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Abstract

Discovering the influential genes through the detection of outliersin
samples from disease group subjectsis avery new and important
approach for gene expression analysis. Extended the outlier mean of
Chen. Chen and Chan(2010), we develop the asymptotic distribution of
the outlier proportion for linear regression model. Power comparison
shows that tests based on this outlier estimator is very competitive and
promising in detecting a shift of parent tail distribution.

Key words : Cancer outlier profileanalysis -~ Gene expression ~ Outlier mean ~
Outlier proportion ~ Regression model.
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1. Introduction.

Among the existing techniques in differential genes detection, common
statistical methods for two-group comparisons, such as t-test, are not ap-
propriate due to a large number of genes and a limited number of subjects
available. Tomlins et al. (2005) observed in a study of prostate cancer that
differential genes are over expressed in a small number of disease samples.
The problem of constructing statistical procedures based on outlier samples
has been attracted considerable recent attention. Tibshirani and Hastie
(2007) and Wu (2007) suggested to use an outlier sum, the sum of all the
gene expression values in the disease group that are greater than a specified
cutoff point. The common disadvantage of these techniques is that the dis-
tribution theory of the proposed methods has not been discovered so that
the distribution based p value can not be applied. Recently Chen, Chen
and Chan (2010) considered the outlier mean (average of outlier sum) and
developed its large sample theory that allows us to formulate a distribution
based p value. Simulation study and data analysis show desired efficiency
for tests based on outlier mean.

Uncertainties of gene expressions also show causal effect upon one or
some biological conditions (independent variables, see Jin, Si et al. (2006),
Huang and Pan (2003), Rambow, Piton et al. (2008) and Muller, Chiou and
Leng (2008)). From their observation, Tomlins et al. (2005), investigating
and verifying the characteristics of the parent tail distribution of the disease
group data in linear regression models through estimation and hypothesis
testing is new but important topic to be explored.

We consider the sample conditional quantile based on healthy group data
as cutoff for determination of outliers and introduce the sample proportion
computed from these outliers for monitoring the outlier distribution and
present its asymptotic distribution. With simulation study, the outlier pro-

portion based test is shown desirable in terms of powers.

2. Formalization of Outlier Proportion
We consider that there are two gene expression variables y, and yp, re-

spectively, for normal (control) group population and disease group popu-
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lation that follows linear regression models as
Ya = -T/Ba + € and y, = xlﬁb +9

where x is p-vector of covariates (biological conditions) with constant one on
the first element. A key to the challenge of quantifying outlier information
in model for gene response variable y; is to reparametrize the regression
parameters that characterizes the information contained in tail distribution
of this variable.

By denoting the two distributions for y, and y, as F, (.|z) and F, (.|z)
when vector z is given, the main objective for conduction of gene expression

analysis is to perform a test for hypothesis of distributional equality as
Hp: F, (|z) = F,(|z),x € RT (2.1)

where RT = {(1,2})" : 11 € RP™1}. The classical approach conducts this
testing this hypothesis through verifying if there are equal conditional means

as
2By =B,z € RT (2.2)

which is equivalent to verify if g, = f, is true. Following their observa-
tion, Tomlins et al. (2005) proposed to verify the parameters in outlier
distribution instead of original distributions Fy, and F,,. This requires a
formalization of regression parameters that contains the information in tail
distribution.

Given a fixed z, we consider the y-th quantile of variable y, as the cutoff
for outlier detection threshold that may be written as F, *(y) = #'B4(7)
where (3,(7) = B,+F. 1 (7)e is the population regression quantile of Koenker
and Bassett (1978) and where p-vector e = (1,0, ...,0)" and F."(v) is the v-
th quantile for error variable € with distribution function F.. Observations of
Yo and yp over this quantile point are considered outliers. Our idea based on
Tomlins et al.’s observation that is extended from outlier mean to regression
model for testing hypothesis (2.1) is through a verification on variable y;’s

conditional outlier proportion Ay out(2) = P(yp > 2/ 3o (7))



We may see that

Ab,out(T) = P(0 > F7H(v) + 7' (Ba — Bs)) (2.3)

and the variable y,’s conditional outlier proportion A, out(z) = Py, >
x'Ba(y)) = 1 — . For testing hypothesis (2.1), we propose to verify the
following relation:

Moout() =1 -7,z € RT, (2.4)

By denoting the difference of two conditional outlier means as D,p,(x) =
Yb,out(€) — (1 — ). For validation of this verification, considering the fol-

lowing model settings,

Yo=1+2rx+eand yp =1.14+ 2.1+ 0
e~ N(0,1) and 6 ~ AN(0,1)+ (1 — A)N(p, 1)

and with sample size n = 100, we display the sizes D,,(z) and efficiency
eff = Dop/Aa,out in Table 1.

