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A Statistical Study of Interactions

Student: Jia-Rong Chang Adviser: Lin-An Chen

Institute of Statistics
National Chiao Tung University

SUMMARY

We introduce the statistical formulation of isobole and use it to formulate
synergistic interaction effect and antagonistic interaction effect. Point estimation
of isobole is also introduced and simulation study for power of identification of
interaction through this point estimator has been performed.

The simulation results show that this approach is statistically satisfactory.
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1. Introduction

The toxicological research has long been devoted to assess the risk with
exposure to single chemicals in the environment. However, organisms are
rarely environmentally exposed to single chemicals in isolation. More typ-
ically, exposures occur to multiple chemicals simultaneously. It has long
understood that the behavior of one chemical in the body is affected by
other chemicals. Recently most researches in the literature have been in-
vestigated on the important area of toxicology of mixed chemicals. One
very important study in chemical mixtures is the detection for existence
of interactions and characterization of an interaction being synergistic or

antagonistic effect.

There is widespread confusion about the concept and methods for eval-
uating a possible interaction in biological or environmental system. Among
the popular approaches, analysis of variance (ANOVA) is designed with re-
striction of zero sum interactions between levels. This technique can detect
the existence of interactions, however, there are no descriptions of signs and
magnitudes of the interaction to be given. The linear regression approach
considers the presence of interactions when product terms z{'z3’ existed
in the statistical model that is criticized for several grounds (see Rothman
(1974), Rothman, Greenland and Walker (1980) and Geenland (1993)). For
one concern, the presence or absence of interaction with the usage of linear
regression practically depends on the model one chooses. Hence, it often
happen in analyzing one real data that interaction exists when one model is
applied but not exist when the others are used. For another concern, Maud-

erly and Samet (2009) pointed out that statistical tests for the presence of

interaction have low statistical power.

The isobologram, popularized by Loewe (1928, 1953), is presently the
most widely used method as an alternative method for the study of chemi-
cal or biological interactions. An isobole forms a dose-response relation for
chemical mixtures to obtain the same effect. Results of chemical mixtures
are considered to be performed through deterministic experiment (Beren-
baum (1981), Rider and LeBlane (2005), Ei-Masri, Reardon and Yang (1997)).

Typeset by ApS-TEX



Unfortunately this very convincing technique require experimental iterations
which is not only labor extensive and require a large number of animal ex-
periments. Efforts of mathematical formulation for isobole has been done
by many authors (see, for examples, Ei-Masri, Reardon and Yang (1997),
Lam (1993) and Suhnel (1992)). Incorporating the experimental variation,
response surface model has widely been applied for isobole study (Greco,
Bravo and Parsons (1995), Sorensen et al. (2007)). This requires models for
various chemical mixtures again sharing the disadvantage of experimental
labor cost. To get rid of these disadvantages, we consider an isobole of in-
terest as an unknown (unique) curve in terms of parameters of distribution
of response and independent variables.

The aim in this paper is modeling the isobole from a probability distri-
bution involving the chemical variables and response variable. This draws
us a mechanism to define the so-called zero interaction through concept of
statistical independence and use it to present interactions. Modeling the
interaction under the normal distribution is introduced in Section 2 and
methods of detection of interaction and power simulation of these methods
are provided in Section 3. Analyses of two real data sets are given in Section
4.

2. Statistical Model for Isobole and Interaction Analysis

We consider two chemicals A and B for study of their combined effect.
In experiment, each combination (z1,z2) of dosages of A and B generates
a combined effect y,, 5,. The plot of magnitude of combined effect as a
function of dosages of two chemicals is a three dimensional surface. The
plot of dosages of two chemicals that produces a fixed single point of effect
magnitude (effect level) is a two dimensional curve, called an isobole. Isobole
may forms a straight line or other curves. Given an effect level £ and choosing
the two end points (x1,0) and (0, z2.) such that yz,, 0 = Yo,2,, = ¢, the

following straight line

IBO(E):{<( a$1)e >;oga§1} (2.1)



is called the “line of additivity” or the no-interaction isobole. Now, an
isobole is the curve of combination (x1,x3)’s of equl effect £ as

IB(¢) = {(“) Yo ay = Ly > 0,35 > 0}, (2.2)

X2

the sizes (1, z2) of chemicals A and B that produce equal effect £. Roughly

it is conjectured that there are three types of isoboles showing in Figure 1.
Figure 1 is here

We say that there is synergistic effect if the isobole lies below the line of
no-interaction and there is antagonistic effect if the isobole lies above the
line of no-interaction.

