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Abstract

When the quality of a process can be characterized by general linear
profiles, a statistical process control scheme that can be used in industrial
practice is proposed in the paper. First, some properties of the likelihood ratio
test statistics are introduced. Next, an-exponentially weighted moving average
control chart based on likelihood ratio test statistics for monitoring general
linear profiles is proposed. Finally, the performance of the proposed
methodology is investigated through a simulation study to show its strength

and weakness.
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1

Introduction

1.1  Motivation

Quality improvement is a key factor for keeping competitiveness in the international
market. Statistical process control (SPC) is used for applications of industrial processes
by statistical methods that can help-practitioner to find out the problems in processes.
Roberts (1959) proposed an exponentially weighted moving average (EWMA) control
chart to detect a small shift in-the process mean, and it nowadays is a widely studied
and accepted alternative to the traditional Shewhart X control chart (Shewhart, 1931).
The likelihood ratio®(LR) test is commonly used to test' hypotheses for a parametric
family in statistical literature because of its high power in detecting a large shift or
for a large sample size. In many situations, the quality of a process may be better
characterized and summarized by-the relationship between the response variable and
one or more explanatory variables. Thus, an EWMA control chart based on LR test
statistics for monitoring general linear profiles is proposed in the paper and then some

properties of the proposed methodology are investigated.

1.2  Literature Review
SPC refers to statistical methods which are extensively used to monitor and improve
the quality of industrial processes and others operations. Most of the studies on SPC are

focused on the charting skill which is used to monitor processes in order to distinguish



special significant reasons of variation from general allocation reasons of variation in
processes. In the Phase I stage, a set of process data is gathered to construct trial
control limits that determine whether or not the process has been in control over the
period of time, and then to model the in-control process so that reliable control limits
of the control chart can be established for the later Phase II stage. In the Phase II
stage, process data are compared with a pre-established standard from the previous
Phase I stage to determine whether the processis.in control or not.

Shewhart (1931) proposed a Shewhart X control:chart which is briefly introduced as
follows: At time j (>1); lét XXy, - .o, X be ii.d. N(pj50?) observations, where 1
denotes the unknown process mean-at time 7 and ¢ the known pesitive process standard
deviation. Set X;'= Y""  Xj;/n for j > 1.-Then an out-of-¢ontrol signal occurs at
time j (> 1) if v/n|Xj —pu|/o & Lywhere i denotes the known.in-control process mean
and L is chosen to achieve a specified in-control average run length (ARL).

Page (1954) proposed @ cmmulative sum (CUSUM) control chart which is briefly
introduced as follows: Let X, X5, ... be independent observations such that X; ~
N(p;,0?), where u; denotes the unknown process mean at time j and o the known
positive process standard deviation. For j > 1, two statistics C’;r and C are iteratively
defined as

Cf =max{0,C; | + X; — (u+ K)}

and

C; =max{0,C; , — X; + (u — K)},

J

where Cf = C; =0, p1 denotes the known in-control process mean, and K is one half



of the specified shift in process mean that should be quickly detected by the scheme.
Then an out-of-control signal occurs at time j (> 1) if max{C}",C;} > Ho, where H
(> 0) is chosen to achieve a specified in-control ARL.

Roberts (1959) proposed an EWMA originally called geometric moving average, con-
trol chart which is briefly introduced as follows: At time j (> 1), let X1, Xjo,..., Xjp
be i.i.d. N(u;,c*) observations, where y; denotes the unknown process mean at time j

and o the known positive process standard deviation. The EWMA sequence is

<.
|
_

W= =MW 040X, —p) =AY (=N X0 =p), j=12...,

e
g

where Wy = 0, u denotes the known in-control process mean,-and ) is a smoothing

parameter chosen in (0, 1]. Observe that the standard deviation of W; is

o TN A
"f"\/ n2-x 0 \ae=n’

as j — oo. Then out-of-control signal occurs at time j (> 1) if |W;|/o; > L, where L
is chosen to achieve a specified in-control ARL.

An EWMA control chart is typically designed in the Phase II stage for a manu-
facturing process. Stoumbos et al. (2003) investigated the performance of Shewhart,
EWMA | and CUSUM control charts for detecting sustained shifts and drifts in the pro-
cess mean and variance. In practice, the in-control process distribution is rarely known
exactly, and thus control charts are usually constructed using an approximate in-control
process distribution estimated from some historical in-control process data. Jones et

al. (2001) utilized a numerical procedure to study the run-length (RL) distribution of



an EWMA control chart using estimated in-control process parameters. Jensen et al.
(2006) provided a review of the literature that considered the effect of in-control process
parameter estimation on control charts and concluded that the influence of in-control
process parameter estimation on control charts should not be ignored.

In most SPC applications, it is assumed that the quality of a process can be suit-
ably represented by the joint distribution of quality characteristics. However, in many
situations, the quality of a processimay be better characterized and summarized by the
relationship between the response variable and one or more explanatory variables. Sev-
eral methods for monitering linear-profiles have been propesed in literature, e.g., Kim
et al. (2003) proposed a control-chart for monitoring simple linear profiles in the known
in-control process parameter case, and Zou et-al. (2006) proposed a control chart based
on the LR test statisties for monitoring simple linear profiles to detect a sustained shift
in the unknown in-control process parameter case.

