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Abstract

Proportion of conformance is defined as the proportion of products with quality
characteristic inside the specification limits. The construction of confidence interval
for proportion of conformance is an important problem in industrial applications,
especially when the number of conforming wunits follows a binomial distribution. In
this study, we propose an approach to improve the existing confidence intervals for
proportion of conformance. We establish a procedure to calculate the lower bound for
the coverage probability-of proposed the intervals. A simulation study is provided to

compare the performance of different intervals.
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1. Introduction

Proportion of conformance is defined as the proportion of products with quality
characteristic inside the specification limits. The specifications are set by engineering
requirements or by customers. The construction of confidence interval for proportion
of conformance is an important problem in industrial applications in various sectors,
including manufacturing and pharmaceuticals. Improper construction of the
confidence interval may lead to serious financial losses for the manufacturers.

Wang and Lam (1996) proposed methods for constructing confidence limits for
proportion of conformance when the quality characteristic follows a normal
distribution. In real application,-it is common that the quality characteristic follows a
discrete distribution, such as a binomial distribution. In this study, we focus on
exploring the coverage probability calculation for confidence intervals of proportion
of conformance for the binomial distribution.

To inspect the defective rate of a product, we usually classify each unit inspected as
either conforming or nonconforming to the specifications on that quality characteristic.
Suppose that the production process is operating in a stable manner, such that the
probability that any unit will conform to specifications is 8, and that successive units
produced are independent. Then each unit produced is a realization of a Bernoulli
random variable with parameter 8. If a random sample of m units of product is
selected and X is the number of conforming units, then X can be assumed to follow

a binomial distribution B(m, 0), that is,

(X =x)=(T)0*(1-0)"*, x=0,1,..,m



Suppose that we have a lower specification limit I, and an upper specification limit
u. Let r denote the proportion of conformance which is defined to be the proportion
that X within the specification limits | and u, that is

r=PR(I<X<u) (1)

=1-pi—Pu
where p; =R (X <) and p, =B X = w).

When X is a normal distribution, estimators for p; and p, have been
investigated in the literature (Wheeler 1970, Owen and Hua 1977, Chou and Owen
1984, Wang and Lam 1996). Related studies for conformance proportion are referred
to Kotz and Johnson (1993), Kushler and Hurley (1992), Pearn, Kotz and Johnson
(1992), and Wang and Lam (1996).

For the discrete distribution case, the construction of confidence interval for r is
usually. to construct a confidence interval (Le(X),Ue(X)) of @ first, and then
replace the @ in (1) by the lower confidence limit Ly(X) and upper confidence
limit Uy (X) to obtain a confidence interval for r.

Although this method is an intuitive way to construct a confidence interval for r,
the performance of the intervals depends on the confidence interval (Le (X), Ug(X)).
In this study, we evaluate the performance of confidence interval for r based on
different confidence intervals for 6 for the binomial distribution in terms of their
coverage probability. The coverage probability of a confidence interval is defined as
the probability that the confidence interval (Lg(X),Ug(X)) covers the true parameter

0.



In addition, it is worth noting that for the discrete distribution, the coverage
probability of a confidence interval of r is a variable function of 6. In this case, the
minimum coverage probability of confidence interval of r is unknown. To estimate
the minimum coverage probability of confidence interval of r, we establish a lower
bound for the coverage probability.

The rest of the thesis is organized as follows. Section 2 introduces the existing
methods for constructing the upper limits or the lower limit of the proportion of
conformance. Section 3 describes the main result. In Section 4, simulation studies are
conducted to show the comparison results. In Section 5, an example of deriving the
coverage probabilities. of .confidence intervals for proportion of conformance is
provided. Finally, in Section 6, we give a conclusion about the confidence interval

for proportion of conformance.



2. Preliminary

Many applications require inferences concerning the probability that the number
of conforming units in a future sample is less or equal to (or greater than) some
specified number J. Those intervals were described previously in Chandra and Hahn
(1981). If the proportion of conforming units in.the population are known to equal to
0, the probability p;g that X, the number of conforming units in a sample of size m,
will be less than or equal to a pre-specified number J is computed from the binomial
cumulative distribution function-as

pr=RX<D=3_(T)e@a-em" (2)
Usually, 8 is unknown and only sample data on the number of conforming units in
the previous sample are available. Since p;; IS a decreasing function of 6, the
following two-steps procedure described previously in Chandra and Hahn (1981) is
used to find a two-sided confidence interval for p;g:

(i) Obtain a two-sided confidence interval (Lg(X), Ug (X)) for 6.
(ii) Substitute these values for 6 into (2) to obtain the desired two-sided confidence

interval on pg.

