
國 立 交 通 大 學

資訊工程系

碩士論文

移植 NCTUns 網路模擬器到 Linux 平台並提供

Emulation 的功能

Porting the NCTUns Network Simulator to Linux and

Supporting Emulation

研 究 生: 廖國強

指導教授: 王協源 教授

中華民國九十三年六月

 ii

中文摘要

對於 IP 網路的研究者而言，一個網路模擬器是一個非常有用的工具，可以

幫助他們學習或發展新的 IP 網路技術。有了一個網路模擬器，研究者可以省去

很多建構真實的網路環境時所要花的時間與金錢。在模擬的環境中，所有的網路

狀況以及設定都是可重複呈現的，因此研究者可很容易的得到重複的實驗結果。

NCTUns 網路模擬器已經發展了很多年了。可以說它已經變成一個高精確度以及

具有擴張性的一個網路模擬器。由於它的幾個新穎的模擬方法，它提供了很多獨

特的優點，而這些優點是其他傳統的模擬器所無法擁有的。

在本篇論文中，可分成兩大主題。一為移植 NCTUns 網路模擬器到 Linux 平

台。過去，NCTUns 只能在 FreeBSD 平台上執行。但由於最近 Linux 系統越來越

普及，所以我們也希望能將模擬器移植到 Linux 平台並讓更多人使用我們的模擬

器。在本篇論文中的第一部分，我們將會討論移植 NCTUns 網路模擬器的相關細

節。另一主題是為 NCTUns 提供 emulation 的功能。Emulation 是一種能夠讓網

路模擬器和真實的網路設備溝通的功能。這種功能可以大大的幫助 IP 技術發展

者發展及測試他們的產品。在本篇論文的第二部分，我們將會討論 emulation

在 NCTUns 下的設計與實作。

 iii

Abstract

For IP network researchers, a network simulator is a very useful tool to help

them study or develop new IP network technologies. With a network simulator,

researchers can save much time and money required to build a real network

environment. In a simulated network environment, all network conditions and

configurations are repeatable, therefore researchers can easily repeat theirs

experimental result. The NCTUns network simulator has been developed for many

years. It already becomes a high-fidelity and extensible network simulator. Due to its

several novel simulation methodologies, it provides many unique advantages that can

not be achieved by traditional network simulators.

In this paper, we have two main topics. The first one is porting the NCTUns

network simulator to Linux. In the past, the NCTUns can only run on the FreeBSD

platform. However recently, the Linux system becomes more and more popular. In

part I of this paper, we will discuss and describe in details how we port the NCTUns

from FreeBSD to Linux. The other topic is supporting emulation in the NCTUns.

Emulation is a kind of ability that can allow a network simulator to interact with real

network devices. This function can greatly help IP technology developers to develop

or test their products. In part II of this paper, we will discuss the detail of the design

and implementation of the NCTUns network emulator.

 iv

致謝

 感謝恩師王協源教授在這研究所兩年的悉心教導，讓我在專業領

域方面獲益良多。研究所兩年，將會是我在資訊工程領域影響我最深

的一個階段。有了這兩年扎實的專業訓練，我相信這是我往後在這領

域發展最重要的基礎訓練。

 感謝林華君教授、黃寶儀教授、以及吳曉光教授在論文口試期間

所給予的建議與指正，讓這篇論文更為完善。

 感謝網路與系統實驗室(Network and System Lab.)的所有成員，

由於有你們的陪伴以及互相勉勵，讓我兩年的研究生生活更加豐富與

多采多姿。

 最後，感謝家人與朋友的全力支持，讓我研究所兩年能全心全力

的致力於課業與研究之上，順利的完成研究所學業。

 v

Table of Contents
Part I: Porting the NCTUns Network Simulator to Linux1

1. Development History ...1
2. Introduction..3
3. High Level Architecture...4

3.1 Simulation Methodology ...5
3.2 Job Dispatcher and Coordinator...7
3.3 Simulation Engine Design ...9
3.4 Kernel Modifications ...14
3.5 Discrete Event Simulation ...16

4. Porting to Linux ...16
4.1 User-Level Components ..16

4.1.1 GUI ...17
4.1.2 Job Dispatcher, Coordinator, Daemons, and Real-life Programs17

4.2 Simulation Engine..19
4.2.1 Independent Components..19
4.2.2 System Calls..19
4.2.3 Memory Mapping ...20
4.2.4 Process Scheduling ...24

4.3 Kernel Modifications ...27
4.3.1 IP Address Translation and Source-Destination-pair IP Scheme 27
4.3.2 Tunnel Interface ..33
4.3.3 System Calls..39
4.3.4 Port Number Mapping and Translation.......................................43
4.3.5 Support Different Time Scales..46
4.3.6 Processing Kernel Timers and Kernel Events.............................48

4.3.6.1 Maintain Virtual-time Timers ..48
4.3.6.2 Kernel Timeout Event Triggering51

4.3.7 Based on the Virtual Time...52
4.3.8 NCTUns Divert Socket ...58

5. Evaluation ..63
5.1 Simulation and Experiment Result Comparison....................................63
5.2 Simulation Speed ...67
5.3 Fixed CBR UDP Stream on Multiple Hop Networks Case68
5.4 MANET in the NCTUns network simulator..71

6. Future Work ...74
7. Concluding Remarks for Part I ..75

 vi

Part II: Supporting Emulation ...76
1. Introduction..76
2. Design Goals..78
3. Features ..79

3.1 Based On IP Protocol...79
3.2 Interact With Real Hosts ..80
3.3 Interact With Real Routers...80
3.4 Can Establish TCP/UDP Connections between the Emulator and Real
Hosts ..81
3.5 An External Host Can Be an Ad-hoc/Infra-structure Mode Mobile Node
in Emulator...82
3.6 Can Use All Features and Capabilities of NCTUns Network Simulator
..82

3.6.1 Support for Various Networks ..83
3.6.2 Support for Various Networking Devices83
3.6.3 Support for Various Network Protocols83
3.6.4 Application Compatibility and Extensibility84
3.6.5 User Friendliness ..84
3.6.6 Open System Architecture ..84

4. Related Work..85
5. Design and Implementation ...86

5.1 User-Level Daemon ...87
5.2 Capture Packets from the Kernel ...88

5.2.1 Using Divert Socket in FreeBSD..88
5.2.2 Using Netfilter and Added System Calls in Linux......................89

5.3 Design of Emulation Daemon for External Host...................................94
5.3.1 Adding Routing Entries...95
5.3.2 Translate IP Address..96
5.3.3 Translate Port Number ..97
5.3.4 Setting Packet Filter Rules..98

5.4 Design of Emulation Daemon for External Router................................99
5.4.1 Translate IP Address..101
5.4.2 Adding Routing Entries...103

5.4.2.1 Adding Routing Entries on the Simulation Machine103
5.4.2.2 Adding Routing Entries on the External Router106

5.4.3 Unnecessary to Translate the Port Number...............................107
5.4.4 Setting Packet Filter Rules..107
5.4.5 “200.X.Y.Z” Format Discussion ...108

 vii

5.5 Simulation Speed Should Synchronize With the Real Time................ 111
6. More Consideration ...112

6.1 Re-compute Header Checksum..112
6.2 More than One External Host ..112
6.3 More than One External Router...115

7. Evaluation ..117
7.1 Accuracy ..117
7.2 Throughput...120

8. Concluding Remarks for Part II...122
Reference ..123

 viii

List of Figures
Figure I-3.1.1: The kernel re-entering simulation methodology....................................5
Figure I-3.1.2: The simulation network topology...7
Figure I-3.1.3: The packet trace of a packet that will traverse the simulation network

from host 1 to host 2...7
Figure I-3.2: The distributed architecture of the NCTUns 1.0 network simulator.........8
Figure I-3.3.1: The architecture of the NCTUns 1.0 network simulator......................10
Figure I-3.3.2: The module based platform..10
Figure I-4.3.1: IP address translation...28
Figure I-4.3.2: Tcpdump module...36
Figure I-5.1.1: The testing network topology...63
Figure I-5.1.2: The total throughput comparison between the experiment case and the

simulation case...65
Figure I-5.1.3: The experiment result of two contending TCP connections................66
Figure I-5.1.4: The simulation result of two contending TCP connections.................66
Figure I-5.2.1: The simulation performance under various constant-bit-rate UDP

traffic loads. (A higher ratio means a better performance).............................67
Figure I-5.3.1: The different number of forwarding nodes in each simulation case....69
Figure I-5.3.2: The performance under different forwarding nodes (switch or

router)...69
Figure I-5.3.3: The memory usage under different forwarding nodes (switch or

router)...70
Figure I-5.4.1: The network topology that is organized by the ad-hoc mode mobile

nodes...72
Figure I-5.4.2: The performance under different network sizes (different

dimensions)..73
Figure I-5.4.3: The memory usage under different network sizes (different

dimensions)..74

Figure II-3.4(a): A TCP connection can be set up between the simulated node and the
external host...81

Figure II-3.4(b): A TCP connection can be set up between two external hosts...........82
Figure II-5.1(a): The emulation daemon receives packets from the real-world network