Through the modern technology that allows simultaneously monitoring all key qual-
ity characteristics during a manufacturing process, the monitored quality characteris-
tics are generally dependent each other. The purpose of multivariate techniques is to
study whether quality characteristics are simultaneously in control or not. Lowry et al.
(1992) proposed a multivariate exponentially weighted moving average (MEWMA) con-
trol chart giving guidelines for designing this easy-to-implement multivariate procedure.
The performance of their control chart is similar to that of a multivariate cumulative
sum (MCUSUM) control chart (Crosier, 1988) in detecting a small shift in the process

mearl.



Zou et al. (2007) [13] proposed an MEWMA control chart for monitoring general lin-
ear profiles in the known in-control process parameter case, which is briefly introduced

as follows: The process is called in control at time j (> 1) if

yj = Xﬁ + O'&'j,

where y; is the n x 1 response vector at time j, X is the known n X p model matrix
of full rank p (< n), B (= (BoySis--s Bp=1) )18 the known p x 1 vector of real-valued
in-control process regression parameters; ¢.is the known positive in-control process

scale parameter, and &8 are i.0.d.--N,,(0,,x1, I;,) standardized error vectors. Set Z; =

(Z](8), Z;(0))", where Z;(B) = (B; — B) /o dnd Z;(6) = ®-L(F2((n—p)6}/o?))

n—p

with ; = (X' X)Xy, 6% = (g —XBy)(y; — XB,)/(n =), () denoting the
inverse of the standard normal cumulative distribution funetion (c.d.f.), and F» (-)

Xa_p

the c.d.f. of the chi-squared distribution with n — p degrees of freedom. The MEWMA

sequence is

-1
W,=0Z;+(1-\OW, 1 =2Y (1-NZ; 4, i=12,...,
0

<.

B
Il

where Wy = 0y41)x1 and A is a smoothing parameter chosen in (0,1]. Observe that

the in-control covariance matrix of W; is

AL — (1 = \%)] A
s_n  C g




as j — oo, where

(XTX)™ 0pss
> =

001 1
Then an out-of-control signal occurs at time j (> 1) if (2—A\)W/E7'W; /X > L, where
L is chosen to achieve a specified in-control ARL.

Zou et al. (2007) [16] proposed a self-starting control chart based on recursive resid-
uals for monitoring simple linear profiles to detect a sustained shift in the process
intercept, slope, or standard deviation. Although current SPC methods mostly focus
on detecting a sustained shift in-the process.mean, time-varying shifts in the process
mean frequently occur in industrial applications. Thus; Zou et al. (2009) investigated
several control charts for detecting drifts in the process mean: Recently, Zou et al.

(2010) proposed an EWMA control chart based on the LR fest statistics for monitoring

the process mean and variance.

1.3  Outline

The paper is organized as follows. In Section 2, an EWMA control chart based on
LR test statistics for monitoring general linear profiles is proposed and then some prop-
erties of the proposed monitoring scheme are investigated. In Section 3, a simulation
study is presented to illustrate the proposed methodology. In Section 4, performance

comparisons and conclusions are given. Possible future work is discussed in Section 5.



2 An EWMA Control Chart Based on LR Test Statis-

tics for Monitoring General Linear Profiles

In this section, an EWMA control chart based on LR test statistics for monitoring
general linear profiles is proposed and then some properties of the proposed methodol-

ogy are investigated.

2.1 Model

In this subsection, consider the following model for the purpose of monitoring general

linear profiles: Suppose that

Y; :Xjﬁj—l—O'jEj, j:1,2,..., (21)

where y; is the n; x 1 response vector at time j, Xj is the known n; x p model matrix of
full rank p (< n;) at time 7, B; (= (Bjo, Bj1, -, Bip-1)") is the unknown p x 1 vector of
real-valued process regression parameters at time j, o; is the unknown positive process
scale parameter at time j, and €;s are independent Nnj(Onjxl, In].) standardized error
vectors. Set 8; = (B],0;)" (€ R” x (0,00) = ©) for j > 1. Then ; is the process
parameter vector at time j for j > 1. For 7 > 1, the process is called in control at time
7 if 6, =0, where 0 (= (8",0)" = (Bo, b1, - - -, Bp-1,0)" € O) is the in-control process

parameter vector.



When 0 is unknown, it is assumed that the historical in-control process data { Xy, yo}

are available such that

Yo = XoB + o0&y, (2.2)

where gy is the ng x 1 response vector, Xy is the known ng x p model matrix of full

rank p (< ng), and €g is an Ny, (0,01, In,) standardized error vector independent of

{g; :j > 1}

2.2 Known and Unconstrained Case
In this subsectiony consider the case where the process parameter vector at time j
(> 1) may be different from the known in-contrel process parameter vector. For j > 1,

the joint probability-density function (p«.f.) of y; is

1
flys0;) = WXP{ 203
O { wy—@)TX?XJ-(@—@)MJ'&?}
— exp § - ’

(27?)”.7'/20?'7 20?

My, —Xjﬂsz}

where ,[;’j = (X]TXj)*lXjTyj and 6; = ||[I,,, — Xj(X]TXj)*lXJT]yjH/\/n_j. Then, for j > 1,

the log-likelihood function for 6; is

(;(8;) = log[f(y;;0;)]
(B; — B;)" X] X;(B; — B;) + n;6?

