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摘要 

在預測未來觀測值的研究方法裡，預測區間是一個非常實用的方法。

不論是在工業上的應用或是醫學領域上的應用，預測區間都能夠實際

的應用在這些領域中。由於現有的文獻研究著重於連續型的預測區間

以及單一離散型變量的預測區間之應用，這些現有的方法，可能無法

直接應用到多變量的狀況。因此，在這篇論文裡，我們所探討的預測

區間是在多變量的伯努力分配變數之線性組合的應用。我們主要考量

兩大方向：(1)在不同變數下，參數間具有某一相關，(2)在不同變數

下，參數之間無特定相關。這個研究方法主要是延伸 Wang(2010)所

提出的預測區間的方法。我們並以模擬結果來檢驗所提出的預測區間

之優劣。 

 

 

關鍵字：預測區間，覆蓋率，二項式分配 
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Abstract

The prediction interval is a useful tool to predict the future observations. It

can be widely used in industrial and medical applications. Although there are

some previous studies focusing on the construction of prediction intervals for

continuous distribution or some previous studies focusing on the construction

of prediction intervals for discrete distribution of single variable, these meth-

ods cannot be directly applied to construct prediction interval for functions

of multiple variables. In this thesis, we investigate prediction intervals for a

linear function of binomial random variables. We consider two cases: (1) there

is a relationship of parameters for different variables, and (2) there is no any

relationship of parameters for different variables. The proposed method is an

extension of Wang (2010). A simulation result shows the performance of the

proposed method.

Key words: Prediction Interval, coverage probability, binomial distribution.
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1 INTRODUCTION

The prediction interval (PI) is an important tool to predict the future observa-

tions. It is widely used in industrial applications to predict the number of defective

units which will be produced during future production of a product (Wang 2008). In

medical applications, it can be used in predicting disease count (Wang 2010).

Most of the previous study focus on the construction of prediction intervals for

continuous distribution, see Basu, Ghosh and Mukerje (2003), Hall and Rieck (2001),

Hamada, Johnson and Moore (2004) and Lawless and Fredette (2005). Nevertheless,

compared with the continuous distributions, there are some studies for discrete dis-

tributions. Nelson (1982) proposed a widely used closed form prediction interval for

a discrete random variable. Another useful prediction interval with a closed form for

a discrete distribution was proposed by Bain and Patel (1993). Among these discrete

distributions, the binomial distribution is a useful discrete distribution in many real

application fields. Wang (2007a, 2008, 2009) proposed procedures to calculate the

coverage probability of confidence intervals for a binomial proportion of a binomial

distribution and the coverage probability of prediction intervals for a binomial ran-

dom variable. Most of the previous studies focus on prediction interval for a single

random variable. Although the above literatures provide methods for constructions

of prediction intervals for discrete distributions, they cannot be applied to construct

prediction intervals for functions of multiple variables. The multivariate binomial

distribution can be applied in many real applications. For example, we consider
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predicting the number of sickbeds arrangement between different departments in a

hospital. Suppose the numbers of sickbeds follows a binomial distribution and we

model the number of sickbeds needed for different departments with a multiple bi-

nomial distribution. Thus, in this thesis, we investigate prediction intervals for the

binomial distribution with multiple variables.

In this thesis, we extend the prediction interval proposed by Wang (2010) from

a single variable to multiple variables. Using the proposed method, we are able to

obtain a suitable interval to predict a linear combination of multiple variables. In

addition, we consider two cases that the parameters are related to the binomial dis-

tributions and the parameters are not related. The first case can be applied to predict

the number of sickbed arrangement between different departments. A more accurate

prediction interval can not only reduce the cost but also can increase the utilization

rate of sickbeds. Such an interval would interest the hospital operator for the con-

figuration management. For instance, a hospital operator may wish to construct a

prediction interval to know how to arrange the number of sickbeds to different de-

partment such that they can be used sufficiently. In industrial applications, it can

predict the number of defective units which need to be repaired and the number units

should be supplied to clients. That can bring lots of effects, such as increasing the

customer satisfaction and raising the company image.

The rest of the thesis is organized as follows. Section 2 reviews the related works

and the prediction interval proposed by Wang (2010). In Section 3, we present the

2



proposed methods used by this study. Section 4 displays the simulation results of our

study. A conclusion is summarized in Section 5.
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2 PRELIMINARY

In this section, first, we introduce the definition of prediction interval, and the

existing prediction intervals for the binomial distribution.

