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I 

 

摘要 

 在工業上，良率為生產產品之品質特性落在規格界限內的比例。

當我們假設良品的個數服從二項分配時，那麼建造良率的信賴區間是

一個在工業應用中很重要的過程。在這項研究中，我們提出了一個方

法，以改善現有良率之信賴區間估計。我們設法建立了一個程序來計

算所提出的區間之覆蓋率下界。而模擬研究則提供了在不同的區間下

去比較各種區間的優點與缺點。 
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Abstract 

Proportion of conformance is defined as the proportion of products with quality 

characteristic inside the specification limits. The construction of confidence interval 

for proportion of conformance is an important problem in industrial applications, 

especially when the number of conforming units follows a binomial distribution. In 

this study, we propose an approach to improve the existing confidence intervals for 

proportion of conformance. We establish a procedure to calculate the lower bound for 

the coverage probability of proposed the intervals. A simulation study is provided to 

compare the performance of different intervals. 
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1. Introduction 

Proportion of conformance is defined as the proportion of products with quality 

characteristic inside the specification limits. The specifications are set by engineering 

requirements or by customers. The construction of confidence interval for proportion 

of conformance is an important problem in industrial applications in various sectors, 

including manufacturing and pharmaceuticals. Improper construction of the 

confidence interval may lead to serious financial losses for the manufacturers. 

Wang and Lam (1996) proposed methods for constructing confidence limits for 

proportion of conformance when the quality characteristic follows a normal 

distribution. In real application, it is common that the quality characteristic follows a 

discrete distribution, such as a binomial distribution. In this study, we focus on 

exploring the coverage probability calculation for confidence intervals of proportion 

of conformance for the binomial distribution.  

To inspect the defective rate of a product, we usually classify each unit inspected as 

either conforming or nonconforming to the specifications on that quality characteristic.  

Suppose that the production process is operating in a stable manner, such that the 

probability that any unit will conform to specifications is 𝜃, and that successive units 

produced are independent. Then each unit produced is a realization of a Bernoulli 

random variable with parameter  𝜃. If a random sample of m units of product is 

selected and 𝑋 is the number of conforming units, then 𝑋 can be assumed to follow 

a binomial distribution B m,θ , that is, 

 Pθ 𝑋 = 𝑥 =  m
x
 θx 1 − θ m−x ,   x = 0,1,… , m 
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Suppose that we have a lower specification limit l, and an upper specification limit 

u. Let r denote the proportion of conformance which is defined to be the proportion 

that 𝑋 within the specification limits l and u, that is  

r = Pθ 𝑙 ≤ 𝑋 ≤ 𝑢                                                                                                            (1)                                                 

    = 1 − p𝑙 − p𝑢 , 

where p𝑙 = Pθ 𝑋 ≤ 𝑙   and p𝑢 = Pθ 𝑋 ≥ 𝑢 . 

When 𝑋  is a normal distribution, estimators for p𝑙  and p𝑢  have been 

investigated in the literature (Wheeler 1970, Owen and Hua 1977, Chou and Owen 

1984, Wang and Lam 1996). Related studies for conformance proportion are referred 

to Kotz and Johnson (1993), Kushler and Hurley (1992), Pearn, Kotz and Johnson 

(1992), and Wang and Lam (1996). 

For the discrete distribution case, the construction of confidence interval for r is 

usually to construct a confidence interval  Lθ X , Uθ X    of 𝜃  first, and then 

replace the 𝜃 in (1) by the lower confidence limit Lθ X   and upper confidence 

limit Uθ X  to obtain a confidence interval for r.  

Although this method is an intuitive way to construct a confidence interval for r, 

the performance of the intervals depends on the confidence interval  Lθ X , Uθ X  . 

In this study, we evaluate the performance of confidence interval for r based on 

different confidence intervals for 𝜃 for the binomial distribution in terms of their 

coverage probability. The coverage probability of a confidence interval is defined as 

the probability that the confidence interval (Lθ X , Uθ X ) covers the true parameter 

𝜃. 
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In addition, it is worth noting that for the discrete distribution, the coverage 

probability of a confidence interval of r is a variable function of 𝜃. In this case, the 

minimum coverage probability of confidence interval of r is unknown. To estimate 

the minimum coverage probability of confidence interval of r, we establish a lower 

bound for the coverage probability. 

