 72 51 35 26 21 18 16 14 1.3 1.2 1.2
219 92 64 48 32 23 19 16 15 13 1.3 1.2 1.2
205, 85 .58 44 28 20 17 15 14 13 1.3 1.2 1.1

1.42 224 130 85 64 =50 35 29 19 17 15 14 1.3 1.3
140 88 56 43 33 25 21 16 16 14 1.2 1.2 1.2
122 72 52 42 30 23 18 16 15 1.3 1.2 1.2 1.2
116 69 48 38 26 18 1.v 15 14 13 1.2 1.2 1.1

1.62 129 111 77 55 46 34 28 17 17 15 1.4 1.3 1.3
98 55 47 38 32 24 19 16 15 13 1.2 1.2 1.2
96 53 44 35 29 21 1.7 18 14 13 1.2 1.2 1.2
919 49 40 33 25 17 16 15 14 13 1.2 1.2 1.1

1.82 89 69 5H4 45 38 30 25 16 15 14 1.4 1.3 1.3
66 49 37 32 27 23 21 19 15 13 1.3 1.3 1.2
6.1 45 34 30 25 20 20 1.7 15 13 1.2 1.2 1.2
59 39 32 27 24 1.7 16 15 14 13 1.2 1.2 1.1

2.0? 76 50 42 38 35 29 24 15 14 14 1.3 1.3 1.3
5.5 4.1 3.0 27 2634 19 18 18 15 13 1.2 1.2 1.2
51 38 29 25 24 18 18 16 15 1.2 1.2 1.2 1.1
48 35 28 24 21 15 16 15 14 1.2 1.2 1.2 1.1




Table 5.5: ARLs with unknown in-control parameters case for shifts in @ with 8; = (,BJ»T,(SJ)T and
Tj2 =72/62for j > 1

m=2>

m =25

m = 125 )

m = 00 1.1 1.1t 112 11 114 115 118 117 1% 1.1° 119 1ttt 1.1t2

2.22 5.4 4.3 3.6 3.3 3.1 2.6 2.4 2.1 1.9 1.8 1.6 1.5 1.3
4.1 3.6 2.7 2.3 2.2 2.0 1.8 1.7 1.6 1.5 1.4 1.2 1.2
3.8 3.3 2.5 2.3 2.2 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1
3.6 3.1 2.4 2.1 1.8 1.7 1.6 1.5 1.3 1.2 1.2 1.2 1.1

2.42 4.5 3.8 3.1 2.8 2:6 2.4 2.2 1.8 1.8 1.7 1.5 1.4 1.3
3.5 3.0 2 2 ] 2.0 1 4 1.7 1.6 1.5 1.4 1.3 1.2 1.2
3.2 2.9 2. Y 2.0 1.9 . 1.7 1.5 1.5 1.4 1.3 1.2 1.1
3.0 2.2 2.0 1.9 1.6 1.6 1.6 1.5 1.3 1.2 1.2 1.2 1.1

2.62 4.9 3.2 2.9 2.6 2.4 2.3 2.0 1.7 1.7 1.6 1.4 1.3 1.2
3.2 " 2.1 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.3 1.2 1.2
3.0 2.3 1.9 1.8 1.6 1.6 1.5 1.5 1.3 1.3 1.2 1.2 1.1
2.6 2.0 1.8 1.8 1.5 1.5 1.4 1.4 1.2 1.2 1.2 1.1 1.1

2.82 3.5 3.1 2.4 2.2 2.0 2.0 1.9 1.6 1.6 1.5 1.4 1.3 1.2
2.8 2.1 1.9 1.7 1.6 1.6 1.5 1.4 1.4 1.3 1.2 1.2 1.2
2.4 1.9 1.7 1.6 1.6 1.5 1.5 1.4 1.3 1.3 1.2 1.1 1.1
2.2 1.6 1.5 1.5 1.5 1.4 1.4 1.3 1.3 1.2 1.2 1.1 1.1

3.02 3.2 2.9 2.2 2.0 1.9 1.9 1.8 1.6 1.5 1.4 1.3 1.3 1.3
2.5 1.9 1.7 1.6 1.5 1.4 1.4 1.4 1.3 1.3 1.2 1.2 1.1
2.1 1.8 1.6 1.4 1.4 1.4 1.4 1.3 1.3 1.2 1.2 1.1 1.1
1.8 1.6 1.4 1.4 1.4 1.4 1.3 1.3 1.2 1.2 1.2 1.1 1.1