2.1 Prediction Interval

Let X1, X2, . . . , Xn be an observed random sample of size n from a discrete dis-

tribution with a probability mass function f(x; θ), where θ is an unknown parameter.

Let Y1, . . . , Ym be a future random sample of size m from the same distribution. As-

sume that the future sample Y1, . . . , Ym is drawn independently from the past sample

X1, X2, . . . , Xn. Let X be a function of X1, X2, . . . , Xn and have a probability mass

function fn(x; θ). Let Y be a function of Y1, . . . , Ym and have a probability mass func-

tion fm(y; θ). Let L(X) and U(X) be two statistics based on the observed samples.

If L(X) and U(X) are determined as

P (L(X) ≤ Y ≤ U(X)) = 1− α, (1)

then [L(X), U(X)] is called a level 1-α prediction interval of Y .

2.2 Existing Methods

We present several existing prediction intervals for a single binomial random

variable as follows:

(1). The Nelson prediction interval

Assume that the past data, X, follows a Binomial(n, p) distribution where 0 < p <

4



1. Let Y be the future number following a Binomial(m, p) distribution. The Nelson

prediction interval to predict Y is derived from

Y −mp̂√
p̂(1− p̂)m(m+ n)/n

∼ N(0, 1), (2)

where p̂ = X/n. Nelson (1982) [6] proposed an approximate level 1-α two-sided

prediction interval which is

( Ŷ − zα/2
√

mp̂(1− p̂)(m+ n)/n , Ŷ + zα/2
√

mp̂(1− p̂)(m+ n)/n ) (3)

where zα is the upper α cut off point of the standard normal distribution and Ŷ = mp̂

when X, n−X, Y , and m− y all of these are large.

(2). Bain and Patel prediction interval

Bain and Patel approximate prediction interval (1993) is based on the conditional

distribution to exclude the unknown parameter and uses the conditional distribution

to derive the predictive boundaries. The approximate level 1-α has the form

( LX −X , UX −X ) , (4)

where

LX =
((2X − 1)v + sw)−

√
s2w2 + 4(X − 1/2)w(n−X + 1/2)

2(v2 + w)
,

UX =
((2X + 1)v + sw)−

√
s2w2 + 4(X + 1/2)w(n−X − 1/2)

2(v2 + w)
,

s = m+ n, v = n/s, and w = z2(1−α/2)v(1− v)/(s− 1).

In terms of these existing prediction intervals, Wang (2008) constructs an ad-

justable prediction interval and proposed procedures to calculate the minimum cov-

erage probability and average coverage probability of a binomial prediction interval.
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(3). Wang’s prediction interval

Based on a similar argument as Wilson confidence interval construction (Wilson

1927), Wang (2010) used the fact that the random variable

Y −mp̂√
X+Y
n+m

(1− X+Y
n+m

)m(m+n)
n

, (5)

is approximating a standard normal distribution to construct a prediction interval.

In the existing prediction interval, Wilson interval, there is an disadvantage that

when the true parameter, p, is closed to the boundaries, the coverage probability is

much less than the nominal level. Let k = z21−α/2, in order to prevent poor coverage

provability, Wang (2010) inverts

{y : y = mp̂±
√
kW (x, y)} (6)

to derive the prediction limits, where

W (x, y) =
(x+ k/2 + y)

(n+ k +m)
×
(
1− (x+ k/2 + y)

(n+ t2 +m)

)
×

(
m+ n

n

)
(7)

Based on this outcome, Wang (2010) proposed the following prediction interval

(
A

C
− B

C
,
A

C
+

B

C
) (8)

where

A = mn[2xk(n+ k +m) + (2x+ k)(m+ n)2],

B = (mn(m+ n)k(m+ n+ k)2 × (2(n− x)[n2(2x+ k) + 4mnx+ 2m2x]

+nk[n(2x+ k) + 3mn+m2]))
1
2 ,

C = 2n[(n+ k)(m2 + n(n+ k)) +mn(2n+ 3k)]

and

k = z2(1+α)/2.
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The performance of the coverage probability of (5) is referred to Figure 1 in
Wang(2010).
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Figure 1: Coverage probability of the 95% level prediction intervals for the Binomial dis-
tributions with n = 10(dotted line), n = 50(dashed line) and n = 1000(solid line).
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Furthermore, to prevent the poor coverage probability when the parameter, p, is

closed to the boundaries, Wang (2010) improves the existing prediction interval (3)

by substituting p̃ for p̂, which contributes to the second proposed interval

[ La(X) , Ua(X) ] = [ Ŷ−z(1−α/2)

√
mp̃(1− p̃)(m+ n)/n , Ŷ+z(−α/2)

√
mp̃(1− p̃)(m+ n)/n ],

(9)

where p̃ = (X + (z2(1+α)/2)/2)/(n+ z2(1+α)/2).

