
 

國 立 交 通 大 學
 

物理研究所 
 

碩 士 論 文 
 
 
 
 

反質子原子生成反應的反應截面積之理論模型 
 

A Theoretical Model For The Formation Cross Section 

Of Antiprotonic Atoms 
 
 
 
 

研 究 生：彭冠瑋 

指導教授：寺西慶哲  教授 

 
 
 
 
 

中 華 民 國 一 百 零 一 年 七 月



 

 

反質子原子生成反應的反應截面積之理論模型 

A Theoretical Model For The Formation Cross Section 

Of Antiprotonic Atoms 
 
 
 
 
 
研 究 生：彭冠瑋         Student: Peng Guanwei 
指導教授：寺西慶哲 教授  Advisor: Prof. Yoshiaki Teranishi 

 
 

國 立 交 通 大 學 
物 理 研 究 所 
碩 士 論 文 

 
 

A Thesis 
Submitted to Institute of Physics 

College of Science 
National Chiao Tung University 

in partial Fulfillment of the Requirements 
for the Degree of 

Master 
in 

 
Physics 

 
July 2012 

 
Hsinchu, Taiwan, Republic of China 

 
 

中華民國一百零一年七月 

 



i 
 

反質子原子生成反應的反應截面積之理論模型 

學生：彭冠瑋 指導教授：寺西慶哲 教授 
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摘要 

 
反質子是質子的反粒子。在真空中，反質子的平均壽命幾乎是無限久；但在物質中，

反質子的壽命非常短，因為反質子與質子碰撞會造成兩個粒子湮滅變成能量。在實驗上

已經有很多關於反質子在液體或氣體的阻攔、捕獲和湮滅的研究，結果發現在反質子入

射液態或氣態氦的實驗中，大多數被阻攔的反質子在  秒內湮滅，大約 3％的反質
子在湮滅前有平均 3微秒的壽命。這極長的壽命由反質子被捕抓形成一個反質子氦原子
( )的推論解釋。然而，不論在實驗或理論上都很難求得捕抓的反應截面積(capture 
cross section)。從理論的角度來看，用完全量子的理論或非微擾的方法解這個問題的計
算量仍超出現今超級電腦的運算能力；而可靠的近似計算只能適用在反質子碰撞較輕原

子的情況，如氫、氦以及鋰。 
在這篇論文中，我們提出了一個簡單的模型來計算原子捕抓反質子的反應截面積。

根據Fermi和Teller的理論，捕抓過程可以用絕熱電離(adiabatic ionization) 的機制解釋，
但他們模型的推論結果與可靠的計算結果不一致。我們研究他們模型中可能出現的錯誤，

像是在非絕熱效應(nonadiabatic effects)和古典直線軌跡的假設。我們研究這兩個效應，

提出了一種新的模型。在較低能量（約低於 0.1 a.u.），反應截面積跟 成正比的；在較

高的能量（約高於 0.1 a.u.），反應截面積是 .的線性函數。我們理論求得的反應截面積

與可靠的理論結果相符。  
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Abstract 

Antiproton is the antiparticle of the proton. The lifetime of antiproton is almost infinite 

in the vacuum, but it is typically short in media since any collision with a proton will cause 

both particles to be annihilated in a burst of energy. The stopping, capture and annihilation of 

antiprotons in liquids and gases has been much studied experimentally, and found that, 

although most stopped antiprotons annihilate promptly (  s), about 3% of all antiprotons 

( ) annihilated with a 3 μ  overall lifetime after being brought to rest in helium, if the 

stopping medium is solid, liquid or gaseous helium. This extremely long lifetime is explained 

by the idea of the capture of antiproton to form an antiprotonic helium atom ( ). It is 

difficult, however, to obtain the capture cross section both theoretically and experimentally. 

From the theoretical point of view, the full quantal and nonperturbative solution of this 

problem is still out of the reach of the current high-power supercomputers, and reliable 

calculation has been achieved only in the cases of the collision of antiproton with the simple 

atoms, H, He, and Li. 

In this thesis, we propose a simple model to calculate the capture cross section of 

antiproton by atoms. According to Fermi and Teller, capture process can be explained by so 
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called the adiabatic ionization mechanism, but the results of their model do not agree with the 

reliable results. We examine the possible faults in the model, that are the nonadiabatic effects 

and the assumption of classical straight line trajectory. We examined those two effects to 

propose a new model. In low energy (about lower than 0.1 a.u.), the formation cross section is 

proportional to . In higher energy (about higher than 0.1 a.u.), the formation cross section 

is a linear function of . We found that our cross section agrees well with that obtained by 

reliable theories. 
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I. Introduction 

Antiproton is the antiparticle of proton. The existence of the antiproton with -1 electric 

charge, opposite to the +1 electric charge of the proton, was predicted by Paul Dirac in his 

1933 Nobel Prize lecture [1]. Dirac received the Nobel Prize for his previous 1928 publication 

of his Dirac Equation that predicted the existence of positive and negative solutions to the 

Energy Equation ( ) of Einstein and the existence of the positron, the antimatter 

analog to the electron, with positive charge and opposite spin. The antiproton was 

experimentally discovered in 1955 by Emilio Segrè and Owen Chamberlain at University of 

California, Berkeley physicists, for which they were awarded the 1959 Nobel Prize in Physics. 

An antiproton consists of two up antiquark and one down antiquark ( ). The properties of 

the antiproton that have been measured all match the corresponding properties of the proton, 

with the exception that the antiproton has opposite electric charge and magnetic moment than 

the proton. The question of how matter is different from antimatter remains an open problem, 

in order to explain how our universe survived the Big Bang and why so little antimatter exists 

today [2]. The study of the interaction between antiprotons and ordinary matters is of special 

importance to test fundamental physical principles such as charge-parity-time (CPT) 

invariance and the gravitational weak equivalence principle. Various projects for such 

experimental studies have been proposed such as the collaborations of ASACUSA, ATHENA, 

and ATRAP [3, 4, 5].  

According to the standard model, the lifetime of antiproton is infinite in the vacuum, and 

some grand unification theories require the decay of antiproton having the half lime time of 

about 1036 years. Recent experiments estimate a half life time of no shorter than 6.6 x1033 

years [6]. When an antiproton is in a media, on the other hand, its life time is shortened since 

any collision with a proton will cause both particles to be annihilated in a burst of energy. Pair 
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annihilation of proton and antiproton makes it difficult to perform experiment using 

antiproton. This is one of the reasons why the trap technique of antiproton has attracted much 

attention.  

