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Abstract

The prediction interval is-a-useful tool to predict the future observations. It
can be widely used in industrial-and-medical applications. Although there are
some previous.studies focusing on the construction of prediction intervals for
continuous distribution or some previous studies focusing onrthe construction
of prediction intervals for discrete distribution of-single variable, these meth-
ods cannot be directly. applied to construct prediction interval for functions
of multiple variables. In this thesis;»we-investigate prediction intervals for a
linear function of binomial random variables. We consider two cases: (1) there
is a relationship of parameters for different variables, and (2) there is no any
relationship of parameters for different variables. The proposed method is an
extension of Wang (2010). A simulation result shows the performance of the

proposed method.
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1 INTRODUCTION

The prediction interval (PI) is an important tool to predict the future observa-
tions. It is widely used in industrial applications to predict the number of defective
units which will be produced during future production of a product (Wang 2008). In

medical applications, it can be used in predicting disease count (Wang 2010).

Most of the previous study focus on the construction of prediction intervals for
continuous distribution, see Basu, Ghosh and Mukerje (2003), Hall and Rieck (2001),
Hamada, Johnson and Moore (2004) and Lawless and Fredette (2005). Nevertheless,
compared with the continuous distributions, there are some studies for discrete dis-
tributions. Nelson (1982) proposed a widely used closed form prediction interval for
a discrete random variable. Another useful prediction interval with a closed form for
a discrete distribution was propesed by -Bain.and-Patel (1993). Among these discrete
distributions, the binomial distribution is a useful discrete distribution in many real
application fields. Wang (2007a; 2008;.2009) proposed procedures to calculate the
coverage probability of confidence intervals for a binomial proportion of a binomial
distribution and the coverage probability of prediction intervals for a binomial ran-
dom variable. Most of the previous studies focus on prediction interval for a single
random variable. Although the above literatures provide methods for constructions
of prediction intervals for discrete distributions, they cannot be applied to construct
prediction intervals for functions of multiple variables. The multivariate binomial

distribution can be applied in many real applications. For example, we consider



predicting the number of sickbeds arrangement between different departments in a
hospital. Suppose the numbers of sickbeds follows a binomial distribution and we
model the number of sickbeds needed for different departments with a multiple bi-
nomial distribution. Thus, in this thesis, we investigate prediction intervals for the

binomial distribution with multiple variables.

In this thesis, we extend the prediction interval proposed by Wang (2010) from
a single variable to multiple variables. Using the proposed method, we are able to
obtain a suitable interval to predict-a linear eombination of multiple variables. In
addition, we consider two cases that the parameters are related to the binomial dis-
tributions and the parameters are not related. The first case can be applied to predict
the number of sickbed arrangement between different departments. A more accurate
prediction interval e¢an not only reduce the cost but also can inerease the utilization
rate of sickbeds. Suchran interval would interest the hospital operator for the con-
figuration management. For instance, a hospital eperator may wish to construct a
prediction interval to know how to arrange the mumber of sickbeds to different de-
partment such that they can be used sufficiently. In industrial applications, it can
predict the number of defective units which need to be repaired and the number units
should be supplied to clients. That can bring lots of effects, such as increasing the

customer satisfaction and raising the company image.

The rest of the thesis is organized as follows. Section 2 reviews the related works

and the prediction interval proposed by Wang (2010). In Section 3, we present the



proposed methods used by this study. Section 4 displays the simulation results of our

study. A conclusion is summarized in Section 5.




2 PRELIMINARY

In this section, first, we introduce the definition of prediction interval, and the

existing prediction intervals for the binomial distribution.

2.1 Prediction Interval

Let X1, Xs,..., X, be an observed random sample of size n from a discrete dis-
tribution with a probability mass function f(z;6), where 0 is an unknown parameter.
Let Y1, ...,Y,, be a future randomsample of size m from the same distribution. As-
sume that the future sample ¥3;...,Y,, is drawn independently from the past sample
X1, Xo,..., X,. Let X be a function of X, X5,..., X, and have a probability mass
function f,(z;0). Let:Y be a function of Yj,..., ¥;, and have a probability mass func-
tion f,(y;0). Let L(X) and U(X) be two statistics based on the observed samples.

