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摘要 

    當製程品質可藉由變數間之線性關係來衡量時，本文提出統計製程

管制可用於監控工業實務上。首先介紹一些概似比檢定統計量的性質。

其次，我們提出概似比檢定統計量的指數加權移動平均來監控一般線性

資料。最後，我們用模擬的方法來說明我們提出的這個方法之表現並討

論它的優缺點。 
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Abstract 

    When the quality of a process can be characterized by general linear 

profiles, a statistical process control scheme that can be used in industrial 

practice is proposed in the paper. First, some properties of the likelihood ratio 

test statistics are introduced. Next, an exponentially weighted moving average 

control chart based on likelihood ratio test statistics for monitoring general 

linear profiles is proposed. Finally, the performance of the proposed 

methodology is investigated through a simulation study to show its strength 

and weakness. 
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1 Introduction

1.1 Motivation

Quality improvement is a key factor for keeping competitiveness in the international

market. Statistical process control (SPC) is used for applications of industrial processes

by statistical methods that can help practitioner to find out the problems in processes.

Roberts (1959) proposed an exponentially weighted moving average (EWMA) control

chart to detect a small shift in the process mean, and it nowadays is a widely studied

and accepted alternative to the traditional Shewhart X̄ control chart (Shewhart, 1931).

The likelihood ratio (LR) test is commonly used to test hypotheses for a parametric

family in statistical literature because of its high power in detecting a large shift or

for a large sample size. In many situations, the quality of a process may be better

characterized and summarized by the relationship between the response variable and

one or more explanatory variables. Thus, an EWMA control chart based on LR test

statistics for monitoring general linear profiles is proposed in the paper and then some

properties of the proposed methodology are investigated.

1.2 Literature Review

SPC refers to statistical methods which are extensively used to monitor and improve

the quality of industrial processes and others operations. Most of the studies on SPC are

focused on the charting skill which is used to monitor processes in order to distinguish
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special significant reasons of variation from general allocation reasons of variation in

processes. In the Phase I stage, a set of process data is gathered to construct trial

control limits that determine whether or not the process has been in control over the

period of time, and then to model the in-control process so that reliable control limits

of the control chart can be established for the later Phase II stage. In the Phase II

stage, process data are compared with a pre-established standard from the previous

Phase I stage to determine whether the process is in control or not.

Shewhart (1931) proposed a Shewhart X̄ control chart which is briefly introduced as

follows: At time j (≥ 1), let Xj1, Xj2, . . . , Xjn be i.i.d. N(µj , σ
2) observations, where µj

denotes the unknown process mean at time j and σ the known positive process standard

deviation. Set X̄j ≡ ∑n
i=1Xji/n for j ≥ 1. Then an out-of-control signal occurs at

time j (≥ 1) if
√
n|X̄j −µ|/σ > L, where µ denotes the known in-control process mean

and L is chosen to achieve a specified in-control average run length (ARL).

Page (1954) proposed a cumulative sum (CUSUM) control chart which is briefly

introduced as follows: Let X1, X2, . . . be independent observations such that Xj ∼

N(µj, σ
2), where µj denotes the unknown process mean at time j and σ the known

positive process standard deviation. For j ≥ 1, two statistics C+
j and C−

j are iteratively

defined as

C+
j ≡ max{0, C+

j−1 +Xj − (µ+K)}

and

C−
j ≡ max{0, C−

j−1 −Xj + (µ−K)},

where C+
0 = C−

0 ≡ 0, µ denotes the known in-control process mean, and K is one half

2



of the specified shift in process mean that should be quickly detected by the scheme.

Then an out-of-control signal occurs at time j (≥ 1) if max{C+
j , C

−
j } ≥ Hσ, where H

(> 0) is chosen to achieve a specified in-control ARL.

Roberts (1959) proposed an EWMA, originally called geometric moving average, con-

trol chart which is briefly introduced as follows: At time j (≥ 1), let Xj1, Xj2, . . . , Xjn

be i.i.d. N(µj , σ
2) observations, where µj denotes the unknown process mean at time j

and σ the known positive process standard deviation. The EWMA sequence is

Wj ≡ (1− λ)Wj−1 + λ(X̄j − µ) = λ

j−1
∑

k=0

(1− λ)k(X̄j−k − µ), j = 1, 2, . . . ,

where W0 ≡ 0, µ denotes the known in-control process mean, and λ is a smoothing

parameter chosen in (0, 1]. Observe that the standard deviation of Wj is

σj =

√

λ[1− (1− λ)2j ]

n(2− λ)
σ →

√

λ

n(2− λ)
σ

as j → ∞. Then out-of-control signal occurs at time j (≥ 1) if |Wj|/σj > L, where L

is chosen to achieve a specified in-control ARL.

An EWMA control chart is typically designed in the Phase II stage for a manu-

facturing process. Stoumbos et al. (2003) investigated the performance of Shewhart,

EWMA, and CUSUM control charts for detecting sustained shifts and drifts in the pro-

cess mean and variance. In practice, the in-control process distribution is rarely known

exactly, and thus control charts are usually constructed using an approximate in-control

process distribution estimated from some historical in-control process data. Jones et

al. (2001) utilized a numerical procedure to study the run-length (RL) distribution of

3



an EWMA control chart using estimated in-control process parameters. Jensen et al.

(2006) provided a review of the literature that considered the effect of in-control process

parameter estimation on control charts and concluded that the influence of in-control

process parameter estimation on control charts should not be ignored.

In most SPC applications, it is assumed that the quality of a process can be suit-

ably represented by the joint distribution of quality characteristics. However, in many

situations, the quality of a process may be better characterized and summarized by the

relationship between the response variable and one or more explanatory variables. Sev-

eral methods for monitoring linear profiles have been proposed in literature, e.g., Kim

et al. (2003) proposed a control chart for monitoring simple linear profiles in the known

in-control process parameter case, and Zou et al. (2006) proposed a control chart based

on the LR test statistics for monitoring simple linear profiles to detect a sustained shift

in the unknown in-control process parameter case.

Through the modern technology that allows simultaneously monitoring all key qual-

ity characteristics during a manufacturing process, the monitored quality characteris-

tics are generally dependent each other. The purpose of multivariate techniques is to

study whether quality characteristics are simultaneously in control or not. Lowry et al.

(1992) proposed a multivariate exponentially weighted moving average (MEWMA) con-

trol chart giving guidelines for designing this easy-to-implement multivariate procedure.

