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Testing equality of two ARMA models or two

random coefficient autoregressive models

Student: Singjie Jong
Advisor: Hsiuying Wang
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Tung University Hsinchu, Taiwan

Abstract

This thesis addresses the issues of testing equality of two time series models.
Testing procedures for testing the equality of two ARMA models or two random
coefficient autoregressive (RCA) models are proposed. For testing the equality of
two ARMA models, we based on the maximum likelihood estimators to establish a
testing procedure. For testing equality of two RCA models, an empirical likelihood
method is developed. The proposed methods have been demonstrated to have good
properties and are shown to have good performance through simulation studies.
Also, the testing procedure for testing the equality of two ARMA models is illustrated

through an analysis of three companies’ monthly sales.
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1

Introduction

Time series analysis is an area of considerable activity. In the past, economists
was using time series for microeconometrics, but they did not carefully explore their
statistical properties. Box and Jenkins (1979) rebuild our vision of time series analysis,
and then a bunch of books and articles on the subject have been published. The
theories and methods have been well estabished and its influence continue to rise.
For example, Shumway and Stoffer (2000) presented a balanced and comprehensive
treatment of both time and frequency. domain methods with accompanying theory and
Brockwell and Davis (2009) provided specific techniques for handling data and at the
same time to provide an understanding.of the mathematical basis for the techniques.
Now, time series analysis is used for many applications such as economic forecasting,

sales forecasting, stock market analysis, process and quality control.

The time series data in practical problems may consist of observarions from a
vector of numbers. For example, in sales forecasting, the variables include sale volume,
prices and sales force, and then we can use a multivariate form of the Box-Jenkins model
to analyze how is the influence of prices and sales force on sale volume. However, in
multivariable time series analysis, we concentrate on input-output relationship between
dependent variables and independent variables, and we rarely see the discussions about
the comparion of two time series. In the above example, if there are two companys in

the study, equality of two company’s sales force effect on the prices may be our interests.



On the other hand, nonlinear time series models have attracted much interest
during there years. Although most of the time series models discussed are linear models,
it has often been found that linear models usually lead to some unexplained aspects.
Many developments in nonlinear models techniques provide some alternatives to model
time series, and one of examples is the random coefficient model. For this reason, we
also pay attention to the comparion of two random coefficient autoregressive (RCA)

time series model.

In this article, we are interented in compare two ARMA models or RCA mod-
els. Two proposed methods are introduced step by step in the following chapters for
ARMA models and RCA models. In additional, we conduct simulation studies for eval-
uating the performance of both methods. Finally we performe our methods to real data

analysis and concluding remarks are given.



2 A Test of Equality of ARMA Models

2.1 Introduction

There are many methods for modeling time series data, and the most widely
recognized approach is the Box-Jenkins ARMA models. Classical Box-jenkins models
describe stationary time series. A time series {zy;t € Z}, with Z = 0,+1,£2, ... is
stationary if

(1)E|z¢|? < oo forallit,€ Z

(2)E(z;) is constant for all t € Z

and

(B)re(r,s) =re(r+t,s+t) forall r,s,t € Z,
where r,(r, s) = cov(z,,xs) = E(x, — E(x,),xs — E(xs)) for all v, s € Z.

A time series {z;} with zero mean is an ARMA(p, q) model if it is stationary and
Ty = gblxt_l ‘I— ‘I— gbpxt_p + Wt — let—l — .. — qut—q (21)

with ¢, # 0, 6, # 0. Unless stated otherwise, the noise w; is iid ~ N(0,42), where
62 > 0. Also, the parameters p and q are called the autoregressive and the moving
average orders, respectively. To express the ARMA models in an easy formula, it will

be useful to write them using the AR operator and the MA operator. That is, we



rewrite the formula (2.1) as

o(B)xy = 0(B)wy (2.2)

where ¢(B) =1—¢;B—¢3B?* —...—$,B?, and §(B) = 1—60,B—60,B?>—...—6,B%. On
the other hand, since the relationships between past and future often occur at seasonal
lags, it is appropriate to consider seasonal ARIMA models. The seasonal ARMA model

of orders P and  with the seasonal lags s, denoted by ARMA(P, Q)s, is of the form
@F(Bs)xt = @Q(Bs)wt,

where gb(BS) = 1—¢1BS—¢QB2S—...—¢PBPS, and Q(B) = 1—013—02325—...—0623628.