If L(X) and U(X) are determined as

P(B(X) <Y < U(X)) =1, (1)

then [L(X), U(X)] is called a level 1-o prediction interval of Y.

2.2 Existing Methods

We present several existing prediction intervals for a single binomial random
variable as follows:
(1). The Nelson prediction interval

Assume that the past data, X, follows a Binomial(n, p) distribution where 0 < p <



1. Let Y be the future number following a Binomial(m, p) distribution. The Nelson

prediction interval to predict Y is derived from

Y —mp
V(1 —p)ym(m +n)/n

where p = X/n. Nelson (1982) [6] proposed an approximate level 1-a two-sided

~ N(0,1), (2)

prediction interval which is

(Y = zajp/mp(1 — p)(m +n)/n, Y + zajo/mp(1 — p)(m +n)/n) (3)
where z, is the upper a cut off point of the standard normal distribution and Y = mp

when X, n — X, Y, and m — g all of these are large.

(2). Bain and Patel prediction interval
Bain and Patel approximate prediction interval (1993) is based on the conditional
distribution to exclude the unknown parameter and uses the conditional distribution

to derive the predictive boundaries. The approximate level 1-& has the form
(Lx — X, Ux — X, (4)

where

(2X — Vv + sw) — /s2w? +4(X — 1/2)w(n — X +1/2)

Lx = 2(v? +w) ’
U — (2X + Do+ sw) — /s2w? + 4(X +1/2)w(n — X — 1/2)
* 2(v? 4+ w) ’

s=m+n,v=n/s, and w =z, ,»v(l—0v)/(s—1).

In terms of these existing prediction intervals, Wang (2008) constructs an ad-
justable prediction interval and proposed procedures to calculate the minimum cov-
erage probability and average coverage probability of a binomial prediction interval.

5



(3). Wang’s prediction interval
Based on a similar argument as Wilson confidence interval construction (Wilson

1927), Wang (2010) used the fact that the random variable

Y —mp (5)
X+Y X+Y \m(m+n) ’
\/n+m (1 - n—i—m) n

is approximating a standard normal distribution to construct a prediction interval.
In the existing prediction interval, Wilson interval, there is an disadvantage that
when the true parameter, p, is closed to the boundaries, the coverage probability is
much less than the nominal level.-Let k = 27 755 in order to prevent poor coverage

provability, Wang (2010) inverts

{y:y=mp+ VEW(z,y)} (6)
to derive the predietion limits, where

(x+ k/2+y) y (1_ (x+k:/2+y)> 5 (m~|—n>

Wiey) = (ko = i) (n+ 124 m) n

(7)
Based on this outcome; Wang (2010) proposed the following prediction interval

+

Ql W

(8)

Ql
|
Q@
Ql =

where

A =mn[2zk(n + k +m) + 2z + k) (m + n)?],

B = (mn(m+n)k(m+n+k)? x (2(n — 2)[n*(2x + k) + 4mnzx + 2m>z]

[N

+nkn(2z + k) + 3mn + m?))z,

C =2n[(n+k)(m?* + n(n+ k) + mn(2n + 3k)]

and

— 52



The performance of the coverage probability of (5) is referred to Figure 1 in
Wang(2010).

score Pl for m=50

0.99} 4 b

0.98

coverage probability
o
©
\I

expected length

[0} 0.2 0.4 0.6 0.8 1

Figure 1: Coverage probability of the 95% level prediction intervals for the Binomial dis-
tributions with n = 10(dotted line), n = 50(dashed line) and n = 1000(solid line).