The rest of the thesis is organized as follows. Section 2 introduces the existing 

methods for constructing the upper limits or the lower limit of the proportion of 

conformance. Section 3 describes the main result. In Section 4, simulation studies are 

conducted to show the comparison results. In Section 5, an example of deriving the 

coverage probabilities of confidence intervals for proportion of conformance is 

provided. Finally, in Section 6, we give a conclusion about the confidence interval 

for proportion of conformance. 
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2. Preliminary 

Many applications require inferences concerning the probability that the number 

of conforming units in a future sample is less or equal to (or greater than) some 

specified number J. Those intervals were described previously in Chandra and Hahn 

(1981). If the proportion of conforming units in the population are known to equal to 

θ, the probability pLE  that 𝑋, the number of conforming units in a sample of size 𝑚, 

will be less than or equal to a pre-specified number J is computed from the binomial 

cumulative distribution function as 

 pLE = Pθ 𝑋 ≤ J =   m
i
 θi 1− θ m−iJ

i=0                                                         (2) 

Usually, 𝜃 is unknown and only sample data on the number of conforming units in 

the previous sample are available. Since pLE  is a decreasing function of θ, the 

following two-steps procedure described previously in Chandra and Hahn (1981) is 

used to find a two-sided confidence interval for pLE : 

(i) Obtain a two-sided confidence interval (Lθ X , Uθ X ) for 𝜃. 

(ii) Substitute these values for 𝜃 into (2) to obtain the desired two-sided confidence 

interval on pLE . 

This two-steps method are mainly based on a confidence interval of 𝜃, and the 

performance of confidence interval of the conformance proportion depends on the 

confidence interval of 𝜃. We introduce several confidence intervals for the binomial 

proportion 𝜃 in the literature (Brown, Cai and DasGupta 2002, Wang 2007). 
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Four intervals for 𝜃 are introduced below. Let 𝑘 be the upper α/2 cutoff point 

of the standard normal distribution. 

 

1. The exact binomial interval. The 1 − α exact interval has the form 

CIE X =  (1 +
(m − X + 1)F(1−

α
2 ,2m− 2X + 2,2X)

X
)−1,

(1 +
m − X

(X + 1)F(1−
α
2 , 2X + 2,2m − 2X)

)−1 . 

where F(r , v, w) denotes the 100rth percentile of the F distribution with v 

and w degrees of freedom. 

2. The Wald interval. Let p =
X

m
 and q = 1 − p . The approximate interval is 

CIWL  X =  p − k(p q )
1
2m−

1
2, p + k(p q )

1
2m−

1
2 . 

3. The Wilson interval. Let X = X +
k2

2
 and m = m + k2 . Let p =

X 

m 
 and q =

1 − p . The 1-α Wilson interval has the form 

CIWS  X =  p −
km

1
2

m + k2
(p q +

k2

4m
)

1
2, p +

km
1
2

m + k2
(p q +

k2

4m
)

1
2 . 

4. The Agresti-Coull interval. The 1-α Agresti-Coull interval is 

CIAC  X =  p − k(p q )
1
2m −

1
2, p + k(p q )

1
2m −

1
2 . 

Based on the above confidence intervals for 𝜃 and the two-steps method, a lower 

limit or an upper limit for r can be constructed. Since the existing two-steps method 

for estimating r is basically to construct a lower limit or an upper limit for r , there  

is not much investigation established to construct a confidence interval for r . 



 

6 

 

Although we can simply apply a method similar to the two-steps method to construct 

a confidence interval  Lr X , Ur X   of r. However, the coverage probability of the 

confidence interval constructed by the two-steps method is much lower than the 

nominal level.   

In the next section, we propose a modified confidence interval for r based on the 

two-step method. The modified confidence intervals lead to a more satisfactory result. 
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3. The main results 

In this section, we propose a procedure to construct a confidence interval 

(Lr X , Ur X ) for r, which mainly uses the result from Wang (2007) and the 

two-steps procedure from Chandra and Hahn (1981). 

Procedure 1: constructing a confidence interval for r 

Step 1. Select a level 1 − α confidence interval (Lθ X , Uθ X ) for 𝜃. 

Step 2. Calculate 1/(1+M), where M=  m
𝑢
 (m− 𝑢)/ m

𝑙
 𝑙 

1/(𝑢−𝑙+1)
. 

Step 3. Let g(𝑙, 𝑢)=1/(1+M). 

Set the upper bound Ur(X)

≡  
   Pg l,u  𝑙 ≤ 𝑋 ≤ 𝑢 ,                                               g(𝑙,𝑢) ∈ (Lθ X , Uθ X )

max PLθ  X 
 𝑙 ≤ 𝑋 ≤ 𝑢 , PUθ  X 

 𝑙 ≤ 𝑋 ≤ 𝑢  , g(𝑙, 𝑢) ∉ (Lθ X , Uθ X )
  

and the lower bound 

 Lr(X) ≡ min PLθ  X 
 𝑙 ≤ 𝑋 ≤ 𝑢 , PUθ  X 

 𝑙 ≤ 𝑋 ≤ 𝑢  . 