72 3.2? 2.9 2.7 2.1 1.9 1.8 1.8 1.7 1.5 1.5 1.4 1.3 1.3 1.3

2.1 1.9 1.6 1.5 1.5 1.4 1.4 1.3 1.3 1.2 1.2 1.2 1.1
1.9 1.7 1.5 14 1.4 1.4 1.3 1.3 1.2 1.2 1.1 1.1 1.1
1.7 1.5 1.4 1.4 1.4 1.3 1.3 1.2 1.2 1.2 1.1 1.1 1.1

3.42 2.7 2.1 1.9 1.8 1.7 1.7 1.6 1.5 1.5 1.4 1.4 1.3 1.2
1.8 1.6 1.4 1.3 1.4 1.3 1.3 1.3 1.2 1.2 1.2 1.1 1.1
1.7 1.5 1.3 1.3 1.3 1.3 1.2 L4 1.2 1.2 1.1 1.1 1.1
1.5 1.4 1.3 il 1.3 12 1.2 1.2 1.2 1.1 1.1 1.1 1.1

3.62 2.0 1.7 1.7 1.7 1.6 1.6 1.5 1.4 1.4 1.3 1.3 1.3 1.2
1.6 1.5 1.4 1.4 1.3 1.3 1.3 1.2 1.2 1.2 1.2 1.1 1.1
1.5 1.4 1.3 1.3 1.3 1.3 1.2 1.2 1.2 1.2 1.1 1.1 1.1
1.4 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.1 1.1 1.1 1.1 1.1

3.82 1.7 1.6 1.5 1.5 1.5 1.5 1.4 1.4 1.3 1.3 1.2 1.3 1.2
1.5 1.3 1.3 1.2 1.3 1.2 1.2 1.2 1.2 1.2 1.1 1.1 1.1
1.4 1.3 1.2 1.2 1.2 1.2 1.2 1.2 1.1 1.1 1.1 1.1 1.1
1.3 1.2 1.2 1.2 1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

4.0% 1.5 1.4 1.4 1.4 1.3 1.3 1.3 1.3 1.3 1.2 1.2 1.2 1.2
1.3 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.1 1.1 1.1 1.1 1.1
1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
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Table 5.6: Out of control ARL comparisons between modified (1) EWMA with known in-control
parameters case and HEWMA charts for shifts in §, where 8; = (8o + doo, f1,0)" and 77 = 455 for

Jj=1

Table 5.
paramete
for j > 1.

U

ARL,
do sz a=1 a=0.75 a=0.5 a=0.25 HEWMA
0.1000 0.0400 174.9 173.2 171.8 170.2 171.1
0.2000 0.1600 118.9 117.3 115.8 112.1 113.1
0.3000 0.3600 714 69.7 68.5 67.1 67.2
0.4000 0.6400  40.4 38.9 38.1 38.1
0.5000 1.0000 ) 21.9 22.1
0.6000 . 1.4400 4 13.8

1.8750  10.0
2.7000 6.1
4.8000 2.9
7.5000 1.8

9.5

5.8
2.8
1.7

9.3
5.6
2.7
1.7

6.1
3.4
1.5
1

own in-control
and 77 = 12007
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Table 5.8: Out of control ARL comparisons between modified (1) EWMA with known in-control
parameters case and HEWMA charts for shifts in o, where 8; = (8o, 31,60)7 for j > 1.

ARL,
1) a=1 a=0.75 a=0.5 a=0.25 HEWMA
1.10 138.6 148.1  162.6 179.1 51.1
1.15 1124 126.0 144.0 167.6 30.2
1.20 91.0 105.5  126.9 157.4 20.0

1.25  73.0 87.6  110.9 145.9 14.6
2 9 135.9 11.0

7.0

4.0

2.8

Table 5.9: O control ARL com 0 (2) MEWMA ¥ nown in-control
paramete EWMA, 7 (a KMW cha hifts in Gy, where 6 600, B, 0)".
1 ﬂ L =y -

__unconstraint - H : KMW

131.5

59.1

28.3

16.2

10.7

0.6000 7.5 7.3 7.1 13.8 8.5 7.9
0.8000 4.0 3.8 3.7 6.1 5.8 5.1
1.0000 2.8 2.7 2.6 3.4 4.1 3.8
1.5000 1.5 1.5 1.4 1.4 2.6 2.4
2.0000 1.1 1.1 1.1 1.1 2.0 1.9
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Table 5.10: Out of control ARL comparisons between modified (2) MEWMA with known in-control
parameters case, HEWMA, ZTW and KMW charts for shifts in 31, where 8; = (8o, 81 + d10,0)7T.

