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Abstract

We introduce a concept of multivariate reference region. This allows
us to construct many types of rotational invariant reference regions.
Simulation studies of efficiency in estimation of unknown multivariate
reference region and power in detection of normal or non-normal subject
are performed. The simulation results show that the techniques introduced

in this paper are desirable.
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1. Introduction

The determination of intervals for reference limits is fundamentally important in
clinical chemistry. The reference interval in laboratory chemistry refers to population-
based reference values obtained from a well-defined group of reference individuals.
It is an interval with two confidence limits which covers the measurement values in
the population in some probabilistic sense. The reference interval tells the physician
if the patient’s measured value is expected in a healthy or ill person or if further
testing is warranted. Review of reference intervals can be found in Horn and Pesce

(2003) and its statistical theory can be found in Huang, Chen and Welsh (2010).

Most medical decisions require consideration of several co-existing pieces of in-
formation, and because such pieces such as blood constituents are often correlated,
the multivariate reference region is more useful than conventional univariate refer-
ence intervals for interpreting clinical laboratory results. It is an uncomfortable fact
that there is a high probability that atleast one result will lie outside its reference
interval when many clinical tests.arearun on a blood sample from a healthy person.
This indicates that a multidimensional point-of correlated observations is likely to
lie within the individual’s multivariate reference region, even when one or more of
the observations lie outside their separate reference intervals for the individual (see

Schoen and Brooks (1970) and Harris, Yasaka et al. (1982)).

Although multivariate reference regions in the practice of clinical chemistry and
laboratory medicine is very important, it has received limited attention in literature
and applications while the ellipsoid method is the most popularly used multivari-
ate one. The lack of a natural ordering for multivariate data makes the existing

proposals of multivariate reference regions more or less ad hoc, hence, most com-
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mon ones do not have parametrized versions and their applications are extremely
limited (Chen and Welsh (2002)). One exceptional example sharing a feature of
parametric version is the rectangular type multivariate reference regions using the
multivariate distribution function (Wellek (2011)). This attempt is valuable in con-
tribution toward multidimentional generalization of reference region. Unfortynately
this approach lacks some desirable geometric properties, e.g., it is not rotationally

equivalent.

Chen and Welsh (2002) and Shiau and Chen (2003) considered a normalization
of the original measurement vector to construct multivariate quantiles and use them
for building methods of statistical inferences for distributional parameters. We pro-
pose multivariate reference region of the original measurement sample space as the
back transformation of a v ‘confidence set constructed fromthe normalized sample
space. This allows us to construct specific rotational invariant'multivariate reference
regions of cube, ellipsoid, rparallelogram, trapezoid or others: This generalization
offers not only the choice of design for any specific distribution but also methods of

efficiency.

2. Multivariate Reference Region

Let X be a bivariate random vector with joint probability density function (pdf)
f(z1,x2). Of interest is how to develop 7 reference region C, for a distribution of
X. Elements of X are generally correlated that makes it difficult in constructing
a rotationally invariant < reference region. The interest in this paper is to de-
velop rectangular or parallel multivariate reference region as an alternative choice

of multivariate reference region.
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Let the population mean of X be py = <Z1> and the population covariance
2
2
matrix of X be ¥ = (:1 ?22 > We consider the transformed random vector
21 2

y = »-1/?% <§1 B Z1> and define a « confidence set Cy in y-space with
2 — M2

C, = {<Z;> tFyt (o) Sy < Fyt(l—a), Fyl (o) <y < Fyl(T—a)}) (21)

where o satisfies y = P{Y € C,} and Fy Land Fy, Lare, respectively, quantile func-
tions of Y7 and Y5. A multivariate reference region is thus obtained by transforming

this region back to the z-space as

=) ()= () - () () een e

A fundamental problem in multivariate statisties is the development of affine
equivariant inference procedure. The-following theorem states that with the refer-
ence region being the back transformation of the 4 confidence set to the scale of
X, our proposal allows the user to design various affine equivariant multivariate

reference regions.