2
20j

= —% log(2m) — % log(a?-) —



and thus the maximum log-likelihood is

where éj (= ( A]-T, 6;)7) is the maximum likelihood estimator (MLE) of 6;. Hence the

LR test statistic at time j (> 1) is

3. _ AT XL XA(B. — 52 52
W, = 2[0;(6;) — 1;(0)] = el XJZX](@ B)+nj {—Ha—;—log (a—;)] (2.3)

where

o2 o7 a?
J
~9 2.2
o G
b
o2 o n;

and (3; — ,B)TX]TXJ»(B]- < B)/a is independent of ngfo?/0® — 1 —log(d7/0?)].
When the process is out of control at-time j (> 1), the distribution of W; only
depends on p, n; — p, o;/o, and (B; — B)TXfXj(ﬁj —B)/0} (= 77), and W % o as

min{n;, the minimum eigenvalue of XJTX]-} — 00, where

2

2 2
o n; n; —p o5 g
by = 3 e [oe () —o () 1o B ()]

and

Varg,(W;) = Eg,(W}) — [Eo,(W;)]?

with ¥(z) = dlog[l'(z)]/dx and ¢'(z) = diy(z)/dx for z > 0. See Appendix A.1 for



some relevant formulas about both 4(z) and ¢/(x). See Appendix A.2 for Eo (W?) for
Jg=>1

When the process is in control at time j (> 1), the distribution of W, only depends
on p and n; — p, and

~

o2 o2 ni(o? — o?)? 1
J

as n; — 0o, where Z ~ N(O, 1). Then I/V] i) X§+1 as n; — 00, where

Eo(W;) = Eo,(W;)|o,—6 =15 [bg (%) . k. (nj _pﬂ =p+1+0 (i) ,

2 n;

and

Varg(W;) = Varg, (W)|o,—0 =0 {njw’ ("j _p) - 2} ~2(p+1)+0 (i) .

2 77/]'

See Appendix A.3 for both Eq(WW;) and.Varg(W,)as n; — oco.
For j > 1, set

W, = L2 0 (2.4)

2.3 Known and Constrained Case
In this subsection, consider the case where the process parameter vector at time j

(> 1) may be different from the known in-control process parameter vector with the

10



constraint o; > 0. Then the maximum log-likelihood is
. n; n; .
0;(07) = _Ej log(27) — E] log(c7?) — =%

where 65 (= (8;",05)" = (87, max{5;,0})T) is the MLE of 8,. Hence the LR test

J 7 Jo

statistic at time j (> 1) is

W= o6« 06
3. BT XEXB~ 2 52
_ BopT N {—1—&—%—10% (%)} Apoey. (25)

o2

where (Bj—ﬁ)TXJTXj(Bj—ﬁ)/UZ isindependent ofn;[—1+07/a%—10g(67/0°)] 1{s,50,}-
When the process is out of control at time j (> 1); the distribution of W only
depends on p, n; — p, 0, /0 and sz, and W* 4 50 as min{n;, the minimum eigenvalue

of XJTXJ»} — 00, where

2 2
* 2 Uj Uj
EO]-(VV]‘) = (p—f—Tj)g =mny(1+log 2 E(l{szaj})

nja
o2
+U_J2E(Hj ) 1{Hj2aj}) — n;E(log(Hj) - 1{Hj2aj}>’

and

Varg, (W;) = Eej(Wj*Q) - [Eej(VV;)]Q

with H; = nj&]z/ajz ~ X%j_p, a; = njaz/ajz, and 1z ~,;} denoting the indicator function
for {H; > n;}. See Appendix A.4 for both Eg (W) and Eg, (W) in detail.

When the process is in control at time j (> 1), the distribution of W only depends

11



on p and n; — p, and

i i
n; {—1 Ty log (ﬁ)} Ls,50

_n(0] —0?)? ) 0 1
B 901 Hym(et—0?)/(VEe)>0p T Up N

d
— Z%. 1{Z>0}

d 2

as nj — 0o, where Z ~ N(0,1). Then 24 X2,1/2 as nj — 0o, where

Eg(W;) =
= p+ [n;log( log(Hj) - Lim;>n;3),
and
Varg (W)
= p(2+p) + [n;log - njlog(n;) — n;]E(Hj - 1, >n,1)

2 E((log(H) - 11s,-0,)

=2n; B(H;log(H;) - 1#,>n,)) = [Eo (W),

See Appendix A.4 for both Eg(W;) and Varg(W7).

For 7 > 1, set
- W — Eg(WF
Wr= o) (2.6)
Varg(W})

12



2.4  Unknown and Unconstrained Case
In this subsection, consider the case where the process parameter vector at time j
(> 1) may be different from the unknown in-control process parameter vector. For j

(> 1), the joint p.d.f. of (y7,y;])" is

f (Yo, Y;; 0, 9]') = f(yo; 0) - f(yj; 93’)

1 — X.32
(@m)rrgia {_W} - J(w5:.05)

) 7. ] {_ (3L BYIXE X (B )\ i } ).

(27 )0l 20° 202

where 8 = (X1 X)) "Xy and 6 = |[I,,, = Xo( X5 Xo0) 1 X5 Tyoll/v/7o-

Then, for j > 1, the log-likelihood function for (87, 67)7 is

lo;(0,0;) =<Tloglf(yo;0)] +¢;(6;)
(B=1B)" X Xo(B — B) + nod?