We only consider causal and invertible ARMA models in this article. An ARMA(p,q)
process defined by equation (2.2) is'said to be causal if there exists a sequence of con-

oo
stants 1; such that Z |1;] < oo and

j=1

me= Y thjwj, t=0,£1,+2, .
t=1

oo

and said to be invertible if there exists a sequence of constants 7; such that Z || < o0
j=1

and

W= mmg, t=0,%1,42 .

t=1
Since seasonal models are special forms of the ARMA models, the description of the

parameter properties is not repeated here.



We consider two time series z; and y; which both are ARMA(p,q) process with

the forms

Ty = gbz,ll‘t—l R gbz,pxt—p + Hm,lwx,t_l + ...+ Qxqum’t_q (23)
Yy = ¢y,1yt_1 + ...+ gby,pyt_p + Qy,lwy,t_l —+ .+ Qy,qu,t—q (24)

Denote 8, = (du1, s Gugp Oty Og) and B = (Dy1, 00, Byps Oy1-.o, ), TOSDEC-
tively. We are interested in testing the equality of two time series models, this is, éx
:ﬁy,

In this chapter, we introduce the Box-Jenkins approach for an ARMA model. The
porperties and calculations of MLE are_also discussed. In particular, the confidence
interval for parameters of ARMA models based on MLE can be obtained in an easy
way after estimating parameters. ‘Next, we proposes two methods for constructing
approximate CI based on MLE, and simulation studies which demonstrates their false

positive rate are shown.

2.2 Basic Results

Maximum Likelihood Estimation (MLE) is one of the most popular parameter
estimation in time series model, since it possesses a number of good asymptotic prop-
erties. However, in the general ARMA models, it is hard to express the likelihood as a
function of parameters directly. For this reason, Shumway and Stoffer (2006) suggested
to substitute a function of the one-step prediction errors for the explicit way to write the

likelihood function. If z; is causal ARMA(p,q) process with zero mean, the likelihood



function of x; can be written as

n
NHES | FCA R}
t=1

The distribution of x; given x,_1,...,7; is a Gaussian distribution with mean z!~ 1 —

E(z; | 24-1,...,x1) and variance P/™' = Var(z; | ;_1,...,71). In addition, for ARMA
models, we may write P/~' =62r{"* where /" does not depend on 2. In here, 2
and variance P/~! are also called the one-step predictor and the mean square prediction

error, respectively. They can be solved iteratively by Durbin-Levinson Algorithm (see

Durbin, 1960 ). Now, we rewrite the likelihood function of z; as

L(B,,02) = (2rd2) U0 (B k(B ) = ri M (B.) ewpl 2], (2.5)

where

Since z¢7! and P/™! are explicitly functions of G, and 52, we can obtain maximum

likelihood estimation by maximizing (2.5).

Under appropriate conditions (see Shumway and Stoffer, 2006 p.133 and Brockwell
and Davis, 2006 p.258), the maximum likelihood estimation Ex for causal and invertible
ARMA processes, which initialized by method of moments estimator, provide optimal
estimator of ém and 62. Moreover, the asymptotic distribution of Em is the normal
distribution. It follows,

N d

VB, = B,) 7 NO,V(B,)), (2.6)

—



where

EUUL) EUVY)
52 , forp>landqg>1
BV,U) EV,V)
Vig,) = (2.7)
RE(V, V) for p=0
o E(U,UY) for q=0

\

Here, U, = (U, ....,Upp1-p) and V, = (V;, ...., Vis1—4)" are the autoregressive pro-
cesses,

¢(B)Qt = Wy,

and

H(B)Vt = Wt.

The asymptotic properties of maximum likelihood estimation of ARMA models

can be used to construct confidence intervals of ﬁx

Although compared with estimation, confidence interval may be a second major
problems, it can provide precision of the sample statistic estimation. Since the max-
imum likelihood estimation Ew has an asymptotic normal distribution, we can easily

derive the following forms from formula (2.6):

)B —B)<n N2 (p+9)} (2.8)

T — —

{B,eR: (8 —B )YV



Let vj; denote the j-th diagonal element of V(f ). We have the approximate 1 — «

—

confidence region for each component of ﬂm, ie.