The performance of their control chart is similar to that of a multivariate cumulative

sum (MCUSUM) control chart (Crosier, 1988) in detecting a small shift in the process

mean.
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Zou et al. (2007) [13] proposed an MEWMA control chart for monitoring general lin-

ear profiles in the known in-control process parameter case, which is briefly introduced

as follows: The process is called in control at time j (≥ 1) if

yj = Xβ + σεj ,

where yj is the n × 1 response vector at time j, X is the known n × p model matrix

of full rank p (< n), β (≡ (β0, β1, ..., βp−1)
T ) is the known p × 1 vector of real-valued

in-control process regression parameters, σ is the known positive in-control process

scale parameter, and εjs are i.i.d. Nn(0n×1, In) standardized error vectors. Set Zj ≡

(ZT
j (β),Zj(σ))

T , where Zj(β) ≡ (β̂j − β)/σ and Zj(σ) ≡ Φ−1(Fχ2

n−p
((n − p)σ̂2

j/σ
2))

with β̂j ≡ (XTX)−1XTyj, σ̂
2
j ≡ (yj − Xβ̂j)

T (yj − Xβ̂j)/(n − p), Φ−1(·) denoting the

inverse of the standard normal cumulative distribution function (c.d.f.), and Fχ2

n−p
(·)

the c.d.f. of the chi-squared distribution with n− p degrees of freedom. The MEWMA

sequence is

Wj ≡ λZj + (1− λ)Wj−1 = λ

j−1
∑

k=0

(1− λ)kZj−k, j = 1, 2, . . . ,

where W0 ≡ 0(p+1)×1 and λ is a smoothing parameter chosen in (0, 1]. Observe that

the in-control covariance matrix of Wj is

λ[1− (1− λ2j)]

2− λ
Σ → λ

2− λ
Σ

5



as j → ∞, where

Σ =











(XTX)−1 0p×1

0Tp×1 1











.

Then an out-of-control signal occurs at time j (≥ 1) if (2−λ)W T
j Σ−1Wj/λ > L, where

L is chosen to achieve a specified in-control ARL.

Zou et al. (2007) [16] proposed a self-starting control chart based on recursive resid-

uals for monitoring simple linear profiles to detect a sustained shift in the process

intercept, slope, or standard deviation. Although current SPC methods mostly focus

on detecting a sustained shift in the process mean, time-varying shifts in the process

mean frequently occur in industrial applications. Thus, Zou et al. (2009) investigated

several control charts for detecting drifts in the process mean. Recently, Zou et al.

(2010) proposed an EWMA control chart based on the LR test statistics for monitoring

the process mean and variance.

1.3 Outline

The paper is organized as follows. In Section 2, an EWMA control chart based on

LR test statistics for monitoring general linear profiles is proposed and then some prop-

erties of the proposed monitoring scheme are investigated. In Section 3, a simulation

study is presented to illustrate the proposed methodology. In Section 4, performance

comparisons and conclusions are given. Possible future work is discussed in Section 5.
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2 An EWMA Control Chart Based on LR Test Statis-

tics for Monitoring General Linear Profiles

In this section, an EWMA control chart based on LR test statistics for monitoring

general linear profiles is proposed and then some properties of the proposed methodol-

ogy are investigated.

2.1 Model

In this subsection, consider the following model for the purpose of monitoring general

linear profiles: Suppose that

yj = Xjβj + σjεj , j = 1, 2, ..., (2.1)

where yj is the nj×1 response vector at time j, Xj is the known nj×p model matrix of

full rank p (< nj) at time j, βj (≡ (βj0, βj1, ..., βj,p−1)
T ) is the unknown p× 1 vector of

real-valued process regression parameters at time j, σj is the unknown positive process

scale parameter at time j, and εjs are independent Nnj
(0nj×1, Inj

) standardized error

vectors. Set θj ≡ (βT
j , σj)

T (∈ Rp × (0,∞) ≡ Θ) for j ≥ 1. Then θj is the process

parameter vector at time j for j ≥ 1. For j ≥ 1, the process is called in control at time

j if θj = θ, where θ (≡ (βT , σ)T ≡ (β0, β1, . . . , βp−1, σ)
T ∈ Θ) is the in-control process

parameter vector.

7



When θ is unknown, it is assumed that the historical in-control process data {X0,y0}

are available such that

y0 = X0β + σε0, (2.2)

where y0 is the n0 × 1 response vector, X0 is the known n0 × p model matrix of full

rank p (< n0), and ε0 is an Nn0
(0n0×1, In0

) standardized error vector independent of

{εj : j ≥ 1}.

2.2 Known and Unconstrained Case

In this subsection, consider the case where the process parameter vector at time j

(≥ 1) may be different from the known in-control process parameter vector. For j ≥ 1,

the joint probability density function (p.d.f.) of yj is

f(yj; θj) =
1

(2π)nj/2σ
nj

j

exp

{

−‖yj − Xjβj‖2
2σ2

j

}

=
1

(2π)nj/2σ
nj

j

exp

{

−
(β̂j − βj)

TXT
j Xj(β̂j − βj) + nj σ̂

2
j

2σ2
j

}

,

where β̂j ≡ (XT
j Xj)

−1XT
j yj and σ̂j ≡ ‖[Inj

−Xj(X
T
j Xj)

−1XT
j ]yj‖/√nj . Then, for j ≥ 1,

the log-likelihood function for θj is

ℓj(θj) ≡ log[f(yj; θj)]

= −nj

2
log(2π)− nj

2
log(σ2

j )−
(β̂j − βj)

TXT
j Xj(β̂j − βj) + nj σ̂

2
j

2σ2
j

.

8



and thus the maximum log-likelihood is

ℓj(θ̂j) = −nj

2
− nj

2
log(2π)− nj

2
log(σ̂2

j ),

where θ̂j (≡ (β̂T
j , σ̂j)

T ) is the maximum likelihood estimator (MLE) of θj. Hence the

LR test statistic at time j (≥ 1) is

Wj ≡ 2[ℓj(θ̂j)− ℓj(θ)] =
(β̂j − β)TXT

j Xj(β̂j − β)

σ2
+ nj

[

−1 +
σ̂2
j

σ2
− log

(

σ̂2
j

σ2

)]

, (2.3)

where

(β̂j − β)TXT
j Xj(β̂j − β)

σ2
∼

σ2
j

σ2
χ2
p

(

(βj − β)TXT
j Xj(βj − β)

σ2
j

)

,

σ̂2
j

σ2
∼

σ2
j

σ2

χ2
nj−p

nj
,

and (β̂j − β)TXT
j Xj(β̂j − β)/σ2 is independent of nj [σ̂

2
j /σ

2 − 1− log(σ̂2
j /σ

2)].

When the process is out of control at time j (≥ 1), the distribution of Wj only

depends on p, nj − p, σj/σ, and (βj − β)TXT
j Xj(βj − β)/σ2

j (≡ τ 2j ), and Wj
d→ ∞ as

min{nj , the minimum eigenvalue of XT
j Xj} → ∞, where

Eθj (Wj) = τ 2j
σ2
j

σ2
+ nj

[

log
(nj

2

)

− ψ

(

nj − p

2

)

− 1 +
σ2
j

σ2
− log

(

σ2
j

σ2

)]

,

and

Varθj (Wj) = Eθj (W
2
j )− [Eθj (Wj)]

2

with ψ(x) ≡ d log[Γ(x)]/dx and ψ′(x) ≡ dψ(x)/dx for x > 0. See Appendix A.1 for

9



some relevant formulas about both ψ(x) and ψ′(x). See Appendix A.2 for Eθj (W
2
j ) for

j ≥ 1.