) ) 2
= — log(2m) — -~ log(o®) = 52 +1;(6;)
and thus the maximum log-likelihood is
A . A n n n . A
o,;(0,6;) = (0)+1;(0;) = —50 - 70 log(2m) — 50 log(67) + ¢;(6;)
B _nO—I—nj_no—i—nj g oy Ny .9
5 5 log(2m) — - log(67) — = log(57),

where (67, é]T)T (= (87,0, é]T)T) is the MLE of (8",07)". Hence the LR test statistic

13



at time j (> 1) is
Woy = 2[o;(6,8;) — £;(6,8))] = (ng +n;)log(5%) — ng log(6%) — n; log(67), (2.7)
where 8 = (87,5)" and 6, = (,(;’]T, ;)" = 0 with
B = (X0 Xo+ X X;) " (X{yo + X] y;)

and

gy = (XE XXX+ XTX) (XKD (0 )|
N
\/ e+ 1302 + (B; — BT UL X0) L+ (X1 X118, - B)

no—l—nj

When the process is'in control at_time j (>-1); the distribution of Wy ; only depends
on p, ng — p, and n; —p, and Wy ; s W; as min{ng, the minimum eigenvalue of
XE Xy} — o0, see Appendix A.5'in detail: Then Wy, N Xo.1 as min{ng/n;,n;} — co.

For j > 1, set

o _ Wo,; — Eg(Wo,)
07 V&I'Q(WOJ)

, (2.8)

14



where

Eg(Wo;) = FEep,(Wo;)le;=e
@) (5 e )
e (355 o (23]

1
peteo(t
min{ng, n;}

and

Vang (W, j)—=- Varga, (W ;)le/=0
- ESE) A ) |
—(no + nyj) {(no +n; )’ (w) 3 2}

2
= 2(p+1)+0(;).

min{no, nj}

2.5 Unknown and Constrained Case
In this subsection, consider the case where the process parameter vector at time j
(> 1) may be different from the unknown in-control process parameter vector with the

constraint o; > 0. Then the maximum log-likelihood is

_no+nj - n0+nj log

by (0%, 07) = 5 5

n . n; .
(2m) — 50 log(0?) — = log(7}%),

15



where (6*,00)7 (= (B8*7,0%,8:7,05)" = (B7,0%,BF,07)7) is the MLE of (67,67)7

LR R |
with
2 9 1 +n062—|—nj&2 1

o =0 - G:>6 _— G:<E

I
and

2 .9 TL06'2+7’LJ‘6'2
0;°=05 s>y + ——————  1{5,<41-

no—i—nj

Hence the LR test statistic at time j (> 1)/is
Wy = 206y (0", 0;‘) 4 207]-(0: ONJ)] = (no + n;) log (%) —nglog(a™?) — n; log(a}‘2). (2.9)

When the process is in control at time j (> 1); the distribution of W ; only depends
on p, ng — p, andim; — p, and Wy o’ Wr as min{ng; the minimum eigenvalue of

X Xo} — co. Then Wi KA Xal2 X 11/2 as min{ng/n;, nk— oo. For j > 1, set

. Wi, — Ee(W55)

*
07j

(2.10)

)

Varg(Wy ;)

where both Eg(Wy ;) = Ege, (W5 ;)le,—0 and Varg(Wg ;) = Varge, (W5 ;)|e;=6 are given

in Appendix A.6.

2.6 Proposed Monitoring Scheme

Based on the standardized LR test statistics, the EWMA sequence is defined as

Uy = MW, + (1=, j=1,2,.., (2.11)

16



where Uy = 0, A is a smoothing parameter in (0, 1], and Wj = W; in Section 2.2, or Wj*

in Section 2.3, or Wy ; in Section 2.4, or Wo*,j in Section 2.2. Then

U=AY =MW, 4, i=12,.... (2.12)

Due to we use the LR test statistics, then the larger value is more likely become out-

of-control. An out-of-control signal occurs at time j (> 1) if

Ur= 2000 Sy (2.13)

(2.14)

for known 6,

AL— (1= X% i i
[ ( )\) ] 1 2)\2 Z (1 . )\)lierCOVe(ijkla Wj*kQ) (215)

0<ki<ko<j—1

for unknown 6 with Cove(W,_j,, Wi_y,) = Covep, ..., 0; 1, (Wi—kys ijk2)|91=...=9j,k1=0,

and C'is chosen to achieve a specified in-control ARL. When 6 is unknown, Cove(W;_,, W;_x,)
depends on Xy, X, 4, and X;_4, for 0 < ky < ky < j — 1. In the paper, each

Cove(W;_j,, W;_y,) is approximated by a Monte Carlo estimate.

17



3

A Simulation Study

In this section, in order to study the performance of the proposed EWMA monitoring
scheme based on the LR test statistics, the out-of-control ARLs are compared with those
in Kim et al. (2003) and Zou et al. (2007) [13] through a simulation study.

First, consider the case where the in-control parameter vector 6 is known. Then C
in equation (2.13) can be evaluated as follows:

Step 1 : Choose the desired in=control"ARL and the smoothing constant \. Here the in-
control ARL and ) is chosen as, respectively, 200 and 0.2. Then we can start to construct
the EWMA controlehart, and in order to conveniently introduce the steps, we consider
the case where the in-control parameter vector ¢ is constrained, and unconstrained case
is also suitable for use:

Step 2 : Due to the in-control ARL = 200, so we generate i.i.d. in-control W7, ...,
W3, and we want to standardized the W', 'so we evaluate the Eg(W7) and Vare(W;),
which are used to evaluate Wj*. And the data X; can be random when the p and n; —p
is known.

Step 3 : Evaluate the EWMA sequences {Uy, ..., Uy} by equation (2.12), and we want
to standardized the U;, so we evaluate the Varg(Uy), ..., Varg(Usy) by equation (2.14),
which use to evaluate U7 by equation (2.13).