B, R B, — B, 1< P00y}, (29)

where Bz. is the j-th component of Bz. Also, the further discussion is referred to
P, ld

Brockwell and Davis (2006).

2.3 Testing Methods

Let Bw and Ey be the estimations of two time series models (2.3) and (2.4). We
are interested in testing where ﬁx and gy are the same, i.e., testing the null hypothesis
Hy:pB = ﬁy against the alternative hypothsis-H, : 8 # ﬁy. Basing on (2.6), we

obtained two Gaussian vectors as follows:

V(B —B.) 7 N0, V(8,))
=N d
Va3, =87 NO, V(8 ).

Under null hypothesis, the distribution of the difference of Ex and Ey is

. d

VB, —B) 7 NO,V(B)+V(B))

T —y “x —y

Let V* = (’UZ})(erq)x(erq) =V(8 )+ V(B ). Then a 1 — « confidence region of the

x —y

difference | = . — éy could be drived in a similar way as equation (2.8) and (2.9) as



follows:

{tewr: (B, -5, -0V (B, -8, - D <n'\i.lp+a) (2.10)

and

{LeRNB, —B, —LI<n o apvy ") (2.11)

and [; = (1, ..., lprg) = (021 — Oy, -ovvy Oug — Oyq)-

If we fit two simple one-parameter models for our analysis, we can use equation
(2.11) to test equality of parameters in both models. If the number of parameter models
is more then one, we can derive a simultaneous confidence interval based equation (2.11)
by a Bonferroni approach . The Bonferonni approach gives

a|PF)|
C

a|PT| ~

where the probability of Type I error for testing each [; is denoted as «[PT], the
probability that at least one occurs for the whole family of tests is denoted as a[PF],

and C is the number of parameters in the model.

For example, if we fit two AR(2) models to obtain 95% confidence intervals for
1, then a[PE] = 1 —0.95 = 0.05, C' = 2, and «[PT] = 0.05/2 = 0.025. Therefore,
Xi_.(p+ q) becomes X2 ,5(2) and P1_q/2 becomes P g25/2.

The Bonferonni approach is too conservative when the number of comparisons is

large. In addition, in practical application, when the asymptotic variance-covariance

matrix of the estimator is unknown, we replace V(3 and V(éy) by their MLEs.



Table 2.1: Testing the equality of two AR(1) models at level 0.05 (difference sample size setting)
Dz1 = Py1 = 0.3 rep.=10000
sample size 40 60 80 100 120 150
false positive rates 0.0556 0.0545 0.05 0.0497 0.0492 0.0508
Pz1 = ¢Py1 = 0.7 1ep.=10000
sample size 40 60 80 100 120 150
false positive rates 0.0603 0.0577 0.0577 0.055 0.0579 0.0536

2.4 A simulation study

In this section we conduct simulation studies to evaluate our testing results. In the
first simulation study, we evaluate the performance of the confidence interval of AR(1)
models basd on (2.6) in terms of their false:positive rate. For our methods, the sample
sizes of two time series that we want to compare may not equal, but we set the same
for them in our simulation. We chose sample sizes as 40,60,80,100,120 and 150 and
0. = 1. For each value of sample sizes, we generated 10000 data sets from the AR(1)
model with both ¢, = @1 = 0.3 and ¢,1 = ¢,1 = 0.7. Then we computed 95% CIs for
¢z1 — ¢y1. From Tables 2.1, we see that all of the false positive rates of each value of
sample sizes are close to 0.05. Next, we set various paramaters of AR(1) model for the

same sample size 150 in Table 2.2. Their false positive rates are also near to 0.05.

In the second simulation study, we consider the AR(2) models and their false
positive rate. The false positive rates in Table 2.3 and 2.4 have no obvious difference
for these two methods. It show that when the sample size is 150, the false positive rates
are very close to 0.05. Therefore, if we want to compare two time series, the sample

sizes of the model we fitted should not be less than 100.