This two-steps method are mainly based on a confidence interval of 6, and the
performance of confidence interval of the conformance proportion depends on the
confidence interval of 6. We introduce several confidence intervals for the binomial

proportion 6 in the literature (Brown, Cai and DasGupta 2002, Wang 2007).
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Four intervals for 6 are introduced below. Let k be the upper o/2 cutoff point

of the standard normal distribution.

1. The exact binomial interval. The 1 — a exact interval has the form

cx) = (1 +

(m =X+ DF(1 -5 ,2m — 2X + 2,2X) 1
)
X

m — X 1
1+ )71

X+ DF(1=7,2X 4 2,2m — 2X)

where. F(r,v,w) denotes the 100rth percentile of the F distribution with v

and w degrees of freedom.

2. The Wald interval. Let p = % and g = 1 — p. The approximate interval is

1 1 il 1
Clun, () = (P~ k(PDZMZ,  p+k(pa)m 2).

1 = p. The 1-a Wilson interval has the form

1 1
o kmz _ k*1 _ km2 k%1
Clys (X) = p—m(p(ﬁ'm)zl pLgs (pQ+—m)2 :

4. The Agresti-Coull interval. The 1-ac Agresti-Coull interval is
- bk . 1 1
Clac X) = (p —k(pg)zm 2,  p+k(pg)zm )
Based on the above confidence intervals for 6 and the two-steps method, a lower
limit or an upper limit for r can be constructed. Since the existing two-steps method

for estimating r is basically to construct a lower limit or an upper limit for r , there

iIs not much investigation established to construct a confidence interval for r.
5



Although we can simply apply a method similar to the two-steps method to construct
a confidence interval (L.(X),U,.(X)) of r. However, the coverage probability of the
confidence interval constructed by the two-steps method is much lower than the
nominal level.

In the next section, we propose a modified confidence interval for r based on the

two-step method. The 2d confidence intervals le a more satisfactory result.



3. The main results

In this section, we propose a procedure to construct a confidence interval
(L,(X),U.(X)) for r, which mainly uses the result from Wang (2007) and the
two-steps procedure from Chandra and Hahn (1981).

Procedure 1: constructing a confidence interval for r

Step 1. Select a level 1 — a confidence interval (Lg (X), Ug (X)) for 6.
Step 2. Calculate 1/(1+M), where M=[(™)(m = u)/(‘?)l]l/(u_l“).
Step 3. Let g(l, u)=1/(1+M).

Set the upper bound U, (X)

B { Peaum( S X Suw), g(l,u) € (Ly(X), Ug(X))
[ max[PLe(X)(l <X su),PyynlsX < u)],g(l, u) € (Lg(X),Upg(X)

and the lower bound
L.(X) = min[PLe(X)(l <X <u),PyyxlsX< w)].
The interval (L, (X),U.(X)) isthe level 1 — a confidence interval for r.

The performance of the confidence interval (L, (X),U.(X)) for r depends on
the confidence interval (Lg(X),Ug(X)). The following theorem shows that the
coverage probability of the proposed interval (L.(X),U.(X)) for a 6 has a lower
bound, which is the coverage probability of (Lg(X),Ug(X)) for a 6. The
performance of the two intervals of their coverage probabilities is discussed in

simulation study, which is consistent to the result of the following theorem.
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Theorem 1.

Let X follow a binomial distribution B(m, 8), and assume that a confidence interval
(Ly(X),Ug (X)) for 6 has a coverage probability w at 8 = 6,. Then the coverage
probability of (Ly X),U, (X)) obtained by the procedure 1 based on the confidence
interval (L, (X), Uy (X)) has a lower bound wat 8 = 6.

Proof. Assume that a confidence interval for 8 based on X is (Lg(X), Ug(X)).

For a 0, the proportion of conformance P,(I < X <u) is

u

D (7)ea—em 3)

i=l

and the lower and upper specification limits are | and u, respectively.
There are three cases for | and u.
(i) 1=0, u>0
(i) 1I<m, u=m
(iii)1>0, u<m
We will show that this theorem is valid for these three cases.
(i) 1=0,u>0
In this case, by Lemma 1 in Wang (2007), (3) is a decreasing function of 6,
see Figure 1. Let 6% denote the true value of 6. If 6* € (Ly(X), Uy (X)),
then we intend to show that Pg-(X < u) € (L.(X), U, (X)).