When the process is in control at time j (≥ 1), the distribution of Wj only depends

on p and nj − p, and

nj

[

−1 +
σ̂2
j

σ2
− log

(

σ̂2
j

σ2

)]

=
nj(σ̂2

j − σ2)2

2σ4
+Op

(

1
√
nj

)

d→ Z2

as nj → ∞, where Z ∼ N(0, 1). Then Wj
d→ χ2

p+1 as nj → ∞, where

Eθ(Wj) ≡ Eθj (Wj)|θj=θ = nj

[

log
(nj

2

)

− ψ

(

nj − p

2

)]

= p+ 1 +O

(

1

nj

)

,

and

Varθ(Wj) ≡ Varθj (Wj)|θj=θ = nj

[

njψ
′
(

nj − p

2

)

− 2

]

= 2(p+ 1) +O

(

1

nj

)

.

See Appendix A.3 for both Eθ(Wj) and Varθ(Wj) as nj → ∞.

For j ≥ 1, set

W̄j ≡
Wj − Eθ(Wj)
√

Varθ(Wj)
. (2.4)

2.3 Known and Constrained Case

In this subsection, consider the case where the process parameter vector at time j

(≥ 1) may be different from the known in-control process parameter vector with the

10



constraint σj ≥ σ. Then the maximum log-likelihood is

ℓj(θ
∗
j ) = −nj

2
log(2π)− nj

2
log(σ∗2

j )−
nj σ̂

2
j

2σ∗2
j

,

where θ∗
j (≡ (β∗T

j , σ∗
j )

T = (β̂T
j ,max{σ̂j, σ})T ) is the MLE of θj. Hence the LR test

statistic at time j (≥ 1) is

W ∗
j ≡ 2[ℓj(θ

∗
j )− ℓj(θ)]

=
(β̂j − β)TXT

j Xj(β̂j − β)

σ2
+ nj

[

−1 +
σ̂2
j

σ2
− log

(

σ̂2
j

σ2

)]

· 1{σ̂j>σj}, (2.5)

where (β̂j−β)TXT
j Xj(β̂j−β)/σ2 is independent of nj [−1+σ̂2

j/σ
2−log(σ̂2

j /σ
2)]·1{σ̂j>σj}.

When the process is out of control at time j (≥ 1), the distribution of W ∗
j only

depends on p, nj − p, σj/σ and τ 2j , and W
∗
j

d→ ∞ as min{nj, the minimum eigenvalue

of XT
j Xj} → ∞, where

Eθj (W
∗
j ) = (p+ τ 2j )

σ2
j

σ2
− nj

[

1 + log

(

σ2
j

njσ2

)]

E(1{Hj≥aj})

+
σ2
j

σ2
E(Hj · 1{Hj≥aj})− njE(log(Hj) · 1{Hj≥aj}),

and

Varθj (W
∗
j ) = Eθj (W

∗2
j )− [Eθj (W

∗
j )]

2

withHj ≡ njσ̂
2
j /σ

2
j ∼ χ2

nj−p, aj ≡ njσ
2/σ2

j , and 1{Hj>nj} denoting the indicator function

for {Hj > nj}. See Appendix A.4 for both Eθj (W
∗
j ) and Eθj (W

∗2
j ) in detail.

When the process is in control at time j (≥ 1), the distribution of W ∗
j only depends
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on p and nj − p, and

nj

[

−1 +
σ̂2
j

σ2
− log

(

σ̂2
j

σ2

)]

· 1{σ̂j>σ}

=
nj(σ̂

2
j − σ2)2

2σ4
· 1{√nj(σ̂2

j−σ2)/(
√
2σ2)>0} +Op

(

1
√
nj

)

d→ Z2 · 1{Z>0}

as nj → ∞, where Z ∼ N(0, 1). Then W ∗
j

d→ χ2
p/2 + χ2

p+1/2 as nj → ∞, where

Eθ(W
∗
j ) ≡ Eθj (W

∗
j )|θj=θ

= p+ [nj log(nj)− nj]E(1{Hj>nj}) + E[(Hj · 1{Hj>nj})− njE(log(Hj) · 1{Hj>nj}),

and

Varθ(W
∗
j ) ≡ Varθj (W

∗
j )|θj=θ = Eθ(W

∗2
j )− (Eθ(W

∗
j ))

2

= p(2 + p) + [nj log(nj)− nj ]
2
E(1{Hj>nj}) + 2[nj log(nj)− nj ]E(Hj · 1{Hj>nj})

−2nj [nj log(nj)− nj ]E(log(Hj) · 1{Hj>nj}) + E(H2
j · 1{Hj>nj})

+n2
jE([log(Hj)]

2 · 1{Hj>nj})

−2njE(Hj log(Hj) · 1{Hj>nj})− [Eθ(W
∗
j )]

2.

See Appendix A.4 for both Eθ(W
∗
j ) and Varθ(W

∗
j ).

For j ≥ 1, set

W̄ ∗
j ≡

W ∗
j − Eθ(W

∗
j )

√

Varθ(W ∗
j )

. (2.6)

12



2.4 Unknown and Unconstrained Case

In this subsection, consider the case where the process parameter vector at time j

(≥ 1) may be different from the unknown in-control process parameter vector. For j

(≥ 1), the joint p.d.f. of (yT
0 ,y

T
j )

T is

f(y0,yj; θ, θj) = f(y0; θ) · f(yj; θj)

=
1

(2π)n0/2σn0

exp

{

−‖y0 −X0β‖2
2σ2

}

· f(yj; θj)

=
1

(2π)n0/2σn0

0

exp

{

−(β̂ − β)TXT
0X0(β̂ − β) + n0σ̂

2

2σ2

}

· f(yj; θj),

where β̂ ≡ (XT
0X0)

−1XT
0 y0 and σ̂ ≡ |[In0

− X0(X
T
0X0)

−1XT
0 ]y0‖/

√
n0.

Then, for j ≥ 1, the log-likelihood function for (θT , θT
j )

T is

ℓ0,j(θ, θj) ≡ log[f(y0; θ)] + ℓj(θj)

= −n0

2
log(2π)− n0

2
log(σ2)− (β̂ − β)TXT

0X0(β̂ − β) + n0σ̂
2

2σ2
+ ℓj(θj)

≡ ℓ0(θ) + ℓj(θj)

and thus the maximum log-likelihood is

ℓ0,j(θ̂, θ̂j) = ℓ0(θ̂) + ℓj(θ̂j) = −n0

2
− n0

2
log(2π)− n0

2
log(σ̂2) + ℓj(θ̂j)

= −n0 + nj

2
− n0 + nj

2
log(2π)− n0

2
log(σ̂2)− nj

2
log(σ̂2

j ),

where (θ̂T , θ̂T
j )

T (≡ (β̂T , σ̂, θ̂T
j )

T ) is the MLE of (θT , θT
j )

T . Hence the LR test statistic

13



at time j (≥ 1) is

W0,j ≡ 2[ℓ0,j(θ̂, θ̂j)− ℓ0,j(θ̃, θ̃j)] = (n0 + nj) log(σ̃
2)− n0 log(σ̂

2)− nj log(σ̂
2
j ), (2.7)

where θ̃ ≡ (β̃T , σ̃)T and θ̃j ≡ (β̃T
j , σ̃j)

T = θ̃ with

β̃ ≡ (XT
0X0 + XT

j Xj)
−1(XT

0 y0 + XT
j yj)

and

σ̃ ≡
‖[In0+nj

− (XT
0 ,X

T
j )

T (XT
0X0 + XT

j Xj)
−1(XT

0 ,X
T
j )](y

T
0 ,y

T
j )

T‖
√
n0 + nj

=

√

n0σ̂2 + nj σ̂2
j + (β̂j − β̂)T [(XT

0X0)−1 + (XT
j Xj)−1]−1(β̂j − β̂)

n0 + nj

.