Systematic effect investigation of chemical mixtures is usually done through
laboratory study to control the combined effect without uncertainty. This
suffers the construction of isobole with requiring a very large number of
combinations in experiment and is not practical to investigate interaction
effect when uncertainty through other:uncontrolled factors exists in the en-
vironment or workplace (Ei-masri, Reardon and Yang (1997)).

We consider statistical approach of isobole that allows the combined effect
with uncertainty from uncontrolled factors. Let X; and X5 be independent
variables representing magnitudes of chemicals and Y be the response vari-

able with normal distribution as

2
Y Hy Oy Oyl Oy2
2
X1 )| ~N(|l pr )| o1y 0F o12]))
2
Xs M2 O2y 021 O3

With statistical model, the mean combined effect is represented as the con-

ditional mean given X7 = z; and X9 = 29 as

2 -1 .
(w1, w2) = piy + (0y1,0y2) ( o1 0122> (xl M1> : (2.3)

021 O35 T2 — M2

Given value /, the effect level Z isobole is defined as

150 = (11 ) ntosa) = ).

T2



In the classical isobole study, effect level £ may be determined by the analyst
when the experiment of sampling is done in laboratory. But in environment
study, it is determined by distributional parameters, generally unknown.
Extended from the classical isobole of (2.1), we solve statistical isobole’s
endpoints by solving x1, = x1 and 9y = x5 from p(x1,0) = (0, x4) = £ for

x1 and x4 given that

2 2 2 2
Oy207 — O0y1012 01059 — O
_ “Yy2%1 y 192 12
T1e = D) M2 + 5 (0 — py) + 1
Oy109 — 0y2012 Oy109 — 042012
and (2.4)
2 2 2 2
Oy105 — 042012 0105 — O
yl192 Y 192 12
Tog = D) 1+ 5 (€ — py) + po.
O0y201 — 041012 O0y201 — 0y1012

We then have derived a statistical isobole.
Theorem 2.1. With z1, and x5, in (2.4), an isobole is a straight line that
may be represented as

IB(f) = {<( e ) :0<a<1}. (2.5)

1 —a)xay

We say that this isobole contains combinations (i; > — ( a ix;)zng > ,0<
a<1.

The definition of synergism and antagenism depends on how the concept
of no-interaction is defined. Among the three basic criteria (summation,
independence and isobole) of interaction evaluation (Suhnel (1992)), we are
allowed to joining with this isobole approach with the independence ap-
proach that, under the normal assumption, the no-interaction (zero interac-
tion) isobole is the one with 012 = 0. By letting x199 = 1, and x99 = 2

in (2.4) subjected to 012 = 0, then we have the following theorem.

Theorem 2.2.. The no-interaction line may be formulated as

IBO(e):{<( w1t >:0§a§1}

1 — a)ngo

aMu+ l— puy) +
I TR R B

(1- a)[”“” p+ J—2(f = iy) + pe] | (2.6)



We follow the definition of interaction effect for classical isobole to this

statistical model.

Definition 2.3. We say that there is synergistic effect if IB(¢) lies below
IBy(¢) and there is antagonistic effect if IB(£) lies above I By(¥).

However, Both isoboles IB(¢) and IBy(¢) are generally unknown since
they involve unknown distributional parameters. Hence statistical inferences
should be done for detection of interaction that require observation from the

underlying distribution.

Yi ﬂy
For observations | z1; | ,2 = 1,...,n, we denote mean estimate | ji; | =
T2 H2

Z1 | where y,7; and %o are, respectively, the sample means of vari-

A2 A A
O'y Uyl O'yQ
ables y,r; and xz and covariance matrix estimate | &, 6% 012 | =
A “ ~2
O2y 021 09