ARL,
unconstraint unconstraint unconstraint HEWMA ZTW KMW

01 a=1 a=0.75 a=0.5
0.0250 99.9 98.9 98.2 153.0 99.0 101.6
0.0375 57.3 56.3 55.9 112.3 57.4 61.0
0.0500 34.8 33.9 32.1 774 35.0 36.5
0.0625 22.9 21.5 53.2 23.1 24.6
0.0750 16.0 1 0 35.4 16.4 17.0

0.1000 0 7.4 9.8 10.3
0.1250 6.9 7.2
0.1500 5.3 5.5

3.7 3.8
2.9 2.9

Table 5. nown in-control
parameters case ZTW ax ; 0, B1,00)T for j > 1.
W  KMW
72.8
48.1
33.5
24.9
19.4
12.7
1.60 3.9 4.3 4.8 3.8 4.0 7.0 7.2
1.80 2.8 3.0 3.2 2.4 2.8 4.9 5.1
2.20 1.7 1.8 2.0 1.6 1.8 3.1 3.2
2.60 14 1.5 1.7 1.3 14 2.3 2.5
3.00 1.2 1.3 14 1.2 1.3 1.9 2.1
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Appendix

A.l
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A.2

When the process is in control,

Hj; ~ Xf;

and

40



where

41



B.1

Eo(W}) = Eo(W;) — Eg, (W;(87)),

J

where Eg(WW;) = p+ 1 from Appendix A.2 and

42



min (—jz, 1))
U
_ /nj xT ) r(i—p)/2-1 | p—x/2
0

w) T, —p)j2) 2ot {1— /0 fxzj_,,(w)dw}

2I'((n; — p)/2+ 1) /”J’ 2(i—p)/2+1-1  o—x/2
- ' dr+ [1—Fa. (n
T —p)/2)  Jo T((ng—p)j2+1)-2m-pz"" [ xnj_p(nj)]

Vare(vvjk) arg(W , 2COV0(W/]',VVJ~(0;‘)),

with

43



Here

44

nj—p+

((ny) + [1 — P2 (nj)]

Xn,—p



where
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Here

Eo (Hj {min (ﬁ, 1) — 1] 2)
n;j
n; 7 2
— /0 T (n—J — 1> fxij_p(x)dx

1 [ 9 [ n;
= — x3fxi._ (x)dx — n_/ ?fi2  (x)dx —I—/ rfe  (z)dr
Tl i Jo nj—p 0 n;—p

"5 Jo

with
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C.1

Rewrite Wy ; in section 2.4 as

(Yo — XoB)T Xo(XT Xo) ' XT (yo — XoB)

~2
g;

~ o2
pw—&@W—mﬁ]

Wo,; = =
Jr(yj — X;8)"X;(X]X;) ' X (y; — X;8;)
52
J
%19 -9 2
1[mwa%m|—%a 1
_|__ - -
2np l n;
note that

then

(no + ’I’Lj)3

1 2
S22 + 1les? 112

2
1 2
ng (118 12 + 116 12)

2
e 1% —

2
1 2
2non; (l1s6) 12 + 1167 1)

47

no—l—nj



Let

N
Il

(Xg Xo) ™2 X &0,
Z; = (X Xj)-l/QX}’ &5,

and Zo;Zj%in(OpxlaIp)a

@11 a2

S
Il

- “ZO“2 ~ leo—P

— | Z,]]* ~

and

48



Then

5(();) = g0 — Xo(XI X+ XjTXj)—l(XgeO + ngj)

= g0 — Xo(XI X0+ XfXj)—lﬂZé})

then ||5(%) ||2

= leoll® — 228 (X Xo)/2(XZ Xo + X7 X;) 122}
T Xo) 2 (X X + XTX,) 2201

= Ho+ 120 — (X3 X0)'"(X§ X0+ X[ X)) 237 |P

j
—1/2

X)) 2P

And
)P
where P, is eige T Xo)A(XX; FX0)Y? and
>0
and /\0an cee 7)\0jp are * j Xj)_l(XgX0)1/2, POj =

(Pojla T vPij)7 Pyji; is the eigenve sigenvalue Aoji, k= 1,2,....p.