(Ethernet network), and then directs them into the simulation network........87
Figure II-5.1(b): The emulation daemon receives packets from the simulation network,

and then injects them into the real-world network (Ethernet network)..........88
Figure II-5.2.2: The original architecture of the IP packet filtering mechanism in

 ix

Linux and our proposed approach..90
Figure II-5.4 (a): the trace of TCP SYN packet with external router...........................99
Figure II-5.4 (b): the trace of TCP SYN-ACK packet with external router...............100
Figure II-5.4.1: Translate the IP address pair from the S.S.D.D format to the

200.X.Y.Z format..102
Figure II-5.4.2: A complex topology for an external router.......................................105
Figure II-6.2: More than one external host...113
Figure II-6.3: More than one external router..115
Figure II-7.1.1: The emulation case for testing the accuracy of RTT.........................118
Figure II-7.1.2: The variance of RTT...118
Figure II-7.1.3: The difference between the average and the expected RTT..............118
Figure II-7.2.1: The emulation case for testing two contended greedy TCP

connections..121
Figure II-7.2.2: The contending behavior between a real TCP connection and a

simulated TCP connection..121
Figure II-7.2.3: The contending behavior between two simulated TCP connections121

 1

Part I: Porting the NCTUns
Network Simulator to Linux

1. Development History

The NCTUns 1.0 network simulator is a high-fidelity and extensible network

simulator capable of simulating various devices and protocols used in both wired and

wireless IP networks. Its core technology is based on the simulation methodology

invented by S.Y. Wang at Harvard University in 1999 [6, 7]. Due to this novel

methodology, the NCTUns 1.0 network simulator provides many unique advantages

that cannot be achieved by traditional network simulator such as OPNET [8] and ns-2

[3].

The predecessor of the NCTUns 1.0 network simulator is the Harvard network

simulator [9], which was authored by S.Y. Wang in 1999. As feedbacks about using

the Harvard network simulator come back, it is found that the Harvard network

simulator has several limitations and drawbacks that need to be overcome and solved,

and some features and functions need to be implemented and added to it. For these

reasons, after joining National Chiao Tung University (NCTU), Taiwan in February

2000, Wang designed a new simulation methodology for the NCTUns 1.0 network

simulator.

The NCTUns 1.0 network simulator removes many limitations and drawbacks

 2

with the Harvard network simulator. It uses a distributed architecture to support

remote simulations and concurrent simulations. It also uses an open-system

architecture to enable protocol modules to be easily added to the simulator. In

addition, it has a fully-integrated GUI environment for editing a network topology

and specifying network traffic, plotting performance curves, configuring the protocol

stack used inside a network node, and playing back animations of logged packet

transfers.

Furthermore, Wang proposes an approach to apply discrete event simulation to

the NCTUns 1.0 network simulator to speed up its simulation speed [2]. The Harvard

network simulator used a time-stepped method to implement its simulation engine. As

such, its simulation speed is very slow. To overcome this problem, the NCTUns 1.0

applied the event-driven (i.e., the discrete event simulation methodology [10])

approach to its simulation engine. As such, its simulation speed is much faster than

the Harvard network simulator.

The NCTUns 1.0 network simulator has been released to the networking

community on 11/01/2002. Its Web site is set up at

http://NSL.csie.nctu.edu.tw/nctuns.html. As of 4/5/2004, according to the download

user database, more than 1,610 people/organizations from more than 60 countries

have registered with the NCTUns 1.0’s web site and downloaded it.

We want more people or organizations to use the NCTUns 1.0 network simulator.

Because the Harvard network simulator and the current version of NCTUns 1.0

network simulator can only run on the FreeBSD platform,promoting their uses has

some difficulties. So we decide to port the NCTUns network simulator from FreeBSD

 3

4.x to Linux 2.4.x. Of course, all advantages of the FreeBSD version of NCTUns 1.0

network simulator will be reserved and even improved during the porting to the Linux

platform. All novel or unique design of the FreeBSD version of NCTUns 1.0 network

simulator will also be implemented into the Linux version, including kernel

re-entering simulation methodology, discrete event simulation methodology, open

system architecture, etc. In addition, several new network types are implemented into

the Linux version including traditional optical network, optical burst network,

GSM/GPRS cellular network, etc. Due to our continuous improvement, the Linux

version of NCTUns 1.0 network simulator is ready and is more powerful than the

FreeBSD version. We plan to release the Linux version of NCTUns 1.0 network

simulator soon. At that time, we expect that more and more people or organizations

will use our network simulator.

2. Introduction

The FreeBSD version of the NCTUns network simulator has already become a

very stable product. From releasing it at 11/01/2002 until now, many users have

provided various suggestions and bug reports, and we continue to improve it

according to these feedbacks. For the latest version, we are confident that the

FreeBSD version of the NCTUns network simulator is a mature and stable product.

However, we observe a situation: many users expect us to port the NCTUns

network simulator from FreeBSD to Linux platform. Many users are familiar with the

Linux system. However, not many of them have experience with using a FreeBSD

system. As such, they have to learn how to use the FreeBSD system before using the

 4

NCTUns 1.0 network simulator. This becomes a big barrier to spread our network

simulator. This problem becomes more critical if more and more people use the Linux

as their usual working platform. As such, in order to continually spread our network

simulator, it is better for us to port the NCTUns 1.0 network simulator to the Linux

platform.

Porting the NCTUns 1.0 network simulator to Linux is not a simple task. All

components must be carefully considered. This is especially true for the kernel

modification part and the simulation engine. This is because other components (e.g.

daemons, tools, job dispatcher, coordinator and GUI) are mostly independent of

operating systems. The most difficult task of porting to Linux is to hack the Linux

kernel. As we know, FreeBSD and Linux have many differences between them

although both of them belong to the UNIX-like system. For example, process

scheduling, BSD socket implementation, TCP/IP protocol stack implementation and

soft interrupt mechanism are completely different. In addition, applying the kernel

re-entering and discrete event simulation methodology to Linux is also a big

challenge to us. Our goal is to reserve and even to improve all the features of the

FreeBSD version of the NCTUns network simulator in the Linux version.

In part I of this paper, we will clearly explain how we port the NCTUns 1.0

network simulator to Linux. All components in the NCTUns network simulator will

be discussed in the following chapters.

3. High Level Architecture

The NCTUns network simulator uses a distributed architecture to support remote

 5

simulations and concurrent simulations. It also can use an open-system architecture to

enable protocol modules to be easily added to the simulator. In the following we

describe some important features and components of the NCTUns network simulator.

3.1 Simulation Methodology

The NCTUns network simulator is based on a new simulation methodology --

the kernel re-entering simulation methodology. It uses an existing real-world

FreeBSD/Linux protocol stack to provide high-fidelity TCP/IP network simulation

results. Figure I-3.1.1 depicts this concept.

In figure I-3.1.1, the TCP/IP protocol stack used in the simulation is the existing

real-life stack in the kernel. Although there are two TCP/IP protocol stack depicted,

actually they are the same one – the protocol stack inside the FreeBSD/Linux kernel.

The tunnel interface is a pseudo network interface that does not have a real physical

network attached to it. From the kernel’s point of view, the tunnel interface is no

different from any real Ethernet network interface.

Figure I-3.1.1:
The kernel re-entering
simulation methodology

 6

In figure I-3.1.1, the TCP sender sends a packet into the kernel, and the packet

goes through the kernel’s TCP/IP protocol stack just as an Ethernet packet would do.

Because we configure the tunnel interface 1 as the packet’s output device, the packet

will be inserted to tunnel interface 1’s output queue. The simulation engine will

immediately detect such an event and issue a read system call to get this packet

through tunnel interface 1’s special file (Every tunnel interface has a corresponding

device special file in the /dev directory.). After experiencing the simulation of

transmission delay and link’s propagation delay, the simulation engine will issue a

write system call to put the packet into tunnel interface 2’s input queue. The kernel

will then raise a soft interrupt and put the packet into the TCP/IP protocol stack. Then,

the packet will be put into the receive queue of the socket that the TCP receiver

creates. Finally, the TCP receiver will use a read system call to get packet out of the

kernel.

In the case of figure I-3.1.1, the packet sent by the TCP sender passes through

the kernel two times. This is the property of the kernel re-entering simulation

methodology. By re-entering the kernel multiple times, we can create an illusion that

a packet passes through several different hosts (i.e., the packet thinks that it passes

through several different TCP/IP protocol stack). Actually, the packet is always in the

same machine and passes through the same TCP/IP protocol stack. The following

figures (figure I-3.1.2 and figure I-3.1.3) further illustrate this concept.

Figure I-3.1.2 shows an example simulation network topology and figure I-3.1.3

illustrates how the kernel re-entering simulation methodology works in figure I-3.1.2.

In the example topology, host 1, host 2 and the router are layer-3 devices while the

switch is a layer-2 device (Here we use the OSI 7-layer standard). We directly use

 7

those protocols that are higher than the layer-3 protocol (i.e., the network or IP layer)

in the kernel. As such, if any device is a layer-3 device, we only need to simulate its

layer-1 and layer-2 protocol in the simulation engine and its other protocols can be

simulated by directly using those protocols already in the kernel. Therefore, in figure

I-3.1.2, when a packet is passed through the two hosts or the router, it will be passed

into the kernel. As we can see in figure I-3.1.3, if a packet wants to traverse the

simulation network from host 1 to host 2, it needs to be put into the kernel three

times.