 The stopping, capture and annihilation of antiprotons in liquids and gases has been 

intensively studied experimentally (Yamazaki et al 1989 [7], 1993 [8], Iwasaki et al 1991 [9], 

Morita et al 1994 [10], Widmann et al 1995 [11], Hori et al 1998 [12]) [13]. One noteworthy 

feature of these experiments has been the observation that, although most stopped antiprotons 

annihilate promptly (within ~  s), about 3% of all antiprotons ( ) annihilated with ~μ  

overall lifetime after being brought to rest in helium (see Figure 1-1), if the stopping medium 

is solid, liquid, or gaseous helium. In neon or argon, however, these long-lived states are not 

observed. This extremely long lifetime is explained by the idea of formation of antiprotonic 

helium atom ( ), which has consequently come to assume a role beyond its intrinsic 

interest as a metastable member of the exotic atom (atoms with antiproton bound) family, by 

providing us with a test-bench at which the antiproton itself can be studied in great detail. For 

example, the mass of antiproton is measured by the laser spectroscopy of  with 10 

digits of accuracy [14]  

 

 
 
 

 

Figure 1-1 The Setup Schematic diagram of the antiproton injecting liquid helium 
experiment (left). The experiment result from Ref. [9] 
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The dynamical processes of antiproton from the injection to annihilation are considered 

as follows. After injection of the antiprotons, the kinetic energy of the antiproton is slowed 

down in any physico-chemical state of He, and eventually falls below the first ionization 

energy of He ( = 24.6 eV), at which point antiproton replaces one of the two electrons in 

the He atom; i.e., formation of antiprotonic helium . The new  atom thus formed 

has recoil kinetic energy around 5 eV and continues its journey surrounded by the helium 

medium until it reaches thermal equilibrium after a time shorter than a nanosecond without 

suffering destruction. Whereas the remaining  is in the 1sσ ground orbital, the captured  

is in a highly excited state with a large-  state: , where  is the 

reduced mass of the -He system. The antiproton is considered to be captured into 

near-circular state, namely . As shown in Figure 1-2, the  orbits the helium nucleus 

in a well localized semi-classical trajectory, while the  is distributed as a fully quantum 

mechanical cloud. These features are the consequence of the small de Broglie wavelength of 

the antiproton compared to that of the electron, and of the Born-Oppenheimer approximation. 

Metastability of  occurs only within a limited zone of  around (38, 37). Long 

before the discovery of the  longevity, this was predicted by Condo [15] and Russell [16] to 

be the joint result of: 

(1) Suppressed Stark decay 

Since the  is a neutral system retains one electron, antiproton is protected from 

intruding He atoms by the Pauli exclusion principle. Furthermore, it is resistant to collisional 

Stark effect with surrounding helium atoms, because the l degeneracy for the same n is broken 

by the presence of , strongly reducing the corresponding Stark mixing amplitudes. 

Antiprotonic helium atoms can thus survive many collisions during and after thermalization. 

(2) Suppressed Auger decay 

Normally, the newly formed neutral antiprotonic atom will rapidly proceed to the ionized 

state  by Auger transition of the electron into the continuum. However, because of 
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the large ionization energy ( 25 eV) of electron emission compared with the  

level spacings (typically, 2 eV), the Auger process from near-circular states  is 

associated with a large angular momentum jump, and thus is drastically hindered. 

(3) Slow radiative decay 

The remaining decay process is radiative decay, which is considered to be slow because 

of the small level spacings and of the retardation mechanism due to the  correlation. 

The main cascade is  and the typical level lifetime is 1.5  for 

metastable states around n~38 and l~37. 

The level scheme of antiprotonic helium is also shown in Figure 1-2. The red solid bars 

represent metastable states, whereas the blue broken lines show Auger dominated short-lived 

states. The energy levels of ionized states ( ) are shown by green dotted lines [18]. 

 

 

 
 

 

The long lifetime is attributed to the capture of antiproton by an atom, and the capture 

cross section of antiproton by atom has been turned out to be an important subject in the field 

of antiprotonic science. Cross section is defined as the effective area which governs the 

Figure 1-2 The structure of the , in which the p with large (n, l) quantum numbers 
circulates in a localized orbit around the He2+ nucleus, while the electron occupies the 
distributed 1s state. (b) The level scheme of large (n, l) states of the . From Ref. [17] 
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probability of some scattering or absorption event [19]. In nuclear and particle physics, the 

concept of a cross section is used to express the likelihood of interaction between particles. In 

experiment, deriving the cross sections of atom-antiproton collision is really difficult. Thus, 

the theoretical studies on capture/ionization cross section are required. 

The capture of antiprotons by helium is a typical Coulomb four-body rearrangement 

problem. The full quantal and nonperturbative solution of this problem is still out of the reach 

of the current high-power supercomputers. Thus, several groups have studied the capture of 

antiprotons by hydrogen atoms, which is a Coulomb three-body rearrangement problem, by 

various approaches such as the classical trajectory Monte Carlo (CTMC) method [20], the 

time-dependent wave packet (TDWP) method [5], and other quantum methods [21, 22]. The 

state-specified capture cross sections of antiprotons by hydrogen atoms have been obtained 

recently by a time-dependent method [23, 24]. The advantage of this method is that by 

rewriting the time independent scattering equation into a time-dependent one, the complicated 

boundary condition is converted into an initial condition which can be easily imposed. 

Time-dependent approach has been used to problems with larger atomic targets. The capture 

cross sections of antiprotons by neutral helium (it is thus a Coulomb four-body rearrangement 

problem) were calculated by Tong [25], and recently Sakimoto [26] calculated the capture 

cross section of antiproton by neutral lithium atom (five-body problem). 

Time-dependent approach can provide a reliable result, but it requires huge computational 

resources. This approach may be hard to be applied to atoms larger than Lithium, and a simple 

approximation is expected. Fermi and Teller proposed a simple model to discuss the problem 

of electron emission from atoms by the collision with a negatively charged particle, for 

example, the capture process of antiproton with atom. Fermi and Teller model is applicable to 

various elements, including heavy atoms without difficulty. The result of Fermi and Teller 

model, however, does not agree well with other reliable results (for example, CTMC or 

TDPW). In this thesis, we propose a simple and yet reliable model to calculate the capture 
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cross section in antiproton-atom collisions. Our model can provide not only reliable cross 

sections, but also a clear physical picture of antiproton capture. In this thesis the validity of 

our model is checked by comparing to other reliable results.  