Furthermore, to prevent the poor coverage probability when the parameter, p, is
closed to the boundaries, Wang (2010) improves the existing prediction interval (3)

by substituting p for p, which contributes to the second proposed interval

[La(X), Ua(X) ] = [Y =200y V/mb(L = §)(m +n)/n, Y +zapy/mp(l—p)(m +n)/n],

9)




3 METHOD

3.1 The prediction interval for a linear function of two vari-
ables without correlation

Let X1=(X11, X12,...,X1n,) be an observed random sample of size n; from a
discrete distribution with a probability mass function f,, (z1;p1), and let Xo=(Xoy,
X2, ..., Xon,) be an observed random sample of size ny from a discrete distribution
with a probability mass function f,,,(z2;p2), where p; and ps are unknown parame-
ters. Let Yi1,..., Y1, be a future random sample of size m; from the distribution,

fmi(y1;p1) and let Yo, . o, ¥, be a future random:sample of size my from the dis-

tribution, f., (y2;p2)-

Assume that the future sample Y5, ... ¥7,,; and Y5, ..., Y5,,, are drawn inde-
pendently of the past sample X1, Xq2, <., Xy, and X1, Xog yu.., Xo,,. Let L(X7)
and U(X) be two statistics based on the observed sample; X, X1o, ..., X1, and let
L(X3) and U(X3) be two statistics based on the observed sample, X1, Xo, ..., Xop,.

If L(X4), L(X5), U(X,) and U(X5) are determined so that

P(L(X1)+ L(X,) <Y1+ Y, <U(X,)+U(Xy) =1—-aq, (10)

where L(X), U(X1), L(X5) and U(X ) are determined by (8), then

[L(X1) + L(X2),U(X,) +U(X2)], (11)

is called a level 1-a prediction interval of Y7 + Y5.

In our study, we find a lower bound of the coverage probability of the prediction



interval (11). At first, let YV} € [L(X1),U(X1)] and Y3 € [L(X5),U(X5)], where

L(X4),U(X1), L(X2), and U(X3) are determined by (8). Using (8), we have
P(L(X,) <Y1 <U(Xy)=1-a

and

P(L(X,) <Y, <U(Xy)=1—-a.

We consider the case that the future observations, Y; will belong to [L(X), U(X )]
and Y5 will belong to [L(X5), U(X'3)]. We find a lower bound of coverage probability
which is

P(L(X1) S30/< U(X)x P(L(X,) < Yo U (X)) = (1 - a)”.

It is due to

P(E(XY) +L(X3) S ¥ + Y5 < U(X ) + U(X)))

> P(L(X1) €¥pSU(X,)) X P(L(X9) €15 < U(X5)).

Here, we can ensure that [L(X) 4+ L(X,),U(X1) 4+ U(X5)] has a lower approxi-

mate coverage probability (1 — a)?.

3.2 The prediction interval for a linear function of multiple
variables without correlation

Let X; = (X1, X2, ..., Xin,) be an observed random sample of size n; from a

discrete distribution with a probability mass function f,, (z;;p;), i=1,...,k, where p;

10



is unknown parameters. Let Yjq,...,Y},, be a future random sample of size m; from

the same distribution, fo,, (vi;p;).

Assume that the future sample Yy, ..., Y, are drawn independently of the past
sample X1, X9, ..., X, 1=1,..., k. When ¢ = 3, let L(X;) and U(X ) be two
statistics based on the observed sample, X1, Xio, ..., X1, let L(X5) and U(X5) be
two statistics based on the observed sample, Xo1, Xoo, ..., Xo,, and let L(X3) and
U(X 3) be two statistics based on the observed sample, X351, X3s, ..., X3,,. If L(X),

L(X,), L(X3), U(X4), U(X,) and U(X3) are-determined so that

P(L(X 1)+ L(X,)+0(X5) <Y +Ys < U(X )4+ U(X9)+LU(X35) = 1—a, (12)

where L(X,), U(X4%), L(X2), U(X2), L(X3), and U(X ;) are determined by (8)
then

[L(X71) + L(X2) + L(X3), UX ) +U(X) 4 U(X3)], (13)

is called a level 1-a prediction.interval of Y7 + Y5 475,

In our study, we find a lower bound of the coverage probability of the predic-
tion interval of (13). At first, let Y} € [L(X1),U(X1)], Y2 € [L(X2),U(X3)] and
Y; € [L(X3),U(X3)] where L(X4), U(X1), L(X2), U(X2), L(X3) and U(X3) are

determined by (8). Using (8), we have

11



and

P(L(X3) <Y; <U(X3)=1-a.