Table 1. Outlier proportion differences (DOp )

eff
v=0.1 v=20.3 v = 0.6 v=10.9
=1
A 0.037 0.084 0.113 0.072
N (0.041) (0.121) (0.284) (0.725
=9 0.048 0.112 0.152 0.098
(0.053) (0.160) (0.380) (0.976
A 0.058 0.137 0.190 0.125
(0.064) (0.196) (0.478) (1.248
— 0.066 0.160 0.227 0.154
(0.073) (0.229) (0.568) (1.542
v 0.037 0.089 0.131 0.126
N (0.042) (0.127) (0.327) (1.257
=9 0.049 0.116 0.167 0.147
(0.054) (0.165) (0.417) (1.468
=3 0.058 0.140 0.202 0.170
(0.065) (0.200) (0.506) (1.701
" 0.066 0.163 0.238 0.196
(0.074) (0.232) (0.594) (1.955




Significant differences in size between D, (z) and D,,(z) showing in this
table reveals that detection of difference in conditional outlier means may
be better in terms of power than detection of difference in non-outlier con-
ditional means.

We have observed the positive sign of using variable y;’s outlier propor-
tion for gene expression analysis. However, consistent estimator of outlier
proportion is too complicated since it requires to build up a consistent es-
timator of z-related parameter function Ay oue(z) in (2.3). The difficulty

can be solved if a reformalization of regression parameters can be done. By

letting (B, = (gi?) and (8, = (g"?) with (p9 and (3,9 the intercept pa-

rameters and [p; and (3,1 being, respectively, vectors of slope parameters,

we then set the following restriction

Ba1 = Br1 (2.5)

which is true when Hy of (2.1) is true. This allows us to write outlier

proportion as
)\b,out — P((S Z Fg_l(,Y) 2l /BaO g /BbO)- (26)

The next objective is establishing an estimator for the outlier proportion
b out Of (2.6) and developing its distributional theory for construction of a
test for hypothesis (2.1).

3. Outlier Proportion Estimator and Its Large Sample Theory
For this gene expression study, we assume that there are n; subjects in

the normal control group and ny subjects in the disease group. Suppose

that there are m genes to be investigated. The gene expressions for normal

group subject have the regression model
Yai = Tifa + €yi =1, ...,m1 (3.1)

where ¢;’s are iid error variables with distribution function F. and the disease

group subject have the regression model

Yoi = T30 + 0iyi = 1,...,mp (3.2)



where ¢;’s are iid error variables with distribution function Fj.

We let the sample threshold be 13'?;11(7) = 2'B4(7) where f3,(7) is the

sample regression quantile of Koenker and Bassett (1978) that solves

n1

Minpere Y (Yai — 2ib) (v = I (yai < 2}b)).

=1

The estimator of the outlier proportion is

na
Ab,out S ng_l Z I(ybz 2 x;ﬁa(’)’)) (33)

=1

We consider a simulation study for efficiency of sample outlier proportion

with the following models:

Yai =1 +2x; + €;,0 = 1,...,n1 where €;s are iid N(0,1), and
Ypi =00 + 2z; + 0;,i = 1,...,na where d.s are iid ~ Fj. (3.4)

Under F5 = 0.9N(0,1) + 0.1N(1,1), we perform replications m = 1,000
with n = n; = ny from the above models and display the MSE’s in Table
2 while their corresponding true outlier proportions are listed in ( )’s with
n = 50.

Table 2. Mean square error for outlier proportion estimation



v Bo=1.1 Bo=1.3 Bo =1.5
n = 50
07 0.0099 0.0110 0.0111
' (0.3738) (0.4482) (0.5247)
0.8 0.0081 0.0101 0.0115
' (0.2664) (0.3323) (0.4041)
0.9 0.0056 0.0075 0.0097
' (0.1496) (0.1975) (0.2541)
n = 100
0.7 0.0049 0.0054 0.0053
0.8 0.0044 0.0051 0.0055
0.9 0.0029 0.0039 0.0052
n = 200
0.7 0.0026 0.0027 0.0028
0.8 0.0025 0.0027 0.0029
0.9 0.0019 0.0025 0.0029
n = 500
0.7 0.0012 0.0011 0.0012
0.8 0.0015 0.0014 0.0013
0.9 0.0014 0.0016 0.0016

Small MSE’s shows that outlier proportion is a parameter appropriate for

statistical inferences of hypothesis (2.1).

For the asymptotic properties for the outlier proportion, we need the fol-

lowing assumptions:

(a) Assumption 2: lz’mng,nl_,ooz-i = {y, a fixed constant.

n2

(b) Assumption 3: lz'mn2_>00712_1 Y il @i = 0, which is a fixed p-vector.