The rest of this thesis is organized as follows. In chapter II, the physical picture of the 

capture process is discussed by following the idea of Fermi and Teller to develop our new 

model to obtain the capture/ionization cross section. The calculation method is being 

introduced in Chapter III. The result and discussion is given in Chapter IV. The chapter V 

concludes this thesis.  



7 
 

II. The Model 

Now, we consider the problem, in which the antiproton collides with an atom at low 

collision energy, namely smaller than 10 eV. Since the mass of antiproton is large, we utilize 

the quasi-classical approximation, where the heavy particle motions are treated classical 

mechanically and the electrons are treated quantum mechanically. The collision of antiproton 

with atoms may induce electron emission. There are two possible processes associated with 

electron emission. When the antiproton does not have enough kinetic energy, it is captured by 

the ion because of the attractive Coulomb interaction between the antiproton and the atomic 

ion. We call this the capture process, which reaction equation is given by 

.            (2-1) 

When the antiproton has enough energy to leave the ion, on the other hand, the system is split 

into three bodies (the ionization process). The reaction equation of the ionization process is 

given by 

.            (2-2) 

It should be noted here that “ionization” indicates here the electron emission process without 

the capture of antiproton, throughout this thesis.  

In this chapter, we first introduce a conventional model proposed by Fermi and Teller for 

electron emission by the impact of a negatively charged particle. This Fermi-Teller model is 

based on two assumptions, which are the adiabatic approximation and classical straight line 

trajectory for the motion of antiproton. However, the result of Fermi-Teller’s model does not 

agree well with the other results obtained by more reliable theoretical methods such as 

classical trajectory Monte-Carlo (CTMC) method. We discuss the reason why the 

Fermi-Teller model does not work well, and propose a new model which is as simple as 

Fermi-Teller model, but yet as reliable as other sophisticated theoretical methods.  
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2.1 Fermi-Teller cross section 

Fermi and Teller discussed the electron emission from atoms by the collision with a 

negatively charged particle using the adiabatic approximation. They utilized the fact that an 

electron cannot be bound by a dipole smaller than  a.u. In the case of antiproton 

hydrogen collision, for example, when the distance between antiproton and proton 

(hydrogenic ion) is smaller than  a.u. (where  a.u.), the electron cannot be 

bound, and is kicked out by the heavy particles. Generally speaking, when the antiproton is in 

the vicinity of atomic nucleus, the electron biding by the nucleus is weakened due to the 

repulsive electron-antiproton interaction. If the electron biding is weakened sufficiently, 

electron emission takes place. Fermi and Teller claimed that this happens at the Fermi-Teller 

distance (  a.u. in the case of Hydrogen target). In other words, at the Fermi-Teller 

distance the two adiabatic potentials of antiproton and atomic ion, and antiproton and neutral 

atom are degenerate, leading to the electron emission even under the adiabatic approximation. 

The above mentioned mechanism proposed by Fermi and Teller is explained with Figure   

2-1 by taking the  collision as example. 

In Figure 2-1 the two adiabatic potential 

curves of (dashed line) and (solid 

line) are plotted as functions of the 

antiproton-proton distance. In the asymptotic 

region ( ), the interaction of  is 

the coulomb attractive interaction, whereas 

the interaction of  is monopole-induced 

dipole interaction. Thus the attractive 

interaction is stronger in  potential than 

Figure 2-1 The schematic graph of the two 
adiabatic potential curves of (dashed 
line) and (solid line). The two cureves 
coincide at the Fermi-Teller distance . 

Coulomb interaction 

monopole-induced dipole 

interaction 

Coulomb-like interaction 
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in  potential, leading to the decreasement of the energy spacing between  and  

potentials in the short distance region. This implies that the electron biding is weakened, and 

one of the electrons locates far away from the two heavy particles when the antiproton is close 

to the nuclear. Actually in a short distance region, the two adiabatic potentials touch each 

other (see Figure 2-1), at which electron emission takes place efficiently. At the touching point, 

or the Fermi-Teller distance ( ), the dipole moment of heavy particles is 0.67 a.u. Fermi 

and Teller assumed that (1) the trajectory of antiproton is a straight line, and (2) electron 

emission takes place when the antiproton approaches to the nucleus closer than the 

Fermi-Teller distance.  

In the classical scattering theory, the scattering cross section is given by 

,            (2-3) 

where  represents the scattering probability as the function of the impact parameter . 

According to the Fermi-Teller’s assumptions,  is given by a step function (see Figure 

2-2) namely,  

,            (2-4) 

which leads to the simple expression of the cross section: 

   ,            (2-5) 

This is called the Fermi-Teller cross section. It should be noted that Fermi-Teller cross section 

does not depend on the collision energy. Furthermore,  does not exist for some atoms. 

For example, in the case of He, there is a finite energy gap even at , because  has 

bond states. Thus this model is not applicable to  collision. 
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Figure 2-2 A conceptual diagram showing the idea of the Fermi-Teller cross section. We 
assume the reaction probability in the blue region is unity. In classical straight line trajectory 
approximation, the particles with impact parameter  reach the blue region, so the 

Fermi-Teller cross section is given by    

b 

1 
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2.2 The nonadiabatic transition and the curve trajectory 

In Figure 2-3, the Fermi-Teller cross section for  scattering is compared with the 

numerical cross section obtained by Schultz with the use of classical trajectory Monte-Carlo 

(CTMC) method [28]. As is shown in the Figure, Fermi and Teller do not reproduce the 

CTMC result. In what follows, we discuss the reason why the Fermi- Teller’s model does not 

work well. There are three assumptions in Fermi- Teller’s model: adiabatic approximation, 

classical straight line trajectory, and the unit reaction probability in the region . 