Step 4 : We want to know the limit value every time, which use to estimate the C'. So
we find the maximum of {U},... Ui} (= QW), repeat above steps for 50,000 times
to obtain QW ..., Q®0000)

18



Step 5 : Due to the in-control ARL is the mean of run length, so we think that the C'is
between the first sample quartile and third sample quartile of Q.7 =1, ..., 50, 000.
Therefore we sort the Q) ,r = 1,...,50,000, and evaluate its first sample quartile
(= q1), second sample quartile (= ¢») and third sample quartile (= g3).

Step 6 : Choose C' as each of q1, g2 and g3 to evaluate the corresponding in-control ARL
for 50,000 times. Use the interpolation method to find the value C' with the specified

in-control ARL= 200.

To evaluate the out-ofscontrol ARL, consider the same shifts in 6 in Zou et al.

(2007) [13]. The out-of-control"’ARL can be evaluated as follows:
Step 1 : Due to we'want te-evaluate the out-of-control ARL, we simulate 50,000 times
to average the RL. Then we generate ¢.2.d. W and WS and standardized them, which
use to evaluate U; and Us.
Step 2 : Standardized both Uy and U, to Uy and Uy, then to judge U whether larger
than C'. If it is true, then the RLi=j = 1, else continue the process: generate i.1.d.
W;r,j=1,..., until the value U7 > C,j°>"1." Then the stopping time ¢ is the RL of
this time.
Step 3 : Repeat Steps 1 and 2 50,000 times to average the RLs, which can obtain the
out-of-control ARL.

Next, consider the case where the in-control parameter vector 6 is unknown. Then
C' in equation (2.13) can be evaluated as follows:
Step 1 : Choose the desired in-control ARL and the smoothing constant A. Here the

in-control ARL and X is chosen as, respectively, 200 and 0.2. Then we can start to
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construct the EWMA control chart, and in order to conveniently introduce the steps,
we consider the case where the in-control parameter vector # is constrained, and un-
constrained case is also suitable for use.

Step 2 : Due to the in-control ARL = 200, so we generate i.i.d. in-control Wy,
-y Wiag, and we want to standardized the Wi;, so we evaluate the FEo(W ;) and
Varg(ngj), which are used to evaluate Wj*. The Wg; and Wy, depends on all of p,

no —p, i —p, ng —p,... (5 # j)ys0 the Xy and X; must be a design matrix. e.x.,

X:nxp X;=

Fx
I

mo,my; > 1 forall j7>1

m;nXxp monxp

Step 3 : Evaluate the EWMA sequences {U,- .. Usg} by‘equation (2.12), and we want
to standardized the U;, so we evaluate the Varg(Us )+, Varg(Uszy) by equation (2.15),
which use to evaluate U7 by equation (2:13):

Step 4 : We want to know the limit value every time, which use to estimate the C'. So
we find the maximum of {U},... Uiy} (= QW), repeat above steps for 50,000 times
to obtain QW ..., Q®0000)

Step 5 : Due to the in-control ARL is the mean of run length, so we think that the C is
between the first sample quartile and third sample quartile of Q.7 =1, ..., 50, 000.
Therefore we sort the Q). r = 1,...,50,000, and evaluate its first sample quartile
(= q1), second sample quartile (= ¢o) and third sample quartile (= g3).

Step 6 : Choose C' as each of q;, ¢o and g3 to evaluate the corresponding in-control ARL
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for 50,000 times. Use the interpolation method to find the value C' with the specified

in-control ARL= 200.

To evaluate the out-of-control ARL, consider the same shifts in 6 in Zou et al.

(2007) [13]. The out-of-control ARL can be evaluated as follows:
Step 1 : Due to we want to evaluate the out-of-control ARL, we simulate 50,000 times
to average the RL. Then we generate i.i.d. Wi, and Wy, and standardized them, which
use to evaluate U; and Us.
Step 2 : Standardized beth Uy and U, to Uy and U3, then to judge U whether larger
than C'. If it is true, then the RL= j = 1, else continue the process: generate i.1.d.
Ws,J = 1,..., untibthewalue Ur > € j = 1. Then the stopping time ¢ is the RL of
this time.
Step 3 : Repeat Steps 1 and 2 50,000.times.to-average the RLs, which can obtain the
out-of-control ARL.

Then we consider the simplesttcase of model (2.1) to compared with Kim et al.
(2003) and Zou et al. (2007) [13] through a'simulation study, in which the parameters

in the in-control model are B = (3,2)7, o = 1, and

mnxp

X= (14><1, a,') with « = (2,4, 6, 8)T

21



4

Comparisons and Conclusions

In this section, first, we compared our propose EWMA control chart with the ZTW
and KMW control charts from Kim et al. (2003) and Zou et al. (2007) [13]. We follow
the table by Zou et al. (2007) [13], which in term of out-of-control ARL in the simplest
case of model (2.1) for shifts in 5,01 and o, respectively. Because of our performance
under unconstrained case‘is not better, therefore'we don’t present in this. Then the
performance under known and constrained case are given in-Table 5-1, 5-2 and 5-3. On
Table 5-1 and 5-2, those table show that-for £y and ;, our charts’ performance is not
better than othersrwith small shifts, but it is better than others with large shifts. We
think that, the LR test statistic is' more powerful with large shift by nature. But on
Table 5-3 shows that change for o, our performanceis better than others with any shifts.
Above result show that, our propose EWMA chart'de not have better performance for
shifts in intercept and slope, but have better performance for shifts in . We think that
it maybe because of the method of ZTW is using MEWMA, the proportion of 3 and o
are the same, however the proportion of ¢ is larger than 3 by our proposed.