Since Py (X < u) is adecreasing function of 6,
8



we have Py X Su) <Pep:(X <u) <P xy(X<u) ,resulting
L. (X) < Py (X < u) < U, (X). Therefore we obtain

Pg-(X < u) € (LX), U, (X)).
Thus we may have over w probability of covering the unknown r with our

interval estimator.

(i) I<m, u=m

In this case, by Lemma 1 in Wang (2007), (3) is an increasing function of 6,
see Figure 2. Let 0% denote the true value of 6. If 6* € (Ly(X), Uy (X)),
then we intend to show that Pg-(X =1) € (L.(X),U.(X)). Since
P,(X > 1) is an increasing function of 8,we have
PLooyX =D <Pg:(X=1) <Py, x)(X=1),
resulting L, (X) < Pg«(X = 1) < U, (X).Therefore we obtain
Po-(X = 1) € (L.(X),U,.(X)).
Thus we may have over w probability of covering the unknown r with

our interval estimator.

(>1i)1>0, u<m

In this case, by Lemma 1 in Wang (2007), (3) is an unimodal function of ©.

We consider two situations.

The first one is the situation that g(l,u) € (Lg(X),Ug(X)), see Figure 3.



And the other one is the situation that g(l,u) & (Lg(X),Ug(X)). First,
assume that g(l,u) lies in (Lg(X), Ug(X)). Since the function (3) reach its
maximum value at 6= g(I, u), we use g(I, u) to construct the upper bound
for the confidence interval.

Let ©* denote the true value of 6. If 8* € (Lg(X), Uy (X)), then we intend
to show that Pg-(l < X <u) € (L.(X),U.(X)). Since

Po-(I < X < u) < Py (I < X' < u)and

min[P,, xy{ X <), Py, (S X <w)] <Pe-(I <X <w)

we have L.(X) < Py+(l < X < u) < U, (X). Therefore we obtain
Po-(l < X <u) e (L.(X),U.(X)).

The other situation is g(l, w)& (Lg(X),Ug (X)), so we do not use g(l, u) to
construct the upper bound for the confidence interval. It is similar to the

first two cases.

Thus we may have over w chance of covering the unknown r with our interval
estimator. That is, the coverage probability of above confidence interval for r has

a lower bound w. The proof is complete.

10



4. Simulation results

In this section, we calculate the coverage probability of (Lg(X),Ugs(X)) and
(L,(X),U.(X)) for a 0, respectively. Then we compare the coverage probability of
(L. (X),U.(X)) and its corresponding interval (Lg(X),Uq(X)) of 8. The coverage
probabilities of the level 0.95 intervals with respect to different parameters when the
true parameter 6 is 0.5 are shown in Tables 1 and 2. Table 1 lists the coverage
probability of several intervals with { =0 and w = 10 corresponding to different n
when the true 6 Is 0.5, and m is 30. From Wang (2007), the minimum coverage
probability of (Lg(X), Uy (X)) can be exactly calculated. The coverage probability of
(L, (X), r(X)) is approximated-by simulation.

Table 1. Coverage probabilities of proportion intervals and conformance intervals

n Exact 8 Exactr Wald 8 Waldr Wilson & Wilsont AC 8 ACr

5 1.000 1.000 0.930 0.930 0.930 0.930 0.930 0.930
20 0.961 0.961 0.941 0.941 0.961 0.961 0.961 0.961
30 0.966 0.966 0.922 0.922 0.947 0.947 0.947 0.947
50 0.963 0.963 0.953 0.953 0.953 ~ 0.953 0.953 0.953
70 0974 0.974 0.946 0.946 0.946  0.946 0.946 0.946
90 0.967 0.967 0.937 0.937 0.937 0.937 0.937 0.937