/

2 _ _
Sy Syl Sy2 . Yimly Yi— Y
n — — .
S1y S% 512 = o1 Zi:l T1; — Ty T1; — X1 . We then esti-
2 - —
Soy S21 S5 T2i = T2 T2; — T2

mate the conditional mean by

. _ 578 -t r1— X
u($1,$2):y+(8y1,8y2)< A 122 ' b

521 82 o — i’g

We define estimates of x1, and x5y, respectively, as

2 2.2 2
R S$y287 — Sy1S12 _ S§1785 — 8§ _ _
Fip = Yy % Yy T 122 12 (g . y) + 7
Sy185 — Sy2512 Sy185 — Sy2512
and (2.7)
2 2.2 2
R Sy1S9 — Sy2512 _ S§785 — 8§ _ _
Fop = Y 3 Yy Ty + 122 12 (f—y)-i—l'g
Sy251 — Sy1512 Sy251 — Sy1512

Then the estimator of population isobole I B is

IB(¢) = {<( ade ) 0<a<1). (2.8)

1— a)i'zg



and the no-interaction line may be formulated as

IB0(£)2{<( ado >:0§a§1}

1-— a)i'zgo

Syzsf — i o —
a[%l?xff (g CaRE Y <a<1}
(1-— “)[syléfl + 55 (0 —9) + 72 (2.9)

y2

where i’lg() = i'lg and .i'gg() = i’zg by setting S19 = 0.

3. Isobole based Interaction Identification

With statistical formulation of isobole, three interaction detection prob-
lems may be considered. First, given an effect level /, is the unknown isobole
I B(¥) synergistic or antagonistic? Unlike the laboratory test, the effect level
¢ is determined in practical environment that is altered not only in location
but also in time. This leads to the second problem of prediction at mean
(111, p2) and the third problem of prediction at sample point (x1, x3).

We start from the first problem. Since isoboles IB({) and IBy(¢) are
straight lines, differences of two end points.as ciy = x4 — 2190 and coy =

Tog — Topo may be used to detect interaction. With careful re-arrangements,

we have
. 012(0520%_05103) 0103 — 01y o /

Clﬁ_( 2 _ 2:“’2+( 2 _ _—)( _/j’y)

Oy105 — 0y2012)0y105 Oy105 — 0y2012  Oy1
and (3.1)

o12(02,03 — 02,0%) o202 — o2 o2

Cop = Zyl 2 y2¥'1 2N1+( 122 12 __2)(£_My).
(0y207 — 0y1012)0y207 Oy207 — Oy1012 Oy

We call c1y and coy the interaction indices. In case that ciy = cop, two
isoboles IB(¢) and IBy({) are parallel.

Based on Definition 2.3 and (3.1), interaction detection for combinations
of 1 and z9 in isobole I B({) can be described below:
(a) Isobole IB({) contains combinations with synergistic effects if ¢, <
0 and cop < 0.
(b) Isobole IB(¢) contains combinations with antagonistic effects if ¢1, >

0 and c9p > 0.



When it ocuurs that c1y > 0 and cop < 0 or ¢y < 0 and c9p > 0, interactions
exist for all combinations of x; and x5 on the isobole besides the single
intersection point. However, each combination (z1,x2) to be synergistic or

antagonistic requires to be further verified.

Pictures of isoboles are displayed in the following figure.
Figure 2 of synergistic effect and antagonistic effect

The above procedure can detect the case that IB({) is above or below
IBy(£). When the isobole I B(£) and I By(¢) intersect somewhere, the detec-
tion is slightly complicated and we suggest to conduct the detection through
the next approach.

With modeling the interactions through probability distribution, it is the
interesting to propose statistical methods for interaction of identification.
Among the statistical inferences, the point estimation is the basic technique
and can be derived straight forward through the formulas in (3.1).

With efficient estimator of conditional mean p(zi,x2), we expect that

corresponding estimates of interaction indices ciy and cop defined as

b1y = 512(522/25% - 532/15%) AT ( 3%5% = 5%2 . i)(( . —)
(84153 — $y2512)8y153 Sy1S5/= Sy2812 Syl
(3.2)
L 512(572,153 - 312,23%) _ 5153 — 51 53 =
Cop = 5 571+ (—— - —=)(t—7).
(8y25T — Sy1512)8y257 Sy257 — Sy1512  Sy2

may provide efficient tool in interaction detection. Induced rule for identi-
fication of interactions based on interaction index estimates is as follows:
(a) There is synergistic effect if ¢1, < 0 and éyp < 0.

(b) There is antagonistic effect if ¢1, > 0 and égp > 0.

The advantage of interpreting the isobole’s concept of interaction through
statistical model is that it requires only a data for estimation of distribu-
tional parameters.