In practice, the in-control process parameters are rarely known, and thus control
charts usually are constructed using estimates from the historical in-control process data
in place of the unknown in-control parameters. Therefore we present the performance
under unknown and constrained case are given in Table 5-1, 5-2 and 5-3 left side, those
tables show that the performance is similar to known parameter about 125 historical

in-control process data.
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From the section 2, we can know that the out-of-control ARL is depends on all of p,

n; —p, 0j/o and 7']-2, where the noncentrality parameter

= (8;—B)' X X;(8; — B)/o’

X;=X forall j>1,

and both p and n; — p are constant. Therefore we present the performance under

In this paper, our - statistics have better
performance for shi ce for likelihood ratio

test statistic that as a reference.
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5

Future Work

In this section, we provide some idea to extend or improve study. The future research
could substitute: Consider the case where only $ may change; or only ¢ may change to
observe the performance whether more better for 5y and ; with small shift. Another
the research could consider possibletransformation for w} obtain better performance for
Bo and By with small shifts..e.g. T = @~ (Fp(W))); then'in the in-control ' ~ N(0, 1),
then C' can be easilyfound in some literatures, where F(:)ds c.d.f., ®7!(-) is inverse
of the standard normal cumulative distribution faction. Zou et al. (2010) proposed for
jointly monitoring the process mean and variance, consider an MEWMA control chart

based on LR test statistics for monitoring general linear profiles.
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Table 5.1: ARL comparisons among EWMA, ZTW, and KMW control charts for shifts in 5y with
0; = (Bo + 600, B1,0)" and 77 = 443 for j > 1

Bo
EWMA EWMA EWMA EWMA

do Tf mo=5 mog=25 mog=125 mg=o0 ZTW KMW
.1000  0.0400 178.2 174.5 172.9 171.1  131.5  133.7
.2000  0.1600 134.6 120.3 116.3 113.1 59.9 59.1
.3000  0.3600 88.7 72.7 68.6 67.2  29.6 28.3
4000  0.6400 55.0 41.2 38.9 38.1 17.2 16.2
.5000  1.0000 33.6 24.6 22.7 22.1 11.5 10.7
.6000  1.4400 21.5 15.2 13.9 13.8 8.5 7.9
.8000  2.5600 9.9 6.9 6.5 6.1 5.8 5.1
1.0000  4.0000 5.5 3.9 3.6 3.4 4.1 3.8
1.5000  9.0000 2:2 1.6 1.6 1.5 2.6 2.4
2.0000 16.0000 1.4 1.1 1.1 1.1 2.0 1.9

Table 5.2: ARL comparisons among ' EWMA, ZTW, and KMW control charts for shifts in 5; with
0; = (Bo, f1 + b10,0)" and 77 =120 67 for j>-1

A1
EWMA EWMA EWMA EWMA

(51 T-2 mo = 5 mo = 25 mo = 125 mop = OO ZTW KMW

.0250  0.0750 168.5 157.6 155.5 153.0  99.0 101.6
0375 0.1688 133.6 117.8 115.3 112.3 57.4 61.0
.0500  0.3000 102.9 83.5 79.4 774 350 36.5
0625  0.4688 74.2 97.8 93.7 53.2 23.1 24.6
0750  0.6750 53.5 39.2 36.4 35.4 16.4 17.0
.1000  1.2000 27.7 19.2 17.6 17.4 9.8 10.3
1250  1.8750 15.3 10.6 9.6 9.5 6.9 7.2
1500  2.7000 9.4 6.4 5.9 5.8 5.3 5.5
.2000  4.8000 4.4 3.1 2.9 2.8 3.7 3.8
2500  7.5000 2.6 2.0 1.8 1.8 2.9 2.9
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Table 5.4: ARLs for shifts in @ with 8; = (8] ,60)" and 77 = 72/6% for j > 1