10



Table 2.2: Testing the equality of two AR(1) models at level 0.05 (difference [ setting)

¢z1 = ¢y1 = k 1ep.=10000 ( size : 150 )

k 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
false positive rates  0.0515 0.0523 0.0469---0.0522 0.0498  0.05 0.048 0.0553 0.0524
k 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

false positive rates  0.053  0.052 =0:0527 0.0557 ~0.0542 0.0523 0.0577 0.0647 0.0603

Table 2.3: The bonferroni method for testing theequality of two AR(2) models at level 0.05
B, = ﬁy = (¢py1, Oy2) ' ='(0.3,0.3)" rep.=10000

sample size 40 60 80 100 150 200 300 500

false positive rates  0.0645 0.0601 0.0586 0.0563 0.0514 0.0513 0.0495 0.0496

Table 2.4: The Chisque method for testing the equality of two AR(2) models at level 0.05
B, = ﬁy = (¢py1, dy2)’ = (0.3,0.3) rep.=10000

sample size 40 60 80 100 150 200 300 500

false positive rates 0.07 0.0629 0.0574 0.0523 0.0505 0.0504 0.0494 0.0515

11



3 A Test of Equality of RCA Models

3.1 Introduction
The first example for the random coefficient autoregressive (RCA) model was in-
troduced and studied by Nicholls and Quinn (1982). They derived the necessary and
sufficient condition for the process to be second-order stationary. In addition, they also
discuss some properties and methods for the RCA model. We wrote the model RCA(1)
as

Zt = 'rtZt—l +E¢ (3].)
o= [y T Ust,

where ;’s and u;’s are sequences of iid realizations from a distribution. And, ¢; and
u; are also independent. Since Wang and Ghosh (2002) defined the n = u? + 02 and
called 7 the stationary parameter for the RCA(1) model, the necessary and sufficient

condition for the process is n < 1.

A generalized form of the RCA model was introduced by Hwang and Basawa
(1998). The Markovian bilinear model, the random coefficient exponential autoregres-
sive process and the RCA model all are special cases of it. A time series Y; is a

generalized random coefficient autoregressive (GRCA) process if
Y, =Y (t—1)+ ¢ (3.2)

12



where (bt = ((btla e 7¢tp>/7 Y(t - 1) = (Kfla o 7)/;7}))/' In here7

Cbt o ¢t Vqs O e
E = and Var =

2

Et 0 Et O'(,be o,

where ¢ = (¢1,- -, ¢p)', Vo = Var(¢y) is a (p X p) matrix, op.=Cov(d, &) is a (p x 1)
vector, and o2= Var(e). Note that a GRCA process reduces to the RCA process by

setting o4 = 0.

Hwang and Basawa (1998) had deriven conditional least squares and weighted
least squares estimators of the mean of the.;random vector. Their asymptotic properties
and limit distributions had also been studied.. Like ARMA models, we rarely see the
discussions about the comparion of two time series from RCA models. Considering two
time series z; and y; which both satisfy formula (3.2), in this chapter, we are interested

in testing the equality of ¢, and ¢,.

3.2  Basic Results
Although the conditional least-squares (LS) and weighted conditional least-squares
(WLS) estimators of parameter in the general RCA model had been derived, the high
order moment condition that assuming the fourth-order moment of the stationary dis-
tribution of the series exists is not easy to be verified. In particular, since the limiting
distributions of these estimators also depend on other nuisance parameters, the LS or

WLS procedure cannot be directly used to test the hypotheses about ¢.
Zhao and Wang (2011) using the empirical likelihood (EL) method to the gen-
eralized RCA model. The major advantage of EL method is its performance of the

13



confidence intervals on ¢. In their simulation results, using EL method, the coverage
probabilities of the 95% confidence intervals were maintained at around 95% through-
out, but LS and WLS method can not reach level 95% when sample size n = 50, 100,
300 and 500. Moreover, they also point out the empircal likelihood method is more

accurate and robust than the normal approximation-based method.

Let ¢o denote the true parameter value for ¢ and Gi(¢) = VY (t — 1) — Y (t —

1)Y'(t — 1)¢. Then the log-empirical likelihood ratio is

I(¢) =2 log(1+ XN'Gi(9)), (33)

t=1

where A € RP satisfies

n

AN =0

Under appropriate conditions (see Zhao and Wang, 2011), I(¢¢) converges to the chi-

square distribution with degrees of freedom p, i.e.