 

Fermi and Teller claimed that the antiproton approaches to the nucleus along the 

adiabatic potential until it reaches at the . Adiabatic approximation, however, brakes 

when two (or more) adiabatic curves have small energy splitting, and nonadiabatic transitions 

can take places. Since the energy splitting between  and  is small in the vicinity of 

, emission of electron can take places nonadiabatically even at , leading to a 

larger cross section than predicted by the Fermi-Teller’s model. As is seen in Figure 2-3, 

Fermi-Teller cross section gives much smaller cross section than CTMC. We expect that the 

nonadiabatic effect explains this discrepancy. One of the simple way to include the 

nonadiabatic effect may be to employ a new critical distance , which is larger than  

Figure 2-3 The electron emission 
cross sections of 
antiproton-hydrogen collision are 
plotted. CTMC method (solid 
line) by Schultz. Fermi-Teller 
cross section (dashed line). (Taken 
from Ref. [28]) 
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(see Figure 2-4). Assuming the straight line trajectory, the probability function  may be 

replaced by 

         .            (2-6) 

 

The assumption of the classical straight line trajectory may be another fault in their 

model. As is seen in Figure 2-4, the antiproton is attracted by the atom before it reaches , 

thus the trajectory of the antiproton should be a curved one but not a straight line. Even when 

the impact parameter is larger than , the antiproton may come into the reaction region 

because of the attractive interaction. This effect of curved trajectory also enhances the 

electron emission cross section larger than  (see Figure 2-5). Furthermore, the curved 

trajectory depends on the kinetic energy, and we can expect that the energy dependence is 

reproduced by taking the curving effect. In the next section, we discuss how cross section is 

given in the case of curved trajectory.  

 

  

  

Figure 2-4 The adiabatic potential curves of 
(dashed line) and (solid line). Two 

potentials touch at the Fermi-Teller 
distance . Because the small energy 
gap may induces the nonadiabatic 
transition, we assume that nonadiabatic 
trnsition takes places efficienly when 

 

Figure 2-5 Scatering with curved 
trajectory in the case of attractive 
potential. Even if the impact parameter 
is larger than , the projectile can 
come to the point , leading to a 
larger cross section. 



13 
 

2.3 The diabatic electron emission model 

In this section, we discuss the effect of nonadiabatic transition and curved trajectory. We 

propose, so called the diabatic electron emission model by taking the two effects that are 

missing in Fermi-Teller’s model. In our model, we assume the classical cross section given by 

Eq. (2-3) with the impact parameter dependent scattering probability function given by 

.              (2-7) 

Here  is the maximum impact parameter that allows the antiproton entering the reaction 

region . In the case of straight line trajectory, we have  (see Figure 2-2), 

but this is not correct in the case of curved trajectory (see Figure 2-5). Hereafter we discuss 

how to obtain  in the case of the curved trajectory. 

Assume that an antiproton is colliding to the atom with the maximum impact parameter 

. The initial angular momentum at  is given by 

.            (2-8) 

Here , , and E respectively denote the relative momentum, the relative kinetic energy, and 

the reduced mass of the systems. 

Next we consider the angular momentum when the antiproton arrives at . Because of 

the attractive interaction the kinetic energy   at  is larger than E, namely 

 ,              (2-9) 

where 

.             (2-10) 

Accordingly the momentum   is also increased, 

   .             (2-11) 

Since we consider the antiproton is injected with the maximum impact parameter , 

the radial velocity at  should be zero (see Fig 2-5). In other words, at , the 
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radial vector is perpendicular to the momentum vector. Thus the angular momentum at 

 is given by 

    .         (2-12) 

Because the mass of electron is much smaller than the antiproton and nuclear, we ignore the 

angular momentum of the emitted electron. Then the initial angular momentum  at is 

conserved until the antiproton arrives at , namely, 

 ,.                (2-13) 

Substituting Eq. (2-8) and to Eq. (2-12) into Eq. (2-13), we obtain 

.             (2-14) 

Now we can write  as a function of  and , given by 

.                 (2-15) 

This leads to the cross section of the form: 

   .       (2-16) 

Our expression of the cross section Eq. (2-16) has two parameters,  and , which we 

have to obtain in this model. In the following section, a simple method is proposed to obtain 

these parameters. 
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2.4 The method to obtain  and  

In this section we propose a simple method to obtain the parameter  utilizing the 

assumption that (1)  does not depend on the collision energy, and (2) in the zero collision 

energy limit, antiproton is captured to form an antiprotonic atom having the same biding 

energy as that of the target atom. The assumption (2) may be justified by the uncertainty 

principle. In the zero collision energy limit, collision process takes place with a long collision 

time, and the energy uncertainty during the collision is small. This leads to that the energies of 

the initial atom and the final product are nearly equal within the small energy uncertainty. 

Hereafter we consider the antiprotonic atom produced by nearly zero collision energy. 

After an antiproton is captured by an atomic ion, antiproton rotates around the atomic ion with 

the binding energy equal to that of the target atom (assumption (2)). Once the binding energy 

of an antiprotonic atom is determined, we can find the maximum angular momentum that 

supports the rotation. The motion of antiproton with the maximum angular momentum is 

circular, in other words, the distance is constant. We denote this constant distance associated 

with the circular motion by . The antiproton cannot be captured with angular momentum 

larger than . Since the closed approach (, the minimum distance allowed for antiproton to 

approach under given energy and angular momentum) monotonically increase as , we can 

conclude that capture is not allowed if the closest approach is larger than . Therefore, one 

can expect that (3) the nonadiabatic transition efficiently takes place at , and no 

transitions take places at , which we employ as the third assumption. Using the 

assumption (1) and (3),  and  can be approximated by  and .  

In what follows we discuss how to obtain  or the mean radius of the antiprotonic 

atom having the binding energy . For the simplicity, let us consider the antiprotonic atom 

having circular orbit, which means that the distance between the antiproton and the atomic ion 

is constant. 
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The relative motion between antiproton and atomic ion is characterized by the potential 

function  (the adiabatic potential of  system). Since the potential depends only 

on the distance, we can separate the motion into the radial and the angular motions. The radial 

motion is governed by the effective radial potential: 

 ,              (2-17) 

where the second term of the right hand side represents the centrifugal potential. The effective 

radial potential has a minimum for nonzero  (see Figure 2-6), and the radial motion is 

represented as the vibration around the minima. When the total energy of the antiproton atom 

is equal to the minima of , radial motion is prohibited, and the antiproton rotates 

around the atomic ion with a constant distance.  is defined as the distance between 

antiproton and atomic ion bound with the binding energy , which is equal to the total 

ionization energy of the target atom. Therefore,  is obtained from the conditions: 

     ,                (2-18) 

and 

 .                (2-19) 

These conditions contain two unknown parameters,  and , both of which are obtained by 

solving Eq. (2-18) and Eq. (2-19). It should be noted that   is the maximum angular 

momentum that supports the final state. 

  can be evaluated from Eq. (2-10) with  obtained as mentioned above. In the low 

energy  collision process, the nonadiabatic transition takes place only when the energy 

gap of the initial state and final state is very small. Thus, we take another assumption that (4) 

the effective adiabatic energy of  ( ) equals to the effective adiabatic energy of 

 ( ) at the distance , namely 

         (2-20) 

Since  represents the atomic energy , we have 
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       .        (2-21) 

Here we used Eq. (2-17) and Eq. (2-19). Substituting Eq. (221) into Eq. (2-20), we have a 

simple form of  given by 

                      (2-22) 

We take  collision process as an example to illustrate this method. The effective 

potentials of  (  in Eq. (2-17)) with angular momentum =30, 35, and 40 are 

plotted in Figure 2-6. For each angular momentum L, the effective adiabatic energy has a 

minimum. When L=30, the potential minimum equals the atomic binding energy . Thus 

 is given as the position of the minimum of  with =30.  