We consider the case that the future observations, Y; will belong to [L(X ), U(X )],
Y, will belong to [L(X3),U(X2)] and Y3 will belong in [L(X3),U(X3)]. We find a

lower bound of coverage probability which is

P(L(X1) < Yi < U(X1)xP(L(X5) < s < U(X))x P(L(X5) < Y3 < U(X3)) = (1-a)’.

It is due to

P(L(X1) + L(X3)+ L(X3) <Y1+ Yo +Y¥s SU(X)+U(X,) +U(X3))

> P(L(X 1) <Y1 SlU( X)) X P(L(X2) < Y5 S U(X3)) X P(L(X3) < Y3 <U(X3)).

Here, we can emnsure that [L(X ;) +L(Xs) + L(X3), U(X1)+ U(X2) + U(X3)]

has a lower approximate coverage probability (1.~ a)3.

3.3 The prediction interval for a linear function of two vari-
ables with correlation

Let X1=(X11, X12, ..., X1n,) be an observed random sample of size n; from a dis-
crete distribution with a probability mass function f,, (z1;p1), and let X o=(Xs1, Xoo,
..., Xap,) be an observed random sample of size ny from a discrete distribution with
a probability mass function f,,(z2;p2), where p; and py are unknown parameters.
Let Y11,..., Y1, be a future random sample of size m; from the same distribution,

fmi(y1;p1) and let Yoy, ..., Y5, be a future random sample of size my from the same

12



distribution, fi,,(y2;p2). Let X3=(X31, X32, ..., X3,;) be an observed random sam-
ple of size n3 from a discrete distribution with probability mass function f,,,(xs;ps),
where p3 is a function of p; and ps. The variable X 3 is dependent on variables X and

X,. Let Yii,...,Ys,, be a future random sample of size ms from the distribution,

Jims (Y33 D3).-

Assume that the future sample Yi1,..., Y1im,, Yo1,..., Yom, and Ys, ..., Y5, are
drawn independently of the past sample X1, Xio, ..., X1, Xo1, Xo2 ..., X9, and
X1, X392 ..., X3n,. Let Xq be-a function of X1, X9, ..., X1,,, X2 be a function
of Xo1, Xoo, ..., Xo,, and X5 be a function of Xsy, X390, .0, X3,,, with a probability
mass function f,, (#1591), fn, (Z25p2) and fr.(23; p3), xespectively. Let V) be a func-
tion of Y71, ..., Y1, Y2 be afunction of ¥5,,¢. . ¥5,,, with probability mass functions
fmi(y1;p1) and fr (923 p2), and ¥3 be afunction of Ysy, ..., Y5, with a probability
mass function f,,, (ys;ps), respectively. Let L(X;) and U(X 1) be two statistics based
on the observed sample, X34, Xis;. .., X1, and let L(X3) and U(X 3) be two statistics
based on the observed sample, X951, X9, . .., X, If there are some sample recounted
between the observed samples, X171, X19, ..., X1, and Xo1, Xoo, ..., Xop,, let the re-
counted item be the X3, Xso,..., X3,,. The L(X 1), L(X2), L(X3), U(X1), U(X2)
and U(X3) are determined under the condition that X3 is dependent on X; and X

such that

P(L(X1)+L(X2)—U(X3) <Yi+Yo—Ys SU(X1)+U(X2)—L(X3) = 1-a. (14)

13



Then

[L(X 1) + L(X5) = U(X3), U(X1) + U(X2) - L(X5)], (15)

is called a level 1-a prediction interval of Y; 4+ Y, — Y3. By taking the correlation into

consideration, the prediction interval can be applied to more realistic situations.

v
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4 SIMULATION

In this section, we conduct a simulation study to evaluate the performance of
the proposed prediction intervals. First, we present the simulation for two variables
without correlation case. Second, we consider multiple variables without correlation

case. Finally, the simulation is presented for the two variables with correlation case.