When the process is in control at time j (≥ 1), the distribution of W0,j only depends

on p, n0 − p, and nj − p, and W0,j
a.s.→ Wj as min{n0, the minimum eigenvalue of

XT
0X0} → ∞, see Appendix A.5 in detail. Then W0,j

d→ χ2
p+1 as min{n0/nj , nj} → ∞.

For j ≥ 1, set

W̄0,j ≡
W0,j − Eθ(W0,j)
√

Varθ(W0,j)
, (2.8)

14



where

Eθ(W0,j) ≡ Eθ,θj (W0,j)|θj=θ

= n0

[

log
(n0

2

)

− ψ

(

n0 − p

2

)]

+ nj

[

log
(nj

2

)

− ψ

(

nj − p

2

)]

−(n0 + nj)

[

log

(

n0 + nj

2

)

− ψ

(

n0 + nj − p

2

)]

= p+ 1 +O

(

1

min{n0, nj}

)

,

and

Varθ(W0,j) ≡ Varθ,θj (W0,j)|θj=θ

= n0

[

n0ψ
′
(

n0 − p

2

)

− 2

]

+ nj

[

njψ
′
(

nj − p

2

)

− 2

]

−(n0 + nj)

[

(n0 + nj)ψ
′
(

n0 + nj − p

2

)

− 2

]

= 2(p+ 1) +O

(

1

min{n0, nj}

)

.

2.5 Unknown and Constrained Case

In this subsection, consider the case where the process parameter vector at time j

(≥ 1) may be different from the unknown in-control process parameter vector with the

constraint σj ≥ σ. Then the maximum log-likelihood is

ℓ0,j(θ
∗, θ∗

j ) = −n0 + nj

2
− n0 + nj

2
log(2π)− n0

2
log(σ∗2)− nj

2
log(σ∗2

j ),

15



where (θ∗, θ∗
j )

T (≡ (β∗T , σ∗,β∗T
j , σ∗

j )
T = (β̂T , σ∗, β̂T

j , σ
∗
j )

T ) is the MLE of (θT , θT
j )

T

with

σ∗2 = σ̂2 · 1{σ̂j≥σ̂} +
n0σ̂

2 + nj σ̂
2
j

n0 + nj
· 1{σ̂j<σ̂}

and

σ∗2
j = σ̂2

j · 1{σ̂j≥σ̂} +
n0σ̂

2 + nj σ̂
2
j

n0 + nj
· 1{σ̂j<σ̂}.

Hence the LR test statistic at time j (≥ 1) is

W ∗
0,j ≡ 2[ℓ0,j(θ

∗, θ∗
j)− ℓ0,j(θ̃, θ̃j)] = (n0 + nj) log(σ̃

2)− n0 log(σ
∗2)− nj log(σ

∗2
j ). (2.9)

When the process is in control at time j (≥ 1), the distribution of W ∗
0,j only depends

on p, n0 − p, and nj − p, and W ∗
0,j

a.s.→ W ∗
j as min{n0, the minimum eigenvalue of

XT
0X0} → ∞. Then W ∗

0,j
d→ χ2

p/2 + χ2
p+1/2 as min{n0/nj , nj} → ∞. For j ≥ 1, set

W̄ ∗
0,j ≡

W ∗
0,j − Eθ(W

∗
0,j)

√

Varθ(W ∗
0,j)

, (2.10)

where both Eθ(W
∗
0,j) ≡ Eθ,θj (W

∗
0,j)|θj=θ and Varθ(W

∗
0,j) ≡ Varθ,θj (W

∗
0,j)|θj=θ are given

in Appendix A.6.

2.6 Proposed Monitoring Scheme

Based on the standardized LR test statistics, the EWMA sequence is defined as

Uj ≡ λW̃j + (1− λ)Uj−1, j = 1, 2, ..., (2.11)
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where U0 ≡ 0, λ is a smoothing parameter in (0, 1], and W̃j = W̄j in Section 2.2, or W̄ ∗
j

in Section 2.3, or W̄0,j in Section 2.4, or W̄ ∗
0,j in Section 2.2. Then

Uj = λ

j−1
∑

k=0

(1− λ)kW̃j−k, j = 1, 2, . . . . (2.12)

Due to we use the LR test statistics, then the larger value is more likely become out-

of-control. An out-of-control signal occurs at time j (≥ 1) if

U∗
j ≡ Uj − Eθ(Uj)

√

Varθ(Uj)
> C, (2.13)

where Eθ(Uj) ≡ Eθ,θ1,...,θj (Uj)|θ1=...=θj=θ = 0,

Varθ(Uj) ≡ Varθ,θ1,...,θj(Uj)|θ1=...=θj=θ =
λ[1− (1− λ)2j ]

2− λ
(2.14)

for known θ,

Varθ(Uj) ≡ Varθ,θ1,...,θj (Uj)|θ1=...=θj=θ

=
λ[1− (1− λ)2j ]

2− λ
+ 2λ2

∑

0≤k1<k2≤j−1

(1− λ)k1+k2Covθ(W̃j−k1, W̃j−k2) (2.15)

for unknown θ with Covθ(W̃j−k1, W̃j−k2) ≡ Covθ,θ1,...,θj−k1
(W̃j−k1, W̃j−k2)|θ1=...=θj−k1

=θ,

and C is chosen to achieve a specified in-control ARL. When θ is unknown, Covθ(W̃j−k1, W̃j−k2)

depends on X0, Xj−k1, and Xj−k2 for 0 ≤ k1 < k2 ≤ j − 1. In the paper, each

Covθ(W̃j−k1, W̃j−k2) is approximated by a Monte Carlo estimate.
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3 A Simulation Study

In this section, in order to study the performance of the proposed EWMA monitoring

scheme based on the LR test statistics, the out-of-control ARLs are compared with those

in Kim et al. (2003) and Zou et al. (2007) [13] through a simulation study.

First, consider the case where the in-control parameter vector θ is known. Then C

in equation (2.13) can be evaluated as follows:

Step 1 : Choose the desired in-control ARL and the smoothing constant λ. Here the in-

control ARL and λ is chosen as, respectively, 200 and 0.2. Then we can start to construct

the EWMA control chart, and in order to conveniently introduce the steps, we consider

the case where the in-control parameter vector θ is constrained, and unconstrained case

is also suitable for use.

Step 2 : Due to the in-control ARL = 200, so we generate i.i.d. in-control W ∗
1 , . . . ,

W ∗
200, and we want to standardized the W ∗

j , so we evaluate the Eθ(W
∗
j ) and Varθ(W

∗
j ),

which are used to evaluate W̃ ∗
j . And the data Xj can be random when the p and nj −p

is known.