With the above rule of interaction identification, there are four categories

for the result computed from one data set that are displayed in Table 1.
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Table 1. Correctness and Errors in interaction detection

sign(é1¢) = sign(cie) sign(ée) 7 sign(cie)

sign(éqr) = sign(car) | Correct Error I
sign(égg) # sign(cog) | Error I Error 1T

Error IT is the most serious one since two signs of interactions are predicted
with error.
To evaluate the power of correctness in detection, we consider the follow-

ing setting of joint distribution:

Y 1 2 0.7 0.7
X1 ~ Ng( 2 , 0.7 2 012 )
X2 3 0.7 J19 2

and set ciy = cop = ¢ for some values ¢, positive and negative for being,
respectively, antagonistic and synergistic. With replication number m, the

power of identification of interaction is defined as

L e : ¢ s .
. Z I(sign(é1p) =sign(epe), sign(céop) = sign(cay)).
7=1

m =

With m = 1,000 and some sample, sizes, the simulated results of power 7

are displayed in Tables 2 and 3.

Table 2. Power performance for interaction detection through estimation

c=—1.029 c = —1.286 c=—1.929

g19 = —0.9

n = 30 0.517 0.601 0.736

n = 50 0.635 0.748 0.860

n =100 0.816 0.875 0.959
012 — 0.9

n = 30 0.641 0.695 0.774

n = 50 0.679 0.775 0.899

n =100 0.829 0.918 0.977

Table 3. Power performance for interaction detection through estimation
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c = 0.286 c=0.571 c = 0.857 c=1.143
019 — —04
n =30 0.398 0.690 0.791 0.805
n = 50 0.506 0.806 0.892 0.904
n = 100 0.651 0.945 0.971 0.974
o012 =04 c = —0.286 c= —0.571 c= —0.857 c=—1.143
n =30 0.350 0.630 0.747 0.790
n = 50 0.428 0.771 0.866 0.902
n = 100 0.594 0.907 0.975 0.970

We conclude the following from Tables 2 and 3:
(a) The results show that the detection power is increasing when sample
size increases.
(b) Tt also shows that the power increases when value ¢ lies away of zero.
(¢) The power performance showing in these two tables is satisfactory.

Let (t1,t2) be fixed values for (X1, X3). We consider a process below for
detection of interaction at this obaservation:
(a) The predicted interaction level of the isobole that this sample point lies
is £ = [i(ty,t2).
(b) Given this predicted effect level £, a combination (X1, Xo) = (#1,%20)

lying on no-interaction isobole of level £ may'be solved as

syls% N ~ 83 _
tzo = — 2(t1—x1)+x2+—(€—y). (33)
8y281 Syg

(c) Rule for predicting the interaction effect on this isobole:

There is synergistic effect at (tq,tq) if t2 < tag
There is no-interaction effect at (¢1,t2) if to = ta

There is antagonistic effect at (¢1,t2) if to > tog

For mean interaction detection, let (¢1,t20) = (Z1,Z2). The rule in (c)
above predicts the interaction effect when (Xi, X3) = (u1, p2). For inter-
action detection at an observation, let (¢1,%20) = (21,22). The rule in (c)

above predicts the interaction effect when (X1, X3) = (21, x2).
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4. Data Analyses
A data of size n = 20 for studying blood pressure with some explanatory
variables has been considered in Daniel (1999, p484-485) where variables in

this data are listed below:

Y = mean arterial blood pressure (mm Hg)
X1 = age (years)

Xo = weight (kg)

X3 = body surface area (sq m)

X4 = duration of hypertension (years)

X5 = basal pulse (beats/ min)

X¢ = measure of stress.

The sample mean and covariance matrix are displayed below:

fly 114.0 R 31.02 0.675 15.67
pz | =1 1.998 | , X =].0.675 0.019 0.253
fis 69.6 15.67 0.253 15.22

Next, we display the estimated ‘interaction indices ¢, and ¢op as functions
of £ in Figure 3.

Figure 3-is-here

For ¢ > 185.4352, there are antagonistic effect since ¢1p > 0 and égp > 0.
However, we can not conclude the effect for that ¢/ < 185.4352 since signs of
¢1¢ altered. We then draw a picture of IB and IBO for £ = 160 and 200 in
Figure 4.