Theorem 2.1. We re-denote the covarianece-matrix, mean vector and v reference
region obtained from vector X by X(X), u(X) and C,(X), respectively. Suppose
that X1/2(AX +b) = AXY?(X) and u(AX +b) = Apu(X)+b. Then the y reference

region is affine equivariant with
Cr(AX +b) = AC,(X) + 0.

Proof. We re-denote the parameters Y, ¥, u, Cy and Cy, respectively by Y (X), £(X),

p(X), Cy(X) and C,(X). Notice that

SV (AX 4+ 0)(AX + b — p(AX 4+ b)) = 27V (X)(X — u(X))
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and Y(AX +b) =Y (X) leading to Cy(AX + b) = Cy(X) so

C(AX + ) :{(”’1) : (”31) = Y/2(AX +b) (g;) + u(AX + 1), <z;> € Cy(AX +b)}

:{(2) : (i;) = ATY?(X) (g;) + Ap(X) + b, (‘Z;) € Cy(X)}

= AC,(X)+b. O

There are many choices in setting of v confidence set C,. We here give sev-
eral choices, some constructed by population quantile functions Fy, 1 and Fy, Loof

interesting v confidence set C:

Upper region Cyy :{<y1> typ > F;ll(oz),yz > F;;(a)},

Y2
Lower region Cp, {<zl> tyr < F;ll(a),yg < F;;(a)},
2
Yy 9 _ _ _
Parallelogram Cp {<y;> : Fyl(a) < g [SFH(1 = o), Frl (o) <o < Fy ' (1 — )},
Ellipsoid Ceytiy {(52) Lyt +ys < Xaks

where x?2 is the o quantile-point of the chicsquare distribution y2(p) and the pa-
rameters a and 7 are chosensuch that.(2.1) helds. The most popular in application
of multivariate reference region is the.vy-ellipsoid which is then a special case in
our design. This allows the user to design various rotational invariant multivariate
reference regions.

The rectangular type v reference region by Wellek (2011) in the form

Crect = {<i;> : F);ll(%) <71 < F);ll(l - qv)vF);gl(qv) < z2 < Fi;(l —ay)}
is not a case of our transformed multivariate reference region. This rectangular
type multivariate reference region does not satisfy any interesting rotational invari-
ant property. In an attempt of power comparison, we hereafter consider only the

parallel, rectangular reference regions and ellipsoid.
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We consider that X has a bivariate normal distribution Na(u,Y) as an ex-
ample for interpretation of three reference regions. By letting p = (0,0)" and
Y= <00211 (;1%2 ), we present pictures Cy, Creet and Ceyip for several o1 and two

01 = 09 in Figures 1 and 2.
Firgures 1 and 2 are here

If we consider smallest volume reference region, then we can expect different
shapes for different distributions. For example, ellipsoid is better than the others
when the distribution is bivariate normal while the result is opposite when the
distribution is bivariate exponential or chi-square. For comparison, we compute
true areas of these three y-reference regions under some specified values of covariate

012. The results are listed in<Table 1.

Table 1. True areas for three bivariate reference regions (1= 2« = 0.9,y = 0.81)

Covariance Ellipsoid Rectangle Parallelogram
ol =0.3

o012 = 0.05 3.09 3.23 3.20

o012 = 0.12 2.87 315 2.98

o012 = 0.15 2.71 3.09 2.81

o012 = 0.25 1.73 2.73 1.79
ol =1

012 = 0.3 9.95 10.64 10.32

o012 = 0.5 9.037 10.29 9.37

012 = 0.9 4.55 8.63 4.72

In this setting of normal distribution, ellipsoid is uniformly better than the parallel

multivariate reference region. The rectangular one is the poorest.