The interval (Lr X , Ur X ) is the level 1− α confidence interval for r. 

The performance of the confidence interval (Lr X , Ur X ) for r depends on 

the confidence interval (Lθ X , Uθ X ). The following theorem shows that the 

coverage probability of the proposed interval (Lr X , Ur X ) for a 𝜃 has a lower 

bound, which is the coverage probability of (Lθ X , Uθ X )  for a 𝜃 . The 

performance of the two intervals of their coverage probabilities is discussed in 

simulation study, which is consistent to the result of the following theorem. 
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Theorem 1. 

Let X follow a binomial distribution B m,θ , and assume that a confidence interval 

(𝐿𝜃 𝑋 ,𝑈𝜃  𝑋 ) for 𝜃 has a coverage probability w at 𝜃 = 𝜃0 . Then the coverage 

probability of  𝐿𝛾 𝑋 ,𝑈𝛾  𝑋   obtained by the procedure 1 based on the confidence 

interval  𝐿𝜃 𝑋 ,𝑈𝜃  𝑋   has a lower bound w at 𝜃 = 𝜃0. 

Proof. Assume that a confidence interval for θ based on 𝑋 is (Lθ X , Uθ X ). 

For a θ, the proportion of conformance Pθ 𝑙 ≤ 𝑋 ≤ 𝑢  is 

  
m

i
 θi 1 − θ m−i    

𝑢

i=𝑙

                                                                                                          (3) 

and the lower and upper specification limits are l and u, respectively. 

There are three cases for l and u. 

(i) l=0, u>0 

(ii) l<m, u=m 

(iii)l>0, u<m 

We will show that this theorem is valid for these three cases. 

(i) l=0, u>0 

In this case, by Lemma 1 in Wang (2007), (3) is a decreasing function of θ, 

see Figure 1. Let θ∗ denote the true value of θ. If θ∗ ∈ (Lθ X , Uθ X ), 

then we intend to show that Pθ∗ 𝑋 ≤ 𝑢 ∈ (Lr X , Ur X ). 

Since Pθ 𝑋 ≤ 𝑢  is a decreasing function of θ,  
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we have PUθ  X 
 𝑋 ≤ 𝑢 < Pθ∗ 𝑋 ≤ 𝑢 < 𝑃Lθ  X 

 𝑋 ≤ 𝑢 ,resulting 

Lr X < Pθ∗ 𝑋 ≤ 𝑢 < Ur X . Therefore we obtain  

Pθ∗ 𝑋 ≤ u  ∈ (Lr X , Ur X ). 

Thus we may have over w probability of covering the unknown r with our 

interval estimator. 

(ii) l<m, u=m 

In this case, by Lemma 1 in Wang (2007), (3) is an increasing function of θ, 

see Figure 2. Let θ∗ denote the true value of θ. If θ∗ ∈ (Lθ X , Uθ X ), 

then we intend to show that Pθ∗ 𝑋 ≥ 𝑙  ∈ (Lr X , Ur X ) . Since 

Pθ 𝑋 ≥ 𝑙  is an increasing function of θ,we have  

PLθ  X 
 𝑋 ≥ 𝑙 < Pθ∗ 𝑋 ≥ 𝑙 < 𝑃Uθ  X 

 𝑋 ≥ 𝑙 , 

resulting Lr X < Pθ∗ 𝑋 ≥ 𝑙 < Ur X .Therefore we obtain  

Pθ∗ 𝑋 ≥ 𝑙  ∈ (Lr X , Ur X ). 

Thus we may have over w probability of covering the unknown r with 

our interval estimator. 

(iii)l>0, u<m 

In this case, by Lemma 1 in Wang (2007), (3) is an unimodal function of θ. 

We consider two situations.  

The first one is the situation that g(𝑙, 𝑢) ∈ (Lθ X , Uθ X ), see Figure 3. 
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And the other one is the situation that  g(𝑙, 𝑢) ∉ (Lθ X , Uθ X ). First, 

assume that  g(𝑙,𝑢) lies in (Lθ X , Uθ X ). Since the function (3) reach its 

maximum value at θ= g(l, 𝑢), we use g(l, 𝑢) to construct the upper bound 

for the confidence interval. 