4.1 The simulation in two variables without correlation

Using the prediction interval «(11), we consider two points of view. First, we
observe the coverage probability corresponding to different o when p; or ps be fixed.
Second, we observe the coverage probability corresponding to different p; and py when

« be fixed.

(1). Coverage probability corresponding to different pyand p, at o = 0.05
Here, we present some cases about the coverage probability corresponding to dif-
ferent p; and py when a=0.05..In this paragraph, we consider three cases about the

sample size, which are n, = no, 1 = 2ns and n; = 3n, when a = 0.05.

Figure 2, 3 and 4 show that the relationship between coverage probability and
different (py, p2) in different cases of the sample size. In Figure 2, 3 and 4, we observe
that the maximum coverage probability occurs at the four top of corners, and the
minimum coverage probability occurs at the center of figure.

e The case for X; and X, with the same sample size.

15
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Figure 2: Coverage probability of the predietion interval corresponding to (ny, no,

m1, me)= (30,30,10,5) with the maximum value=0.9989452 occurring at (pi, ps) =
(0.01,0.01), (0.01,0.99), (0.99,0.01); (0.99,0.99) and*the minimum value=0.8893743
occurring at (py, pa)r= (0.49,0.49), (0.49,0.51), (0:51,0.49), (0.51,0.51).

e The case for X; and Xy with the different sample size when n; = 2n..
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Figure 3: Coverage probability of the prediction interval corresponding to (ni, ns,

m1, me)= (30,15,10,5) with the maximum value=0.9990451 occurring at (p1,ps) =
(0.01,0.01), (0.01,0.99), (0.99,0.01), (0.99,0.99) and the minimum value=0.8957184
occurring at (p1, p2) = (0.49,0.49), (0.49,0.51), (0.51,0.49), (0.51,0.51).
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e The case for X; and X, with the different sample size when n;

= 3ns.
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Figure 4: Coverage probability of the prediction interval.corresponding to (ni, ns,

m1, me)= (30,10,10,5)with the maximum value=0.9998804 occurring at (pi, ps) =
(0.01,0.01), (0.01,0.99),(0.99,0.01), (0.99,0.99) and the minimum value=0.9010947

occurring at (py, pa)r= (0.49,0.49),(0.49;0.51), (0.51;0.49), (0.51,0.51).

(2). The a trend

Figure 5 shows the coverage probability corresponding to different ov and p, when
p1=0.9. Figure 6 shows the ecoverage probability-corresponding to different a and

p1 when p,=0.9. According to Figure 5 and Figure 6, we observe a trend that the
coverage probability decreases when « increases.

17
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Figure 5: The coverage probability corresponding to different-e and py when p;=0.9.

Figure 6: The coverage probability corresponding to different o and p; when py=0.9.
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4.2 The simulation in three variables without correlation

Using the prediction interval (12), we consider two points of view. First, we
observe the coverage probability corresponding to different a when p; or ps or ps be
fixed. Second, we observe the coverage probability corresponding to different p; and
po when « and p3 be fixed, or p; and p3 when « and py be fixed, or py and p3 when

a and p; be fixed.

(1). Coverage probability correspondingto different p;, p, and p3 at «=0.05
e The case for X;, X; and X35 with the same sample size.

Figure 7 shows that the relationship between coverage probability and different
(p1,p2) under fixed. p3 and equal-sample size: Figure 8 shows that the relationship
between coverage probability and different (ps, p3) under fixed p; and equal sample
size. Figure 9 shows that the relationship between coverage prebability and different

(p1,p3) under fixed py and equal sample size.