Step 3 : Evaluate the EWMA sequences {U1, . . . , U200} by equation (2.12), and we want

to standardized the Uj , so we evaluate the Varθ(U1), . . . ,Varθ(U200) by equation (2.14),

which use to evaluate U∗
j by equation (2.13).

Step 4 : We want to know the limit value every time, which use to estimate the C. So

we find the maximum of {U∗
1 , . . . , U

∗
200} (≡ Q(1)), repeat above steps for 50,000 times

to obtain Q(1), . . . , Q(50,000).
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Step 5 : Due to the in-control ARL is the mean of run length, so we think that the C is

between the first sample quartile and third sample quartile of Q(r), r = 1, . . . , 50, 000.

Therefore we sort the Q(r), r = 1, . . . , 50, 000, and evaluate its first sample quartile

(≡ q1), second sample quartile (≡ q2) and third sample quartile (≡ q3).

Step 6 : Choose C as each of q1, q2 and q3 to evaluate the corresponding in-control ARL

for 50,000 times. Use the interpolation method to find the value C with the specified

in-control ARL= 200.

To evaluate the out-of-control ARL, consider the same shifts in θ in Zou et al.

(2007) [13]. The out-of-control ARL can be evaluated as follows:

Step 1 : Due to we want to evaluate the out-of-control ARL, we simulate 50,000 times

to average the RL. Then we generate i.i.d. W ∗
1 and W ∗

2 and standardized them, which

use to evaluate U1 and U2.

Step 2 : Standardized both U1 and U2 to U∗
1 and U∗

2 , then to judge U∗
1 whether larger

than C. If it is true, then the RL= j = 1, else continue the process: generate i.i.d.

W ∗
j , j = 1, . . ., until the value U∗

j > C, j ≥ 1. Then the stopping time ℓ is the RL of

this time.

Step 3 : Repeat Steps 1 and 2 50,000 times to average the RLs, which can obtain the

out-of-control ARL.

Next, consider the case where the in-control parameter vector θ is unknown. Then

C in equation (2.13) can be evaluated as follows:

Step 1 : Choose the desired in-control ARL and the smoothing constant λ. Here the

in-control ARL and λ is chosen as, respectively, 200 and 0.2. Then we can start to
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construct the EWMA control chart, and in order to conveniently introduce the steps,

we consider the case where the in-control parameter vector θ is constrained, and un-

constrained case is also suitable for use.

Step 2 : Due to the in-control ARL = 200, so we generate i.i.d. in-control W ∗
0,1,

. . . , W ∗
0,200, and we want to standardized the W ∗

0,j, so we evaluate the Eθ(W
∗
0,j) and

Varθ(W
∗
0,j), which are used to evaluate W̃ ∗

j . The W ∗
0,j and W ∗

0,j′ depends on all of p,

n0 − p, n1 − p, n2 − p, . . . (j 6= j′), so the X0 and Xj must be a design matrix. e.x.,

X : n× p Xj =





















X

...

X





















mjn×p

,X0 =





















X

...

X





















m0n×p

m0, mj ≥ 1 for all j ≥ 1

Step 3 : Evaluate the EWMA sequences {U1, . . . , U200} by equation (2.12), and we want

to standardized the Uj , so we evaluate the Varθ(U1), . . . ,Varθ(U200) by equation (2.15),

which use to evaluate U∗
j by equation (2.13).

Step 4 : We want to know the limit value every time, which use to estimate the C. So

we find the maximum of {U∗
1 , . . . , U

∗
200} (≡ Q(1)), repeat above steps for 50,000 times

to obtain Q(1), . . . , Q(50,000).

Step 5 : Due to the in-control ARL is the mean of run length, so we think that the C is

between the first sample quartile and third sample quartile of Q(r), r = 1, . . . , 50, 000.

Therefore we sort the Q(r), r = 1, . . . , 50, 000, and evaluate its first sample quartile

(≡ q1), second sample quartile (≡ q2) and third sample quartile (≡ q3).

Step 6 : Choose C as each of q1, q2 and q3 to evaluate the corresponding in-control ARL
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for 50,000 times. Use the interpolation method to find the value C with the specified

in-control ARL= 200.

To evaluate the out-of-control ARL, consider the same shifts in θ in Zou et al.

(2007) [13]. The out-of-control ARL can be evaluated as follows:

Step 1 : Due to we want to evaluate the out-of-control ARL, we simulate 50,000 times

to average the RL. Then we generate i.i.d. W ∗
0,1 andW

∗
0,2 and standardized them, which

use to evaluate U1 and U2.

Step 2 : Standardized both U1 and U2 to U∗
1 and U∗

2 , then to judge U∗
1 whether larger

than C. If it is true, then the RL= j = 1, else continue the process: generate i.i.d.

W ∗
0,j, j = 1, . . ., until the value U∗

j > C, j ≥ 1. Then the stopping time ℓ is the RL of

this time.

Step 3 : Repeat Steps 1 and 2 50,000 times to average the RLs, which can obtain the

out-of-control ARL.

Then we consider the simplest case of model (2.1) to compared with Kim et al.

(2003) and Zou et al. (2007) [13] through a simulation study, in which the parameters

in the in-control model are β = (3, 2)T , σ = 1, and

X0 =





















X

...

X





















mn×p

X = (14×1,x) with x = (2, 4, 6, 8)T .
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4 Comparisons and Conclusions

In this section, first, we compared our propose EWMA control chart with the ZTW

and KMW control charts from Kim et al. (2003) and Zou et al. (2007) [13]. We follow

the table by Zou et al. (2007) [13], which in term of out-of-control ARL in the simplest

case of model (2.1) for shifts in β0, β1 and σ , respectively. Because of our performance

under unconstrained case is not better, therefore we don’t present in this. Then the

performance under known and constrained case are given in Table 5-1, 5-2 and 5-3. On

Table 5-1 and 5-2, those table show that for β0 and β1, our charts’ performance is not

better than others with small shifts, but it is better than others with large shifts. We

think that, the LR test statistic is more powerful with large shift by nature. But on

Table 5-3 shows that change for σ, our performance is better than others with any shifts.

Above result show that, our propose EWMA chart do not have better performance for

shifts in intercept and slope, but have better performance for shifts in σ. We think that

it maybe because of the method of ZTW is using MEWMA, the proportion of β and σ

are the same, however the proportion of σ is larger than β by our proposed.

In practice, the in-control process parameters are rarely known, and thus control

charts usually are constructed using estimates from the historical in-control process data

in place of the unknown in-control parameters. Therefore we present the performance

under unknown and constrained case are given in Table 5-1, 5-2 and 5-3 left side, those

tables show that the performance is similar to known parameter about 125 historical

in-control process data.
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From the section 2, we can know that the out-of-control ARL is depends on all of p,

nj − p, σj/σ and τ 2j , where the noncentrality parameter

τ 2j = (βj − β)TXT
j Xj(βj − β)/σ2

j ,

Xj = X for all j ≥ 1,

and both p and nj − p are constant. Therefore we present the performance under

combinations of σj/σ and τ 2σ2
j/σ

2, are given in Table 5-4 and 5-5. Those tables show

that the performance reduce fast at σj/σ.