L(d0) 2 x*(p) as n — oo

Then, for 0 < a < 1, an asymptotic 100(1 — a))% confidence region of ¢ is given by

{p e R :1(¢) < Xi(p)}

where x2(p) is the upper a-quantile of the chi-square with degrees of freedom p.

14



3.3 Testing Methods

We consider two time series z; and y; which both are from RCA(p) models:

T =Xt —1)+en

Y= QY (t — 1)+ ey

We are interested in testing if ¢, and ¢, are equivalent. Let I, (¢,) and {,(¢,) be the
log empirical likelihood ratio of x; and y;, respectively. Note that the asymptotic distri-
butions of I,(¢,) and [,(¢,) both are chi-square distributions with degrees of freedom
p. This means that

Lo (0a) - X(p).asn — oo

Ly(&y) 4, X2(p) as n — oo

We recall a random variate of the F-distribution arises as the ratio of two appropri-
ately scaled chi-square variates. Therefore, for testing the null hypothesis Hy : ¢, = ¢,
against the alternative hypothsis H; : ¢, # ¢,, the test statistic F and its asymptotic

distribution is

1, () — F(p,p) as n — o0 (3.4)

We rejects Hy @ l(¢,) = U(¢,) if F < F,(p,p), where F,(p,p) is the upper a-quantile
of the F distribution with parameters (p, p). Since the above foumla includes the ratio
of functions [, and [,, we could not obtain the confidence region using this method

directly.

15



3.4 A simulation study

In the simulation study, the sample size is selected to be 150 through this section.
Since the beta density function can have different shapes depending on the parameter
values, we consider that 7, are iid from the beta(a,b) distribution and (3.1) can be

written as

Ly =1Ly + &y, (3.5)

iid

where 7, ~ Beta(a,b), e, ~ N(0,0.), . = E(ry) and o, = Var(r;). Then, for any a,

b > 0, the stationary parameter is

0=y + 0y
9 ab
P N PG
y a )2(a+b+1)+ ab
a+b’ ‘a+b+1" " (a+b+1)(a+0b)?
_ad’+a*b+a®+ab
" (a+b+1)(a+0b)?
a®+a*b+a®+ ab
a® + 3a2b + 3ab? + b® + a? + 2ab + b?
(a® 4+ a®b+ a® + ab)
(a3 + a?b + a® + ab) + 2a2b + 3ab? + b® + ab + b?

a

:(a—i—b

Since 2a%b+ 3ab* 4+ b> + ab+b? > 0, the stationary condition ( < 1) is always satisfied.

In this simulation, we set the pairs (a,b) as (0.5,2), (2,2) and (2,0.5). The corre-
sponding u, is 0.2, 0.5 and 0.8, respectively. Table 3.1 shows the rejection rates such
that the type I error in our testing result is at level 0.05. The simulation replicants is

1000, and the rejection rates are very close 0.05 in difference parmaters setting.

16



Table 3.1: The EL method for testing the equality of two RCA(1) models at level 0.05

ir 0.2 0.5 0.8
(a,b) (0.5,2) (2,2) (2,0.5)
o2 =1 0.049 0.051 0.057
02 =2 0.052 0.045 0.061
02=5 0.046 0.067 0.068

17



4 Application

In this chapter, we illustrate our testing method by a real data example. The
data sets we use are the monthly sales of FamilyMart, President Chain Store and
Poya in Taiwan. These data were obtained from Taiwan Economic Journal (TEJ),

http://www.finasia.biz/ensite/.

First, we consider the data consists of 145 records for the monthly sales of Fami-
lyMart and President Chain Store ranging from March 2000 to March 2012 presented
in Figure 4.1, which show that the two time series are nonstationary. We take first
differneces for both series in natural log'scale. The sample autocorrelation and partial
autocorrelation functions are also ploted in Figure 4.2 . Since the output in Figure 4.2
shows that the first differnece of the natural logarithms dies down very slowly at the
seasonal level, we also take seasonal differneces with lag 12 for both series and denote

them as Zy; and Zy;, ,t =1, ..., n, respectively.