1

From Asumptions (a) and (b), we see that limy,, eony ~ Y sty T = Lyz0y Let

us further denote f. and fs as probability densitity functions, respectively,

for F. and Fs. For the rest of this section, we assume that condition (2.4)

and Assumptions (a)-(d) are true where (c)-(d) are listed in Appendix.
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Theorem 3.1. (a) The outlier proportion Xb,out has the following repre-

sentation

n;/2(5\b,out - Ab,out) = - f&(Fe_l(’Y) + /BaO - /BbO)E;ézfe_l(F6_1(7))9;;Q;1

nl_l/2 Z“T"(’Y —I(e; < F7 ()

=1

+ny > (6 = FZH () + Bao = Bro) — Avout] + 0p(1).-

1/2,% e e )
(b) n2/ (Ab,out — Ap,out) converges in distribution to a normal random vari-

able with distribution N (0, vp, oyt) Where

Whout =Y(1 = N lyalfs(F (V) + Bao — Boo) f (FH ()
Q;legm + Ab,out(l - Ab,out)-

(3.5)

By letting X ~ N(0,1) and ¥ ~ N(m, 1), we compute vp oyt for compar-

ison.

Table 3. Variance vy, o,y comparison

Fy m=20 m=1 m=3 m=>5
N(m,1)
v=0.7 0.42 0.437 0.007 3.8E —6
v=0.8 0.32 0.562 0.018 1.6E —5
v=10.9 0.18 0.667 0.065 0.000
A=0.1
v=0.7 0.42 0.434 0.405 0.403
v=0.8 0.32 0.353 0.334 0.331
v=10.9 0.18 0.224 0.232 0.226
A=0.2
v=0.7 0.420 0.447 0.384 0.381
v=0.8 0.320 0.385 0.339 0.333
v=10.9 0.180 0.271 0.271 0.259
A=0.3
v=0.7 0.420 0.456 0.358 0.353
v=0.8 0.320 0.415 0.334 0.325
v=20.9 0.180 0.317 0.296 0.277

Larger percentage « gives the outlier proportion estimator Xb,out the smaller

asymptotic variance. Hence, larger percentage +’s may also give j\b,out better

power performance. However, this requires further investigation.




The above asymptotic distribution allows us to consider an outlier pro-

portion based asymptotic pivotal quantity as

Apout — (1= )
V @out

where 4y is estimator of vy, oyt However, it is unpleasant for this quantity

Vs

being involved with densities f. and f5 so that their estimations when they
are unknown could be very in-efficient for not enough sample sizes. Hence,

when (2.1) is true with

Ua,out - 7(1 - V)Ey:vg;;Q;lgm + )\b,out(l - )\b,out)-

Let 0,,: be estimate of v,,;. We then define an outlier proportion based

test for hypothesis (2.1) as

1/2(5\b,out — (1 A 7)
2

— ) > za
vV Ua,out

where z, is the (1 — a)th quantile of the standard normal distribution. This

rejecting Hy if n (3.6)

is an extension of the classical proportion p test to this outlier gene problem.

4. Power Performance for a Test based on Outlier Proportion

We consider the following design:

Yai =1 + 2x; + €;,4 = 1,...,ny where €,s are iid F,, and

Ypi =B + hx; + 0;,1 = 1, ...,no where d,s are iid ~ Fj. (4.1)

for evaluation of the test of (3.6). Additional to the outlier proportion beout

and regression quantile Ba(’y), some estimates are defined as follows:
1 & n

. N 9

em — n_z ;:1 Lo, gmy -

ni
n
. 1 <2 ,
Qx = E Tvi Ty,
na <
=1

@a,out — 7(1 - 'Y)gmyé;leém + 5\b,out(l - 5\b,out)-



With a = 0.05, we evaluate the following approximate power

S il(né/z(;\””“t — (- 7)) > 1.645). (4.2)

m j=1 V Va,out

By letting h = 2 and F' = F, = Fj, the first aim is to measure the type I
error probabilities of this test. We consider several distributions F' and the

simulated sizes under this setting are displayed in Table 4.

Table 4. Evaluation of probability of type I error

F v=10.5 v = 0.6 v=0.7 v=0.8 v=10.9
N(0,1) 0.049 0.049 0.045 0.041 0.057
t(3) 0.051 0.052 0.046 0.05 0.063
t(5) 0.047 0.05 0.047 0.05 0.057
t(10) 0.048 0.056 0.044 0.051 0.053
Lapalce(0,1) 0.048 0.049 0.046 0.057 0.049
Lapalce(1,1) 0.049 0.052 0.054 0.058 0.057

It is seen that the outlier proportion based test is quite robust with simulated

sizes all closer to the specified significance level (0.05).