As mentioned in the introduction, in our study we principally focus on the pre-

diction interval for a linear function of multiple variables.
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3 METHOD

3.1 The prediction interval for a linear function of two vari-
ables without correlation

Let X 1=(X11, X12, . . . , X1n1) be an observed random sample of size n1 from a

discrete distribution with a probability mass function fn1(x1; p1), and let X 2=(X21,

X22, . . . , X2n2) be an observed random sample of size n2 from a discrete distribution

with a probability mass function fn2(x2; p2), where p1 and p2 are unknown parame-

ters. Let Y11, . . . , Y1m1 be a future random sample of size m1 from the distribution,

fm1(y1; p1) and let Y21, . . . , Y2m2 be a future random sample of size m2 from the dis-

tribution, fm2(y2; p2).

Assume that the future sample Y11, . . . , Y1m1 and Y21, . . . , Y2m2 are drawn inde-

pendently of the past sample X11, X12, . . . , X1n1 and X21, X22 , . . . , X2n2 . Let L(X1)

and U(X1) be two statistics based on the observed sample, X11, X12, . . . , X1n1 and let

L(X2) and U(X2) be two statistics based on the observed sample, X21, X22, . . . , X2n2 .

If L(X 1), L(X 2), U(X 1) and U(X 2) are determined so that

P (L(X 1) + L(X 2) ≤ Y1 + Y2 ≤ U(X 1) + U(X 2)) = 1− α, (10)

where L(X 1), U(X 1), L(X 2) and U(X 2) are determined by (8), then

[L(X 1) + L(X 2), U(X 1) + U(X 2)], (11)

is called a level 1-α prediction interval of Y1 + Y2.

In our study, we find a lower bound of the coverage probability of the prediction

9



interval (11). At first, let Y1 ∈ [L(X 1), U(X 1)] and Y2 ∈ [L(X 2), U(X 2)], where

L(X 1), U(X 1), L(X 2), and U(X 2) are determined by (8). Using (8), we have

P (L(X 1) ≤ Y1 ≤ U(X 1)) = 1− α

and

P (L(X 2) ≤ Y2 ≤ U(X 2)) = 1− α.

We consider the case that the future observations, Y1 will belong to [L(X 1), U(X 1)]

and Y2 will belong to [L(X 2), U(X 2)]. We find a lower bound of coverage probability

which is

P (L(X 1) ≤ Y1 ≤ U(X 1))× P (L(X 2) ≤ Y2 ≤ U(X 2)) = (1− α)2.

It is due to

P (L(X 1) + L(X 2) ≤ Y1 + Y2 ≤ U(X 1) + U(X 2))

≥ P (L(X 1) ≤ Y1 ≤ U(X 1))× P (L(X 2) ≤ Y2 ≤ U(X 2)).

Here, we can ensure that [L(X 1) +L(X 2), U(X 1) +U(X 2)] has a lower approxi-

mate coverage probability (1− α)2.

3.2 The prediction interval for a linear function of multiple
variables without correlation

Let X i = (Xi1, Xi2, . . . , Xini
) be an observed random sample of size ni from a

discrete distribution with a probability mass function fni
(xi; pi), i=1, . . . , k, where pi
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is unknown parameters. Let Yi1, . . . , Yimi
be a future random sample of size mi from

the same distribution, fmi
(yi; pi).