19



&,

N IR
N
NI

4 17
Il
l’l"l:llllll

Q
MR
NN,
NHTRHW
R \‘\‘\\\\\‘\\\\‘\‘\‘&
R
AR

l’/ 1

A
i

Wi

ANNANY
ANARMRINT
N

NN

0.90

) 7
Y 4
%

X LR ""’/

0.0

10 0.0

Figure 7: Coverage probability of the prediction.interval corresponding to (ni, ns,
ns, mi, mg, ms)= (30,30,30,10,5,3).with the maximum value=0.969829 occurring

at (p1,pa,ps) = (0.0050.01,0.75)(0.01,0.99:0.75), (0:99,0.050.75), (0.99,0.99,0.75)
and the minimum value=0.8634517 occurring at (py,p2,p3). = (0.49,0.49,0.75),
(0.49,0.51,0.75), (0,49,0.510175); (0:51,0.51,0.75).
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Figure 8: Coverage probability of the prediction interval corresponding to (ni, ns,
ns, my, ma, mg)= (30,30,30,10,5,3) with the maximum value=0.9442639 occurring

at (p1,p2,p3) = (0.01,0.75,0.01), (0.01,0.75,0.99), (0.99,0.75,0.01), (0.99,0.75,0.99)

and the minimum value=0.8721178 occurring at (p1,p2,ps) = (0.49,0.75,0.49),
(0.49,0.75,0.51), (0.51,0.75,0.49, (0.51,0.75,0.51).
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Figure 9: Coverage probability of the prediction imterval corresponding to (ni, ns,
ns, my, mo, mz)= (30,30,30,10,5,3) with the maximum value=0.9360158 occurring
at (p1,p2,p3) = (0.75,0.01,0.01), (0.75,0.01,0.99), (0.75,0:99,0.01), (0.75,0.99,0.99)
and the minimum wvalue=0.8600604 occurring at (pi,p2,ps) = (0.75,0.49,0.49),
(0.75,0.49,0.51), (0.75,0.51,0.49),-(0.75,0:51,0:51).

The case for X, X, and X3 with the different ' sample size when n;, =
3712 = 2n3.

Figure 10 shows that the relationship between coverage probability and different
(p1,p2) under fixed p3 and equal sample size. Figure 11 shows that the relationship

between coverage probability and different (py, p3) under fixed p; and equal sample

size. Figure 12 shows that the relationship between coverage probability and different

(p1, p3) under fixed py and different sample size while ny = 3ny = 2ng.
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Figure 10: Coverage probability of the prediction interval corresponding to (ni, ns,
ns, my, mo, mg)= (30;10,15,10,5,3) with the maximum value=0.9749658 occurring

at (p1,p2,ps) = (0.01,0.01,0.75),-(0.01,0.99,0.75), (0.99,0.01,0.75), (0.99,0.99,0.75)

and the minimumsvalue=0.8786416 oecurring at' (p;,ps,ps) = (0.49,0.49,0.75),
(0.49,0.51,0.75), (0/51,0.49,0:75); (0:51,0.51,0.75):
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Figure 11: Coverage probability of the prediction interval corresponding to (ng, ns,
n3, my, ma, mg)= (30,10,15,10,5,3) with the maximum value=0.9647086 occurring
at (p1,p2,p3) = (0.01,0.75,0.01), (0.01,0.75,0.99), (0.99,0.75,0.01), (0.99,0.75,0.99)

and the minimum value=0.878146 occurring at (pi,pe,p3) = (0.49,0.75,0.49),
(0.49,0.75,0.51), (0.51,0.75,0.49), (0.51,0.75,0.51).

22



1.00

i
i
e
Py *’,"g
iy
LR
W
2 RN
% \ RO
% R RIS
3 MR ITRRIRREZ
g A
T, 0.92 N
Z
Z

R
W N
NHHHun
LR

LR

%
L
N

Nk
NRRRORRNN

AR

10 00

Figure 12: Coverage probability of the predietion interval corresponding to (nq, ns,
ns, mi, ma, mz)= (30,10,15;10,5,3) with the maximum value =0.9577311 occurring

at (p1,p2,p3) = (0.75,0.01,0.01), (0.75,0.01,0.99), (0.75,0:99,0.01), (0.75,0.99,0.99)
and the minimum yalue =0.8779254 occurring at (p1,p2, p3)
(0.75,0.49,0.51), (0.75,0.51,0.49),-(0.75,0:51,0:51).