The ACF and PACF of the two series Z;; and Zs; are shown in Figure 4.3 and
4.4 which are used to identify a suitable model for the two time series. We determine
the ARMA order of Zy; first. At seasonal level, the ACF and PACF of Zy; suggest
that we may consider first-order seasonal MA model with the yearly seasonal period
M A(1)15 or second-order seasonal AR model with the yearly seasonal period AR(2);9
to fit seasonal part. Since the coefficient of M A(1);5 we estimated is very close to 1,

we prefer to ues AR(2);2 model tentatively. At nonseasonal level the PACF cuts off
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at lag 3 and the ACF dies down. We may fit an AR(3) model. Although the partial
autocorelation at lag 9 is significant, it is hard to explain why the sales depend on the
past ninth month.

We combine the seasonal model and nonseasonal model above. This gives the
overall model ARMA(3,0)(2,0)2 for Zy;. Since the ACF and PACF of Z,; have similar
pattern for Z;;, we directly use the same model to fit Z5;. We can see that both residuls
of fited models look like white noise and their ACF and PACF in Figure 4.5 and 4.6
have no spikes in any lag. Hence, we conclude that our models is adequate and the

coefficients we estimated are given in Table 4.5.

We performe our methods to.test-equality of two models. The testing statistic is

X2 = (Bx - By)/V* _1(31 ~ By)

—0.2714 —0.3972 —0.2714 —0.3972
—0.1231 —0.1788 —0.1231 —0.1788
_ vt
— —0.3302 - —0.2086 —0.3302 - —0.2086
—0.8729 —0.8623 —0.8729 —0.8623
—0.4028 —0.4187 —0.4028 —0.4187
! -1
0.1258 0.0149 0.0050 0.0011 —0.0014 —0.0024 0.1258
0.0557 0.0050 0.0160 0.0044  —0.0017 —0.0015 0.0557
— —0.1216 0.0011 0.0044 0.0143 0.0000 —0.0003 —0.1216
—0.0106 —0.0014 —0.0017 0.0000 0.0140 0.0085 —0.0106
0.0159 —0.0024 —0.0015 —0.0003  0.0085 0.0134 0.0159
= 2.602746
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where V* =

0.0071 0.0019 0.0003 —0.0005 —0.0010 0.0078 0.0031 0.0008 —0.0009 —0.0014
0.0019 0.0073 0.0016 —0.0004 —0.0005 0.0031 0.0087 0.0028 —0.0013 —0.0010
0.0003 0.0016 0.0069 0.0002 0.0000 + 0.0008 0.0028 0.0074 —0.0002 —0.0003
—0.0005 —0.0004 0.0002 0.0074 0.0044 —0.0009 —0.0013 —0.0002 0.0066 0.0041
—0.0010 —0.0005 0.0000 0.0044 0.0070 —0.0014 —0.0010 —0.0003 0.0041 0.0064

Since x? = 2.602746 <11.0705 = x2 - (5), we did not reject the equality of two series
X X0.05 )

under our model assumption.

On the other hand, we are also interested in the variation of FamilyMart’s and
Poya’s monthly sales in the same periods that we analyzed above. We directly take log
and differneces in seasonal and nonseasonal lag of Poya’s monthly sales and denote it
by Z3;. The model ARM A(3,0)(2,0);5 is considered as well. We performe bonferroni
method and chi-square method for testing-the equality of paramaters which we esti-
mated to FamilyMart’s and Poya’s monthly sales. The chi-square statistic 11.60805 is
larger than 3 s(5). This means that there are significantly difference between Fam-
ilyMart’s and Poya’s relationships between past sales and future sales. However, the
critical value by bonferroni approach is z1_¢.05/(2¢5) = 2.575829 and z-value for the five
coefficirnt are 2.16, 0.97, 1.49, 1.63, 0.64. There are not any significantly difference

between the parameters in two ARM A(3,0)(2,0);2 models by bonferroni approach.
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Table 4.1: The 145 records for the monthly sales of FamilyMart

1176297
1424020
1496431
1857083
2290404
2357776
2263059
2738463
2408413
3081076
3456286
3258665
3325341
3495592
4145609

1203511
1257277
1630714
1883538
2231388
2346279
2364689
2338039
2414213
2937270
3470185
3212950
3268256
3308275
4107737

1298980
1393381
1603934
1736939
2170777
2525170
2434188
2270752
2416360
2753587
3228930
3632916
3717275
3507977
4523114