Assume that the future sample Yi1, . . . , Yimi
are drawn independently of the past

sample X i1,X i2, . . . ,X ini
, i=1, . . . , k. When i = 3, let L(X 1) and U(X 1) be two

statistics based on the observed sample, X11, X12, . . . , X1n1 , let L(X 2) and U(X 2) be

two statistics based on the observed sample, X21, X22, . . . , X2n2 and let L(X 3) and

U(X 3) be two statistics based on the observed sample, X31, X32, . . . , X3n3 . If L(X 1),

L(X 2), L(X 3), U(X 1), U(X 2) and U(X 3) are determined so that

P (L(X 1)+L(X 2)+L(X 3) ≤ Y1+Y2+Y3 ≤ U(X 1)+U(X 2)+U(X 3)) = 1−α, (12)

where L(X 1), U(X 1), L(X 2), U(X 2), L(X 3), and U(X 3) are determined by (8)

then

[L(X 1) + L(X 2) + L(X 3), U(X 1) + U(X 2) + U(X 3)], (13)

is called a level 1-α prediction interval of Y1 + Y2 + Y3.

In our study, we find a lower bound of the coverage probability of the predic-

tion interval of (13). At first, let Y1 ∈ [L(X 1), U(X 1)], Y2 ∈ [L(X 2), U(X 2)] and

Y3 ∈ [L(X 3), U(X 3)] where L(X 1), U(X 1), L(X 2), U(X 2), L(X 3) and U(X 3) are

determined by (8). Using (8), we have

P (L(X 1) ≤ Y1 ≤ U(X 1)) = 1− α,

P (L(X 2) ≤ Y2 ≤ U(X 2)) = 1− α

11



and

P (L(X 3) ≤ Y3 ≤ U(X 3)) = 1− α.

We consider the case that the future observations, Y1 will belong to [L(X 1), U(X 1)],

Y2 will belong to [L(X 2), U(X 2)] and Y3 will belong in [L(X 3), U(X 3)]. We find a

lower bound of coverage probability which is

P (L(X 1) ≤ Y1 ≤ U(X 1))×P (L(X 2) ≤ Y2 ≤ U(X 2))×P (L(X 3) ≤ Y3 ≤ U(X 3)) = (1−α)3.

It is due to

P (L(X 1) + L(X 2) + L(X 3) ≤ Y1 + Y2 + Y3 ≤ U(X 1) + U(X 2) + U(X 3))

≥ P (L(X 1) ≤ Y1 ≤ U(X 1))×P (L(X 2) ≤ Y2 ≤ U(X 2))×P (L(X 3) ≤ Y3 ≤ U(X 3)).

Here, we can ensure that [L(X 1) + L(X 2) + L(X 3), U(X 1) + U(X 2) + U(X 3)]

has a lower approximate coverage probability (1− α)3.

3.3 The prediction interval for a linear function of two vari-
ables with correlation

Let X 1=(X11, X12, . . . , X1n1) be an observed random sample of size n1 from a dis-

crete distribution with a probability mass function fn1(x1; p1), and let X 2=(X21, X22,

. . . , X2n2) be an observed random sample of size n2 from a discrete distribution with

a probability mass function fn2(x2; p2), where p1 and p2 are unknown parameters.

Let Y11, . . . , Y1m1 be a future random sample of size m1 from the same distribution,

fm1(y1; p1) and let Y21, . . . , Y2m2 be a future random sample of size m2 from the same
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distribution, fm2(y2; p2). Let X 3=(X31, X32, . . . , X3n3) be an observed random sam-

ple of size n3 from a discrete distribution with probability mass function fn3(x3; p3),

where p3 is a function of p1 and p2. The variableX 3 is dependent on variablesX 1 and

X 2. Let Y31, . . . , Y3m3 be a future random sample of size m3 from the distribution,

fm3(y3; p3).

Assume that the future sample Y11, . . . , Y1m1 , Y21, . . . , Y2m2 and Y31, . . . , Y3m3 are

drawn independently of the past sample X11, X12, . . . , X1n1 , X21, X22 , . . . , X2n2 and

X31, X32 , . . . , X3n2 . Let X 1 be a function of X11, X12, . . . , X1n1 , X 2 be a function

of X21, X22, . . . , X2n2 and X 3 be a function of X31, X32, . . . , X3n3 , with a probability

mass function fn1(x1; p1), fn2(x2; p2) and fn3(x3; p3), respectively. Let Y1 be a func-

tion of Y11, . . . , Y1m1 , Y2 be a function of Y21, . . . , Y2m2 with probability mass functions

fm1(y1; p1) and fm2(y2; p2), and Y3 be a function of Y31, . . . , Y3m3 with a probability

mass function fm3(y3; p3), respectively. Let L(X 1) and U(X 1) be two statistics based