mo = 5
mo = 25
mo = 125 1)
mo = 00 1.1 11t 112 11® 11t 11 118 117 o11® 1.1® 0 1.1t 1ttt 1112
0.02 200.0 726 325 166 98 63 45 33 26 21 1.8 1.6 1.4
200.0 56.8 209 104 6.2 4.1 3.0 23 1.9 1.6 14 1.3 1.2
200.0 51.2 189 9.5 5.6 3.8 2.8 2.2 1.8 1.6 1.4 1.3 1.2
200.0 51.1 18.2 9.0 54 3.7 2.7 21 1.8 1.5 1.4 1.3 1.2
0.22 1782 70.1 314 163 96 63 44 33 26 21 1.8 1.6 1.4
1745 51.3 20.3 10.3 6.1 4.1 3.0 2.3 1.9 1.6 1.4 1.3 1.2
1729 472 185 93 © 5.6 38 28 22 18 1.6 14 1.3 1.2
1711 432 171 87+ 53+ 36/ 27 21 1.8 1.5 14 1.3 1.2
0.42 1329 57.5.°27.6° 149 9.1 6.1 43 . 3.3 2.6 2.1 1.8 1.6 1.4
1203 413 179 95 59 4.0 3.0 23 1.9 1.6 14 1.3 1.2
116.3 37.7 716.2 8.6 Si4m37 o 2.7 .22 1.8 1.6 1.4 1.3 1.2
113.1 ©34.4 15.0.-82 51 35 2.6 21 1.8 1.5 14 1.3 1.2
0.62 88. 7 43.1 225133 "84 <57 42 32 25 21 1.8 1.6 1.4
727 30.0 146 8.5 9.9 3.8 2.9 2.3 1.9 1.6 1.4 1.3 1.2
68.6° 275 133 77 50 35 27 21 1.8 1.5 14 1.3 1.2
67.2° 253 125 72 47 34 26 2.1 1.7 1.5 1.4 1.3 1.2
0.82 55.0 304 179 113 75 54 4.0 @ 3.1 25 21 1.8 1.6 1.4
412 208 11.7. 73 50 36 27 22 18 1.6 14 1.3 1.2
39.0 - 18.9 10.7 6.7 4.5 3.3 2.6 2.1 1.7 1.5 1.4 1.3 1.2
381 174 99 6.3 43 32 25 20. 17 1.5 14 1.3 1.2
1.0 33.6 21.6. 14.0 9.5 6.7 4.9 3.7 £3.0 24 20 1.8 1.6 1.4
246 144 9.1 6.2 44 34 2.6 21 1.8 1.6 14 1.3 1.2
227 13.1 8.4 5.7 41 3.1 250 .20 1.7 15 14 1.3 1.2
22.1 123 7.8 5.4 3.9 3.0 2.4 2.0 1.7 1.5 1.3 1.2 1.2
1.22 21.5 152 108 78...58 45 35 29 23 20 1.7 1.5 1.4
15.2  10.1 7.2 5.2 3.9 3.1 2.5 2.1 1.8 1.6 1.4 1.3 1.2
139 94 6.5 48 36 29 23 19 17 1.5 14 1.3 1.2
13.8 87 6.2 45 35 28 22 19 1.6 1.5 1.3 1.2 1.2
1.42 14.4 11.0 8.4 6.5 5.1 4.1 3.3 2.7 23 1.9 1.7 1.5 1.4
10.0 7.5 5.7 44 35 28 23 20 17 1.5 14 1.3 1.2
9.2 6.9 5.2 4.1 3.2 2.6 2.2 1.9 1.6 1.5 1.3 1.3 1.2
8.6 6.5 5.0 3.9 31 25 21 1.8 1.6 14 1.3 1.2 1.2
1.62 9.9 8.2 6.7 5.5 45 37 30 25 22 1.9 1.7 1.5 1.4
6.9 5.6 4.6 3.7 31 2.6 2.2 1.9 1.7 1.5 1.4 1.3 1.2
6.5 5.2 4.2 35 29 24 21 1.8 1.6 14 1.3 1.2 1.2
6.1 4.9 4.0 3.3 2.8 24 20 1.8 1.6 1.4 1.3 1.2 1.2
1.82 7.2 6.3 54 46 39 33 28 24 21 1.8 1.6 1.5 1.4
5.1 44 38 32 28 24 21 1.8 1.6 1.5 14 1.3 1.2
4.7 4.1 3.5 3.0 2.6 2.2 2.0 1.7 1.6 1.4 1.3 1.2 1.2
4.5 3.9 33 29 25 22 1.9 1.7 15 14 1.3 1.2 1.2
2.02 5.5 5.0 4.4 3.9 34 3.0 2.6 2.3 2.0 1.8 1.6 1.5 1.3
3.9 3.5 3.1 28 25 22 1.9 1.7 16 14 1.3 1.2 1.2
3.6 3.2 2.9 26 23 21 1.8 1.7 15 14 1.3 1.2 1.2
3.4 3.1 2.8 2.5 2.2 2.0 1.8 1.6 1.5 1.4 1.3 1.2 1.2
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Table 5.5: ARLs for shifts in @ with 8, = (87, 60)" and 72 = 12/62 for j > 1
j j j

mo = 5
mo = 25
mo = 125 0
my = 00 1.1° 11t 11?2 113 o1t 11d 1% 11t 1a® 11 1t opatt o112
2.22 43 40 37 34 30 27 24 22 19 1.7 1.6 14 1.3
3.1 2.9 2.7 24 2.2 2.0 1.8 1.7 1.5 1.4 1.3 1.2 1.2
29 27 25 23 21 19 17 16 15 14 1.3 1.2 1.2
2.8 2.6 2.4 2.2 2.0 1.9 1.7 1.6 1.4 1.3 1.3 1.2 1.1
2.42 35 34 31 2927 125 _ 22 20 18 1.7 1.5 14 1.3
26 25 23 21 2019 /17 16 15 14 1.3 1.2 1.2
2.4 2.3 2.2 2.0 1.9 1.8 1.6 1.5 1.4 1.3 1.3 1.2 1.2
23 22 21 20 18 17 16 b 14 13 1.2 1.2 1.1
2.62 2.9 2.8 27 26 240023 2.1 1.9 1.8 1.6 1.5 1.4 1.3
22 210 2019 18 17 16 1514 13 1.3 1.2 1.2
2020 19 18 17 “17 16, 15 14 13 1.2 1.2 1.1
2.0 1.9 1.9 1.8 1.7 1.6 1.5 1.4 1.4 1.3 1.2 1.2 1.1
2.82 25 2424 23 22 21 20 18 1.7 16 1.5 14 1.3
1.9 1.9 1.8 1.7 1.7 1.6 1.5 1.5 1.4 1.3 1.3 1.2 1.2
1817 1.7 17 16 15 15 14 '13 13 1.2 1.2 1.1
1.7 1v 17 1616 15 15 14 '13 13 1.2 1.2 1.1
3.02 2.2 2.2 241 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.4 1.3
16~ 17 16 16 16 15 15 14/ .13 13 1.2 1.2 1.1
1.6 1.6 1.6 1.5 1.5 1.5 1.4 1.4 1.3 1.3 1.2 1.2 1.1
1.5 1.5 1.5 1.5 1.5 1.4 1.4 1.3 1.3 1.2 1.2 1.2 1.1
3.22 19 19 19 19 18 18 17 17 16 15 14 1.3 1.3
1.5 1.5 1.5 1.5 1.5 1.4 14 1.4 1.3 1.3 1.2 1.2 1.1
14 14 14 /14 14 14 14 13 13 12 1.2 1.2 1.1
1.4 1.4 1.4 1.4 1.4 14 1.3 1.3 1.3 1.2 1.2 1.1 1.1
3.42 1.7 1.7 1.7 1.7 1.7 1.7 1.6 1.6 1.5 1.4 14 1.3 1.2
14 14 14 14 14 14 13 13 13 12 1.2 1.2 1.1
1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.2 1.2 1.2 1.1 1.1
13 13 13 13 13 13 13 13 12 12 1.2 1.1 1.1
3.62 1.6 1.6 1.6 1.6 1.6 1.6 1.5 1.5 1.4 1.4 1.3 1.3 1.2
1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.2 1.2 1.2 1.1 1.1
12 12 13 13 13 13 13 12 12 12 1.2 1.1 1.1
1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.1 1.1
3.82 15 15 15 15 15 15 15 14 14 14 1.3 1.3 1.2
1.2 1.2 1.2 1.2 1.3 1.2 1.2 1.2 1.2 1.2 1.2 1.1 1.1
1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.1 1.1 1.1
12 12 12 12 12 12 12 12 12 12 1.1 1.1 1.1
4.0? 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.3 1.3 1.2 1.2
1.1 1.2 12 12 12 12 12 12 12 1.2 1.1 1.1 1.1
1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
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Appendix