 

 
Figure 2-6 The effective radial adiabatic potential of hydrogen with L=30, 35, and 40. 
When L=30, the curve almost tangentially touch the binding energy ; i.e., the 
collision energy is zero.   a.u. and a.u. for hydrogen. 
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2.5 Langevin cross section 

 In the low energy limit, the effective potential of the antiproton-atom has a potential 

barrier in long distance region ( ). Gioumousis and Stevenson studied this kind of 

problem, and proposed so called the Langevin cross section [27]. When collision energy is 

small, the Langevin cross section determines the total cross section of ionization/capture 

process. Langevin cross section is obtained from the potential function behavior. We consider 

the system that consists of an antiproton and the atom. The relative angular momentum of the 

system, the reduce mass of the system, the distance between antiproton and atom, and the 

polarizability are denoted by , , R, and , respectively. Then, the potential of 

antiproton-atom is given by 

   .               (2-23) 

The former term is the centrifugal potential in the classical definition, and the later term is the 

monopole-induced dipole interaction. This potential function is basically the antiproton-ion 

interaction in the asymptotic region. The two terms compete each orther, causing the potential 

barrier at a large distance. 

 

Figure 2-7 The potential curve of 

antiproton-hydrogen with L=30 and . 

The potential barrier is clearly seen in the plot. 

 

 

In a low energy collision, the antiproton carries a small energy, and it may probably be 

reflected by the potential barrier before it comes into the ionization/capture reaction region.  

If an antiproton is injected with the velocity  and the impact parameter . The angular 

momentum  is given by 
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.                  (2-24) 

The maximum of the potential barrier is obtained from the following two conditions: 

   
              (2-25) 

and 

     
 .             (2-26) 

From Eq. (2-25) one can obtain the position at the extreme, given by 

                 (2-27) 

Substituting Eq. (2-27) into Eq. (2-26), we have 

  .                 (2-28) 

The maximum value of the potential is then given by 

  .                 (2-29) 

The relative kinetic energy,  must be larger than  in order to overcome the 

potential barrier, thus we have 

       
.                    (2-30) 

For a given kinetic energy , the antiproton can overcome the barrier if , where 

 
 

.                 (2-31) 

We assume that the reaction probability function has the form 

.                 (2-32) 

Then, the Langevin cross section is given by 

            (2-33) 

Now let us consider the criterion for the “low energy limit” to use the Langevin cross 

section. We have two formulas for the ionization/capture cross section: 
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 (Langevon cross section),            (2-34) 

and 

 (our model).              (2-35) 

The two expressions coincide ( ), when 

 
    .               (2-36) 

Substituting Eq. (2-31), Eq. (2-24) and Eq. (2-36) into Eq. (2-27), we have the position of the 

potential barrier at  is given by 

  ±  ±   .             (2-37) 

There are two solutions in Eq. (2-36). At around the energy  the potential barrier 

locates at   . In order for the antiproton to reach  the impact parameter 

should be smaller than both Eq. (2-15) and Eq. (2-31). Thus, the maximum angular 

momentum that allows the antiproton is the smaller one either Eq. (2-15) or Eq. (2-31). This 

leads to the criterion: Eq. (2-34) should be used for  and Eq. (2-35) should be used 

for . 

If the energy is around , on the other hand the potential barrier locates at   . 

Thus, we do not have to care about whether the antiproton overcomes the potential barrier. 

Accordingly the cross section should be given by Eq. (2-35).  

Finally, we summarize the final form of the cross section in different energy regions 

given by 

    
    

        (2-38) 
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III. Calculation method 

3.1 Calculation of the adiabatic potential 

We used a quantum chemical calculation software named “Gaussian 09” (G09) [29] to 

calculate the adiabatic energies for the systems of an antiproton-ion, an atom, and an ion. The 

coupled-cluster method using single and double substitution from Hartree-Fock determinant 

(CCSD(T)) method is used in our calculation. We choose AUG-cc-pVQZ basis set (Dunning’s 

correlation consistent basis set with quadruple-zeta). In our model, it is important to include 

the polarization functions and diffusion functions, because the antiproton has a negative 

charge which can polarize and diffuse the atomic/ionic electron cloud. AUG-cc-pVQZ basis 

set includes the polarization functions, and the “AUG-“prefix represents adding the diffusion 

functions.  

We used the keyword “charge” to include the existence of antiproton. The keyword 

“charge” allows us to put a point charge in the calculation. Antiproton has a negative charge 

and the mass is assumed infinity in quantum chemistry calculation (or adiabatic 

approximation), so we just put a negative charge at the position of antiproton. The existence 

of electrons is strongly prohibited in the vicinity of the antiproton because of the Coulomb 

repulsion between negatively charged particles. In order to include this effect efficiently, we 

added some basis functions centered on the position of the antiproton. Because the practical 

limitation of the smallest distance between particles in G09, we need the keyword “GFInput” 

to input the basis by listing the basis set. After writing an input file, we can use G09 to get the 

adiabatic energies. 

If the target atom is an alkali atom, we found that the adiabatic potential can be nicely 

approximated by the following function: 
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                  (3-1) 

Here, Z is the atomic number,  represents the potential at , which is equal to 

the total energy of the atom with atomic number , and  is the potential at 

, which equals the total energy of the alkali ion. In the asymptotic region, the function 

Eq. (3-1) behaves as a Coulomb-like function ( ), which is the correct asymptotic behavior of 

the adiabatic potential. The Eq. (3-1) are compared with the numerically obtained adiabatic 

potentials by taking , ,  as examples. The Figure 3-1 show that the simple 

model works nicely for all three atoms. 