In this paper, our propose EWMA chart based on LR test statistics have better

performance for shift in σ. And we provide the mean and variance for likelihood ratio

test statistic that not presented in any papers. This can be taken as a reference.
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5 Future Work

In this section, we provide some idea to extend or improve study. The future research

could substitute: Consider the case where only β may change; or only σ may change to

observe the performance whether more better for β0 and β1 with small shift. Another

the research could consider possible transformation for w∗
j obtain better performance for

β0 and β1 with small shifts. e.g., T = Φ−1(Fθ(W
∗
j )), then in the in-control T ∼ N(0, 1),

then C can be easily found in some literatures, where F (·) is c.d.f., Φ−1(·) is inverse

of the standard normal cumulative distribution faction. Zou et al. (2010) proposed for

jointly monitoring the process mean and variance, consider an MEWMA control chart

based on LR test statistics for monitoring general linear profiles.
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Table 5.1: ARL comparisons among EWMA, ZTW, and KMW control charts for shifts in β0 with
θj = (β0 + δ0σ, β1, σ)

T and τ2j = 4 δ2
0
for j ≥ 1

β0

EWMA EWMA EWMA EWMA

δ0 τ2j m0 = 5 m0 = 25 m0 = 125 m0 = ∞ ZTW KMW

.1000 0.0400 178.2 174.5 172.9 171.1 131.5 133.7

.2000 0.1600 134.6 120.3 116.3 113.1 59.9 59.1

.3000 0.3600 88.7 72.7 68.6 67.2 29.6 28.3

.4000 0.6400 55.0 41.2 38.9 38.1 17.2 16.2

.5000 1.0000 33.6 24.6 22.7 22.1 11.5 10.7

.6000 1.4400 21.5 15.2 13.9 13.8 8.5 7.9

.8000 2.5600 9.9 6.9 6.5 6.1 5.8 5.1

1.0000 4.0000 5.5 3.9 3.6 3.4 4.1 3.8

1.5000 9.0000 2.2 1.6 1.6 1.5 2.6 2.4

2.0000 16.0000 1.4 1.1 1.1 1.1 2.0 1.9

Table 5.2: ARL comparisons among EWMA, ZTW, and KMW control charts for shifts in β1 with
θj = (β0, β1 + δ1σ, σ)

T and τ2j = 120 δ21 for j ≥ 1

β1

EWMA EWMA EWMA EWMA

δ1 τ2j m0 = 5 m0 = 25 m0 = 125 m0 = ∞ ZTW KMW

.0250 0.0750 168.5 157.6 155.5 153.0 99.0 101.6

.0375 0.1688 133.6 117.8 115.3 112.3 57.4 61.0

.0500 0.3000 102.9 83.5 79.4 77.4 35.0 36.5

.0625 0.4688 74.2 57.8 53.7 53.2 23.1 24.6

.0750 0.6750 53.5 39.2 36.4 35.4 16.4 17.0

.1000 1.2000 27.7 19.2 17.6 17.4 9.8 10.3

.1250 1.8750 15.3 10.6 9.6 9.5 6.9 7.2

.1500 2.7000 9.4 6.4 5.9 5.8 5.3 5.5

.2000 4.8000 4.4 3.1 2.9 2.8 3.7 3.8

.2500 7.5000 2.6 2.0 1.8 1.8 2.9 2.9
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Table 5.3: ARL comparisons among EWMA, ZTW, and KMW control charts for shifts in σ with
θj = (β0, β1, δσ)

T for j ≥ 1

σ

EWMA EWMA EWMA EWMA

δ m0 = 5 m0 = 25 m0 = 125 m0 = ∞ ZTW KMW

1.1000 72.6 56.8 51.1 51.1 76.2 72.8

1.1500 48.9 35.1 30.9 30.2 48.7 48.1

1.2000 34.4 23.2 20.5 20.0 33.2 33.5

1.2500 25.1 16.7 14.7 14.6 24.1 24.9

1.3000 19.3 12.6 11.1 11.0 18.4 19.4

1.4000 12.3 7.9 7.0 7.0 12.1 12.7

1.6000 6.5 4.3 4.0 4.0 7.0 7.2

1.8000 4.2 2.9 2.8 2.8 4.9 5.1

2.2000 2.5 1.9 1.8 1.8 3.1 3.2

2.6000 1.8 1.4 1.4 1.4 2.3 2.5

3.0000 1.5 1.3 1.3 1.3 1.9 2.1
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Table 5.4: ARLs for shifts in θ with θj = (βT
j , δσ)

T and τ2j = τ2/δ2 for j ≥ 1

m0 = 5

m0 = 25

m0 = 125 δ

m0 = ∞ 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.110 1.111 1.112

0.02 200.0 72.6 32.5 16.6 9.8 6.3 4.5 3.3 2.6 2.1 1.8 1.6 1.4
200.0 56.8 20.9 10.4 6.2 4.1 3.0 2.3 1.9 1.6 1.4 1.3 1.2
200.0 51.2 18.9 9.5 5.6 3.8 2.8 2.2 1.8 1.6 1.4 1.3 1.2
200.0 51.1 18.2 9.0 5.4 3.7 2.7 2.1 1.8 1.5 1.4 1.3 1.2

0.22 178.2 70.1 31.4 16.3 9.6 6.3 4.4 3.3 2.6 2.1 1.8 1.6 1.4
174.5 51.3 20.3 10.3 6.1 4.1 3.0 2.3 1.9 1.6 1.4 1.3 1.2
172.9 47.2 18.5 9.3 5.6 3.8 2.8 2.2 1.8 1.6 1.4 1.3 1.2
171.1 43.2 17.1 8.7 5.3 3.6 2.7 2.1 1.8 1.5 1.4 1.3 1.2

0.42 132.9 57.5 27.6 14.9 9.1 6.1 4.3 3.3 2.6 2.1 1.8 1.6 1.4
120.3 41.3 17.9 9.5 5.9 4.0 3.0 2.3 1.9 1.6 1.4 1.3 1.2
116.3 37.7 16.2 8.6 5.4 3.7 2.7 2.2 1.8 1.6 1.4 1.3 1.2
113.1 34.4 15.0 8.2 5.1 3.5 2.6 2.1 1.8 1.5 1.4 1.3 1.2

0.62 88.7 43.1 22.5 13.3 8.4 5.7 4.2 3.2 2.5 2.1 1.8 1.6 1.4
72.7 30.0 14.6 8.5 5.5 3.8 2.9 2.3 1.9 1.6 1.4 1.3 1.2
68.6 27.5 13.3 7.7 5.0 3.5 2.7 2.1 1.8 1.5 1.4 1.3 1.2
67.2 25.3 12.5 7.2 4.7 3.4 2.6 2.1 1.7 1.5 1.4 1.3 1.2