1341173
1401237
1625136
1817184
2152775
2551546
2273040
2493470
2502406
2818224
3221119
3679114
3632261
3796799
3898680

1448275
1493782
1699289
1823917
2047819
2356080
2627003
2694421
2555435
3006540
2952750
3434640
4003762
3927056
4269163

1412358
1561164
1743039
1757139
2052770
2331998
2703091
2783042
2551918
3026450
3033530
3541790
3960021
3892256

1377681
1700699
1897031
1842472
2192003
2213939
2646670
2740841
2728505
2921727
3228163
3171044
3704590
4186706

1420655
1742855
1958004
1889945
1972375
2248976
2635123
2692549
2698956
3081081
2899779
3154109
3783590
4203710

1324594
1557325
2022666
2034507
2126223
2186831
2736831
2542157
3029872
3274186
3036564
3184423
3547716
4444292

1370169
1606533
2000199
2115684
2143391
2172723
2640543
2670539
3344389
3159104
2956038
3260491
3566106
4411963

Table 4.2: The 145 records for the monthly sales of President Chain Store

4491115
4551829
5662084
6141493
7106254
6892067
6874298
6906009
8187449
8471859
9279031
8521446
8895036
9540881
10659172

4757277
5006136
5440804
5703570
6868259
7314727
8426333
7772104
7775909
7997619
8521024
8795788
9686463
9406303

4917705
4955858
5478789
5831072
6737832
7363984
9389209
8182944
8573222
8403231
8904654
8813036
9495227
9534967

11675088 9969214

5317334
5402798
5664451
5902463
6369917
6762306

10189078

8531847
8272678
8286532
8407819
8322949

10289154
10243258

5151417
5796654
5795443
5909544
6270463
6739042
8048829
8088966
8087873
8240892
8185085
8602572

10604789

4944261
6071025
6204563
5948880
7005126
6445986
7797608
9657812
9447797
7955810
8678734
8440369
10189891 10040908
10393956 10806588

5114518
6134253
6358800
6123298
6193627
6585437
7920930
9241675
9192908
7937409
7479726
8860415

4688220
5310996
6711169
6549613
6329060
6427478
7751074
8694701
9296334
8451530
7982511
8761825
10105227 9341217
10657507 10811993

4851881 5245460
5542568 5071628
6613039 6059449
6634948 7244164
6378422 6926771
6693389 6636050
7486858 7957398
8637923 8097559
8561123 8253002
8620256 9401185
8173621 9085255
8861694 9267065
9730864 9336890
10941694 10379517
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Table 4.3: The 145 records for the monthly sales of Poya

134572
159908
159049
228079
241005
245033
255527
295752
307825
402671
391630
451212
490038
546607
486194

139882
154044
170817
203493
239018
231372
256112
269613
352557
363113
477309
412836
471239
513171
571026

151795
167596
153637
191163
245058
239919
265460
263292
309917
347163
436935
474039
499398
457284
619879

142373
164856
154914
203540
239038
280470
262181
264167
338401
395244
443974
511685
468760
465630
511171

169890
159300
158808
217475
217248
289460
278458
276487
319048
380332
423617
508552
534932
469685
486322

158217
160481
159861
209811
260849
279621
275864
272641
312168
416281
448455
494973
550774
513494

156978
175428
169925
227167
266234
240378
272014
288919
338692
374001
524183
460700
525182
564373

144326
174350
159645
202533
237624
284378
281022
298156
317888
376488
415991
556776
516074
563342

131484
178467
166328
226091
220658
271904
270523
331839
359587
382949
405746
523646
465039
566643

146331
171466
190791
213989
225923
270610
319695
296026
366206
382992
401773
508097
538118
538218

Table 4.5: The estimation of the parimaters of ARM A(3,0)(2,0)12 model

FamilyMart

parameter ¢z Gz2 b3 Gz12 G224
estimation -0.2714 -0.1231 -0.3302 -0.8729 -0.4028
S.E. 0.0842 0.0854 0.0829 0.0858  0.0837
z-value 3.223278 1.4415  3.9831 10.1737 4.8124
variance of residuals estimated as 0.001545

President Chain stores

parameter ¢y dy2 dy3 Dy12 Dy24
estimation -0.3972 -0.1788 -0.2086 -0.8623 -0.4187
S.E. 0.0882 0.0931 0.0857 0.0814  0.0800
z-value 4.5034 1.9205 2.4341 10.5934 5.2338
varance of residuals estimated as 0.002339