Let θ∗ denote the true value of θ. If θ∗ ∈ (Lθ X , Uθ X ), then we intend 

to show that Pθ∗ 𝑙 ≤ 𝑋 ≤ 𝑢  ∈ (Lr X , Ur X ). Since  

Pθ∗ 𝑙 ≤ 𝑋 ≤ 𝑢 < 𝑃g(𝑙,𝑢) 𝑙 ≤ 𝑋 ≤ 𝑢  and 

min PLθ  X 
 𝑙 ≤ 𝑋 ≤ 𝑢 , PUθ  X 

 𝑙 ≤ 𝑋 ≤ 𝑢  < Pθ∗ 𝑙 ≤ 𝑋 ≤ 𝑢  

we have Lr X < Pθ∗ 𝑙 ≤ 𝑋 ≤ 𝑢 < Ur X . Therefore we obtain 

Pθ∗ 𝑙 ≤ 𝑋 ≤ 𝑢  ∈ (Lr X , Ur X ). 

The other situation is g(l, 𝑢)∉  (Lθ X , Uθ X ), so we do not use g(l, 𝑢) to 

construct the upper bound for the confidence interval. It is similar to the 

first two cases. 

 

Thus we may have over w chance of covering the unknown r with our interval 

estimator. That is, the coverage probability of above confidence interval for r has 

a lower bound w. The proof is complete. 
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4. Simulation results 

In this section, we calculate the coverage probability of (Lθ X , Uθ X ) and 

(Lr X , Ur X ) for a θ, respectively. Then we compare the coverage probability of  

 Lr X , Ur X   and its corresponding interval (Lθ X , Uθ X ) of θ.  The coverage 

probabilities of the level 0.95 intervals with respect to different parameters when the 

true parameter θ is 0.5 are shown in Tables 1 and 2. Table 1 lists the coverage 

probability of several intervals with 𝑙 = 0 and 𝑢 = 10 corresponding to different n 

when the true θ  is 0.5, and m is 30. From Wang (2007), the minimum coverage 

probability of (Lθ X , Uθ X ) can be exactly calculated. The coverage probability of 

(Lr X , r X ) is approximated by simulation. 

Table 1. Coverage probabilities of proportion intervals and conformance intervals 

n    Exact 𝜃 Exact r  Wald 𝜃 Wald r  Wilson 𝜃 Wilson r   AC 𝜃  AC r 

5   1.000  1.000    0.930  0.930    0.930   0.930    0.930  0.930 

20   0.961  0.961    0.941  0.941    0.961   0.961    0.961  0.961 

30   0.966  0.966    0.922  0.922    0.947   0.947    0.947  0.947 

50   0.963  0.963    0.953  0.953    0.953   0.953    0.953  0.953 

70   0.974  0.974    0.946  0.946    0.946   0.946    0.946  0.946 

90   0.967  0.967    0.937  0.937    0.937   0.937    0.937  0.937 

100   0.959  0.959    0.945  0.945    0.959   0.959    0.959  0.959 

 

Table 2. Coverage probabilities of proportion intervals and conformance intervals 

n    Exact 𝜃 Exact r  Wald 𝜃 Wald r  Wilson 𝜃 Wilson r   AC 𝜃  AC r 

5   1.000  1.000    0.933  0.933    0.933   0.971    0.933  0.971 

20   0.964  0.980    0.931  0.946    0.964   0.980    0.964  0.980 

30   0.963  0.986    0.937  0.960    0.963   0.986    0.963  0.986 

50   0.964  0.981    0.933  0.967    0.950   0.967    0.950  0.967 

70   0.957  0.980    0.936  0.959    0.936   0.959    0.936  0.959 

90   0.970  0.982    0.941  0.966    0.957   0.982    0.957  0.982 

100   0.951  0.974    0.935  0.974    0.951   0.974    0.951  0.974 
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Table 1 lists the coverage probabilities of the confidence intervals for r are equal 

to the confidence intervals for θ because we only consider an upper confidence 

bound or a lower confidence bound. Table 2 lists the coverage probabilities of several 

intervals with 𝑙 = 5 and 𝑢 = 20 corresponding to different n when the true θ is 

0.5, and m is 30. From Tables 1 and 2, the coverage probabilities of the exact intervals 

for the proportion of conformance are higher than or equal to the other intervals 

because the exact intervals are substantially longer. The Wald intervals are derived by 

the large-sample approximation theory. And the coverage probabilities of the Wald 

intervals for binomial proportion are lower than the other intervals, which may be due 

to the fluctuation of the simulation and small sample size. It is well known that the 