0.82 55.0 30.4 17.9 11.3 7.5 5.4 4.0 3.1 2.5 2.1 1.8 1.6 1.4
41.2 20.8 11.7 7.3 5.0 3.6 2.7 2.2 1.8 1.6 1.4 1.3 1.2
39.0 18.9 10.7 6.7 4.5 3.3 2.6 2.1 1.7 1.5 1.4 1.3 1.2
38.1 17.4 9.9 6.3 4.3 3.2 2.5 2.0 1.7 1.5 1.4 1.3 1.2

τ2 1.02 33.6 21.6 14.0 9.5 6.7 4.9 3.7 3.0 2.4 2.0 1.8 1.6 1.4
24.6 14.4 9.1 6.2 4.4 3.4 2.6 2.1 1.8 1.6 1.4 1.3 1.2
22.7 13.1 8.4 5.7 4.1 3.1 2.5 2.0 1.7 1.5 1.4 1.3 1.2
22.1 12.3 7.8 5.4 3.9 3.0 2.4 2.0 1.7 1.5 1.3 1.2 1.2

1.22 21.5 15.2 10.8 7.8 5.8 4.5 3.5 2.9 2.3 2.0 1.7 1.5 1.4
15.2 10.1 7.2 5.2 3.9 3.1 2.5 2.1 1.8 1.6 1.4 1.3 1.2
13.9 9.4 6.5 4.8 3.6 2.9 2.3 1.9 1.7 1.5 1.4 1.3 1.2
13.8 8.7 6.2 4.5 3.5 2.8 2.2 1.9 1.6 1.5 1.3 1.2 1.2

1.42 14.4 11.0 8.4 6.5 5.1 4.1 3.3 2.7 2.3 1.9 1.7 1.5 1.4
10.0 7.5 5.7 4.4 3.5 2.8 2.3 2.0 1.7 1.5 1.4 1.3 1.2
9.2 6.9 5.2 4.1 3.2 2.6 2.2 1.9 1.6 1.5 1.3 1.3 1.2
8.6 6.5 5.0 3.9 3.1 2.5 2.1 1.8 1.6 1.4 1.3 1.2 1.2

1.62 9.9 8.2 6.7 5.5 4.5 3.7 3.0 2.5 2.2 1.9 1.7 1.5 1.4
6.9 5.6 4.6 3.7 3.1 2.6 2.2 1.9 1.7 1.5 1.4 1.3 1.2
6.5 5.2 4.2 3.5 2.9 2.4 2.1 1.8 1.6 1.4 1.3 1.2 1.2
6.1 4.9 4.0 3.3 2.8 2.4 2.0 1.8 1.6 1.4 1.3 1.2 1.2

1.82 7.2 6.3 5.4 4.6 3.9 3.3 2.8 2.4 2.1 1.8 1.6 1.5 1.4
5.1 4.4 3.8 3.2 2.8 2.4 2.1 1.8 1.6 1.5 1.4 1.3 1.2
4.7 4.1 3.5 3.0 2.6 2.2 2.0 1.7 1.6 1.4 1.3 1.2 1.2
4.5 3.9 3.3 2.9 2.5 2.2 1.9 1.7 1.5 1.4 1.3 1.2 1.2

2.02 5.5 5.0 4.4 3.9 3.4 3.0 2.6 2.3 2.0 1.8 1.6 1.5 1.3
3.9 3.5 3.1 2.8 2.5 2.2 1.9 1.7 1.6 1.4 1.3 1.2 1.2
3.6 3.2 2.9 2.6 2.3 2.1 1.8 1.7 1.5 1.4 1.3 1.2 1.2
3.4 3.1 2.8 2.5 2.2 2.0 1.8 1.6 1.5 1.4 1.3 1.2 1.2
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Table 5.5: ARLs for shifts in θ with θj = (βT
j , δσ)

T and τ2j = τ2/δ2 for j ≥ 1

m0 = 5

m0 = 25

m0 = 125 δ

m0 = ∞ 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.110 1.111 1.112

2.22 4.3 4.0 3.7 3.4 3.0 2.7 2.4 2.2 1.9 1.7 1.6 1.4 1.3
3.1 2.9 2.7 2.4 2.2 2.0 1.8 1.7 1.5 1.4 1.3 1.2 1.2
2.9 2.7 2.5 2.3 2.1 1.9 1.7 1.6 1.5 1.4 1.3 1.2 1.2
2.8 2.6 2.4 2.2 2.0 1.9 1.7 1.6 1.4 1.3 1.3 1.2 1.1

2.42 3.5 3.4 3.1 2.9 2.7 2.5 2.2 2.0 1.8 1.7 1.5 1.4 1.3
2.6 2.5 2.3 2.1 2.0 1.9 1.7 1.6 1.5 1.4 1.3 1.2 1.2
2.4 2.3 2.2 2.0 1.9 1.8 1.6 1.5 1.4 1.3 1.3 1.2 1.2
2.3 2.2 2.1 2.0 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.2 1.1

2.62 2.9 2.8 2.7 2.6 2.4 2.3 2.1 1.9 1.8 1.6 1.5 1.4 1.3
2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.3 1.2 1.2
2.0 2.0 1.9 1.8 1.7 1.7 1.6 1.5 1.4 1.3 1.2 1.2 1.1
2.0 1.9 1.9 1.8 1.7 1.6 1.5 1.4 1.4 1.3 1.2 1.2 1.1

2.82 2.5 2.4 2.4 2.3 2.2 2.1 2.0 1.8 1.7 1.6 1.5 1.4 1.3
1.9 1.9 1.8 1.7 1.7 1.6 1.5 1.5 1.4 1.3 1.3 1.2 1.2
1.8 1.7 1.7 1.7 1.6 1.5 1.5 1.4 1.3 1.3 1.2 1.2 1.1
1.7 1.7 1.7 1.6 1.6 1.5 1.5 1.4 1.3 1.3 1.2 1.2 1.1

3.02 2.2 2.2 2.1 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.4 1.3
1.6 1.7 1.6 1.6 1.6 1.5 1.5 1.4 1.3 1.3 1.2 1.2 1.1
1.6 1.6 1.6 1.5 1.5 1.5 1.4 1.4 1.3 1.3 1.2 1.2 1.1
1.5 1.5 1.5 1.5 1.5 1.4 1.4 1.3 1.3 1.2 1.2 1.2 1.1

τ2 3.22 1.9 1.9 1.9 1.9 1.8 1.8 1.7 1.7 1.6 1.5 1.4 1.3 1.3
1.5 1.5 1.5 1.5 1.5 1.4 1.4 1.4 1.3 1.3 1.2 1.2 1.1
1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.3 1.3 1.2 1.2 1.2 1.1
1.4 1.4 1.4 1.4 1.4 1.4 1.3 1.3 1.3 1.2 1.2 1.1 1.1

3.42 1.7 1.7 1.7 1.7 1.7 1.7 1.6 1.6 1.5 1.4 1.4 1.3 1.2
1.4 1.4 1.4 1.4 1.4 1.4 1.3 1.3 1.3 1.2 1.2 1.2 1.1
1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.2 1.2 1.2 1.1 1.1
1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.2 1.2 1.2 1.1 1.1