on the observed sample, X11, X12, . . . , X1n1 and let L(X 2) and U(X 2) be two statistics

based on the observed sample, X21, X22, . . . , X2n2 . If there are some sample recounted

between the observed samples, X11, X12, . . . , X1n1 and X21, X22, . . . , X2n2 , let the re-

counted item be the X31, X32, . . . , X3n3 . The L(X 1), L(X 2), L(X 3), U(X 1), U(X 2)

and U(X 3) are determined under the condition that X 3 is dependent on X 1 and X 2

such that

P (L(X 1)+L(X 2)−U(X 3) ≤ Y1+Y2−Y3 ≤ U(X 1)+U(X 2)−L(X 3)) = 1−α. (14)
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Then

[L(X 1) + L(X 2)− U(X 3), U(X 1) + U(X 2)− L(X 3)], (15)

is called a level 1-α prediction interval of Y1 +Y2 −Y3. By taking the correlation into

consideration, the prediction interval can be applied to more realistic situations.
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4 SIMULATION

In this section, we conduct a simulation study to evaluate the performance of

the proposed prediction intervals. First, we present the simulation for two variables

without correlation case. Second, we consider multiple variables without correlation

case. Finally, the simulation is presented for the two variables with correlation case.

4.1 The simulation in two variables without correlation

Using the prediction interval (11), we consider two points of view. First, we

observe the coverage probability corresponding to different α when p1 or p2 be fixed.

Second, we observe the coverage probability corresponding to different p1 and p2 when

α be fixed.

(1). Coverage probability corresponding to different p1 and p2 at α = 0.05

Here, we present some cases about the coverage probability corresponding to dif-

ferent p1 and p2 when α=0.05. In this paragraph, we consider three cases about the

sample size, which are n1 = n2, n1 = 2n2 and n1 = 3n2 when α = 0.05.

Figure 2, 3 and 4 show that the relationship between coverage probability and

different (p1, p2) in different cases of the sample size. In Figure 2, 3 and 4, we observe

that the maximum coverage probability occurs at the four top of corners, and the

minimum coverage probability occurs at the center of figure.

• The case for X1 and X2 with the same sample size.
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Figure 2: Coverage probability of the prediction interval corresponding to (n1, n2,
m1, m2)= (30,30,10,5) with the maximum value=0.9989452 occurring at (p1, p2) =
(0.01,0.01), (0.01,0.99), (0.99,0.01), (0.99,0.99) and the minimum value=0.8893743
occurring at (p1, p2) = (0.49,0.49), (0.49,0.51), (0.51,0.49), (0.51,0.51).

• The case for X1 and X2 with the different sample size when n1 = 2n2.
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Figure 3: Coverage probability of the prediction interval corresponding to (n1, n2,
m1, m2)= (30,15,10,5) with the maximum value=0.9990451 occurring at (p1, p2) =
(0.01,0.01), (0.01,0.99), (0.99,0.01), (0.99,0.99) and the minimum value=0.8957184
occurring at (p1, p2) = (0.49,0.49), (0.49,0.51), (0.51,0.49), (0.51,0.51).
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• The case for X1 and X2 with the different sample size when n1 = 3n2.
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Figure 4: Coverage probability of the prediction interval corresponding to (n1, n2,
m1, m2)= (30,10,10,5) with the maximum value=0.9998804 occurring at (p1, p2) =
(0.01,0.01), (0.01,0.99), (0.99,0.01), (0.99,0.99) and the minimum value=0.9010947
occurring at (p1, p2) = (0.49,0.49), (0.49,0.51), (0.51,0.49), (0.51,0.51).

(2). The α trend

Figure 5 shows the coverage probability corresponding to different α and p2 when

p1=0.9. Figure 6 shows the coverage probability corresponding to different α and

p1 when p2=0.9. According to Figure 5 and Figure 6, we observe a trend that the

coverage probability decreases when α increases.
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Figure 5: The coverage probability corresponding to different α and p2 when p1=0.9.
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Figure 6: The coverage probability corresponding to different α and p1 when p2=0.9.
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4.2 The simulation in three variables without correlation

Using the prediction interval (12), we consider two points of view. First, we

observe the coverage probability corresponding to different α when p1 or p2 or p3 be

fixed. Second, we observe the coverage probability corresponding to different p1 and

p2 when α and p3 be fixed, or p1 and p3 when α and p2 be fixed, or p2 and p3 when

α and p1 be fixed.