3. Estimations of Multivariate Reference Region

The multivariate reference region can be estimated either parametrically or non-

parametrically. Suppose that we have a random sample <

Xo;

1 =1,...,n from
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f(x1,x2). The parametric method assumes that the underlying distribution f(z1, z2)
is the form fy(z1,z2) with known function f but unknown parameters 6 so that
the population mean, covariance matrix and population quantiles are functions of
parameters 0 such as jig, 3g and Fy. ,19 (71) and Fy, ,19 (72) respectively. Formulation

of the parallel reference region is

() ()= () roe () e o

with
Cy={("):Frl () <m <Fyt(1—a),Fyl (o) <y < Fy' (1—a)}}
Y ys ) W’ =J1 =5y, A CN =92 =5y,

Y

where « satisfies 7 = P{<Y
2

> € Cy}. The parametric estimator of parallel

reference region is

A ol TN T w12 v A
b= (DR (2) () (I e o

with

Y2 1,6 1,6 2.6 2,6

Coo= (1) P @ < < BLAT R @) < < 7 - )

when 0 is an available estimator of . We say that CA’I,@ is the maximum likelihood
estimator (mle) of C, when 6§ is mle of . For some distributions such as normal
distribution, the  confidence set C, is free of parameters and then we let C’pyy = Cy.
We consider estimations of population mean and population covariance matrix
by sample mean and sample covariance matrix as
n n

| Xii & 1 X1i—ﬂ1> <X1i—ﬂ1>/
= - and ¥ = — N . .
. nZ<X2i> nZ<X2¢—M2 Xoi — fi2
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With the transformed sample (YM> = $-1/2 (X” - 'ﬂ“) ,4 = 1,...,n, the em-
Yai Xoj — [i2

pirical distribution functions for Y observations are Fy, (y1) = Ly IV <)

and Fy, (y5) = LS I(Ya; < y2) that allows us to estimate the population quan-

tiles F;ll('yl) and F;; (72) of (2.1) by empirical quantiles ﬁ’;ll('yl) and F;; (v2).

Then estimator of nonparametric multivariate v reference region is

Coww =11 5”1):21/2(*”1) A,(Z/l) Crpoy}- 3.3
D, {<$2> (xz Yo + [ Yo € p,y} ( )

with CA’np,y the estimator of C,, ,, as

Cony =111+ P (@) <00 < B (- ), Bl (@) < < B (L)} (30

Y14
Y2

of (3.2) and nonparametric.estimator-of (3:3) both have unknown quantity of (3.1)

where « is chosen satisfying X7 T (( > € C’npyy) A «y. Parametric estimator
as target for estimation.

Suppose that X; and Xy have distribution functions Fxy,6, and Fx, g, respec-
tively. The rectangular type 7y reference region of Wellek (2011) may be formed

as

T -1 -1 -1 -1
Crect = {<$2> : FXI,QI (q'y) <z < FXI,gl(l_qV),FX%@(q'y) <z9 < FX2792(1_Q'7)}
(3.5)
. X1 .
where constant g, is chosen to fulfill v = P{ P € Chrect}- Suppose that esti-
2

mators él and éQ are available for unknown parameters 1 and #s. The parametric

rectangular type v reference region is

2 1 _ _ _ _
Cp,TSCt B {<‘/B2> : FXllyél (q’Y) S ‘/Bl S FXllyél (1_q7), FX217é2 (q’Y) S xz S FX217é2(1_q7)}-

(3.6)
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If F );11 and F );21 represent, respectively, the empirical quantile functions for variables

X; and X5. The nonparametric rectangular type v reference region is

Coprect = {(2) Pyl 0y) <o S P -a0), By (0) < 02 < P (1 -0}
where g, satisfies v ~ =37 I(ﬁ;ll(qv) <z < );11(1 — qv),f?);;(qv) < g <
Fel(l—gy)}

In practical application, parametric estimation of multivariate v reference region
needs first derive the explicit forms of C), ,, and C), , for implementation of imposing
estimate 0 into the equations for regions. However, the nonparametric estimation

of multivariate v reference region isgiven in straight way requiring only quantiles

Fyt, Fytand (4, %)

4. Efficiency Evaluation for Estimators of Multivariate Reference Re-
gions
Now, suppose that random sample (?“) yi =1,../nis drawn from the bi-
2%

variate normal distribution N3 (g, 2).. The parametric type unknown multivariate

reference region is C of (2.2) with

4,149 1, 1+6 .
Cy:{<ggj;> =P 1(T)§y]§q) 1(T)7J:172}

where ®~! represents the quantile function of the standard normal distribution.