Wilson interval and the Agresti-Coull interval are better than the Wald interval (see 

Agresti and Coull 1988; Brown, Cai, and DasGupta 2001). But even if we use the 

Wilson interval and the Agresti-Coull interval to construct the confidence intervals for 

proportion of conformance, their coverage probabilities still cannot be very close to 

the nominal level. Because all the simulation results show that the coverage 

probabilities of the confidence intervals for proportion of conformance are higher than 

or equal to the confidence intervals for a binomial proportion, which are consistent to 

the result of Theorem 1. Therefore, the coverage probabilities of corresponding 

intervals for proportion of conformance can approximate the level 0.95. In addition, 

The simulation results show that the coverage probability of  Lr X , Ur X   is very 

close to that of (Lθ X , Uθ X ) when the sample size is large, resulting that the lower 

bound provided in Theorem 1 can be used to approximate the coverage probability of 

 Lr X , Ur X  . 

The simulation for the cases when θ is not equal to 0.5 and m is 30 is given in 

Tables 4-19. 
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5. Real Data Example 

We illustrate the proposed methods by a real data example about Department 

Required Test. The data from the ROC College Entrance Examination Center in 2011 

are available on the website http://www.ceec.edu.tw/. We intend to analyze the 

scores of the subject, Scientific Mathematics (abbreviated Sci-Math), which is the 

most important subject in the Department Required Test. We obtain a random sample 

of 1000 scores from about 37,000 high school students who attained the Department 

Required Test. The examination time is 80 minutes and the range of test score is from 

0 to 100 for this subject. 

If a student has score greater than or equal to 60, we regard this student passing 

the test. Therefore, we are interested in estimating the probability that the count of 

students passing the test is between 500 and 700 among 1000 students. In this case, 

we assume that the count of students passing the test is a random variable, which 

follows a binomial distribution B 1000,θ , where the true θ is 0.3891. We are 

interested in investigating the probability r = Pθ 500 ≤ 𝑋 ≤ 700 . By following the 

procedure provided in Sections 2 and 3, we first calculate the level 0.95 confidence 

intervals for θ based on the four intervals, the exact binomial interval, Wald interval, 

Wilson interval, and Agresti-Coull interval. Then we follow Procedure 1 to construct 

the confidence interval for r. The performances of different confidence intervals are 

presented in Table 3. 

 

 

 

 

http://www.ceec.edu.tw/
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Table 3. Coverage probabilities for the proportion of conformance intervals 

n       Exact           Wald            Wilson          AC     

20     0.967           0.932           0.967           0.967 

30     0.975           0.915           0.949           0.949 

50     0.958           0.936           0.958           0.958 

70     0.966           0.954           0.954           0.954 

 90     0.966           0.949           0.957           0.957 

100     0.960           0.947           0.947           0.947    

300     0.953           0.947           0.947           0.947 

600     0.952           0.948           0.944           0.944 

 

It shows that the confidence interval constructed by Procedure 1 can lead to a 

satisfactory result and the coverage probabilities approximate the nominal level when 

the sample size is large. 
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6. Conclusions 

We purpose a method to improve the existing confidence intervals for the 

proportion of conformance. Four confidence intervals, the exact binomial interval, 

Wald interval, Wilson interval, and Agresti-Coull interval, are discussed. 

In the simulation studies, all the simulation results show that the coverage 

probabilities of the proposed intervals for the proportion of conformance are higher 

than or equal to the corresponding intervals for the binomial proportion, which is 

consistent to the result of Theorem 1. The coverage probabilities of the Wald intervals 

for the binomial proportion are lower than the other intervals, but the coverage 

probabilities of corresponding intervals for proportion of conformance can 

approximate the nominal level. With the results in this paper, the procedure can be 

directly used to construct the confidence interval for proportion of conformance. 
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Figures  

 

Figure 1. For a fixed u with 0<u<m, Pθ 𝑋 ≤ 𝑢  is a decreasing function of θ. 
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Figure 2. For a fixed l with 0<l<m, Pθ 𝑙 ≤ 𝑋  is an increasing function of θ. 