(1). Coverage probability corresponding to different p1, p2 and p3 at α=0.05

• The case for X1, X2 and X3 with the same sample size.

Figure 7 shows that the relationship between coverage probability and different

(p1, p2) under fixed p3 and equal sample size. Figure 8 shows that the relationship

between coverage probability and different (p2, p3) under fixed p1 and equal sample

size. Figure 9 shows that the relationship between coverage probability and different

(p1, p3) under fixed p2 and equal sample size.
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Figure 7: Coverage probability of the prediction interval corresponding to (n1, n2,
n3, m1, m2, m3)= (30,30,30,10,5,3) with the maximum value=0.969829 occurring
at (p1, p2, p3) = (0.01,0.01,0.75), (0.01,0.99,0.75), (0.99,0.01,0.75), (0.99,0.99,0.75)
and the minimum value=0.8634517 occurring at (p1, p2, p3) = (0.49,0.49,0.75),
(0.49,0.51,0.75), (0.49,0.51,0.75), (0.51,0.51,0.75).
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Figure 8: Coverage probability of the prediction interval corresponding to (n1, n2,
n3, m1, m2, m3)= (30,30,30,10,5,3) with the maximum value=0.9442639 occurring
at (p1, p2, p3) = (0.01,0.75,0.01), (0.01,0.75,0.99), (0.99,0.75,0.01), (0.99,0.75,0.99)
and the minimum value=0.8721178 occurring at (p1, p2, p3) = (0.49,0.75,0.49),
(0.49,0.75,0.51), (0.51,0.75,0.49, (0.51,0.75,0.51).
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Figure 9: Coverage probability of the prediction interval corresponding to (n1, n2,
n3, m1, m2, m3)= (30,30,30,10,5,3) with the maximum value=0.9360158 occurring
at (p1, p2, p3) = (0.75,0.01,0.01), (0.75,0.01,0.99), (0.75,0.99,0.01), (0.75,0.99,0.99)
and the minimum value=0.8600604 occurring at (p1, p2, p3) = (0.75,0.49,0.49),
(0.75,0.49,0.51), (0.75,0.51,0.49), (0.75,0.51,0.51).

• The case for X1, X2 and X3 with the different sample size when n1 =

3n2 = 2n3.

Figure 10 shows that the relationship between coverage probability and different

(p1, p2) under fixed p3 and equal sample size. Figure 11 shows that the relationship

between coverage probability and different (p2, p3) under fixed p1 and equal sample

size. Figure 12 shows that the relationship between coverage probability and different

(p1, p3) under fixed p2 and different sample size while n1 = 3n2 = 2n3.
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Figure 10: Coverage probability of the prediction interval corresponding to (n1, n2,
n3, m1, m2, m3)= (30,10,15,10,5,3) with the maximum value=0.9749658 occurring
at (p1, p2, p3) = (0.01,0.01,0.75), (0.01,0.99,0.75), (0.99,0.01,0.75), (0.99,0.99,0.75)
and the minimum value=0.8786416 occurring at (p1, p2, p3) = (0.49,0.49,0.75),
(0.49,0.51,0.75), (0.51,0.49,0.75), (0.51,0.51,0.75).
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Figure 11: Coverage probability of the prediction interval corresponding to (n1, n2,
n3, m1, m2, m3)= (30,10,15,10,5,3) with the maximum value=0.9647086 occurring
at (p1, p2, p3) = (0.01,0.75,0.01), (0.01,0.75,0.99), (0.99,0.75,0.01), (0.99,0.75,0.99)
and the minimum value=0.878146 occurring at (p1, p2, p3) = (0.49,0.75,0.49),
(0.49,0.75,0.51), (0.51,0.75,0.49), (0.51,0.75,0.51).
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Figure 12: Coverage probability of the prediction interval corresponding to (n1, n2,
n3, m1, m2, m3)= (30,10,15,10,5,3) with the maximum value =0.9577311 occurring
at (p1, p2, p3) = (0.75,0.01,0.01), (0.75,0.01,0.99), (0.75,0.99,0.01), (0.75,0.99,0.99)
and the minimum value =0.8779254 occurring at (p1, p2, p3) = (0.75,0.49,0.49),
(0.75,0.49,0.51), (0.75,0.51,0.49), (0.75,0.51,0.51).