100 0.959 0.959 0.945 0.945 0.959 0.959 0.959 0.959

Table 2. Coverage probabilities of proportion intervals and conformance intervals

n Exact 8 Exactr Wald 8 Waldr Wilson 8 Wilsonr AC 8 ACr

5 1.000 1.000 0.933 0.933 0933 0.971 0.933 0.971
20 0.964 0.980 0.931 0.946 0.964 0.980 0.964 0.980
30 0.963 0.986 0.937 0.960 0.963 0.986 0.963 0.986
50 0.964 0.981 0.933 0.967 0.950 0.967 0.950 0.967
70 0.957 0.980 0.936 0.959 0.936  0.959 0.936 0.959
90 0.970 0.982 0.941 0.966 0.957 0.982 0.957 0.982

100 0.951 0.974 0.935 0.974 0951 0.974 0.951 0.974
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Table 1 lists the coverage probabilities of the confidence intervals for r are equal
to the confidence intervals for 6 because we only consider an upper confidence
bound or a lower confidence bound. Table 2 lists the coverage probabilities of several
intervals with [ =5 and u = 20 corresponding to different n when the true 6 is
0.5, and m is 30. From Tables 1 and 2, the coverage probabilities of the exact intervals
for the proportion of conformance are higher than or equal to the other intervals
because the exact intervals are substantially longer. The Wald intervals are derived by
the large-sample approximation theory. And the coverage probabilities of the Wald
intervals for binomial proportion are lower than the other intervals, which may be due
to the fluctuation of the simulation and small sample size. It is well known that the
Wilson interval and the Agresti-Coull interval are better than the Wald interval (see
Agresti and Coull 1988; Brown, Cali, and DasGupta 2001). But even if we use the
Wilson interval and the Agresti-Coull interval to construct the confidence intervals for
proportion of conformance, their coverage probabilities still cannot be very close to
the nominal level. Because all the simulation results show that the coverage
probabilities of the confidence intervals for proportion of conformance are higher than
or equal to the confidence intervals for a binomial proportion, which are consistent to
the result of Theorem 1. Therefore, the coverage probabilities of corresponding
intervals for proportion of conformance can approximate the level 0.95. In addition,
The simulation results show that the coverage probability of (L.(X),U,.(X)) is very
close to that of (Lg(X),Ug(X)) when the sample size is large, resulting that the lower
bound provided in Theorem 1 can be used to approximate the coverage probability of
(L.(X),U,(X)).

The simulation for the cases when 6 is not equal to 0.5 and m is 30 is given in

Tables 4-19.

12



5. Real Data Example

We illustrate the proposed methods by a real data example about Department
Required Test. The data from the ROC College Entrance Examination Center in 2011

are available on the website http://www.ceec.edu.tw/. We intend to analyze the

scores of the subject, Scientific Mathematics (abbreviated Sci-Math), which is the
most important subject in the Department Required Test. We obtain a random sample
of 1000 scores from about 37,000 high school students who attained the Department
Required Test. The examination time is 80 minutes and the range of test score is from
0 to 100 for this subject.

If a student has score greater than or equal to 60, we regard this student passing
the test. Therefore, we are interested in estimating the probability that the count of
students passing the test is between 500 and 700 among 1000 students. In this case,
we assume that the count of students passing the test is a random variable, which
follows a binomial distribution B(1000,0), where the true 0 is 0.3891. We are
interested in investigating the probability r = P;(500 < X < 700). By following the
procedure provided in Sections 2 and 3, we first calculate the level 0.95 confidence
intervals for 6 based on the four intervals, the exact binomial interval, Wald interval,
Wilson interval, and Agresti-Coull interval. Then we follow Procedure 1 to construct
the confidence interval for r. The performances of different confidence intervals are

presented in Table 3.
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Table 3. Coverage probabilities for the proportion of conformance intervals

n Exact Wald Wilson AC
20 0.967 0.932 0.967 0.967
30 0.975 0.915 0.949 0.949
50 0.958 0.936 0.958 0.958
70 0.966 0.954 0.954 0.954
90 0.966 0.949 0.957 0.957

100 0.960 0.947 0.947 0.947

300 0.953 0.947 0.947 0.947

600 0.952 0.948 0.944 0.944

It shows_ that the confidence interval constructed by Procedure 1 can lead to a
satisfactory result and the coverage probabilities approximate the nominal level when

the sample size is large.

14



6. Conclusions

We purpose a method to improve the existing confidence intervals for the
proportion of conformance. Four confidence intervals, the exact binomial interval,
Wald interval, Wilson interval, and Agresti-Coull interval, are discussed.