 Figure 3-1 Adiabatic potential 
energies of antiproton + Atomic ion 
system. (a). The adiabatic potential 
energies of , given by Eq. 
(3-1) (green line), calculated using 
G09 (blue cross), and obtained by 
Ahlrichs et. al. in Ref. [30]. All 
three results agree well. 
 
 (b). The adiabatic potential 
energies of , given by Eq. 
(3-1) (green line), calculated using 
G09 (blue cross). 
 
 
 
 
 (c). Same as (b), for . 

(C) 
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3.2 The atomic binding energy and the reduced mass 

In our model, not only the adiabatic potential of  system, but the atomic binding 

energy of  is necessary. We used G09 program to calculate the atom energies. We calculate 

the binding energy of an atom  assuming the spherical symmetry of the system, but the 

adiabatic potential of  is calculated assuming the axial symmetry along the 

antiproton-atom axis. There may be a numerical discrepancy between these two different 

calculations. We tested some atoms to make sure that these two calculations are consistent. 

The comparison of ionization potentials obtained by various theoretical methods and 

experiments are shown in the next chapter. 

The reduce mass is derived by the formula 

                             (3-2) 

, , and  are the number of proton, neutron, and electron respectively. , , 

, and  are the mass of proton, neutron, electron, and antiproton respectively. 

We choose these particle numbers from the one of the isotope having the largest relative 

abundance in the earth. 
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3.3 Cubic spline 

The method how to obtain  is introduced in the previous chapter. This method 

requires finding the minima of the effective adiabatic energy. But we can only obtain the 

adiabatic potential at discretized distances , so we employed an interpolation method cubic 

spline to obtain the minimum of the adiabatic energy. The cubic spline is a smooth third-order 

polynomial function that is piecewise-defined. Cubic spline has these properties: (1) 

Continuous and smooth, (2) Differentiable, (3) The curve does not turn over, (4) the value is 

exact at the control points. By using cubic spline, it is easy to find the extreme value of a 

series because it is differentiable. If the spacing of the control points is small enough, the 

interpolation result is quite accurate.  

When utilizing the cubic spline method to interpolate the values of the adiabatic energy 

calculated by G09, there is an important thing that is worth to be mentioned. The output file of 

G09 is the total adiabatic energy which is the electronic adiabatic energy plus the nuclear 

charge potential. The nuclear-charge potential is given by 

              (3-3) 

This potential is proportional to , but the cubic spline is given by 

  

There is no  term, so the interpolation is not good for the total adiabatic energy. Thus, we 

utilized the cubic spline method to interpolate the electronic adiabatic energy, but not the total 

adiabatic energy. 
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3.4 How to obtain the parameters  and  

We obtain the parameters  and  from the effective adiabatic potential  

(Eq. (2-17)) by solving the conditions Eq. (2-18) and Eq. (2-19). Here we summarize the 

procedure we followed to obtain the parameters. 

 

(1) The adiabatic potentials of ion-antiprotonic system are calculated by G09 at discrete 

   points. 

(2) Obtain the electronic adiabatic energy by subtracting the nuclear-charge Coulomb  

   potential from the adiabatic potential. 

(3) Use the cubic spline interpolation method to have a piecewise polynomial functions of  

   electronic adiabatic energy. 

(4) Add the nuclear-charge Coulomb potential to (3), and obtain the adiabatic energy in  

   a polynomial form. 

(5) Evaluate the effective adiabatic energy for a given angular momentum. 

(6) Find the minimum of the effective adiabatic energy. 

(7) If the minimum is larger/smaller than the total ionization energy, go back to step (6) and  

   increase/decrease the angular momentum. 

(8) If the minimum of the effective adiabatic potential is equal to the atomic binding energy, 

   the position of the minimum is  and the angular momentum is  .  is 

approximated by Eq. (2-19). 
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IV. Result and Disscusion 

In this study we have to calculate the binding energy of atomic ion  and the adiabatic 

potential  of the ionic system .  system is a two center system, whereas the 

ion  is a single center system. Many quantum chemical calculations yield only a poor 

accuracy in adiabatic potential at the large distance limit , and the two center potential 

does not converges to the separated atomic limit (or the result of a single center system). We 

check the consistency between the single and double center calculation by comparing the 

binding energy of ions and the potentials  in the asymptotic limit. Table 4-1 shows 

the calculated values of the electronic adiabatic potentials  for the system  at the 

large diatance (  a.u.) and the binding energy of  for atoms from  to 

 (He to Ar). Two calculations agree within  a.u., which shows that two 

calculations are consistent with a satisfactory accuracy.  
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Element 
Adiabatic potential of  in a.u. at 
the distance  a.u.  

Binding energy of ion  

He -1.9998112  -1.9998112  
Li -7.2363845  -7.2363845  
Be -14.2773907  -14.2773907  
B -24.2984307  -24.2984307  
C -37.3750119  -37.3750119  
N -53.9926419  -53.9926419  
O -74.4986485  -74.4986485  
F -99.0154396  -99.0154396  
Ne -128.0561633  -128.0561633  
Na -161.6767169  -161.6767169  
Mg -199.3714819  -199.3714819  
Al -241.7145207  -241.7145207  
Si -288.6388312  -288.6388312  
P -340.4423780  -340.4423780  
S -397.2911714  -397.2911714  
Cl -459.2209873  -459.2209873  
Ar -526.4966980  -526.4966980  
 
 
 

The accuracy in the calculated adiabatic potential itself should be checked by the 

comparison with some literature values. The adiabatic potential of  for (A= He, Li) have 

been studied in Refs. [31, 32]. The comparison of our results with the values in the literature 

is shown in Figure 4-1. For the atoms He, and Li, our computational results agree well with 

the results obtained by others. It should be noted here that the adiabatic potential for  

with A=H is the Coulomb potential, and the exact potential is easily obtained.  

Table 4-1 The electronic adiabatic energy of  (  a.u.) and the binding energy of 
 for He-Ar targets calculated by CCSD(T) method with Gaussian09.  
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For other atomic targets than H, He, or Li, we only know the reliable values of the 

ionization potential of atoms/ions. Thus we can check the accuracy of our potential only in the 

united/separated atom limits, namely  and  of the  system. For 

example in the case of ,  should equal the binding energy of the ion Ne+, and 

 should equal the binding energy of the atom F. In Table 4-2, the absolute errors in 

 and  are listed, together with the error in the first ionization potential of 

atoms. Although the error in the first ionization potential is small, the error in  or 

 is of the order of several a.u. for large elements, such as Ar. We consider that these 

relatively large errors are acceptable in our model, since only the shape of the adiabatic 

Figure 4-1 (a) The 
adiabatic potential 
of  obtained 
by Ref. [30] (green) 
and G08 (red) 
 
 
 
 
 
 
 
(b) The adiabatic 
potential of  
obtained by Ref. 
[30] (green) and 
G08 (red) 

(a) 

(b) 
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energy curves determines the cross section, and the absolute value of energy is not important. 