(2). The α trend

Figure 13 shows the coverage probability corresponding to different α and p1

when p2=0.9 and p3=0.9. Figure 14 shows the coverage probability corresponding to

different α and p3 when p1=0.9 and p2=0.9. According to Figure 13 and 14, it shows

a trend that the coverage probability increases by α decreasing. Both Figure 13 and

14 show that the coverage probability starts to closed to zero while α approaches to

0.6.
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Figure 13: The coverage probability corresponding to different α and p1 when p2=0.9
and p3 = 0.9.
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Figure 14: The coverage probability corresponding to different α and p3 when p1=0.9
and p2 = 0.9.
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4.3 The simulation in two variables with correlation

Using the prediction interval (14), we consider two points of view. First, we

observe the coverage probability corresponding to different α when p1 or p2 be fixed

with p3 = p1 × p2 and p3 = p21 × p2. Second, we observe the coverage probability

corresponding to different p1 and p2 when α be fixed.

(1). Coverage probability corresponding to different p1 and p2 at α = 0.05

Here, we present some cases about the coverage probability corresponding to dif-

ferent α and the coverage probability corresponding to different p1 and p2 when

α = 0.05.

•Coverage probability corresponding to different p1 and p2 under p3 = p1×p2

with same sample size

Figure 15 shows that the relationship between coverage probability and different

(p1, p2) under p3 = p1 × p2 and the equal sample size. Figure 16 shows that the rela-

tionship between coverage probability and different p3 under the equal sample size.
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Figure 15: The coverage probability corresponding to different p1 and p2 under α =
0.05 and p3 = p1 × p2. Coverage probability of the prediction interval corresponding
to (n1, n2, n3, m1, m2, m3)= (30,30,10,15,5,3) with the maximum value =0.9987448
occurring at (p1, p2) = (0.01,0.01) and the minimum value =0.860743 occurring at
(p1, p2) = (0.71,0.57) while p3 = p1 × p2.
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Figure 16: The coverage probability corresponding to different p1 and p2 under
α = 0.05 and p3 = p1 × p2. Coverage probability of the prediction interval corre-
sponding to (n1, n2, n3, m1, m2, m3)= (30,30,10,15,5,3) with the maximum value
=0.9987448 occurring at p3 = 0.0001 where (p1, p2) = (0.01,0.01) and the minimum
value =0.860743 occurring at p3 = 0.4047 while (p1, p2) = (0.71,0.57).
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•Coverage probability corresponding to different p1 and p2 under p3 = p1×p2

with different sample size (n1 = 2n2)

Figure 17 shows that the relationship between coverage probability and different

(p1, p2) under p3 = p1 × p2 and different sample size while n1 = 2n2. Figure 18 shows

that the relationship between coverage probability and different p3 under different

sample size while n1 = 2n2.
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Figure 17: The coverage probability corresponding to different p1 and p2 under α =
0.05 and p3 = p1 × p2. Coverage probability of the prediction interval corresponding
to (n1, n2, n3, m1, m2, m3)= (30,15,10,15,5,3) with the maximum value = 0.9988455
occurring at (p1, p2) = (0.01,0.01) and the minimum value = 0.8665772 occurring at
(p1, p2) = (0.71,0.61) while p3 = p1 × p2.

27



0.0 0.2 0.4 0.6 0.8 1.0

0.
88

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

p3

co
ve

ra
ge

 p
ro

ba
bi

lit
y

Figure 18: The coverage probability corresponding to different p1 and p2 under α =
0.05 and p3 = p1 × p2. Coverage probability of the prediction interval corresponding
to (n1, n2, n3, m1, m2, m3)= (30,15,10,15,5,3) with the maximum value = 0.9988455
occurring at p3 = 0.0001 where (p1, p2) = (0.01,0.01) and the minimum value =
0.8665772 occurring at p3 = 0.4331 while (p1, p2) = (0.71,0.61).

• Coverage probability corresponding to different p1, p2 and with correla-

tion p3 = p21 × p2

Here, we present some cases about the coverage probability corresponding to dif-

ferent α, the coverage probability corresponding to different p1 and p2 when α = 0.05.