In the simulation studies, all the simulation results show that the coverage
probabilities of the proposed intervals for the proportion of conformance are higher
than or equal to the corresponding intervals for the binomial proportion, which is
consistent to the result of Theorem 1. The coverage probabilities of the Wald intervals
for the binomial proportion are lower than the other intervals, but the coverage
probabilities of corresponding intervals for proportion of conformance can
approximate the nominal level. With the results in this paper, the procedure can be

directly used to construct the confidence interval for proportion of conformance.
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Figure 2. For a fixed | with O<l<m, Py(l < X) is an increasing function of 6.
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Tables

Table 4. Coverage probabilities with =0, u=10 when the true 6 is 0.4

n Exact 6 Exactr Wald & Waldr Wilson 6 Wilsonr AC 6 ACr
5 0.987 0.987 0.825 0.825 0.987 0.987 0.987 0.987
20 0.977 0.977 0.942 0.942 0.963 0.963 0.963 0.963
30 0.972 0.972 0.921 0.921 0.921 0.921 0.921 0.921
50 0.977 0.977 0.940 0.940 0.959 0.959 0.959 0.959
70 0.956 0.956 0.934 0.934 0.956 0.956 0.956 0.956
90 0.974 0.974 0.951 0.951 0.951 0.951 0.951 0.951
100 0.945 0.945 0.932 0.932 0.945  0.945 0.945 0.945
Table 5. Coverage probabilities with =0, u=10 when the true 6 is 0.3
n Exact 6 Exactr -Wald-6 Waldr Wilson 6 Wilsonr AC 68 ACr
5 0998 0.998 0.787 0.787 0.966 0.966 0.966 0.966
20 0.978 0.978 0.953 0.953 0.978 0.978 0.978 0.978
30 0.970 0.970 0.910 0.910 0.935 0.935 0.956 0.956
50 0.978 0.978 0.943 0.943 0.965 0.965 0.965 0.965
70  0.957 0.957 0.936 0.936 0.945  0.945 0.945 0.945
90 0.960 0.960 0.945 0.945 0.948 . 0.948 0.948 0.948
100 0.961 0.961 0.950 0.950 0.950 0.950 0.950 0.950
Table 6. Coverage probabilities with 1=0, u=10when the true 6 is 0.2
n Exact & Exactr Wald 6 Waldr Wilson 8 Wilsonr AC 6 ACr
5 0992 0.992 0.688 0.688 0.949 0.949 0.949 0.949
20 0.975 0.975 0.928 0.928 0.948 0.948 0.948 0.948
30 0.978 0.978 0.952 0.952 0.956 0.956 0.956 0.956
50 0.975 0.975 0.946 0.946 0.955 0.955 0.955 0.955
70 0.965 0.965 0.950 0.950 0.948 0.948 0.948 0.948
90 0.963 0.963 0.931 0.931 0.957 0.957 0.957 0.957
100 0.961 0.961 0.946 0.946 0.948 0.948 0.948 0.948
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Table 7. Coverage probabilities with =0, u=10 when the true 6 is 0.1

n Exact 9 Exactr Wald 8 Waldr Wilson 8 Wilsonr AC 8 ACr

5 0991 0.991 0.408 0.408 0.920 0.920 0.920 0.920
20 0.994 0.994 0.868 0.868 0.965 0.965 0.965 0.965
30 0.995 0.995 0.811 0.811 0.981 0.981 0.981 0.981
50 0.986 0.986 0.899 0.899 0.968 0.968 0.968 0.968
70 0.957 0.957 0.923 0.923 0.940 0.940 0.973 0.973
90 0.972 0.972 0.938 0.938 0.960 0.960 0.960 0.960

100 0.958 0.958 0.930 0.930 0.937 0.937 0.977 0.977

Table 8. Coverage probabilities with =0, u=10 when the true 6 is 0.05

n Exact @ Exactr Wald 8 Waldr Wilson @ Wilsonr AC 8 ACr

5 0974 0.974 0.230 0.230 0974 0.974 0.974 0.974
20 0976 0.976 0.622 0.622 0.916 0.916 0.976 0.976
30 0.992 0.992 0.783 0.783 0.948 0.948 0.992 0.992
50 0.990 0.990 0.910 0.910 0.956 0.956 0.956  0.956
70 0974 0.974 0.873 0.873 0.974 0.974 0.974 0.974
90 0.975 0.975 0.934 0.934 0.949 0.949 0.949 0.949