Next we evaluate the power performance for the outlier proportion based
test. With the same design of experimment besides h and consider the
distribution F, = N(0, 1) and some Fj’s, the simulated powers are displayed
in Table 5.

We consider mixed distribution for variable y, with F, = N(0,1) and
Fs =0.9N(0,1) + 0.1N (0, 1). The simulated powers are displayed in Table
6.

Table 5. Power performance of outlier proportion test under mixed normal

distribution
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v=0.5
v=0.7
v=0.8
v=10.9

Fs = x%(3) — 2.5
v=0.7
v=0.8
v=10.9

Fs =1(10) + 0.5
v=0.7
v=0.8
v=10.9

—_ = =

0.542
0.875
0.995

0.993
0.980
0.955

—_ = =

—_ = =

0.933
0.993

—_

—_

0.998

Table 6. Power performance of outlier proportion test

h=21

h=23

0.552
0.455
0.368
0.283

0.785
0.672
0.564
0.423

0.991
0.987
0.964
0.896

0.999
0.998
0.992
0.966

The powers displayed in these two tables show that the outlier proportion

is quite satisfactory for gene expression analysis.

Lai, Chen and Chen (2012, unpublished) proposed a least squares esti-

mator as

Bois = (XA X3) "1 X Apyp.

(4.3)

where we denote Xy = (Zp1, Zp2, ---y Tom, ), trimming matrix A, = diag{a;; =
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I(ypi > :L'gi@a('y)),i =1,....,n2} and yp = (Yp1, -, Yon,)'- Two tests (denoted
by OL1 and OL2) based on this estimator are also introduced. With two
outlier LSE based tests available, it is desired to verify if these two tests are
competitive. With the same design of experiment besides various h and the
error distributional settings: F, = N(0, 1) and several distributions Fs. The

simulated powers are displayed in Table 7.

Table 7. Power comparison of two outlier LSE based tests

v h=21 h=23 h=25
Fs = N(0,1),0 =1

v =0.8,0L1 0.213 0.31 0.397
OL2 0.634 0.799 0.871
opr 1 1 1

v =0.85,0L1 0.157 0.186 0.258
OL2 0.573 0.706 0.819
opr 1 1 1
0 =2

v =0.8,0L1 0.681 0.755 0.828
OL2 0.985 0.997 0.998
opr 1 1 1

v =0.85,0L1 0.444 0.502 0.589
OL2 0.97 0.983 0.989
opP 1 1 1

Fs = x2(3) — 2.5

v =0.8,0L1 0.899 0.932 0.928
OL2 0.960 0.982 0.984
orP 0.875 0.993 1

v =0.85,0L1 0.823 0.821 0.845
OL2 0.957 0.967 0.979
oP 0.962 1 1

Fs = t(10) + 0.5

v =0.8,0L1 0.899 0.932 0.928
OL2 0.960 0.982 0.984
oP 0.98 1 1

v =0.85,0L1 0.823 0.821 0.845
OL2 0.957 0.967 0.979
orP 0.97 1 1

5. Appendix
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Three assumptions for the asymptotic representation of the sample outlier
mean test are as follows.

(c). Pobability density function fx of distribution F'x is bounded away from
zero in neighborhoods of Fil(a) for a € (0,1) and the population cutoff
point 7.

(d). Probability density function fy is bounded away from zero in a neigh-

borhood of the population cutoff point 7.

Proof of Theorem 3.1.
From the expression of outlier proportion of (3.3) and linear regression
model of (3.2), we have

Moout =03t 10 > FZL(y) + Bao — oo + ny /*2iTa) — 18 > FZ (%) + Bao — fro)]
=1
+ny "y I8 = F7N () + Bao — Bro) (5.1)
=1

where T, = ny/?(Ba(7) — Ba(7)).
With (2.5), the first term on the right hand side of (5.1) can be shown
(Ruppert and Carroll (1980) and Chen and Chiang (1996) as

n2

ng /2N (L0 > FZH ) + Bao — Bro + 1 2 T) — 18 > F7'(9) + Bao — Bro)

=1
= 0,2 f5(F7H(7) + Bao — Br0) 0 T + 0p(1) (5.2)

for any sequence 7,, = O,(1). Also, a representation of regression quantile

Ba () may be formulated as

~

Vni(Ba(Y) = Ba(7))

=IO Y G S FR O o),

see, for example, Ruppert and Carroll (1980). By letting T,, = T, and
combining the results in (5.1)-(5.3), the theorem is followed. [
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