3.62 1.6 1.6 1.6 1.6 1.6 1.6 1.5 1.5 1.4 1.4 1.3 1.3 1.2
1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.2 1.2 1.2 1.1 1.1
1.2 1.2 1.3 1.3 1.3 1.3 1.3 1.2 1.2 1.2 1.2 1.1 1.1
1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.1 1.1

3.82 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.4 1.4 1.4 1.3 1.3 1.2
1.2 1.2 1.2 1.2 1.3 1.2 1.2 1.2 1.2 1.2 1.2 1.1 1.1
1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.1 1.1 1.1
1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.1 1.1 1.1

4.02 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.3 1.3 1.2 1.2
1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.1 1.1 1.1
1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
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Appendix

A.1

ψ(1) = −γ,

ψ(
1

2
) = −γ − 2 log(2),

ψ(x+ 1) = ψ(x) +
1

x
,

ψ(x) = −γ +

∞
∑

n=1

x− 1

n(n + x− 1)
,

ψ(x) = ln x− 1

2x
− 1

12x2
+

1

12x4
− 1

252x6
+ . . . ,

ψ′(1) =
π2

6
,

ψ′(
1

2
) =

π2

2
,

ψ′(x+ 1) = ψ′(x)− 1

x2
,

ψ′(x) =

∞
∑

k=0

1

(x+ k)2
,

ψ′(x) ∼ 1

x
+

1

2x2
+

1

6x3
− 1

30x5
+

1

12x7
− 1

30x9
. . . ,

where γ = 0.577215664 . . . is the Euler constant and x ∈ (0,∞).
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A.2

Eθj (W
2
j )

=

(

σ2
j

σ2

)2






2

[

p+ 2
(βj − β)TXT

j Xj(βj − β)

σ2
j

]

+
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p+
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σ2
j

]2



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+n2
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log
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j
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2
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ψ
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)

+ log(2)

]

−2
njσ

2
j

σ2
(nj − p)

[

ψ

(

nj − p+ 2

2

)

+ log(2)

]

+

(

σ2
j
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)2
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j

{
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(

nj − p

2

)
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[

ψ

(

nj − p

2

)

+ log(2)

]2
}

A.3

nj

[

log
(nj

2

)

− ψ

(

nj − p

2

)]

= nj

[

log
(nj

2

)

− log

(

nj − p

2

)

+
1

nj − p
+O

(

1
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nj
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1
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1
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(

1

n2
j

)]

= p+ 1 +O
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1
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,
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nj

[

njψ
′
(

nj − p

2

)

− 2

]

= nj

[

nj
2
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+ nj

4

2(nj − p)2
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(

1
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A.4

Eθj (W
∗2
j )

=

(

σ2
j

σ2

)2

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where

E(1{Hj≥aj}) =

∫ ∞

aj

xv−1e−
x
2

Γ (v) 2v
dx

= 1− 1

Γ (v) 2v

∞
∑
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(−1)mav+m
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)
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E(H2
j · 1{Hj≥aj}) =

∫ ∞

aj

xv+1e−
x
2

Γ (v) 2v
dx

= (nj − p)(nj − p− 2)− 1

Γ (v) 2v

∞
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A.5

W0,j

= (n0 + nj) log

(

n0σ̂
2 + nj σ̂

2
j + (β̂j − β̂)T [(XT

0X0)
−1 + (XT

j Xj)
−1](β̂j − β̂)

(n0 + nj)σ2

)

−n0 log

(
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)

− nj log

(

σ̂2
j

σ2

)
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)

a.s.→ Wj + Op

(

1√
n0

)

as min{n0, the minimum eigenvalue of XT
0X0} → ∞.

A.6

W ∗
0,j ≡ 2[ℓ0,j(θ

∗, θ∗
j )− ℓ0,j(θ̃, θ̃j)] = W0,j − 2[ℓ0,j(θ̂, θ̂j)− ℓ0,j(θ

∗, θ∗
j )].

If the process is in control at time j (≥ 1), then

g(Bj) ≡ 2[ℓ0,j(θ̂, θ̂j)− ℓ0,j(θ
∗, θ∗

j )]

= 1{σ̂j<σ̂0}

{

−n0 log(σ̂)− nj log(σ̂j) + (n0 + nj) log
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2
0 + nj σ̂

2
j

n0 + nj

)}

= 1{Bj<bj}{−n0 log(1− Bj)− nj log(Bj) + [n0 log(n0) + nj log(nj)

−(n0 + nj) log((n0 + nj))]},
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where Bj ≡ Hj/(H0 + Hj) ∼ beta
(nj−p

2
, n0−p

2

)

, H0 ≡ n0σ̂
2/σ2 ∼ χ2

n0−p, g(Bj) is

a function of Bj, bj ≡ nj/(n0 + nj), and 1{Bj<bj} denotes the indicator function for

{Bj < bj}. Eθj (W
∗
0,j) = Eθj (W0,j)− Eθj (g(Bj)), where
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with

Eθj (g(Bj)
2) = E({n2

0[log(1−Bj)]
2 + n2

j [log(Bj)]
2 + 2n0nj log(1− Bj) log(Bj)

+[n0 log(n0) + nj log(nj)− (n0 + nj) log(n0 + nj)]
2

−2n0[n0 log(n0) + nj log(nj)− (n0 + nj) log(n0 + nj)] log(1−Bj)

−2nj [n0 log(n0) + nj log(nj)− (n0 + nj) log(n0 + nj)] log(Bj)} · 1{Bj<bj}).
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Let α ≡ (nj − p)/2 and β ≡ (n0 − p)/2

E(1{Bj<bj})

=

∫ bj

0

Γ(α+ β)xα−1(1− x)β−1

Γ(α)Γ(β)
dx =

Γ(α+ β)

Γ(α)Γ(β)

∞
∑

m=0

(−1)mCβ−1
m

bα+m
j

α +m

E(log(Bj) · 1{Bj<bj})

=

∫ bj

0

log(x)
Γ(α + β)xα−1(1− x)β−1

Γ(α)Γ(β)
dx =

∂

∂α
E(1{Bj<bj})

E(log(1−Bj) · 1{Bj<bj})

=

∫ bj

0

log(1− x)
Γ(α + β)xα−1(1− x)β−1

Γ(α)Γ(β)
dx =

∂

∂β
E(1{Bj<bj})

E(log(Bj) log(1−Bj) · 1{Bj<bj})

=

∫ bj

0

log(x) log(1− x)
Γ(α + β)xα−1(1− x)β−1

Γ(α)Γ(β)
dx =

∂2

∂α∂β
E(1{Bj<bj})

E([log(Bj)]
2 · 1{Bj<bj})

=

∫ bj

0

[log(x)]2
Γ(α + β)xα−1(1− x)β−1

Γ(α)Γ(β)
dx =

∂2

∂α2
E(1{Bj<bj})

E([log(1−Bj)]
2 · 1{Bj<bj})

=

∫ bj

0

[log(1− x)]2
Γ(α + β)xα−1(1− x)β−1

Γ(α)Γ(β)
dx =

∂2

∂β2
E(1{Bj<bj})
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