100 0.987  0.987 0.887 0.887 0.968 0.968 0.968 0.968

Table 9. Coverage probabilities with =5, u=20 when the true 6 is 0.4

n Exact 8 Exactr Wald 8 Waldr Wilson 8 Wilsonr AC 8 ACr

5 0988 0.988 0.823 0.823 0.988 0.988 0.988 0.988
20 0.964 0.973 0.933 0.933 0.964 0.964 0.964 0.964
30 0.966 0.974 0.940 0.940 0.966 0.966 0.966 0.966
50 0.965 0.980 0.949 0.960 0.965 0.976 0.965 0.976
70 0.973 0.982 0.947 0.966 0.960 0.979 0.960 0.979
90 0.973 0.978 0.953 0.965 0.953 0.965 0.953 0.965

100 0.957 0.977 0.939 0.954 0.951 0.972 0.951 0.972
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Table 10. Coverage probabilities with 1=5, u=20 when the true 6 is 0.3

n Exact 9 Exactr Wald 8 Waldr Wilson 8 Wilsonr AC 8 ACr

5 0.999 1.000 0.804 0.829 0.974 0.999 0.974
20 0971 0.989 0.950 0.968 0.944 0.989 0.944
30 0.983 0.987 0.927 0.947 0.967 0.987 0.967
50 0.981 0.992 0.923 0.934 0.960 0.979 0.973
70 0974 0.984 0.960 0.970 0.958 0.968 0.958
90 0.959 0.961 0.947 0.949 0.959 0.961 0.959

100 0.969 0.971 0.960 0.962 0.960 0.962 0.960

1.000
0.989
0.987
0.992
0.968
0.961
0.962

Table 11. Coverage probabilities with [=5, u=20 when the true 8 is 0.2

n Exact @ Exactr Wald 8 Waldr Wilson @ Wilsonr AC 8 ACr

5 0.997 1.000 0.693 0.696 0.936 1.000 0.936
20 0.967 0.983 0.913 0.929 0.943 0.983 0.943
30 0975 0.979 0.882 0.885 0.958 0.961 0.958
50 0971 0971 0.960 0.960 0971 0971 0.971
70 ©0.980 0.980 0.940 0.940 0.966 0.966 0.966
90 0.961 0.961 0.941 0.941 0.955 0.955 0.955

100 0.963 0.963 0.926 0.926 0.943 0.943 0.943

1.000
0.983
0.961
0.971
0.966
0:956
0.943

Table 12. Coverage probabilities with 1=5, u=20 when the true 8 is 0.1

n Exact 8 Exactr Wald 8 Waldr Wilson 8 Wilsonr AC 8 ACr

5 0.989 1.000 0.408 0.419 0.921 1.000 0.921
20 0.983 0.983 0.863 0.863 0.955 0.955 0.955
30 0.976 0.976 0.791 0.791 0.976 0.976 0.976
50 0.976 0.976 0.875 0.875 0.976 0.976 0.976
70 0.976 0.976 0.916 0.916 0.944 0.944 0.944
90 0.968 0.968 0.934 0.934 0.955 0.955 0.955

100 0.978 0.978 0.935 0.935 0.964 0.964 0.964

1.000
0.955
0.976
0.976
0.944
0.955
0.964
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Table 13. Coverage probabilities with 1=5, u=20 when the true 6 is 0.05

n Exact 9 Exactr Wald 8 Waldr Wilson 8 Wilsonr AC 8 ACr

5 0.999 1.000 0.220 0.221 0.982 0.983 0.982 0.983
20 0.982 0.982 0.660 0.660 0.982 0.982 0.982 0.982
30 0.980 0.980 0.818 0.818 0.920 0.920 0.980 0.980
50 0.983 0.983 0.936 0.936 0941 0.941 0.983 0.983
70 0.963 0.963 0.885 0.885 0.945 0.945 0.971 0971
90 0971 0971 0.828 0.828 0.940 0.940 0.971 0971

100 0.979 0.979 0.904 0.904 0.950 0.950 0.950 0.950

Table 14. Coverage probabilities with 1=15, u=25 when the true 6 is 0.5

n Exact @ Exactr Wald 8 Waldr Wilson @ Wilsonr AC 8 ACr

5 1.000 1.000 0.948 0.948 0948 0.971 0.948 0.971
20 0.955 0.973 0.925 0.973 0.955 0.973 0.955 0.973
30 0.940 0.967 0.914 0.941 0.940 0.953 0.940 0.953
50  0.957 0.958 0.923 0.924 0.942 0.942 0.942 0.942
70 ©0.966 0.966 0.952 0.952 0.952 0.952 0.952 0.952
90 0.960 0.960 0.934 0.934 0.949 0.949 0.949 0.949