 

Figure 3. For fixed l and u with 0<l<u<m, Pθ 𝑙 ≤ 𝑋 ≤ 𝑢  is a unimodal function of 

θ. 
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Tables  

Table 4. Coverage probabilities with l=0, u=10 when the true

 
θ

 
is 0.4 

n    Exact 𝜃 Exact r  Wald 𝜃 Wald r  Wilson 𝜃 Wilson r   AC 𝜃  AC r 

5   0.987  0.987    0.825  0.825    0.987   0.987    0.987  0.987 

20   0.977  0.977    0.942  0.942    0.963   0.963    0.963  0.963 

30   0.972  0.972    0.921  0.921    0.921   0.921    0.921  0.921 

50   0.977  0.977    0.940  0.940    0.959   0.959    0.959  0.959 

70   0.956  0.956    0.934  0.934    0.956   0.956    0.956  0.956 

90   0.974  0.974    0.951  0.951    0.951   0.951    0.951  0.951 

100   0.945  0.945    0.932  0.932    0.945   0.945    0.945  0.945 

 

Table 5. Coverage probabilities with l=0, u=10 when the true

 
θ

 
is 0.3 

n    Exact 𝜃 Exact r  Wald 𝜃 Wald r  Wilson 𝜃 Wilson r   AC 𝜃  AC r 

5   0.998  0.998    0.787  0.787    0.966   0.966    0.966  0.966 

20   0.978  0.978    0.953  0.953    0.978   0.978    0.978  0.978 

30   0.970  0.970    0.910  0.910    0.935   0.935    0.956  0.956 

50   0.978  0.978    0.943  0.943    0.965   0.965    0.965  0.965 

70   0.957  0.957    0.936  0.936    0.945   0.945    0.945  0.945 

90   0.960  0.960    0.945  0.945    0.948   0.948    0.948  0.948 

100   0.961  0.961    0.950  0.950    0.950   0.950    0.950  0.950 

 

Table 6. Coverage probabilities with l=0, u=10 when the true

 
θ

 
is 0.2 

n    Exact 𝜃 Exact r  Wald 𝜃 Wald r  Wilson 𝜃 Wilson r   AC 𝜃  AC r 

5   0.992  0.992    0.688  0.688    0.949   0.949    0.949  0.949 

20   0.975  0.975    0.928  0.928    0.948   0.948    0.948  0.948 

30   0.978  0.978    0.952  0.952    0.956   0.956    0.956  0.956 

50   0.975  0.975    0.946  0.946    0.955   0.955    0.955  0.955 

70   0.965  0.965    0.950  0.950    0.948   0.948    0.948  0.948 

90   0.963  0.963    0.931  0.931    0.957   0.957    0.957  0.957 

100   0.961  0.961    0.946  0.946    0.948   0.948    0.948  0.948 
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Table 7. Coverage probabilities with l=0, u=10 when the true

 
θ

 
is 0.1 

n    Exact 𝜃 Exact r  Wald 𝜃 Wald r  Wilson 𝜃 Wilson r   AC 𝜃  AC r 

5   0.991  0.991    0.408  0.408    0.920   0.920    0.920  0.920 

20   0.994  0.994    0.868  0.868    0.965   0.965    0.965  0.965 

30   0.995  0.995    0.811  0.811    0.981   0.981    0.981  0.981 

50   0.986  0.986    0.899  0.899    0.968   0.968    0.968  0.968 

70   0.957  0.957    0.923  0.923    0.940   0.940    0.973  0.973 

90   0.972  0.972    0.938  0.938    0.960   0.960    0.960  0.960 

100   0.958  0.958    0.930  0.930    0.937   0.937    0.977  0.977 

 

 

Table 8. Coverage probabilities with l=0, u=10 when the true

 
θ

 
is 0.05 

n    Exact 𝜃 Exact r  Wald 𝜃 Wald r  Wilson 𝜃 Wilson r   AC 𝜃  AC r 

5   0.974  0.974    0.230  0.230    0.974   0.974    0.974  0.974 

20   0.976  0.976    0.622  0.622    0.916   0.916    0.976  0.976 

30   0.992  0.992    0.783  0.783    0.948   0.948    0.992  0.992 

50   0.990  0.990    0.910  0.910    0.956   0.956    0.956  0.956 

70   0.974  0.974    0.873  0.873    0.974   0.974    0.974  0.974 

90   0.975  0.975    0.934  0.934    0.949   0.949    0.949  0.949 

100   0.987  0.987    0.887  0.887    0.968   0.968    0.968  0.968 

 

 

Table 9. Coverage probabilities with l=5, u=20 when the true

 
θ

 
is 0.4 

n    Exact 𝜃 Exact r  Wald 𝜃 Wald r  Wilson 𝜃 Wilson r   AC 𝜃  AC r 

5   0.988  0.988    0.823  0.823    0.988   0.988    0.988  0.988 

20   0.964  0.973    0.933  0.933    0.964   0.964    0.964  0.964 

30   0.966  0.974    0.940  0.940    0.966   0.966    0.966  0.966 

50   0.965  0.980    0.949  0.960    0.965   0.976    0.965  0.976 

70   0.973  0.982    0.947  0.966    0.960   0.979    0.960  0.979 

90   0.973  0.978    0.953  0.965    0.953   0.965    0.953  0.965 

100   0.957  0.977    0.939  0.954    0.951   0.972    0.951  0.972 
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Table 10. Coverage probabilities with l=5, u=20 when the true