As is seen in table 4-2, the errors in  is relatively small. This is because 

the relatively large error is mainly attributed to the effect of inner core electrons, and that the 

shape of the adiabatic potential may have small error. In the case of Ar target, for example, 

, and the error in this is 0.3490834 (see Figure 4-2). We 

consider the error in the shape is sufficiently small, and does not affect the cross section much. 

In order to confirm this, we employed a modified potential function,  

.        (4.1) 

The second term of this function represents the modeled error in our calculated potential. We 

have calculated the parameters ,  using this function with a= 0 , 1 , , and . 

The results are shown in Table 4-3. The parameters , , and  do not depend on the 

error significantly. Thus, we conclude that the present results of the adiabatic potentials 

calculated by G09 are good enough for our model. 

 

 
  

Figure 4-2 The Schematic diagram of the error in the adiabatic energy potentials of the 
experiment (solid line) and calculated by G09 (dot line) in the case of Ar target.  
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Element 
The error in  
(a.u.) 

The error in  
(a.u.) 

The error in  
(a.u.) 

The error in 
 

He 0.0008391 -0.0000011 -0.0002338 0.0002328 
Li 0.0017996 0.0434119 0.0008380 0.0425739 
Be 0.0010336 0.0484181 0.0452115 0.0032066 
B 0.0024159 0.0547662 0.0494517 0.0053146 
C 0.0019631 0.0669338 0.0571821 0.0097517 
N 0.0012390 0.0849209 0.0688969 0.0160240 
O 0.0038193 0.1088765 0.0861600 0.0227165 
F 0.0027908 0.1502719 0.1126958 0.0375762 
Ne 0.0012008 0.2014630 0.1530627 0.0484003 
Na 0.0068393 0.5649223 0.2026638 0.3622585 
Mg 0.0042948 0.6723393 0.5717616 0.1005777 
Al 0.0007362 0.7938338 0.6766341 0.1171997 
Si 0.0006039 0.9495980 0.7945700 0.1550279 
P -0.0005149 1.1553597 0.9502018 0.2051579 
S 0.0039148 1.4105631 1.1548449 0.2557183 
Cl 0.0028012 1.6839647 1.4144779 0.2694868 
Ar 0.0008087 2.0358493 1.6867659 0.3490834 
 
 
 
 

 
   

a = 0 0.7786534  5.0356663  0.5105075  
a = 1 0.7696739  4.9909760  0.4730288  

a =  0.7648783  4.9777763  0.4563110  

a =  0.7606681  4.9721491  0.4432884  

 
 
  

Table 4-2 The absolute errors in the first ionization energy , the , , and  
 for the atoms form He to Ar.  

Table 4-3 ,  and  obtained by using Eq. (4-1) in the case of Ar. 
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Table 4-4 The parameters ,  (approximated by Eq. (2-22)),  (given in Eq. 

(2-10) and calculated by G09), the polarizability [4-1], and . The values in the last three 

rows are calculated with the approximated adiabatic potential given by Eq. (3-1). 

We have calculated the adiabatic potentials  for various atomic targets to 

calculate the parameters ,  , and . The parameters, ,  (approximated by Eq. 

(2-22)),  (given in Eq. (2-10) and calculated by G09), the polarizability  taken from the 

literature [32], and , are listed in Table 4-4. The difference of  of approximated and 

calculated by G09 is negligible.  and  reflect the properties of targets. For example, 

 represents the mean radius of the electron wavefunction of the neutral target atom. The 

values in the last three rows are calculated with the approximated adiabatic potential given by 

Eq. (3-1). 

Element  (a.u.)  (approximated) (a.u.) (G09) (a.u.)  (a.u.)  (a.u.) 
H 1.001 0.500 0.492 4.4997412 0.031 

He 0.515 1.735 1.788 1.3837605 0.084 

Li 2.520 0.203 0.212 164.1900000 0.005 

Be 1.566 0.589 0.618 37.7900000 0.031 

B 1.412 0.892 0.864 20.4500000 0.095 

C 1.050 1.600 1.602 11.2700000 0.169 

N 0.839 2.496 2.472 7.4230000 0.252 

O 0.663 3.932 4.000 5.4120000 0.324 

F 0.578 5.181 5.311 3.7590000 0.475 

Ne 0.495 7.067 7.047 2.6610000 0.677 

Na 2.557 0.219 0.225 162.7000000 0.007 

Mg 1.724 0.615 0.025 79.8200000 0.023 

Al 1.862 0.706 0.695 45.9000000 0.061 

Si 1.453 1.245 1.263 37.3200000 0.110 

P 1.209 1.890 1.893 24.5000000 0.189 

S 1.017 2.789 2.834 19.5700000 0.252 

Cl 0.896 3.704 3.801 14.7100000 0.362 

Ar 0.779 5.036 5.094 11.0747000 0.511 

Li (app.) 2.541 0.198    
Na (app.) 2.745 0.182    
K (app.) 3.190 0.157    
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 and  show the periodicity representing the properties of atoms. In Figures 4-3, 

4-4, and 4-5, we plotted , , and the first ionization potential as functions of the 

atomic number of the target.   behaves very similar to  (see Figure 4-4 and Figure 4-5). 

The first ionization potential represents the strength of the electron binding. The electron 

binding is weakened as the antiproton approaches, and the electron is emitted at . The 

atoms having large ionization potentials (such as rare gas) cannot be ionized until the 

antiproton approaches close to the atomic nucleus. Thus the target atoms with large ionization 

potentials should have small . This is the reason why the behavior of the  is so 

similar to that of . 
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Figure 4-3  for 
the atoms form H to 
Ar. 

Figure 4-4   for the 

atoms form H to Ar. 