1

1 1 1 1

where v = 0.577215664 . . . is the Euler constant and = € (0, c0).
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Wo,;

(ng + n;) log <

&2 a3
—ng log (§> —n;log (0—]2)

[now —0?) (GR35 = BN Xo) ! + (X5 %) )(8; - ﬁ)]

~

o6 +n;6? + (B — B)T[(Xh Xo)~ + (XT XM(@-—,@))

(no + nj)<72

o2 o2 o2
62 — o2 o2 1
—ng ( - ) < njlog (é) + 0, <—\/7”L_o)
1
W.+0, [l=—=

as min{n, the minimum eigenvalue of X¢ Xo} — oo.

We, = 2[o;(07,07) — £o,;(0,0;)] = Wo; — 2[00 (6. 60;) — £,,;(6%,6)].

If the process is in control at time j (> 1), then

) 2[0.;(6,8;) — €.;(6%, e;f)]

) )
. Ng0§ + N,;05
Lis;<s0} { ng log(6) — n;log(6;) 4 (no + n;)log <_n0 n o ) }
J

= Ly,<op{—n0log(l — B;) — n;log(B;) + [nolog(ng) + n; log(n;)

—(no + ny)log((no + ny))l},
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where B; = H;/(Hy + H;) ~ beta (%2, "2) Hy = neo?/o? ~ X%, _,, 9(B)) is

a function of Bj, b; = n;/(ng + n;), and 1yp, <) denotes the indicator function for

{B; <b;}. Eo,(W5;) = Eg,(Wo;) — Eg,(g(Bj)), where

Ep;(9(B;)) = [nolog(no) + njlog(n;) — (ng + n;)log(ne + n;)|E(1p;<,3)

—noE(log(1 — Bj) - 1{p;<p;3) — 1 E(log(B;) - 115,<1,1)

Varg, (Wy ;) = Varg,(Wy ;—g(B;)) = Vate;(Wo;)+Vare, (g(B;))—2Cove, (W ;, 9(B;)),

where

Varo, (§(B7))= e, (9(B))7) =[Es,(9(B;))]"

and

Covg, (Wo,;, 9(B;))

= ngCov(log(1 — By)ylog(h~ B;) « Lis;<nz}) Fmon; Cov(log(l — B)),log(B;) - Lp,<s,))
—no[ng log(no) + 1i5108(n3),— (no + n;) log(ng1;)]Cov(log(l — Bj), 115,<s,3)
+non;Cov(log(B;), log(1 = By) - 1z, <)) + 15 Cov(log(B;), log(B;) - 1(p,<,})

—nj[nglog(ng) + njlog(n;) — (no + n;) log(ng + n;)|Cov(log(B;), 1(5,<b,})

Eo,(9(B))?) = E({ngllog(1l — B;)]* + nj[log(B;)]* + 2non; log(1 — B;) log(B;)
+[no log(ng) + njlog(n;) — (no + n;) log(ng + n;))?
—2ng[ng log(ng) + njlog(n;) — (no + n;) log(ne + n;)]log(l — Bj)

—2n[ng log(ng) + n;log(n;) — (ng + n;) log(ng + n;)]log(B;)} - LB, <b,})-
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Let o« = (n; —p)/2 and B = (ng — p)/2

E(1(5,<b;))
_ VT4 Bt 1 —a) Tt T+ ) o~ qymset B
- R v i PO i
E(log(B;) - 1{Bj<bj})
(Y [(a+ Bz Y1 — )1 .
— /0 log(z) D@)T(d) de = (9_aE(1{Bj<bj})
E(log(1 — Bj) - 1{Bj<bj})
b; o
— /0 log(1 — x) " = E(1(B,<,})
E(log(B;)lo
bj
= /O log(x ) ) aﬁE( {B]<b]})
E({log(
bj
= / [log J<bj})
0

E([log(1

bj
— [ logt
0
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