3.2 Job Dispatcher and Coordinator

The NCTUns network simulator uses a distributed architecture to support remote

Figure I-3.1.2: The simulation network topology

Figure I-3.1.3: The packet trace of a packet that will
traverse the simulation network from host 1 to host 2.

 8

simulations and concurrent simulations. The job dispatcher is used to do this task. It

should be executed and remain alive all the time to manage multiple simulation

machines. On every simulation machine, the coordinator needs to be executed and

remain alive to let the job dispatcher know whether currently this machine is busy

running a simulation case or not. Figure I-3.2 depicts the distributed architecture of

the NCTUns 1.0 network simulator.

For example, the job dispatcher in the simulation service center can accept

simulation jobs from all of the world. When a user submits a simulation job to the job

dispatcher, the dispatcher selects an available simulation machine to service the job. If

there is no available simulation machine, the job will be put into the job queue of the

job dispatcher. Every simulation machine always has a running coordinator to

communicate with the GUI program and the job dispatcher. The coordinator will

notify the job dispatcher whether the simulation machine managed by itself is

available or not. When the coordinator receives a simulation job from the job

dispatcher, it forks (executes) a simulation engine process to simulate the specified

network and protocols. When the simulation engine process is running, the

coordinator will communicate with the job dispatcher and the GUI program. For

Figure I-3.2:
The distributed
architecture of the
NCTUns 1.0 network
simulator

 9

example, periodically the simulation engine process will send the current virtual time

of the simulation network to the coordinator. Then the coordinator will relay the

information to the GUI program. This enables the GUI user to know the progress of

the simulation. During a simulation, the user can also on-line set or get a protocol

module’s value (e.g. to query or set a switch’s switch table). Message exchanges

happening between the simulation engine process and the GUI program are all done

via the coordinator.

3.3 Simulation Engine Design

The simulation engine is a user-level program and has complex functions. We

can say that it functions like a small operating system. Through a defined API, it

provides useful and basic simulation services to protocol modules. These services

contain virtual clock maintenance, timer management, event scheduling, variable

registration, script interpreter, IPC interface, etc. At the same time, it manages all of

the tools and daemons that are used in a simulation case and decides when to start

these programs, when to finish them, and when to run them. Figure I-3.3.1 shows an

architecture diagram readers of the NCTUns 1.0 network simulator.

 10

In figure I-3.3.1, we can see the whole architecture of the NCTUns 1.0 network

simulator. In the section, we first describe the organization of the simulation engine.

Figure I-3.3.1: The architecture of the NCTUns 1.0 network simulator

Figure I-3.3.2: The module based platform

 11

In section 3.4, we will explain how the kernel supports the simulation engine. We can

simply divide the simulation engine into several components:

I. Script Interpreter

The script interpreter reads a script file of a simulation case to construct the

simulation network environment, the network conditions, protocol module settings,

and the network traffic.

II. Module Manager

The module manager manages all protocol modules that users registered and

used in a simulation. When the script interpreter parses the script file, the module

manager dynamically constructs the corresponding C++ objects and organizes them

to build a simulation network environment. In figure I-3.3.1, those modules in the box

of the module-based platform form a simple simulation network.

III. Command Dispatcher

The command dispatcher is used to communicate with other external

components such as the coordinator, command console (It is a modified tcsh.), and

the GUI program.

IV. NCTUns APIs

We call these APIs provided by the simulation engine NCTUns APIs. All of the

protocol modules can ask for the simulation engine’s services via the NCTUns APIs

such as registering modules, processing events, setting timers, creating/freeing

packets, etc.

 12

V. Event Queue

The event queue has three kinds of data structure type inside it: event, timer, and

event packet. The event is used to encapsulate messages that are exchanged between

protocol modules. Every event has a timestamp inside it used to decide when to

process it. The timer can be used to set what to do at a specified time stamp. If an

event encapsulates a network packet (e.g. an IP packet), we call the event an event

packet. In the event queue, all events or timers are sorted with their timestamp.

VI. Scheduler

The main job of the scheduler is to execute the event or timer in the event queue.

The scheduler always picks up the event or timer which has the smallest timestamp to

execute. In the meantime, the scheduler will advance the simulation time to the

timestamp of the event.

VII. System calls and tunnel interface t0e0

We use two approaches to enable the simulation engine to communicate with the

FreeBSD/Linux kernel. The first approach is through system calls. The simulation

engine can use system calls that are added or modified by us to register/get

information into/from the kernel. This approach suits the situation that the simulation

engine actively wants to get or set some kernel parameters. The second approach is

through using a tunnel interface. If the kernel wants to actively inform the simulation

engine with some information, we use the tunnel interface t0e0. The kernel can fill a

packet with some information and inserts it into the tunnel interface t0e0. Then the

simulation engine can issue a read() system call to get the packet and further get the

information inside it. This mechanism is mostly used by the kernel timeout event and

 13

the tunnel check event (we will describe this in section 3.5 of part I).

VIII. IPC (Inter-Process Communication)

The IPC in the simulation engine is used to communicate with the coordinator.

When a GUI user wants to send a command to the simulation engine such as pause a

simulation, stop a simulation, send command to a protocol module etc., the GUI

should send the command to the coordinator and then the coordinator relays the

command to the simulation engine via IPC. After the simulation engine processes the

command, it will send the result back to the coordinator and then the coordinator will

relay the result to GUI.

Due to the module-based platform, we can dynamically construct or change the

network protocol of a device. For example, figure I-3.3.2 shows a simple simulation

case: the switch is a two-port layer-2 device and is connected with the host 1 and host

2 (host 1, 2 are both layer-3 devices). We can easily change the protocol module

settings of host 1. We can just replace the FIFO module with a RED (Random Early

Drop) module in the script file and then the module manager will dynamically

construct corresponding protocol module settings according to the script file. We can

also build a network device via the module-based platform. The switch device in

figure I-3.3.2 is a layer-2 device and all components of the device are represented by

modules. In addition to protocol modules, the layer-3 devices (such as host 1, host 2)

will need kernel supports because we directly use the layer-3 protocols in the kernel.

Figure I-3.3.2 also shows the flow path that a packet will take when it is

exchanged between the two traffic generators via the module-based platform. We

already explain how a packet will pass through the kernel in section 3.1. When the

 14

packet is read by the simulation engine from tunnel interface 1 (tun1), the packet will

follow the trace of figure I-3.3.2 and then the simulation engine will insert it into

tunnel interface 2. Finally, the kernel will send it to the traffic generator.

3.4 Kernel Modifications

In order to enable the kernel re-entering simulation methodology to properly

work, we should modify the kernel source according to our requirements. These

requirements include:

I. Allow S.S.D.S IP Scheme to Work

In order to route packets in the same kernel, we propose a special IP scheme:

S.S.D.D IP format. Readers can refer to [1] and [13] to get the detailed definition.

As such, we should add some mechanisms into the TCP/IP protocol stack to

correctly translate the IP address of a packet.

II. Modify the Tunnel Interface Device Driver

Modifying the tunnel driver is necessary to enable the S.S.D.D IP scheme to

work because we want the packet to have the normal IP scheme when it is read

by the simulation engine. Also, we want the packet to have the S.S.D.D format

when it is inserted into a tunnel interface.

III. Perform Port Number Mapping

We use an example to illustrate this requirement. If there are two Web servers

running on the same simulation network, both of them may want to use the

default port number 80 as their listening port number. However, because they are

running on the same system (using the same TCP/IP protocol stack), only one of

 15

them will successfully bind port number 80. To solve this problem, we should do

port mapping in the kernel to enable the program running on different simulated

nodes to use the same port number.

IV. Add or Modify System Calls

We need to add or modify some system calls to provide services that the

simulation engine will require. For example, when a traffic generator is forked

by the simulation engine, the simulation engine immediately needs to tell the

kernel that the traffic generator belongs to which node. This operation is needed

because we have to use this information to translate the IP address of those

packets sent by the traffic generator.

V. Let Kernel Timers to be based on the Virtual Time

Because all of the events or timers in the simulation engine’s event queue are

based on the virtual time, all of kernel timers used for the NCTUns 1.0 should

also use the virtual time. For example, when the TCP control block (i.e., a TCP

socket handler) transmits out a packet, it may set a retransmission timer. If the

TCP control block is used for a simulation network, the timer should use the

virtual time. In addition, all of the system calls that are involved with real time

may need to use virtual time. These system calls include select(), alarm(), sleep(),

gettimeofday(), etc.

VI. Kernel Events

There are two kinds of kernel event. The first is the kernel timeout event. When

the kernel wants to schedule a timer and the timer is based on the virtual time,

we should use the tunnel interface t0e0 to tell the simulation engine when to

trigger this event. The second is the tunnel check event. When any packet is

 16

queued into a tunnel interface’s output queue, the kernel will insert a tunnel

check event into the tunnel interface t0e0 to let the simulation engine know

which tunnel interface has packets to send.