Hence, C), is a known region without need of estimation and the mle of C, is

Coo=1{""): “):2W<“> A<“>ec 4.1
P, {<l‘2> (CL‘z Y2 i Y2 p’y} ( )

since estimator of § = {u, X} is 6 = {fi,, 5} of (3.2). It is interesting to compare

parametric and nonparametric estimators C,, 5 of (4.1) and Cpyp. 5 of (3.3).
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We further denote p = (1, u2)’ and let o2 and o3 be variances of X; and X,

respectively. The rectangular reference region is

X _ _
Cp,rect :{<$;> P pr+ ® 1(%)01 <z <+ o 1(1 - q'y)o-l,

pz + 7 (gy)og < < g + D71 — ¢y) 02}

where ¢., satisfies v = P{ (?1 > € Cp rect} with estimator
2

A T N _ N ~ — N
Cp,rect :{<$;> D+ d 1(q'7)0'1 <z <11+ P 1(1 - Q7)017

fiz + @ (qy) 02 < m< il DT (1 — )52} (4.2)

With nonparametric estimates (3.3)-and (3.7) and parametric estimates (4.1) and
(4.2), we set 1 — 2« = 0.9 and replications m = 10,000 to generate random sample

2
of size n from normal distribution Na( < 8) . (;1 ?22 > ) and we denote the areas
21 2

of jth parametric and nonparametric estimate of parallel reference regions by A;{;,m

j . J J
and A}, . and those of rectangular reference regions by A; ... and Ay, ... We

then have averaged areas as

m m

1 1 1 &
_ Z j _ Z j _ Z j
AP@ - m Ap,:m Anp,ac m Anp,ac? AP;T@Ct m 4 1Ap,1"ect
]:

1 m
_ § : J
and Anp,rect - Anp,?“ect'
m 4 1
J:

The simulated results of these averaged areas are dispalyed in Table 2.

Table 2. Simulated averaged areas of four multivariate reference regions (o1 = 1)
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J19 n = 30 n = 50 n = 100
012 — 0.3
A, £(10.32) 9.647 9.915 10.11
App s 9.795 10.01 10.19
Ap rect(10.64) 9.450 9.809 10.39
App rect 13.12 12.22 11.21
012 — 0.5
Ay £(9.372) 8.737 8.973 9.183
Appoa 8.873 9.068 9.260
Ap rect(10.29) 9.126 9.450 10.06
App rect 11.97 11.39 10.92
012 — 0.7
A, (7.728) 7.220 7.416 7.579
Anpoa 7.346 7.491 7.638
Ap rect(9.696) 8.633 8.925 9.484
App rect 11.03 10.53 10.29
g19 = 0.9
Ay - (4.717) 4.396 4.537 4.618
Anpoa 41463 4.582 4.653
Ap rect(8.631) 7.597 7.928 8.430
App rect 10.20 9.277 9.148

We have conclusions for the results in Table 2:

(a) The parametric reference region estimator, parallel or rectangular, have areas
mostly smaller than nonparametric reference region estimator. Hence, we propose

to apply the parametric reference regions when the underlying distribution is known.

(b) When 012 = 0.5 and 0.9 the parallel reference region estimators, parametric
or nonparametric, has area smaller than it of the rectangular reference region es-
timator. This show that we should apply the parallel reference region when the

covariance o9 is large.

Table 3. Simulated averaging areas of four multivariate reference regions (o3 = 0.3)
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J19 n = 30 n = 50 n = 100
012 — 0.05
A, (3.201) 2.986 3.075 3.134
Anpoa 3.034 3.116 3.158
Aprect(3.232) 2.865 2.983 3.158
App rect 4.084 3.776 3.399
012 — 0.12
Ay £(2.975) 2.776 2.859 2.919
App.o 2.816 2.884 2.942
Ap rect(3.147) 2.792 2.903 3.083
App rect 3.767 3.557 3.353
012 — 0.15
A, .(2.811) 2.610 2.799 2.757
Anpoa 2.653 2.803 2.774
Ap rect(3.090) 2.730 3.080 3.019
App rect 3.586 3.112 3.286
012 — 0.25
Ay »(1.794) 2.633 2.703 2.756
App.o 2671 2.731 2.775
Ap reet(2.729) 2.750 2.843 3.017
Apprect 3.596 3.434 3.284

Again, nonparametric parallel reference region estimator has-area smaller uniformly
than the nonparametric reetangular reference region estimator: For larger 15 (0.12,
0.15, 0.25), the parametric parallel reference region estimator has uniformly smaller

area than the parametric rectangular reference region.