100 0.962 0.962 0.944 0.944 0.962 0.962 0.962 0.962

Table 15. Coverage probabilities with 1=15, u=25 when the true 6 is 0.4

n Exact 8 Exactr Wald 8 Waldr Wilson 8 Wilsonr AC 8 ACr

5 0.989 1.000 0.845 0.918 0.989 1.000 0.989 1.000
20 0.960 0.961 0.937 0.944 0.960 0.960 0.960 0.960
30 0.960 0.960 0.941 0.941 0.960 0.960 0.960 0.960
50 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956
70 0.961 0.961 0.947 0.947 0.947 0.947 0.947 0.947
90 0.973 0.973 0.950 0.950 0.950 0.950 0.950 0.950

100 0.963 0.963 0.954 0.954 0.963 0.963 0.963 0.963
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Table 16. Coverage probabilities with 1=15, u=25 when the true 6 is 0.3

n Exact 9 Exactr Wald 8 Waldr Wilson 8 Wilsonr AC 8 ACr

5 0.999 1.000 0.797 0.830 0.966  1.000 0.966 1.000
20 0978 0.978 0.955 0.955 0.955 0.955 0.978 0.978
30 0.976 0.976 0.912 0.912 0.954 0.954 0.954 0.954
50 0.967 0.967 0.944 0.944 0951 0.951 0.951 0.951
70 0.967 0.967 0.948 0.948 0951 0.951 0.951 0.951
90 0.965 0.965 0.952 0.952 0.949 0.949 0.949 0.949

100 0.963 0.963 0.946 0.946 0.952 0.952 0.952 0.952

Table 17. Coverage probabilities with 1=15, u=25 when the true 8 is 0.2

n Exact @ Exactr Wald 8 Waldr Wilson @ Wilsonr AC 8 ACr

5 0991 1.000 0.662 0.671 0.940 0.940 0.940 0.949
20 0.979 0.979 0.929 0.929 0.957 0.957 0.957 0.957
30 0.983 0.983 0.888 0.888 0.953  0.953 0.953 0.953
50 0972 0.972 0.944 0.944 0972 0.972 0.972° 0.972
70 £ 0.962 0.962 0.933 0.933 0.962 0.962 0.962 0.962
90 0.982 0.982 0.945 0.945 0.968 0.968 0.968 0.968

100 0.972° 0.972 0.948 0.948 0:9595=20:059 0.959 0.959

Table 18. Coverage probabilities with 1=15, u=25 when the true 8 is 0.1

n Exact 8 Exactr Wald 8 Waldr Wilson 8 Wilsonr AC 8 ACr

5 099 0.996 0.426 0.430 0.914 0.914 0.914 0.914
20 0.986 0.986 0.887 0.887 0.953 0.953 0.953 0.953
30 0.992 0.992 0.789 0.789 0.979 0.979 0.979 0.979
50 0.985 0.985 0.888 0.888 0.968 0.968 0.968 0.968
70 0.956 0.956 0.932 0.932 0.956 0.956 0.967 0.967
90 0.975 0.975 0.952 0.952 0.949 0.949 0.975 0.975

100 0.979 0.979 0.953 0.953 0.969 0.969 0.969 0.969
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Table 19. Coverage probabilities with 1=15, u=25 when the true 6 is 0.05

n Exact 8 Exactr Wald 8 Waldr Wilson 8 Wilsonr AC 6 ACr
5 0978 0.978 0.226 0.228 0.978 0.978 0.978 0.978
20 0.981 0.981 0.637 0.637 0.927 0.927 0.981 0.981
30 0.980 0.980 0.765 0.765 0.936 0.936 0.980 0.980
50 0.988 0.988 0.920 0.920 0.967 0.967 0.967 0.967
70 0.982 0.982 0.877 0.877 0.982 0.982 0.982 0.982
90 0.970 0.970 0.950 0.950 0.949 0.949 0.949 0.949
100 0.986 0.986 0.886 0.886 0.970 0.970 0.970 0.970
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