Figure 4 is here

Both level £ = 160 and 200 correspond to isobole of antagonistic effect that
may not be seen in Figure 3 based on ¢1y and ¢op.

We consider the problem of interaction prediction(detection) when an
observation (zs3,xs5) of independent variables (X3, X5) is given. For this
example, we evaluate all observations of n = 20 samples. So, for each obser-

vation point (z3,x5), we conduct the process of interaction prediction and
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we display in Table 4 the predicted interaction level £ and the quantity zs5q
such that (z3,z50) lies on the level £ no-interaction isobole. The results (S
for synergistic effect and A for antagonistic effect) of interaction detections

for all sample points (X3, X5) are also displayed.

Table 4. Interaction study for arterial blood pressure data

prediction / x3(s) z5(x3) Effect
(z3,75)
1.75,63 103.49 1.890 67.68 S
2.1,70 116.9 2.072 69.08 A
1.98,72 114.9 1.952 71.08 A
2.01,73 116.2 1.963 71.42 A
1.89, 72 112.4 1.882 71.74 A
2.25,71 121.5 2.176 68.54 A
2.25,69 120.4 2.202 67.42 A
1.9, 66 109.2 1.968 68.28 S
1.83,69 109.1 1.874 70.48 S
2.07,64 112.6 2.127 65.91 S
2.07,74 118.4 1.996 71.55 A
1.98,71 114.3 1.965 70.52 A
2.05,68 114.4 2:059 68.31 S
1.92,67 110.3 1.970 68.70 S
2.19,76 122.8 2.064 71.80 A
1.98,69 113.1 1.991 69.39 S
1.87,62 106.1 1.997 66.24 S
1.9,70 111.5 1.916 70.54 S
1.88,71 111.6 1.887 71.25 S
2.09,75 119.6 1.999 71.97 A
(T3,T5) z3 T50

1.998, 69.6 114 1.998 69.6 N

We have several comments for the displayed results:
(a) The predicted interaction levels £ (column 2) for all observations (x3, x5)
are larger than the sample mean, 114.0, of response variable y indicates
that independent variables X3 and X5 make significant contribution on the
mean conditional effect of y given (x3,z5). Their differences between £’s
and 4978.4 give the sizes of contributions.
(b) Some observations show synergistic effects and some show antagonistic

effects. However, the sample mean (%1, Z3) gives no-interaction effect.



12

In concerning the need for hospital labor, Bowerman and O’Connell
(1990) conduct this analysis on a data set of size n = 17 through linear
regression model. The response variable Y represents the monthly labor
hours. Among the explanatory variables, we first choose X, the average
daily patient load, and X5, the average length of patients’ stay in days for
analysis. We first consider explanatory variables X; and X5. The mean

estimate and covariance estimate are, respectively,

fly 4978.4 R 32852004 937770 5414
1 | = | 14827 | , X = 937770 27554  181.92
fis 5.89 0414 181.92  2.666

For this set of observations, we also compute their corresponding pre-

dicted interaction effects that are displayed in Table 5.

Table 5. Interaction study for monthly labor hours data

prediction / z1(xs5) z5(x1) Effect
(21, 25)
15.57,4.45 762.7 110.5 6.041 S
44.02,6.92 021.2 —43.94 5.445 A
20.42,4.28 1034 128.6 6.094 S
18.74,3.9 1173 155.4 6.190 S
49.2,5.5 1468 68.62 0.825 S
44.92,4.6 1784 131.6 6.053 S
95.48, 5.62 1640 66.52 5.085 S
99.28,5.15 2032 106.0 5.934 S
94.39,6.18 2804 67.29 5.725 A
128.0,6.15 4082 106.6 5.791 A
96, 5.88 3023 91.64 5.806 A
131.4,4.88 4883 205.9 6.129 S
127.2,5.5 4396 154.6 5.959 S
252.9,7.0 8318 180.3 0.785 A
409.2,10.78 12181 68.31 5.067 A
463.7,7.05 16204 409.1 6.135 A
510.2,6.35 18321 513.0 6.398 S
(T1,s5) x1 T50
148.27,5.89 4978 148.2 5.893 N

This analysis shows that most observations give synergistic effects and only

a few give antagonistic effects.
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Figure 1. Classical interaction by isobole
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Figure 3. Lines ¢, and ¢,

(b) =200
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