•Coverage probability corresponding to different p1 and p2 under p3 = p21×p2

with same sample size

Figure 19 shows that the relationship between coverage probability and different

(p1, p2) under p3 = p21 × p2 and the equal sample size. Figure 20 shows that the

relationship between coverage probability and different p3 with equal sample size.
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Figure 19: The coverage probability corresponding to different p1 and p2 under α =
0.05 and p3 = p21 × p2. Coverage probability of the prediction interval corresponding
to (n1, n2, n3, m1, m2, m3)= (30,30,10,15,5,3) with the maximum value = 0.9987445
occurring at (p1, p2) = (0.01,0.01) and the minimum value = 0.8720496 occurring at
(p1, p2) = (0.75,0.57) while p3 = p21 × p2.
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Figure 20: The coverage probability corresponding to different p1 and p2 under α =
0.05 and p3 = p21 × p2. Coverage probability of the prediction interval corresponding
to (n1, n2, n3, m1, m2, m3)= (30,30,10,15,5,3) with the maximum value = 0.9987445
occurring at p3 = 0.0001 where (p1, p2) = (0.01,0.01) and the minimum value =
0.8720496 occurring at p3 = 0.320625 while (p1, p2) = (0.75,0.57).
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•Coverage probability corresponding to different p1 and p2 under p3 = p21×p2

with different sample size (n1 = 2n2)

Figure 21 shows that the relationship between coverage probability and different

(p1, p2) under p3 = p21 × p2 and different sample size while n1 = 2n2. Figure 22 shows

that the relationship between coverage probability and different p3 under different

sample size while n1 = 2n2.

p1

0.0

0.2

0.4

0.6

0.8

1.0

p2

0.0

0.2

0.4

0.6

0.8

1.0

coverage probability

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Figure 21: The coverage probability corresponding to different p1 and p2 under α =
0.05 and p3 = p21 × p2. Coverage probability of the prediction interval corresponding
to (n1, n2, n3, m1, m2, m3)= (30,15,10,15,5,3) with the maximum value = 0.9988455
occurring at (p1, p2) = (0.01,0.01) and the minimum value = 0.8774135 occurring at
(p1, p2) = (0.77,0.65) while p3 = p21 × p2.
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Figure 22: The coverage probability corresponding to different p1 and p2 under α =
0.05 and p3 = p21 × p2. Coverage probability of the prediction interval corresponding
to (n1, n2, n3, m1, m2, m3)= (30,15,10,15,5,3) with the maximum value = 0.9988455
occurring at p3 = 0.000001 where (p1, p2) = (0.01,0.01) and the minimum value =
0.8774135 occurring at p3 = 0.385385 while (p1, p2) = (0.77,0.65)

(2). The α trend

Figure 23 shows the coverage probability corresponding to different α and p1 when

p2=0.5 and p3 = p1 × p2. Figure 24 shows the coverage probability corresponding to

different α and p1 when p2=0.5 and p3 = p21 × p2. According to Figure 23 and 24, it

shows a trend that the coverage probability increases by α decreasing.
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Figure 23: The coverage probability corresponding to different α and p1 when p2 = 0.5
and p3 = p1 × p2.
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Figure 24: The coverage probability corresponding to different α and p1 when p2 = 0.5
and p3 = p21 × p2.
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5 CONCLUSION

The prediction interval is widely used in industrial and medical applications. Lit-

eratures have provided methods for constructions of prediction intervals for discrete

distributions. However, those existing methods cannot be applied to construct pre-

diction interval for functions of multiple variables.

In this article, we have reviewed the prediction intervals of single binomial random

variable. We extend the prediction interval which were proposed by Wang (2010) to

the multiple binomial variables case. Our method proposes prediction interval for a

linear function of multiple binomial random variables. The prediction interval method

can be extended to construct prediction intervals for more models. We simulate some

cases in which the two variables are independent or dependent and in which three

variables are independent. In our simulations, we observe that the coverage probabil-

ity of the prediction interval at least 0.88 and 0.86 while we consider two and three

binomial random variables, respectively. The case in which variables are independent,

we observe that the prediction interval has the characteristic that it is symmetric at

p=0.5. In addition, comparing to the cases without relationship of variables, we ob-

serve the coverage probability of the prediction interval shift away the center.

The thesis can be generalized to additive models, such as there are relationship

of parameters, pi, for i = 1, . . . , k. We can use the regression model to find the rela-

tionship between the variables and then using the prediction interval to predict the

future observations.
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