The periodicity of   
is very similar to that 
of  (Figure 4-3) 

Figure 4-5 The first 
ionization  for 
the atoms form H to 
Ar.  
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The capture/ ionization cross sections are calculated using the parameters in Table 4-3 

for the atoms from H to Ar. The capture/ionization cross sections for the target atoms in the 

second period in the periodic table (Li-Ne) are plotted in Figure 4-6. The rare gas atom (Ne) 

has the smallest cross section in this figure. This is mainly because of the large ionization 

potential.  

Roughly speaking atoms having the larger atomic number have the smaller cross section in a 

common period. 

In Figure 4-7, the cross sections for the atoms in the third period (Na-Ar) are plotted. 

Reflecting the periodicity of the elements, Figure 4-6 and Figure 4-7 show the similar 

tendency. Since our model can be applied to various atomic targets, it can provide the general 

tendencies in the cross sections, and clear physical picture of the processes.  

 

 
 

Figure 4-6 The capture/ionization cross section of Li-Ne. 
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Figure 4-7 The capture/ionization cross section of Na-Ar. 
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The validity of our model is discussed by comparing to the results obtained by some 

reliable theories, i.e. the semi-classical method, the result of K. Sakimoto [5, 26] and X. M. 

Tong et al. [25]. Figure 4-8 shows the capture/ionization cross sections obtained by our model 

together with the results in Refs. [5, 26, 25], for the atomic targets of H, He, and Li. Although 

our model does not require any heavy computations, it can reproduce general tendencies in 

the results obtained by sophisticated computations. Generally speaking our model yields 

relatively larger cross sections. This may be explained from our assumptions of the 

probability function given by Eq. (2-32). We assume that the probability is unity if the impact 

parameter is smaller than . The nonadiabatic probability, however, can be , 

thus our assumption of the unit probability may be the upper limit of the cross section.  

 

 

 

 

 

 

  

Figure 4-8 The capture/ionization cross section in -atom collision. Li target obtained by 
Sakimoto [26] (sky blue with solid square), and our model (red with open triangle). He target 
obtained by Tong et al. [25] (purple with open square) and our model (black with solid circle). 
H target obtained by Sakimoto [5] (green with cross), Tong et al. [25] (blue with star), and our 
model (yellow with open circle). 
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In Figure 4-9, the cross section for H target is solely plotted. Our model reproduces 

nicely the result of Sakimoto and Tong et al in the collision energy between 0.1 a.u. and 0.3 

a.u. In low collision energy (<0.1 a.u.), on the other hand, the result of our model is little bit 

larger than the result of Sakimoto. Our cross section clearly shows the sudden change of 

tendency at . The energy region lower than  shows the Langevin cross section 

( ), whereas the higher energy regions shows the  behavior. It is also seen from 

Sakimoto’s results (red line) that the behavior in the low energy region has smaller slope, and 

that the high energy region has steeper slope. The point of behavior change, however, is not 

clear in Sakimoto’s results. This may be because the number of points is small to see the 

sudden change.  

 

 

 

 

  

Figure 4-9 The capture/ionization cross of  by Sakimoto (red), Tong et al. (green), and 
our model (blue) 
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Figure 4-10 shows the comparison with Tong’s results for the He target. Their results are 

relatively smaller than ours. At the point of the highest energy in their results a strange 

behavior is seen. Except this point, Tong’s results are coincident with our model. In the higher 

energy region there results shows the steeper slope (roughly parallel to our results of ), 

and the low energy rigion shows a smaller slope (roughly parallel to our results of ).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-10 The capture/ionization cross of  derived by X. M. Tong et al. (red), and our 
model (green) 
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In the case of Li target, Sakimoto provided the results at many energy points. Therefore 

the point of behavior change is clearly seen, and agrees with  in our model (see Figure 

4-11).  

 

 
 
 
 
  

Figure 4-11 The capture/ionization cross of  derived by Li sakimoto (red), and our model 
(green) 
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Our model basically shows similar tendency of cross section with the accurate 

calculation results except the fact that our cross section is slightly larger. This may be because 

of our assumption of the unit probability. If we employ a non-unity reaction probability 

constant into our model, the results of our model reproduce the accurate calculation much 

better (see Figures 4-12 to 4-14). We have chosen the reaction probabilities so as to fit the 

reliable results best. The reaction probabilities obtained are 1, 0.8, and 0.67 for H, He, and Li 

respectively. It should be noted that the Figures 4-12 to 4-14 are in the linear scale. Our model 

reproduces the reliable results even in the linear scale plot. Thus further developments in our 

theory can be expected. A simple theory to find the reaction probability improves our model 

significantly. Since the reaction probability represents the nonadiabaticity in the region 

, we believe that sophisticated theories of nonadiabatic transition can be utilized to 

find the way to discuss the reaction probability that can improve our model. 

 
 
 
 

Figure 4-12 The capture/ionization cross of  obtained by Sakimoto (red), Tong el al 
(green), and our model (blue) with reaction constant = 1 
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Figure 4-13 The capture/ionization cross of  obtained by Tong et al (red) and our model 
(green) with reaction constant = 0.8 

Figure 4-14 The capture/ionization cross of  derived by Sakimoto (red) and our model 
(green) with reaction constant = 0.67 
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V. Summary 

We discussed the antiproton-atom collision problem in low collision energy region. 

Fermi-Teller model does not agree with accurate results, and we figure out two possible faults 

in their model, which are the classical straight line trajectory and the nonadiabatic transition 

taking place at . Then, we proposed a new modified model by considering the 

nonadiabatic transition at  (  and curved trajectory. Our model is as simple 

as Fermi-Teller model, and is applicable to various atoms even for heavy atoms. The cross 

section is given as a function of parameters, , , , and , which are obtained for 

various atomic targets from H to Ar. Our model also gives a clear picture in physics for this 

kind of process. Furthermore, our simple model agrees with the available accurate results for 

the targets, H, He, and Li. The cross section of the capture/ionization process is a linear 

function of  when . When , the cross section is proportional to . Our 

results gives relatively larger cross sections compared with those of reliable calculations. By 

considering the reaction constants, our model almost can accurately reproduce the accurate 

results.  

There may be several points that can improve our model. One is the state-specified cross 

section. Another point may be the reaction probability. In our model, we assume the reaction 

probability is unity if the antiproton touches the reaction region ( ), but the 

nonadiabatic transition probability is associated to the energy gap of the initial state and final 

state. By considering the energy gap and the velocity around the reaction region ( ), 

probably we can find a way to derive the reaction probability. Detailed analysis of the 

nonadiabatic effects can provides the final state distribution, leading to the state-specified 

cross section. 
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