3.5 Discrete Event Simulation

We apply the discrete event simulation methodology to the NCTUns network

simulator to speed up the simulation speed [2]. The challenge is to combine the kernel

re-entering simulation methodology with the discrete event simulation methodology.

The objects simulated in the NCTUns 1.0 are not contained in a single program;

rather, they are contained in multiple independent programs running concurrently on a

UNIX machine such as traffic generators, the simulation engine, the UNIX kernel, etc.

Therefore, we need the kernel to provide some information or services to

communicate with the simulation engine. As such, the simulation engine can manage

all events and timers at user level. In other words, our goal is to manage and trigger

all of the events in the simulation engine regardless of whether the events are kernel

events or not.

4. Porting to Linux

This chapter is the most important part of part I in this paper. In this chapter, we

will discuss all components of the NCTUns 1.0 network simulator one by one and

focus on their differences between the FreeBSD and the Linux versions.

4.1 User-Level Components

 17

GUI, job dispatcher, coordinator, the simulation engine, daemons and real-life

programs are all user-level programs. These programs have a common property --

they are all platform independent programs. On most UNIX-like systems, they can be

easily re-compiled and executed without a large number of modifications. Naturally,

they can be easily ported from FreeBSD to Linux.

4.1.1 GUI

We use the Qt library [11] to develop our GUI program. Qt is a complete C++

application development framework, which includes a class library and tools for

multi-platform development and internationalization. It provides many graphical Qt

tools and the numerous Qt APIs such as drag and drop, 3D OpenGL graphics and

network programming, etc. It has a powerful property -- it is a cross-platform C++

application development framework. As such, we just need to maintain a single

source-tree of the GUI program. When we need to port it to another platform, the only

thing that we need to do is to recompile it.

4.1.2 Job Dispatcher, Coordinator, Daemons, and Real-life
Programs

The job dispatcher and the coordinator are standard C++ programs. To

communicate, they use TCP socket, UDP socket and UNIX domain socket. They will

use these sockets ether to communicate with each other or to send data to GUI and the

simulation engine. As we know, all of these sockets are provided by most UNIX-like

systems including FreeBSD 4.x and Linux 2.4.x. So we just need to recompile these

programs on Linux 2.4.x system and then they will correctly work for the NCTUns

 18

1.0.

The daemons that are provided by the NCTUns 1.0 contain Mobile-IP daemons,

emulation daemons and routing daemons (OSPF and RIP routing daemon). Routing

daemons are independent of UNIX-like system. For the Mobile-IP daemons and

emulation daemons, they need some kernel support. They want the kernel to provide a

mechanism to enable them to capture packets from the kernel to the user space. These

daemons use this mechanism to capture packets and put them back into the kernel

after modifying some filed of packets. In FreeBSD 4.x, they can use BPF (Berkeley

Packet Filter) and divert socket to complete this task. In Linux 2.4.x, the kernel does

not support the divert socket. However, Linux provides a similar mechanism to do

this work. They are the shared library “libipq” and the netfilter, iptables and ip_queue

[5] kernel modules. Unfortunately, this approach can not completely satisfy these

daemons’ requirement. To overcome this problem, we bring FreeBSD’s divert socket

into Linux. In section 5.2.2 of part II, we will clearly explain why the original

mechanism of Linux can not work and then describe our approach.

Examples of real-life programs include stcp/rtcp, stg/rtg, ttcp, Apache Web

server, Web browser, FTP daemon, FTP client, telnet daemon, telnet client, etc

(Stcp/rtcp, stg/rtg, and ttcp are general purpose traffic generators provided by the

NCTUns 1.0). Due to our novel simulation methodology, all real-life application

programs can run on our simulation network without any special modification. They

only need to be recompiled on the Linux system and then they can directly run on the

Linux version of the NCTUns 1.0 network simulator.

 19

4.2 Simulation Engine

In section 3.3 of part I, we clearly describe the architecture of the simulation

engine. Some components of the simulation engine are independent of the operating

platform while some components are dependent. In this section, we will discuss these

components one by one and compare their differences.

4.2.1 Independent Components

Script interpreter, module manager, command dispatcher, scheduler, NCTUns

APIs, IPC and protocol modules belong to independent components. Their functions

are independent of the used operating system. Therefore, we do not need to modify

any of them.

4.2.2 System Calls

In figure I-3.3.1, we can see that the simulation engine has to ask the kernel for

some services via added system calls. We will describe all of the system calls that are

added or modified by us in section 4.3.4 of part I.

Because these system calls numbers registered in FreeBSD and Linux are

completely different, we should decide which one will be used at compile time.

Following is an example code segment:

#ifdef LINUX

syscall(261, 0x06, nid, 0, &portnumber);
#else

syscall(290, 0x06, nid, 0, &portnumber);
#endif /* LINUX */

We define the “LINUX” macro to enable the preprocessor to recognize which code

 20

segment is used under the Linux version and which is used under the FreeBSD

version. At compile time, we can control the macro “LINUX” whether it is enabled or

not, and then the compiler (g++) can know that the simulation engine will be

compiled to a Linux or FreeBSD version. As such, we just need to maintain a single

source tree of the simulation engine. This approach also reduces the effort of

maintenance.

4.2.3 Memory Mapping

The simulation engine uses the memory mapping technique to map some

memory location that is allocated by the simulation engine process to a memory

location in the kernel. There are two memory locations that should be mapped into the

kernel. The first one is the virtual clock which we can call it the virtual time in the

rest of this thesis.

The virtual time is maintained by the simulation engine. However, the simulation

engine is a user-level program. Therefore, the virtual time is kept at the user level.

However, the kernel also has to reference the virtual time at the kernel level. This is

required for many reasons. First, the timers of TCP connections used in the simulation

network need to be triggered based on the virtual time rather than the real time (recall

that in the NCTUns 1.0, the in-kernel TCP/IP protocol stack is directly used to

“simulate” TCP connections). Second, for those application programs launched to

generate traffic in the simulation network, the time-related system calls issued by

them must be serviced based on the virtual time rather than the real time. Third, the

in-kernel packet logging mechanism needs to use time stamps based on the virtual

time to log packets transferred in a simulation network. To achieve these goals,

 21

actually, the simulation engine can periodically use a user-defined system call to

inform the kernel of the current virtual time. However, the cost of this approach

would be too high if we want the virtual time maintained in the kernel to be as precise

as that maintained in the simulation engine. With the memory mapping technique, at

any time the virtual time in the kernel now is as precise as that maintained in the

simulation engine without any system call overhead.

The second places are the current and the maximum queue length of the FIFO

(First-In-First-Out) module. It is used to enable the tunnel interfaces (tun1~tun4095)

to timely drop a packet when the FIFO queue (in the FIFO module) is full. This

operation is very important because when a TCP packet is dropped due to a queue full,

the TCP socket handler would start the source quench algorithm to reduce its TCP

congestion window size to avoid further packet dropping. Without mapping these

values into the kernel, the tunnel interface does not know whether the FIFO queue is

full or not. If the tunnel interface does not timely drop the packet, a lot of packets will

be successively dropped in the simulation engine during the TCP slow-start phase.

This will severely affect a TCP connection’s throughput.

In FreeBSD, a user-level program can use “kvm” (Kernel Virtual Memory)

interface to find the address offset of a variable in kernel memory space and this

interface is included in a library: libkvm. Using the mechanism, the simulation engine

can open the special device /dev/kmem and use the mmap() system call to do memory

mapping task. The following code segment shows how to map the virtual time

variable (currentTime_) into the kernel space (NCTUNS_nodeVC, the virtual time

maintained in the kernel).

 22

#include <kvm.h>
#include <nlist.h>

u_int64_t *currentTime_;

int tun_mmap()
{

kvm_t *kd;
int fd;
off_t tick_offset;

struct nlist nl[] = {
{"NCTUNS_nodeVC"},
{NULL},

}

kd = kvm_open(NULL, NULL, NULL, O_RDONLY, errstr);
if (kvm_nlist(kd, nl) < 0) {

printf(“nctuns: %s\n”, errstr);
}
tick_offset = nl[0].n_value;

if((fd=open("/dev/kmem", O_RDONLY)) < 0) {
printf("nctuns: open /dev/kmem error!\n");
exit(-1);

}
currentTime_ = (u_int64_t *)mmap(0, sizeof(u_int64_t)*(ifcnt_+1),

PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, (off_t)tick_offset);
…

}

In Linux, it does not provide a library like libkvm in FreeBSD to enable the

user-level program to get the virtual address of a global variable in the kernel space.