Poya

parameter  ¢.1 ¢22 ¢23 $212 $224
estimation -0.5362 -0.2480 -0.1504 -0.6702 -0.3224
S.E. 0.0889 0.0969 0.0874 0.0904 0.0927
z-value 6.0315  2.5593  1.7208  7.4137  3.4779

variance of residuals estimated as 0.004062
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FamilyMart’s and President Chain Store’s Sales
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Figure 4.1: Monthly Sales of FamilyMart, President Chain stores and Poya
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Figure 4.2: the ACF of the first differneces of the natural logarithms.
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Figure 4.3: the ACF of both series took log and two difference (lag 1 and lag 12)
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Partial ACF
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Figure 4.4: the PACF
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Figure 4.5: the ACF and PACE:of residuals of the ARM A(3,0)(2,0)12 model of Zy;
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Figure 4.6: the ACF and PACF of residuals of the ARM A(3,0)(2,0)12 model of Zy;.
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Figure 4.7: the ACF and PACF of residuals of the ARM A(3,0)(2,0)12 model fitting Zs;.
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5 Conclusions

In this thesis, we study and review the literature on estimation and inference for
ARMA models based on MLE method. For comparing time series, we proposed an
approach to test the equality of the parameters estimated from two time series. We
also presente the Bonferroni approach for multiple testing. In addition to the classical
ARMA based methods to compare two time series, we considered the RCA models
as well. We performe the empirical likelihood estimation for both RCA models, and
then test equality of their means of random coefficients by the F distribution. We
also considere beta distribution for the random coefficient of the RCA(1) model and
show that the stationary condition is‘always-satisfied. For testing for ARMA models or
RCA models, our simulations verify the testing results can attain a desired level mostly.
Finally, we practice our methods for real data. The data consists of three companies’
monthly sales, namely, FamilyMart, President Chain Store and Poya. In our analysis,
we conclude that there are significantly difference between FamilyMart’s and Poya’s

sales behavior.

29



Bibliography
[1] H. Abdi. Bonferroni and sidak corrections for multiple comparisons. Encyclopedia

of Measurement and Statistics, 1:103-107, 2007.

[2] N.A. Abdullah, I. Mohamed, S. Peiris, and N.A. Azizan. A new iterative pro-
cedure for estimation of rca parameters based on estimating functions. Applied

Mathematical Sciences, 5(4):193-202, 2011.

[3] C. Alberola-Lépez and M. Martin-Ferndandez. A simple test of equality of time

series. Signal processing, 83(6):1343-1348,.2003.

[4] A. Aue, L. Horvéth, and J. Steinebach. Estimation in random coefficient autore-

gressive models. Journal of Time Series Analysis, 27(1):61-76, 2006.

[5] P.J. Brockwell and R.A. Davis. Time series: theory and methods. springer Verlag,

(2009).

[6] J. Durbin. Estimation of parameters in time-series regression models. Journal of

the Royal Statistical Society. Series B (Methodological), 22:139-153, 1960.
[7] E.P. George. Time series analysis: Forecasting and control. Holden-D., (1970).

[8] S.Y. Hwang and 1.V. Basawa. Parameter estimation for generalized random co-
efficient autoregressive processes. Journal of statistical planning and inference,

68(2):323-337, 1998,

30



[9] D.F. Nicholls. The box-jenkins approach to random coefficient autoregressive mod-

elling. Journal of Applied Probability, pages 231-240, 1986.

[10] D.F. Nicholls and B.G. Quinn. Random coefficient autoregressive models: an in-

troduction. Springer.

[11] R.H. Shumway and D.S. Stoffer. Time series analysis and its applications. Springer

Verlag, (2000).

[12] D. Wang. Frequentist and bayesian analysis of random coefficient autoregressive

models. North Carolina State University, Ph.D, 2003.

[13] Z.W. Zhao and D.H. Wang. Statistical-inference for generalized random coefficient

autoregressive model. Mathematical and Computer Modelling, 2011.

31



	封面1.pdf
	中文摘要.pdf
	英文摘要.pdf
	致謝.pdf
	paper.pdf