(0.75,0.49,0.49),
(2). The « trend

Figure 13 shows_the coverage probability corresponding.to different o and p;
when p,=0.9 and p3=0.9.- Figure 14 shows the coverage prebability corresponding to
different o and p3 when p;=0.9 and p>=0.9. According to Figure 13 and 14, it shows

a trend that the coverage probability increases by a decreasing. Both Figure 13 and

14 show that the coverage probability starts to closed to zero while av approaches to
0.6.
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Figure 13: The coverage probability corresponding to different o and p; when p,=0.9
and p3 = 0.9.
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Figure 14: The coverage probability corresponding to different o and p3 when p;=0.9
and p, = 0.9.
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4.3 The simulation in two variables with correlation

Using the prediction interval (14), we consider two points of view. First, we
observe the coverage probability corresponding to different o when p; or p, be fixed
with p3 = p1 X pe and p3 = p? X pa. Second, we observe the coverage probability

corresponding to different p; and p, when a be fixed.

(1). Coverage probability corresponding to different p; and p; at o = 0.05
Here, we present some cases about the coverage probability corresponding to dif-
ferent a and the coverage probability corresponding to different p; and ps when
a = 0.05.
e Coverage probability correspoending todifferent p; and p, under p3; = p; xXps
with same sample size
Figure 15 shows_that the relationship between coverage probability and different
(p1,p2) under p3 = p; Xy and the equal sample size. Figure 16 shows that the rela-

tionship between coverage probability and different ps under the equal sample size.
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Figure 15: The coverage probability corresponding to different p; and p, under o =
0.05 and p3 = p; X po. Coverage probability of the prediction interval corresponding
to (n1, ng, n3, my, me,anz)= (30,30,10,15,;5,3) with the maximum value =0.9987448

occurring at (py,p2) =:(0:01,0.01)-and the minimum value=0.860743 occurring at
(p1,p2) = (0.71,0.57) while ps =pi-x ps.
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Figure 16: The coverage probability corresponding to different p; and p, under
= 0.05 and p3 = p; X pg. Coverage probability of the prediction interval corre-
sponding to (n1, ng, ns, my, ma, mg)= (30,30,10,15,5,3) with the maximum value
=0.9987448 occurring at ps = 0.0001 where (p1, p2) = (0.01,0.01) and the minimum
value =0.860743 occurring at ps = 0.4047 while (p1, p2) = (0.71,0.57).
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e Coverage probability corresponding to different p; and p, under p3 = p; Xpo
with different sample size (n; = 2n,)

Figure 17 shows that the relationship between coverage probability and different

(p1, p2) under ps = p; X py and different sample size while ny = 2n,. Figure 18 shows

that the relationship between coverage probability and different p3 under different
sample size while ny = 2n..
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Figure 17: The coverage probability corresponding to different p; and ps under o =

0.05 and p3 = p; X ps. Coverage probability of the prediction interval corresponding

to (ny, na, ng, my, me, mz)= (30,15,10,15,5,3) with the maximum value = 0.9988455
occurring at (p1,p2) = (0.01,0.01) and the minimum value = 0.8665772 occurring at
(p1,p2) = (0.71,0.61) while p3 = p1 X ps.
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Figure 18: The coverage probability corresponding to different p; and p; under o =
0.05 and p3 = p; X pa. Coverage probability of the prediction-interval corresponding
to (ny, na, ng, my, Ms, Mmg)=-(30,15,10,15,5,3) with the maximum value = 0.9988455
occurring at p3 = 0.0001 where (p;,p2) = (0.01,0.01) and the minimum value =
0.8665772 occurring.at p; = 0.4331 while (pi, p2) = (0.71,0.61).

e Coverage probability corresponding to different p;, po and with correla-
tion p3 = p? X po

Here, we present some cases about the coverage probability corresponding to dif-
ferent «, the coverage probability corresponding to different p; and py when o = 0.05.
e Coverage probability corresponding to different p; and p, under p3 = p?xp,
with same sample size