Fortunately, this operation can be done via reading the file “System.map” that will be

produced when a kernel image is built. It records global variables and functions with

their corresponding virtual addresses. The following shows a part of the System.map

file.

c03ad058 b dummy_task
c03ad080 B procBaseOnVirtualTime
c03cd07c B mtable
c03cd080 B NCTUNS_nodeVC
c03d5080 B pm_active
c03d5080 B pm_active
c03d50a4 B num_physpages

Third column lists the variable or function name and the first column is their

 23

corresponding virtual addresses. For example, the NCTUNS_nodeVC global

variable’s virtual address is c03cd080 (it is hexadecimal). Therefore, the memory

mapping mechanism in Linux is now translated to the following code segment:

u_int64_t *currentTime_;

#define OFFSET 0xc0000000
#define PTR_POS(Val) ((unsigned long)(Val))
int tun_mmap()
{

int fd, offset;
off_t tick_addr;
u_int64_t *tick ;

if((fd=open("/dev/kmem", O_RDONLY)) < 0) {
printf("nctuns: open /dev/kmem error!\n");
exit(-1);

}

tick_addr = search_kvmsearch_kvm("NCTUNS_nodeVC");
offset = PTR_POS(tick_addr-OFFSET) –

(PTR_POS(tick_addr-OFFSET) & ~4095);
tick = (u_int64_t *)mmap(0, PTR_POS(offset) + sizeof(u_int64_t)*4096,

PROT_READ|PROT_WRITE, MAP_SHARED, fd,
(PTR_POS(tick_addr-OFFSET) & ~4095));

currentTime_ = (u_int64_t*)(PTR_POS(tick)+PTR_POS(offset));
…

}

To search a variable name
from System.map and return
its virtual address

u_int64_t *currentTime_;

#define OFFSET 0xc0000000
#define PTR_POS(Val) ((unsigned long)(Val))
int tun_mmap()
{

int fd, offset;
off_t tick_addr;
u_int64_t *tick ;

if((fd=open("/dev/kmem", O_RDONLY)) < 0) {
printf("nctuns: open /dev/kmem error!\n");
exit(-1);

}

tick_addr = search_kvmsearch_kvm("NCTUNS_nodeVC");
offset = PTR_POS(tick_addr-OFFSET) –

(PTR_POS(tick_addr-OFFSET) & ~4095);
tick = (u_int64_t *)mmap(0, PTR_POS(offset) + sizeof(u_int64_t)*4096,

PROT_READ|PROT_WRITE, MAP_SHARED, fd,
(PTR_POS(tick_addr-OFFSET) & ~4095));

currentTime_ = (u_int64_t*)(PTR_POS(tick)+PTR_POS(offset));
…

}

To search a variable name
from System.map and return
its virtual address

For the memory mapping mechanism in Linux, the kernel only allows the

address of a page boundary to be mapped to the user space. However, for any global

variable in the kernel, its address may not be just a page boundary. We use the

following figure to show the detail about the above example code.

 24

Page size = 4096 byte

0xc0000000.

tick_addr offset
tick

page boundary

page boundary

page boundary A

sizeof(u_int64_t)*4096

Page size = 4096 byte

0xc0000000.

tick_addr offset
tick

page boundary

page boundary

page boundary A

sizeof(u_int64_t)*4096

The starting address of the kernel space is 0xc0000000 and the default page size

is 4096 bytes. First, we will use search_kvm() to find out the address of the specified

variable in the kernel. In the above case, tick_addr will store the address of the

specified variable, NCTUNS_nodeVC. Second, we will calculate offset, which is the

difference between the page boundary A and tick_addr. After the simulation engine

issues the mmap() system call, the kernel will return the address of the page boundary

A and the value will store in tick. Finally, the simulation engine simply adds tick and

offset to get the desired address, tick_addr.

4.2.4 Process Scheduling

Correctly scheduling the simulation engine process and all forked traffic

generator processes is very important for the event-driven approach to function

correctly. This is because the default UNIX process scheduler uses a dynamic priority

mechanism and thus cannot guarantee a desired scheduling order to happen. In

reference [2], it clearly explains which scheduling order is correct to us and how to

use the default UNIX process scheduling design to meet our requirement. Of course,

 25

all discussion in [2] can only suit the FreeBSD system. In Linux, the process

scheduling mechanism is very different from that in FreeBSD. In FreeBSD, a

user-level process has two priorities: one for its execution in the user mode and the

other is for its sleeping in the kernel mode. The special design for the kernel mode

priority of a process is the key point which lets our network simulator work correctly

[2]. However, Linux does not have a similar design.

In Linux, a user-level process also has two priorities: static priority and dynamic

priority [12]. The static priority is assigned by the users for real-time processes and

never changed by the process scheduler in the kernel. The dynamic priority is used for

normal processes and is essentially the sum of the base time quantum (which is

therefore also called the base priority of the process) and of the number of ticks of

CPU time left to the process before its quantum expires in the current epoch. The

static priority of a real-time process is always higher than the dynamic priority of a

normal one. The scheduler will run normal processes only when there is no real-time

process in the runnable state.

Let’s consider the following situation. A UDP traffic generator A sends a packet

and calls the sleep() system call and gets blocked in the kernel. At the same time,

another UDP traffic generator B also wants to send packets. If the process scheduler

switches the CPU control from A to the simulation engine instead of B, the simulation

engine may immediately advance the virtual time after processing A’s packets and

events. This will cause that B has no chance to send packets before the virtual time is

advanced. Therefore, the correct execution order should be A -> B -> the simulation

engine. To overcome this problem, the simulation engine sets a traffic generator as a

real-time process when forking it. At the same time, the simulation engine is still a

 26

normal process. In other words, the traffic generator’s priority is always higher than

the simulation engine. Therefore, only when A and B both get blocked in the kernel

mode, the simulation engine will be able to get CPU control. With this arrangement,

we can get the desired execution order.

However, this approach has a drawback -- the traffic generator must not have

infinite loop statements. Because the traffic generator has a very high priority (static

priority) and the process scheduler in the kernel will never change the priority, it can

continually execute until get blocked in the kernel. If the traffic generator does not get

blocked any time, it will continually hold the CPU control and other processes will

not have a chance to execute. If this happens, the whole system will be hung because

other processes (e.g. login shell) can not do their jobs.

In addition to the sleep() system call, the traffic generator may get blocked in the

kernel when issusing other system calls. For example, when a TCP traffic generator

calls the read() system call, it may get blocked in the kernel due to an empty socket

receive buffer. Other system calls such as select(), write(), connect() etc. also may

cause the process to get blocked. The traffic generator programmer should carefully

check that there is no busy waiting or infinite loop in his/her program.

In Linux, users can use sche_setscheduler() system call to set a process as a

real-time process. The following is an example code segment:

 27

#include <sched.h>
struct sched_param sched_p;

sched_p.sched_priority = 1;
sched_setscheduler(child, SCHED_FIFO, &sched_p);

Schedule policy

Static priority

Process id

#include <sched.h>
struct sched_param sched_p;

sched_p.sched_priority = 1;
sched_setscheduler(child, SCHED_FIFO, &sched_p);

Schedule policy

Static priority

Process id

4.3 Kernel Modifications

In this chapter, we will clearly describe which parts of the Linux kernel need to

be modified so that it can be used to the NCTUns 1.0 network simulator.

4.3.1 IP Address Translation and Source-Destination-pair IP
Scheme

In the NCTUns 1.0 network simulator, we use the kernel re-entering simulation

methodology. We directly use the real TCP/IP protocol stack provided by the

FreeBSD/Linux kernel. We also use the routing table that is maintained in kernel to

automatically forward IP packets through a simulated layer-3 router [1]. Due to these

reasons, we propose a special IP scheme “S.S.D.D” (source-destination-pair) to

complete this job. Suppose that the sending node has a tunnel interface that is

assigned an IP address 1.0.A.B and the receiving node has a tunnel interface with an

IP address 1.0.C.D, then the used source-destination-pair address will be A.B.C.D.

When the sending node wants to send a packet to the receiving node, the packet’s

destination IP address needs to be translated from 1.0.A.B to A.B.C.D. At the same

time, the source IP address will be translated to A.B.A.B based on the sending node’s

viewpoint. When the packet reaches the receiving node, the destination IP address

will be modified to C.D.C.D and the source IP address will be modified to C.D.A.B

 28

based on the receiving node’s viewpoint.

Figure I-4.3.1 shows the change process about the destination and source IP

address of the packet that is traversed from host 1 to host 2 in figure I-3.1.3. In this

section, we will describe when to modify the destination IP address of packet A to

S.S.D.D format and when to translate the source IP address of packet H to the natural

IP format (1.0.X.Y). In next section (4.3.2), we will describe how to translate these IP

addresses of packet B, C, D, E, F, and G in tunnel interface 1 ~ 4.