Next, we evaluate the efficiencies of these four estimators by computing simulated

mean squares errors as

1 &N 1 «—
MSE, = — > (A7, = Ap,)% MSEn, = — 3 (A7, — A),)°

np,r
j=1 j=1

1 m
0
MSE p,rect — E , p,Tect rect) ) MSE”P rect — E § : np,?“ect Arect)

where A)  and AJ,, are areas of true regions A, , of (4.1) and Checs of (3.5).

s L rec

Table 4. Mean square error for (parallel) rectangle reference regions
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g12 n =30 n = 50 n = 100
O'% = 0.3,0’12 =0.05

MSE,, 0.362 0.212 0.103

MSE,,, 0.496 0.300 0.158
MSE,, cct 0.590 0.351 0.170
MSE . rect 2.522 0.948 0.216
012 — 0.12

MSE,, 0.323 0.185 0.088

MSE,,, 0.436 0.260 0.133
MSE,, cct 0.597 0.353 0.168
MSE p rect 1.863 0.772 0.242
012 — 0.15

MSE, 0.281 0.015 0.081

MSE,,, 0.380 0.023 0.122
MSE, rcct 0.586 0.033 0.174
MSE p rect 1.439 0.034 0.252
g19 = 0.25

MSE, 0.275 0.168 0.079

MSE,,, 0.377 0.240 0.120
MSE, rcct 0.455 0.320 0.248
MSE . rect 1.947 10060 0.515

o1 = 1,0’12 =0.3

MSE, 3.733 2.204 1.070

MSE,,, 5.105 3.180 1.608
MSE, rect 6.498 3.977 1.882
MSE p rect 24.91 9,775 2.455
012 — 0.5

MSE, 3.140 1.823 0.921

MSE,,, 4.330 2.546 1.369
MSE, rect 6.411 3.942 1.951
MSEp rect 16.15 7.158 2.627
012 — 0.7

MSE,, 2.137 1.267 0.613

MSE,,, 2.929 1.811 0.914
MSE,, ;ect 6.238 3.939 1.909
MSE,p rcct 11.20 5.623 2.495
012 — 0.9

MSE,, 0.804 0.457 0.220

MSE,,, 1.095 0.663 0.330
MSE,, ;ect 5.820 3.580 1.719
MSE.p et 11.39 4.474 2.245

We have two conclusions for the results in Table 4:

(a) Parametric parallel reference region has MSE’s uniformly smaller than other
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three versions. This supports to apply the parametric parallel reference region
when the distribution is known normal.

(b) The nonparametric parallel reference region has MSE’s uniformly smaller than
the nonparametric rectangular reference region. This then supports to apply the

nonparametric parallel reference region when the distribution is unknown.

5. Evaluation of Error Probabilities for Estimators of Multivariate Ref-
erence Regions

Laboratory test results are commonly compared to a reference region (interval)
before caregivers make physiological assessments, medical diagnoses, or manage-
ment decisions. An individual who is being screened for a disorder based on a
measurement is suspected to.be abnormal if his/her measurement value lies out-
side the reference region. The reference region plays exactly the role of acceptance
region in hypothesis testing. Hence, the quality of a reference region relies on its
accuracy in detection of abnormality that can be studied with the probabilities of
two types of error.