Figure 19 shows that the relationship between coverage probability and different
(p1,p2) under p3 = p? X py and the equal sample size. Figure 20 shows that the

relationship between coverage probability and different p3 with equal sample size.
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Figure 19: The coverage probability cerresponding to different p; and p; under o =
0.05 and p3 = p? X po. Coyerage probability of the prédiction interval corresponding
to (ny, na, ng, my, me, mg)=(30,30,10,15,5,3) with the maximum value = 0.9987445
occurring at (pr, p2) = (0:01,0.01).and the minimum value =.0.8720496 occurring at
(p1,p2) = (0.75,0.57)awhile p3 =p¥x ps.
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Figure 20: The coverage probability corresponding to different p; and ps under o =
0.05 and p3 = p? x py. Coverage probability of the prediction interval corresponding
to (ny, ng, ng, my, me, mz)= (30,30,10,15,5,3) with the maximum value = 0.9987445
occurring at ps = 0.0001 where (p;,p2) = (0.01,0.01) and the minimum value =
0.8720496 occurring at p3 = 0.320625 while (py,p2) = (0.75,0.57).
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e Coverage probability corresponding to different p; and p, under p; = p? xp,
with different sample size (n; = 2n,)

Figure 21 shows that the relationship between coverage probability and different

(p1,p2) under p3 = p? x po and different sample size while n; = 2n,. Figure 22 shows

that the relationship between coverage probability and different p3 under different
sample size while ny = 2n..
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Figure 21: The coverage probability corresponding to different p; and ps under o =

0.05 and p3 = p? x py. Coverage probability of the prediction interval corresponding

to (ny, na, ng, my, me, mz)= (30,15,10,15,5,3) with the maximum value = 0.9988455
occurring at (p1,p2) = (0.01,0.01) and the minimum value = 0.8774135 occurring at
(p1,p2) = (0.77,0.65) while p3 = p? X po.
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Figure 22: The coverage probability corresponding to different p; and p; under o =
0.05 and p3 = p? X py. Coverage probability ‘of the prediction-interval corresponding
to (ny, na, ng, my, Ms, Mmg)=-(30,15,10,15,5,3) with the maximum value = 0.9988455
occurring at ps = 0.000001 where (p1, ps) = (0:01,0.01) and the minimum value =
0.8774135 occurring.at ps = 0.385385 while (py, po) = (0.77,0.65)

(2). The a trend

Figure 23 shows the coverage probability corresponding to different o and p; when
p2=0.5 and p3 = p; X py. Figure 24 shows the coverage probability corresponding to
different o and p; when py=0.5 and p3 = p? x py. According to Figure 23 and 24, it

shows a trend that the coverage probability increases by « decreasing.
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Figure 23: The coverage probability-corresponding to different o and p; when py, = 0.5
and p3 = p; X pa.
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Figure 24: The coverage probability corresponding to different o and p; when py = 0.5
and p; = pi X pa.
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5 CONCLUSION

The prediction interval is widely used in industrial and medical applications. Lit-
eratures have provided methods for constructions of prediction intervals for discrete
distributions. However, those existing methods cannot be applied to construct pre-

diction interval for functions of multiple variables.

In this article, we have reviewed the prediction intervals of single binomial random
variable. We extend the prediction. interval which were proposed by Wang (2010) to
the multiple binomial variables case. Our method.proposes prediction interval for a
linear function of multiple binemial random variables. The prediction interval method
can be extended to construct prediction intervals for more models. We simulate some
cases in which thertwo variables are independent or dependent'and in which three
variables are independent. In our simulations, we observe that the coverage probabil-
ity of the prediction interval at least 0.88 and 0.86 while we consider two and three
binomial random variables; respectively. The caseiinwhich variables are independent,
we observe that the prediction interval has the characteristic that it is symmetric at
p=0.5. In addition, comparing to the cases without relationship of variables, we ob-

serve the coverage probability of the prediction interval shift away the center.

The thesis can be generalized to additive models, such as there are relationship
of parameters, p;, for e = 1,..., k. We can use the regression model to find the rela-
tionship between the variables and then using the prediction interval to predict the

future observations.
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