TCP
sender

TCP
receiver

tun1
1.0.1.1

tun2
1.0.1.2

tun3
1.0.2.2

tun4
1.0.2.1Link 1 Link 1 Link 1switch

Src
1.0.1.1

Dst
1.1.2.1

Src
1.0.1.1

Dst
1.1.2.1

Src
1.1.1.1

Dst
1.1.2.1

Src
1.1.1.1

Dst
1.1.2.1

Src
1.0.1.1

Dst
1.0.2.1

Src
1.0.1.1

Dst
1.0.2.1

Src
1.2.1.1

Dst
1.2.2.1

Src
1.2.1.1

Dst
1.2.2.1

Src
2.2.1.1

Dst
2.2.2.1

Src
2.2.1.1

Dst
2.2.2.1

Src
2.1.1.1

Dst
2.1.2.1

Src
2.1.1.1

Dst
2.1.2.1

Src
2.1.1.1

Dst
1.0.2.1

Src
2.1.1.1

Dst
1.0.2.1

Src
1.0.1.1

Dst
1.0.2.1

Src
1.0.1.1

Dst
1.0.2.1

User levelKernel Level User levelKernel Level Kernel Level

Packet A B C D E F G H

Host 1 Router Host 2

When a process was forked by the simulation engine, the simulation engine will

use system call 261 to store the simulated node id into the process handler. This

information allows the kernel to know whether a process is used by a simulation or

not. The structure task_struct is modified as below:

Figure I-4.3.1: IP address translation

 29

struct task_struct {
…
pid_t pid;
…
struct signal_struct *signal;
…

//NCTUNS
/* record the process belongs to which node */
unsigned int p_node;

//NCTUNS
}

struct task_struct {
…
pid_t pid;
…
struct signal_struct *signal;
…

//NCTUNS
/* record the process belongs to which node */
unsigned int p_node;

//NCTUNS
}

If a process creates an INET socket such as TCP, UDP, RAW socket, we should

also register the node id into the corresponding INET socket structure, which is

structure sock. The pmap field of the structure sock is used to record the information

about the mapping between the virtual and real port number of a TCP or UDP INET

socket. In section 4.3.3 of part I, we will see the definition of the structure pmap.

struct sock {

__u32 daddr;
__u32 rcv_addr;
…

//NCTUNS
u_int32_t nodeID; /* record the process belongs to which node */
unsigned short sk_vport; /* virtual port number */
struct pmap *pmap; /* point to port mapping information */

//NCTUNS
}

struct sock {
__u32 daddr;
__u32 rcv_addr;
…

//NCTUNS
u_int32_t nodeID; /* record the process belongs to which node */
unsigned short sk_vport; /* virtual port number */
struct pmap *pmap; /* point to port mapping information */

//NCTUNS
}

For the datagram INET socket such as UDP and RAW socket, we store the node

id into the INET socket structure (sock) when a process calls the socket() system call:

 30

Asmlinkage long sys_socket (int family, int type, int protocol)
{

int retval;
struct socket *sock;

retval = sock_create(family, type, protocol, &sock);
…

//NCTUNS
/* If current process belongs to a simulation,

we should store node id into sk . */
if (current->p_node > 0) {

sock->sk->nodeID = current->p_node;
} else {

sock->sk->nodeID = 0;
sock->sk->sk_vport = 0;

}
//NCTUNS

…
}

Asmlinkage long sys_socket (int family, int type, int protocol)
{

int retval;
struct socket *sock;

retval = sock_create(family, type, protocol, &sock);
…

//NCTUNS
/* If current process belongs to a simulation,

we should store node id into sk . */
if (current->p_node > 0) {

sock->sk->nodeID = current->p_node;
} else {

sock->sk->nodeID = 0;
sock->sk->sk_vport = 0;

}
//NCTUNS

…
}

For the stream INET socket such as TCP, we have to store the node id when it is

initialized at tcp_v4_init_sock(). Because tcp_v4_init_sock() will initialize several

TCP timers such as retransmit timer, delay-ack timer etc., the kernel will determine

whether these timers should use virtual time or real time based on the value of

sk->nodeID. If we do this operation at sys_socket(), initializing these timers will be

too early because the node id is not known yes. It will cause these timers to be based

on the real time instead of the virtual time.

static int tcp_v4_init_sock (struct sock *sk)
{
…
//NCTUNS

if (current->p_node > 0) {
sk->nodeID = current->p_node;
tp->nodeID = current->p_node;

} else {
sk->nodeID = 0;
tp->nodeID = 0;

}
//NCTUNS

…
}

static int tcp_v4_init_sock (struct sock *sk)
{
…
//NCTUNS

if (current->p_node > 0) {
sk->nodeID = current->p_node;
tp->nodeID = current->p_node;

} else {
sk->nodeID = 0;
tp->nodeID = 0;

}
//NCTUNS

…
}

With the node id information, we can correctly translate the IP address in the kernel.

In figure I-4.3.1, when the TCP sender sends out a packet at the connection setup

 31

phase, we will translate the destination IP address at inet_stream_connect(), which is

shown below. In inet_stream_connect(), we should explain the usage of

mt_randnidtoip(). If a simulated node is a multi-interface device (e.g., a router), it

may have several tunnel interfaces and each tunnel interface has an assigned IP

address. When the node sends out a packet, the kernel should choose an IP address as

the node’s source IP address. Then the kernel will use this IP address to translate the

IP address of the packet to the S.S.D.D format.

int inet_stream_connect (struct sock *sk, struct sockaddr *uaddr,

int addr_len, int flags)
{

…
//NCTUNS

/* modify the dst IP from 1.0.X.X to S.S.D.D format */
if (sk->nodeID > 0) {

struct sockaddr_in *sin;
u_long srca;
u_char *ptr, *ptr1;
sin = (struct sockaddr_in *)uaddr;
ptr = (u_char *)&(sin->sin_addr.s_addr);
if (ptr[0]==1 && ptr[1]==0) {

srca = mt_randnidtoip(sk->nodeID);
if (srca != 0) {

ptr1 = (u_char *)&srca;
ptr[0] = ptr1[2];
ptr[1] = ptr1[3];

} else {
printk (“inet_stream_connect(): mt_randnidtoip() error!\n”);

}
}

}
//NCTUNS

…
}

int inet_stream_connect (struct sock *sk, struct sockaddr *uaddr,
int addr_len, int flags)

{
…

//NCTUNS
/* modify the dst IP from 1.0.X.X to S.S.D.D format */
if (sk->nodeID > 0) {

struct sockaddr_in *sin;
u_long srca;
u_char *ptr, *ptr1;
sin = (struct sockaddr_in *)uaddr;
ptr = (u_char *)&(sin->sin_addr.s_addr);
if (ptr[0]==1 && ptr[1]==0) {

srca = mt_randnidtoip(sk->nodeID);
if (srca != 0) {

ptr1 = (u_char *)&srca;
ptr[0] = ptr1[2];
ptr[1] = ptr1[3];

} else {
printk (“inet_stream_connect(): mt_randnidtoip() error!\n”);

}
}

}
//NCTUNS

…
}

During the data transfer phase, we will translate the destination IP address at

inet_sendmsg():

 32

int inet_sendmsg (struct socket *sock, struct msghdr *msg,
int size, struct scm_cook ie *scm)

{
struct sock *sk = sock->sk;

//NCTUNS
/* modify the dst IP from 1.0.X.X to S.S.D.D format */
{

struct sockaddr_in *addr =(struct sockaddr_in *)msg->msg_name;
struct sockaddr_in *dsa;
u_long srcip;
u_char *dsta, *srca;
if (addr && sk->nodeID>0) {

dsa = addr;
dsta = (u_char *)&(dsa->sin_addr.s_addr);
if (dsat[0]==1 && dsta[1]==0) {

srcip = mt_randnidtoip(sk->nodeID);
if (srcip != 0) {

srca = (u_char *)&srcip;
dsta[0] = srca[2];
dsta[1] = srca[3];

} else
printk (“inet_sendmsg(): mt_randnidtoip() error!\n”);

}
}

//NCTUNS
…

}

int inet_sendmsg (struct socket *sock, struct msghdr *msg,
int size, struct scm_cook ie *scm)

{
struct sock *sk = sock->sk;

//NCTUNS
/* modify the dst IP from 1.0.X.X to S.S.D.D format */
{

struct sockaddr_in *addr =(struct sockaddr_in *)msg->msg_name;
struct sockaddr_in *dsa;
u_long srcip;
u_char *dsta, *srca;
if (addr && sk->nodeID>0) {

dsa = addr;
dsta = (u_char *)&(dsa->sin_addr.s_addr);
if (dsat[0]==1 && dsta[1]==0) {

srcip = mt_randnidtoip(sk->nodeID);
if (srcip != 0) {

srca = (u_char *)&srcip;
dsta[0] = srca[2];
dsta[1] = srca[3];

} else
printk (“inet_sendmsg(): mt_randnidtoip() error!\n”);

}
}

//NCTUNS
…

}

For datagram socket, it also uses inet_sendmsg() to send packets out. As such, a

UDP or RAW packet’s destination IP address will also be modified at inet_sendmsg()

during the data transfer phase.