 
θ

 
is 0.3 

n    Exact 𝜃 Exact r  Wald 𝜃 Wald r  Wilson 𝜃 Wilson r   AC 𝜃  AC r 

5   0.999  1.000    0.804  0.829    0.974   0.999    0.974  1.000 

20   0.971  0.989    0.950  0.968    0.944   0.989    0.944  0.989 

30   0.983  0.987    0.927  0.947    0.967   0.987    0.967  0.987 

50   0.981  0.992    0.923  0.934    0.960   0.979    0.973  0.992 

70   0.974  0.984    0.960  0.970    0.958   0.968    0.958  0.968 

90   0.959  0.961    0.947  0.949    0.959   0.961    0.959  0.961 

100   0.969  0.971    0.960  0.962    0.960   0.962    0.960  0.962 

 

 

Table 11. Coverage probabilities with l=5, u=20 when the true

 
θ

 
is 0.2 

n    Exact 𝜃 Exact r  Wald 𝜃 Wald r  Wilson 𝜃 Wilson r   AC 𝜃  AC r 

5   0.997  1.000    0.693  0.696    0.936   1.000    0.936  1.000 

20   0.967  0.983    0.913  0.929    0.943   0.983    0.943  0.983 

30   0.975  0.979    0.882  0.885    0.958   0.961    0.958  0.961 

50   0.971  0.971    0.960  0.960    0.971   0.971    0.971  0.971 

70   0.980  0.980    0.940  0.940    0.966   0.966    0.966  0.966 

90   0.961  0.961    0.941  0.941    0.955   0.955    0.955  0.955 

100   0.963  0.963    0.926  0.926    0.943   0.943    0.943  0.943 

 

 

Table 12. Coverage probabilities with l=5, u=20 when the true

 
θ

 
is 0.1 

n    Exact 𝜃 Exact r  Wald 𝜃 Wald r  Wilson 𝜃 Wilson r   AC 𝜃  AC r 

5   0.989  1.000    0.408  0.419    0.921   1.000    0.921  1.000 

20   0.983  0.983    0.863  0.863    0.955   0.955    0.955  0.955 

30   0.976  0.976    0.791  0.791    0.976   0.976    0.976  0.976 

50   0.976  0.976    0.875  0.875    0.976   0.976    0.976  0.976 

70   0.976  0.976    0.916  0.916    0.944   0.944    0.944  0.944 

90   0.968  0.968    0.934  0.934    0.955   0.955    0.955  0.955 

100   0.978  0.978    0.935  0.935    0.964   0.964    0.964  0.964 
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Table 13. Coverage probabilities with l=5, u=20 when the true

 
θ

 
is 0.05 

n    Exact 𝜃 Exact r  Wald 𝜃 Wald r  Wilson 𝜃 Wilson r   AC 𝜃  AC r 

5   0.999  1.000    0.220  0.221    0.982   0.983    0.982  0.983 

20   0.982  0.982    0.660  0.660    0.982   0.982    0.982  0.982 

30   0.980  0.980    0.818  0.818    0.920   0.920    0.980  0.980 

50   0.983  0.983    0.936  0.936    0.941   0.941    0.983  0.983 

70   0.963  0.963    0.885  0.885    0.945   0.945    0.971  0.971 

90   0.971  0.971    0.828  0.828    0.940   0.940    0.971  0.971 

100   0.979  0.979    0.904  0.904    0.950   0.950    0.950  0.950 

 

 

Table 14. Coverage probabilities with l=15, u=25 when the true

 
θ

 
is 0.5 

n    Exact 𝜃 Exact r  Wald 𝜃 Wald r  Wilson 𝜃 Wilson r   AC 𝜃  AC r 

5   1.000  1.000    0.948  0.948    0.948   0.971    0.948  0.971 

20   0.955  0.973    0.925  0.973    0.955   0.973    0.955  0.973 

30   0.940  0.967    0.914  0.941    0.940   0.953    0.940  0.953 

50   0.957  0.958    0.923  0.924    0.942   0.942    0.942  0.942 

70   0.966  0.966    0.952  0.952    0.952   0.952    0.952  0.952 

90   0.960  0.960    0.934  0.934    0.949   0.949    0.949  0.949 

100   0.962  0.962    0.944  0.944    0.962   0.962    0.962  0.962 

 