49



Let

Zoj = (I + Mg PH(XT Xo) ™2 (X3 Xo) ™ + (XT X)) 7]

2
~ Np(Opx1, 1), |1 Z811% = || Zos I

p Z2_

L N 07k
then e I* = Hot || (U + A5 ™22, IP= Ho+ > g —
—1 07k

— Hy+ zp: LT (C.1)
n 0 1+ )\Ojk . '

k=1

And

then

Hence

p
1 2
leS 112 + e 17 = Ho + H; + Y Z85 = Ho+ Hy + [ Zoj|* ~ X2y 1n, p- (C-3)
k=1
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And
(et )" Xo(X5 X0) 7' XF () + ()X (X X)) X (<)
= (X3 Xo) XTGP + (X X5) 72X T2
= 1120 — (XTXo)*(XT Xo + XTX;) 72201
HIZ; — (XTX)VHXT X0+ XTX,) 2250 |12

- _11-1/2 (2
= T X A (X 4 (XTX) ] 20

—-1/2

2 L~ Lx -
h ® o=
p

2
zZ2|

il

\

ZDN? = 11 2 ]1* =

E[Sh

Zgjk. (C.4

P l
N
i

Let

Dy; =
07,p+1 H() + HJ + ||Z0]||2,

Ng—p
2 ’

(DOjOa DOjl, cee :Dij: Doj,p_;_l)T ~ Dirichlet < R 2, 9

DN | —
| =
S
<
|
=

N———

o1



And

ng — p 2n;(ng — p)
(Dojo) no+mn; —p’ ax(Dojo) (no +mnj —p)*(ng +n; —p+2)’
1 2(ng+n; —p—1)
E(Dyjr) = ——, Var(Dy,x) = J Jk=1,2,....p.
(Dose) no+mn; —p (Dose) (no +nj —p)?*(no+n; —p+2) !
n; —Dp 2no(n; — p)
E(Dgjpi1) = —2——— Var(Dyjps1) = : :
(Dojpt1) o +1; —p’ ar(Doj p41) (no +n; —p)2(no +n; —p+2)

Then
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Where

Dy n;
er = E [ Dyjpi1+ =

( 7+ ; 1 +)\0jk: n0+nj

. 1 LA | .
e n] p - n] ) (05)
Notn;—p N0+ 7N;—Pp — Xojk Mo + N
and
p

Doir T
vy = Var (Doj,p.,.l + Z 1 +0>]\0 " — o —Ifn
j j

= Var DOJp+1

Finally, E(V

For convenient,

53

5 \ j case in section 3.




Then

(XIXo)P(XTX) XX = (X X)X X) " (X" X) 2

)\Ojk = _;k:1527"' y D-
m

Hence

where

and the first pa /5 : ethod.

By the book < , we have
m n (
E{ DG DG pia } =

And here can use this method to calculate the second part of Var(1; ;). Finally, we

can calculate the Var(W, ;).
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D.1
Eg(W(;jj) and Varg(Wg‘J)

Eo(Wg,) = Eo(Wo;) — Eo(Wo,;(6°,65))

where Eg(W) ;) is given in appendix C.1, and by equation (2.19) can know

Eo(Wy (0%, 07)

’I’L()’I’l,j(no =T,

1 Hj a1 Hy
ny Ho+H,; >ng Ho+H;

then

_ E(K w) P '(n—z+%)3f<%>

2 2
_ (motmny g (B - 1/ng 1 .
non; T 1o+ 1/ Bi<trmgsimm; |’

]./no - nj
1/n0+ 1/7’Lj N No +’I'I,j

and let

= aj(< 1)
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Then
(no +n;)?
2n0nj

EG(WOJ(O*? 0;)) = Eo ((Bj - aj)2 ’ 1Bj<aj)

and

Eo (B;c ' 1Bj<aj)
B aj mk+(nj_P)/2_1(]_ _ x)(no—p)/Q—l
; /0 I'((nj —p)/2)T ((no — p)/2) /T ((no + n; — 2p)/2))
(no+na—2p)/2) nj—p)/2)
—p)/2)T (k+ l. 2p) /2)

IS

((no —
where F(+). ‘ ' inally, £g(WW; ;) can be

dx

I (k.
- T((ny 1

p)/2)T
I' (A

calculated

where EQ(W()J‘(O*, P
Eo(W5,(67,67)) =

it can be calculated using the previous method. Cov(Wy ;, Wo ;(6*,6;)) is too compli-
cated to calculate, so using the simple covariance to estimate it. Finally, Varg(W(i j)

can be calculated.
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