With estimates CA’p,;lc and CA’npym, the type 1 error probabilities with parametric es-
timation and nonparametric estimation from repeated samples <X1i> =1,k

Xoi

are defined as
k
1 X1 X1 A
pg,ev“r1 - E ZI((X;) € Cp,z, (X;) € Cp,m)
i=1

k
1 X X, N
0 1 1
pn,errl = E 21[(<X2:> S CP,Ia <X2:> € Cnp,iﬁ)
1=
with p? the parametric estimation and p? the non-parametric estimation.
pp,errl p pn,errl p

This measures the probability that the individual is expected to be identified nor-

mal since the measurement is truely lies in true reference region but actually this
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measurement falls out estimate CA’p,m and CA’np,m. Now, if we have m replications in
generating estimates CA’p,z and CA’np,m, we have errpr probabilities estimates p;,errl
and pfhewl, j =1,...,m. We then have averaged estimates of error probabilities as
pp,errl — E Zp;,err]j and pn,errl — E Zp‘zl,er'r]_'
J=1 J=1
Considering the parallel reference region only, results of the two error probabilities

from a simulation study under the normal distribution are displayed in Table 5.

Table 5. Type 1 error probabilities for parallel reference regions (k=m=10,000)

g12 n =30 n = 50 n = 100
0'% = 0.3,0’12 = 0.05

Pperri 0.073 0.050 0.032

Pn,err1 0.091 0.064 0.042
012 — 0.12

Pperri 0.073 0.050 0.031

pn,erv“l 0.091 0.065 0.042
012 — 0.15

Pp,err1 0.074 0.051 0.031

Pnerrl 0.092 0.065 0.042
012 = 025

Pperri 0.072 0.050 0.031

Pn,err1 0.091 0.064 0.042

O'% = 1,0'12 =0.3

Pperri 0.073 0.050 0.031

pn,erv“l 0.091 0.065 0.042
012 — 0.5

Pp,err1 0.073 0.051 0.032

Pnerrl 0.091 0.065 0.042
012 = 07

Pperri 0.073 0.051 0.031

Pn,errl 0.091 0.065 0.042

Two conclusions are available for the results in Table 5:
(a) Two error probabilities achieve smallest when the sample size is 100, the largest
one.

(b) The error probabilities under parametric estimator is uniformly smaller than
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that under the nonparametric estimator.
The type 2 error probabilities with parametric estimate CA’p,z and nonparametric

estimate é$ are defined as
1~ (X X
Li A Li
Pperra = 7 ZI((X%) € Cpas <X2i) ¢ Cp.a)
i=1

k
1 X1; A X1,
0 12 1z
= — E I .
pn,errZ k P (< Xﬂ) S Cnp,za < X2i> ¢ C ,:E)
The average estimates of these two error probabilities in m replications are

m m
1 ; 1 S v
DPp,err2 = m § Dp,err2> and pp erry = m Pnerr2-
j=1 J=1

where piﬂm and pfhewg represent the estimates of p .., and p) .., at jth repli-
cation. The simulated results for this type 2-error probabilities are displayed in

Table 6.

Table 6. Type 2 error probabilities (k=m=10,000) (o1 = 1)

012 n =30 n =50 n = 100
012 — 0.3
Dp 0.024 0.021 0.017
Dnp 0.031 0.027 0.023
Pp,rect 0.020 0.017 0.017
Pnp,rect 0.057 0.047 0.030
012 — 0.5
Dp 0.023 0.021 0.017
Dnp 0.030 0.027 0.023
Pp.rect 0.019 0.017 0.017
Pnp,rect 0.049 0.041 0.031
012 — 0.7
Dp 0.024 0.021 0.017
Dnp 0.031 0.027 0.023
Pp,rect 0.019 0.016 0.016
Pnp,rect 0.044 0.037 0.029
012 — 0.9
Dp 0.023 0.021 0.017
Dnp 0.030 0.028 0.023
Pp.rect 0.017 0.016 0.015
Pnp,rect 0.045 0.033 0.026
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We have several comments on the results in Table 6:
(a) Parametric rectangular reference region is generally better than the parametric
parallel reference region.
(b) When we consider a nonparametric estimation, the parallel reference region
estimator is more powerful than the rectangle reference region estimator.
(c) Since T err2 = 1 — Pp err2 and Ty erp2 = 1 — Py erra are considered the powers in
detection of abnormality, four reference regions are satisfactory since their powers

are all larger than 0.9.
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Figurel. Pictures of three bivariate reference regions o} =’ =1
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Figure2. Pictures of three bivariate reference regions o7 =o? =0.3
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