So far, we describe where we modify packet A’s (figure I-4.3.1) destination IP

address from 1.0.2.1 to 1.1.2.1. In the following, we will describe where we translate

packet H’s source IP address from 2.1.1.1 back to 1.0.1.1. We will recovery the source

IP address at inet_recvmsg():

 33

int inet_recvmsg (struct socket *sock, struct msghdr *msg,
int size, struct scm_cook ie *scm)

{
struct sock *sk = sock->sk;
…

//NCTUNS
/* To recovery src IP from S.S.D.D to 1.0.X.X */
struct sockaddr_in *addr = (struct sockaddr_in *)msg->msg_name;

/* Don’t recovery RAW socket’s IP address.
We will recovery it at raw_recvmsg(). */

if (addr && sk->nodeID>0 &&(strncmp(sk->prot->name, “RAW”, 3)!=0) {
u_char *p;
p = (u_char *)&(addr->sin_addr.s_addr);
p[0] = 1; p[1] = 0;

}
//NCTUNS

…
}

int inet_recvmsg (struct socket *sock, struct msghdr *msg,
int size, struct scm_cook ie *scm)

{
struct sock *sk = sock->sk;
…

//NCTUNS
/* To recovery src IP from S.S.D.D to 1.0.X.X */
struct sockaddr_in *addr = (struct sockaddr_in *)msg->msg_name;

/* Don’t recovery RAW socket’s IP address.
We will recovery it at raw_recvmsg(). */

if (addr && sk->nodeID>0 &&(strncmp(sk->prot->name, “RAW”, 3)!=0) {
u_char *p;
p = (u_char *)&(addr->sin_addr.s_addr);
p[0] = 1; p[1] = 0;

}
//NCTUNS

…
}

We do not recovery RAW socket’s packets here. We do this task at

raw_recvmsg(). This is because we design a mechanism that can turn a RAW socket

into a divert socket. We will further discuss this in section 4.3.8 of part I.

4.3.2 Tunnel Interface

There are two jobs that should be done in a modified tunnel driver.

I. Enable S.S.D.D IP Scheme to Work Correctly

Figure I-4.3.1 shows the IP address change history of a packet that traverses the

simulation network from host 1 to host 2. When the kernel inserts a packet into a

tunnel interface’s output queue, tun_net_xmit() will be called to do this job. In figure

I-4.3.1, the kernel calls tun_net_xmit() to insert packet A into tun1. Then

tun_net_xmit() will then modify packet A to packet B before queuing it. The

following is the pseudo code of tun_net_xmit():

 34

* Tunnel interface Y has assigned IP address 1.0.A.B.
* Packet X has destination/source IP address pair A.B.C.D/1.0.A.B.

tun_net_xmit (packet X, tun Y)
{

1. Modify A.B.C.D/1.0.A.B to A.B.C.D/A.B.A.B
2. If A.B = C.D

modify A.B.C.D/A.B.A.B to 1.0.C.D/A.B.A.B
put the packet back to network layer

3. else
modify A.B.C.D/A.B.A.B to 1.0.C.D/1.0.A.B
queue the packet into output queue
insert a tunnel check event into t0e0

}

If A.B is equal to C.D in step 2, it means packet X already arrives in the

destination node. Therefore, we should modify the destination IP address from

A.B.C.D to 1.0.C.D to avoid that the packet would be further forwarded at the

network layer (When we add routing entries into the system routing table, we use

S.S.D.D format. If we do not recovery the destination IP address to 1.0.X.X format, it

will be subjected to unnecessary forwarding.). We also can know that this kind of

packet (A.B = C.D at step 2) is a loopback packet (The source node is the same with

the destination node.).

If packet X is not a loopback packet, we should recovery its destination/source

IP address to 1.0.X.X. This is because that we hope that the packet has the normal IP

address format when it is read by the simulation engine. As such, the protocol

modules don’t need to know anything about the S.S.D.D IP scheme. Therefore, packet

C and F in figure 4.3.1 have the normal IP address format. Finally, we should create a

tunnel check event to inform the simulation engine that the tunnel interface Y has

packets to send. If we do not use this method, the simulation engine should

periodically poll all tunnel interfaces to check whether there is any packet to send or

not. Of course, the performance of the polling approach will be much slower than our

 35

new design.

When the simulation engine wants to put a packet into a tunnel interface (e.g. put

packet C to tunnel interface 2 in figure 4.3.1), it will issue a write system call and

then tun_get_user() will be called to copy the packet from the user-space to the

kernel-space and to queue the packet to the network layer. The following is the

pseudo code of tun_get_user():

* Tunnel interface Y has assigned IP address 1.0.A.B.
* Packet X has destination/source IP address pair 1.0.C.D/1.0.E.F.

tun_get_user (packet X, tun Y)
{

1. Modify 1.0.C.D/1.0.E.F to A.B.C.D/A.B.E.F
2. If A.B = C.D

modify A.B.C.D/A.B.E.F to 1.0.C.D/A.B.E.F
3. put the packet to the network layer

}

If A.B is equal to C.D at step 2, it means that the packet has arrived at its

destination node. Of course, the packet’s destination IP address will need to be

returned to the 1.0.X.X format. In the other case, we let the packet’s IP address

reserve the S.S.D.D format to be further forwarded. In figure I-4.3.1, readers can

compare packet D and packet G to clearly understand the difference between them.

When packet D is put to the network layer, we can add a routing entry to specify tun3

as the gateway of a packet whose destination IP address is 1.2.2.X. Then packet D

will be queued into tun3 via tun_net_xmit(D, tun3). This shows that if we can

correctly add these routing entries, packets can be automatically forwarded by

simulated routers.

II. Support Tcpdump Module

 36

When a packet passes through a tcpdump module, the tcpdump module will

clone a copy and write the copy into the tunnel interface 0 (tun0). This is because we

hope the kernel to log the packet when it passes through the tcpdump module rather

than when it passes through the tunnel interface (tun1~tun4095).

There are several reasons why we should do this operation. One is to get the

correct timestamp of outgoing or incoming packets. On a real-life machine, the

timestamp given to an outgoing packet represents the time when the packet is

transmitted to a link rather than the time when the packet is enqueued into the output

queue. However, in the current design, if there is no modification, a packet will

receive a timestamp that represents the time when it leaves the tunnel interface rather

than when it is transmitted to a link. Another reason is that we can not log the ARP

request and reply packet. Figure I-4.3.2 clearly shows this problem.

The following will describe how we achieve the above requirement. First, we

should not log packets when they pass through tunnel interfaces tun1~tun4095. The

following is the modified code segment:

Figure I-4.3.2: Tcpdump module

 37

static int packet_rcv (struct sk_buff *skb, struct net_device *dev,
struct packet_type *pt)

{
…
struct packet_opt *po;
u8 *skb_head = skb->data;
int skb_len = skb->len;

#ifdef CONFIG_FILTER
unsigned snaplen;

#endif

//NCTUNS
if ((strncmp(dev->name, “tun”, 3)==0) &&

skb->pkt_type!=PACKET_TUN0)
return 0;

//NCTUNS
…

}

static int packet_rcv (struct sk_buff *skb, struct net_device *dev,
struct packet_type *pt)

{
…
struct packet_opt *po;
u8 *skb_head = skb->data;
int skb_len = skb->len;

#ifdef CONFIG_FILTER
unsigned snaplen;

#endif

//NCTUNS
if ((strncmp(dev->name, “tun”, 3)==0) &&

skb->pkt_type!=PACKET_TUN0)
return 0;

//NCTUNS
…

}

Second, when the tcpdump module writes a packet into tun0, tun_get_user() will

be called to process the packet. To sum up, tun_get_user() has two missions:

translation IP address and process tun0 packet. Therefore, the pseudo code of

tun_get_user() should look like the following:

* Tunnel interface Y has assigned IP address 1.0.A.B.
* (If Y = tun0, Y does not has a assigned IP.)
* Packet X has destination/source IP address pair 1.0.C.D/1.0.E.F.

tun_get_user (packet X, tun Y)
{

1. if Y = tun0
find X belongs to tunZ
call nctuns_packet_rcv(X, Z)

2. else
Modify 1.0.C.D/1.0.E.F to A.B.C.D/A.B.E.F
If A.B = C.D

modify A.B.C.D/A.B.E.F to 1.0.C.D/A.B.E.F
put the packet to network layer

}

If the caller is tun0, it means that we have to direct the packet to the in-kernel

packet logging mechanism module. The nctuns_packet_rcv() function is implemented

to do this job. When a network monitor program such as tcpdump is running to

monitor a tunnel interface, the program will create a SOCK_PACKET socket to

 38

receive the log packet. Nctuns_packet_rcv() is used to queue the packet to the

corresponding SOCK_PACKET socket.

No matter which tunnel interface (tun1 ~ tun4095) the packet passes through, it

will be cloned and be inserted to tun0 while it passes through a tcpdump module. As

such, tun0 will receive packets from different tunnel interfaces. Therefore,

tun_get_user() should know where a packet come from before calling

nctuns_packet_rcv(). To help tun_get_user(), the tcpdump module will add a tag that

records where the packet comes from to the packet when it writes the packet into

tun0.

The following shows the nctuns_packet_rcv():

void nctuns_packet_rcv (struct sk_buff *skb, struct net_device *dev)
{

struct packet_type *ptype;

if (strncmp(dev->name, “tun”, 3) == 0
&& skb->pkt_type==PACKET_TUN0
&& dev->flag&IFF_UP)

getvirtualtime(&skb->stamp);
} else {

kfree_skb(skb);
return;

}

br_read_lock(BR_NETPROTO_LOCK);
for (ptype = ptype_all ; ptype!=NULL ; ptype = ptype->next) {

if ((ptype->dev == dev || !ptype->dev) &&
((struct sock *)ptype->data != skb->sk)) {

skb->mac.raw = skb->data;
if (skb->nh.raw < skb->data || skb->nh.raw > skb->tail)

skb->nh.raw = skb->data;
skb->h.raw = skb->nh.raw;
skb->pkt_type = PACKET_TUN0;
ptype->func(skb, skb->dev, ptype);

}
}
br_read_unlock(BR_NETPROTO_LOCK);

}

To find whether a SOCK_PACKET
socket is listening on the specified
network device. If yes, the kernel will
call its handler fuction, ptype->func, to
deal with this packet.