 

Table 15. Coverage probabilities with l=15, u=25 when the true

 
θ

 
is 0.4 

n    Exact 𝜃 Exact r  Wald 𝜃 Wald r  Wilson 𝜃 Wilson r   AC 𝜃  AC r 

5   0.989  1.000    0.845  0.918    0.989   1.000    0.989  1.000 

20   0.960  0.961    0.937  0.944    0.960   0.960    0.960  0.960 

30   0.960  0.960    0.941  0.941    0.960   0.960    0.960  0.960 

50   0.956  0.956    0.956  0.956    0.956   0.956    0.956  0.956 

70   0.961  0.961    0.947  0.947    0.947   0.947    0.947  0.947 

90   0.973  0.973    0.950  0.950    0.950   0.950    0.950  0.950 

100   0.963  0.963    0.954  0.954    0.963   0.963    0.963  0.963 

 

 

 



 

24 

 

Table 16. Coverage probabilities with l=15, u=25 when the true

 
θ

 
is 0.3 

n    Exact 𝜃 Exact r  Wald 𝜃 Wald r  Wilson 𝜃 Wilson r   AC 𝜃  AC r 

5   0.999  1.000    0.797  0.830    0.966   1.000    0.966  1.000 

20   0.978  0.978    0.955  0.955    0.955   0.955    0.978  0.978 

30   0.976  0.976    0.912  0.912    0.954   0.954    0.954  0.954 

50   0.967  0.967    0.944  0.944    0.951   0.951    0.951  0.951 

70   0.967  0.967    0.948  0.948    0.951   0.951    0.951  0.951 

90   0.965  0.965    0.952  0.952    0.949   0.949    0.949  0.949 

100   0.963  0.963    0.946  0.946    0.952   0.952    0.952  0.952 

 

 

Table 17. Coverage probabilities with l=15, u=25 when the true

 
θ

 
is 0.2 

n    Exact 𝜃 Exact r  Wald 𝜃 Wald r  Wilson 𝜃 Wilson r   AC 𝜃  AC r 

5   0.991  1.000    0.662  0.671    0.940   0.940    0.940  0.949 

20   0.979  0.979    0.929  0.929    0.957   0.957    0.957  0.957 

30   0.983  0.983    0.888  0.888    0.953   0.953    0.953  0.953 

50   0.972  0.972    0.944  0.944    0.972   0.972    0.972  0.972 

70   0.962  0.962    0.933  0.933    0.962   0.962    0.962  0.962 

90   0.982  0.982    0.945  0.945    0.968   0.968    0.968  0.968 

100   0.972  0.972    0.948  0.948    0.959   0.959    0.959  0.959 

 

 

Table 18. Coverage probabilities with l=15, u=25 when the true

 
θ

 
is 0.1 

n    Exact 𝜃 Exact r  Wald 𝜃 Wald r  Wilson 𝜃 Wilson r   AC 𝜃  AC r 

5   0.996  0.996    0.426  0.430    0.914   0.914    0.914  0.914 

20   0.986  0.986    0.887  0.887    0.953   0.953    0.953  0.953 

30   0.992  0.992    0.789  0.789    0.979   0.979    0.979  0.979 

50   0.985  0.985    0.888  0.888    0.968   0.968    0.968  0.968 

70   0.956  0.956    0.932  0.932    0.956   0.956    0.967  0.967 

90   0.975  0.975    0.952  0.952    0.949   0.949    0.975  0.975 

100   0.979  0.979    0.953  0.953    0.969   0.969    0.969  0.969 
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Table 19. Coverage probabilities with l=15, u=25 when the true

 
θ

 
is 0.05 

n    Exact 𝜃 Exact r  Wald 𝜃 Wald r  Wilson 𝜃 Wilson r   AC 𝜃  AC r 

5   0.978  0.978    0.226  0.228    0.978   0.978    0.978  0.978 

20   0.981  0.981    0.637  0.637    0.927   0.927    0.981  0.981 

30   0.980  0.980    0.765  0.765    0.936   0.936    0.980  0.980 

50   0.988  0.988    0.920  0.920    0.967   0.967    0.967  0.967 

70   0.982  0.982    0.877  0.877    0.982   0.982    0.982  0.982 

90   0.970  0.970    0.950  0.950    0.949   0.949    0.949  0.949 

100   0.986  0.986    0.886  0.886    0.970   0.970    0.970  0.970 

 

 