The packet’s timestamp
should use the virtual time.

void nctuns_packet_rcv (struct sk_buff *skb, struct net_device *dev)
{

struct packet_type *ptype;

if (strncmp(dev->name, “tun”, 3) == 0
&& skb->pkt_type==PACKET_TUN0
&& dev->flag&IFF_UP)

getvirtualtime(&skb->stamp);
} else {

kfree_skb(skb);
return;

}

br_read_lock(BR_NETPROTO_LOCK);
for (ptype = ptype_all ; ptype!=NULL ; ptype = ptype->next) {

if ((ptype->dev == dev || !ptype->dev) &&
((struct sock *)ptype->data != skb->sk)) {

skb->mac.raw = skb->data;
if (skb->nh.raw < skb->data || skb->nh.raw > skb->tail)

skb->nh.raw = skb->data;
skb->h.raw = skb->nh.raw;
skb->pkt_type = PACKET_TUN0;
ptype->func(skb, skb->dev, ptype);

}
}
br_read_unlock(BR_NETPROTO_LOCK);

}

To find whether a SOCK_PACKET
socket is listening on the specified
network device. If yes, the kernel will
call its handler fuction, ptype->func, to
deal with this packet.

The packet’s timestamp
should use the virtual time.

 39

4.3.3 System Calls

The system calls added by us are shown below:

I. System call number 259

System call 259:

asmlinkage int sys_NCTUNS_divert(action, fd, hook, de, addr_len)
Parameters:

int action;
int fd;
u_long hook;
struct divert_entry *de;
int addr_len;

The system call is used to turn a RAW socket into a divert socket and download

the IP packet filter rule into the kernel. In FreeBSD, the kernel supports the divert

socket type but Linux does not. However, some daemons such as Mobile-IP daemons

and emulation daemons need to use the divert socket. In section 5.2.2 of part II, we

will clearly explain why these daemons need to use divert sockets. In section 4.3.8 of

part I, we will describe how we use this system call and other added functions to turn

a RAW socket into a divert socket.

II. System call number 260

System call 260:

asmlinkage int sys_NCTUNS_clearStateAndReinitialize (nctuns_pid)
Parameters:

int nctuns_pid;

This is a very important operation before starting a new simulation. Every time

we start a new simulation, we must be sure that all states left by the previous

simulation should be cleared. Otherwise, the previous states or information may affect

the accuracy of the new simulation. For example, we should clear the timers left in

the callout wheel due to the previous simulation. And we also should clear the IP

 40

packet filter rules which are set by the previous simulation. This system call also

re-initializes some variables used by the NCTUns 1.0. For example, we should set the

current virtual time to zero and register the new process id of the simulation engine.

III. System call number 261

System call 261:

asmlinkage int sys_NCTUNS_misc (action, value1, value2, value3)
Parameters:

int action;
unsigned long value1;
unsigned long value2;
unsigned long value3;

This system call is used to set or get various information maintained in the

kernel about our simulator. The “action” argument determines the service types,

which are shown below:

 NSC_TEST:

This is used to display some kernel information about the simulator. For

example, we can dump all TCP socket information which is used in a

simulated node that is inside a simulation network.

 NSC_GETNIDINFO:

This is used to get the IP address configuration of each tunnel interface that

belongs to the same simulated node.

 NSC_REGPID:

This is used to enable the process that is forked by the simulation engine to

know that it belongs to which simulated node.

 NSC_NIDTOTID:

For example, a simulated node has three tunnel interfaces: tun1, tun2 and

tun3. Then, this action will copy the tunnel id 1, 2, 3 to the buffer specified

 41

by the calling process.

 NSC_NIDNUM:

This is used to return how many interfaces that a specified simulated node

has.

 NSC_R2VPORT:

This is used to translate a real port number to a virtual port number.

 NSC_V2RPORT:

This is used to translate a virtual port number to a real port number.

 NSC_TICKTONANO:

This is used to download the used time scale value into the kernel. Because

the NCTUns 1.0 can support different time scale (1 nanosecond/tick, 10

nanosecond/tick, or 100 nanosecond/tick), we should let the kernel know

which time scale will be used in a new simulation. In section 4.3.5 of part I,

we will clearly describe how the kernel deal with the time scale.

 NSC_SET_TUN:

 This is used to set the state of the specified tunnel interface to up or down.

 NSC_GET_TUN:

This is used to get the state of the specified tunnel interface -- up or down.

IV. System call number 263

System call 263:
asmlinkage int sys_NCTUNS_callout_chk (void)

Parameters:
none

This system call is used to trigger the kernel timeout events. When the event

scheduler (in the simulation engine) processes a kernel timeout event, it issues this

system call to inform the kernel that a kernel timer used in a simulation should be

 42

triggered right now.

V. System call number 264

System call 264:
asmlinkage int sys_NCTUNS_mapTable (action, nid, tid, mac, s_port)

Parameters:
int action;
unsigned long nid;
unsigned long tid;
char *mac;
unsigned short s_port;

We maintain a data structure in the kernel to record all of the information about a

simulation network and the usage of each tunnel interfaces. The data structure, which

we name it mtable, is shown as below:

struct if_info {

SLIST_ENTRY(if_info) nextif;
u_long tunid;
u_long tunip;
u_char mac[6];
struct in_ifaddr *ifa;

}

struct pmap {
SLIST_ENTRY(pmap) nextmap;
struct sock *sk ;
struct proto *prot;
u_short rport;
u_short vport;
int unbind;

}

struct node_info {
SLIST_HEAD(,if_info) ifinfo;
SLIST_ENTRY(node_info) nextnode;
SLIST_HEAD(,pmap) pmap_head;
u_long nodeID;
u_short s_port;
u_long numif;
u_short last_port;

}

The if_info is a data structure used to record the information about a tunnel

interface (e.g. IP and MAC address of an interface). The pmap is used to record the

 43

information about the mapping between the virtual and real port number of a TCP or

UDP INET socket. The node_info, which is the mtable, is used to record the

information about a simulated node. Reference [13] clearly describes the detail

architecture of these structures. System call 264 helps the simulation engine to

maintain these nodes’ information in the kernel. The following are the operations

provided by system call 264:

MT_FLUSH:

Before a new simulation starts, the simulation engine should use this

operation to flush all node information of the previous simulation.

 MT_ADD:

This operation can help the simulation engine to download new node

information into the kernel.

 MT_DISPLAY:

This is used for debugging purpose. It can enable the programmer (or user)

to check whether the node information about a simulation is correct or not.

4.3.4 Port Number Mapping and Translation

In section 3.4 of part I, we already explain why we have to perform port number

mapping in the kernel. Here, we will clearly describe where to do this job.

I. Record the mapping of the virtual and real port number

First, we define the virtual port and real port number. The port number used by

user-level program is called as a virtual port. For example, when a program issues the

bind() system call to bind a INET socket into per-protocol socket list, it should

specify a port number. We call this port number a virtual port number. In the kernel,

 44

there are several kernel functions to service the bind() system call. When these kernel

functions want to use the virtual port number to bind a socket, we will instead find an

unused real port number to bind the socket and record this port mapping. The port

number which is really used by the kernel is the real port number according to our

definition. For example, a Web server A may be running on simulated node 1 and

listening on the default port number 80. Another Web server B may be running on the

simulated node 2 and also listening on port 80. Both port numbers (80) are virtual

port numbers. Actually, the kernel may use port number 5000 to bind the socket that

is created by A, 5001 for the socket created by B. In this case, 5000 and 5001 are

called real port numbers. We should record the real/virtual port mapping pair (80,

5000) in node 1 and (80, 5001) in node 2 for later uses.

The kernel functions about TCP and UDP sockets are udp_v4_get_port(),

tcp_v4_get_port(), tcp_v4_hash_connect(). Their jobs are to bind an UDP or TCP

socket into individual socket list. Here, we only take udp_v4_get_port() as an

example to show how we do a port number mapping:

 45

static int udp_v4_get_port (struct sock *sk, unsigned short snum)
{

…
//NCTUNS

/* 1. If virtual port (snum) is not zero, record it and set it to zero.
Then use original procedure to get a real port.

2. Otherwise, if virtual port (snum) is zero, choose one by ourselves.
And set snum to zero to let original procedure to get a real port.*/

if (sk->nodeID) {
int nid= sk->nodeID;
if (snum) {

if (!mt_lookupVport(nid, snum)) {
sk->sk_vport = snum;
snum = 0;

} else {
goto fail;

}
} else {

sk->sk_vport = mt_getunusevport(nid);
}

}
//NCTUNS

if (snum == 0) {
…

} else {
…

}
…

}

Original
procedure

To check whether the
virtual port (snum) has
been used in nid or not.

static int udp_v4_get_port (struct sock *sk, unsigned short snum)
{

…
//NCTUNS

/* 1. If virtual port (snum) is not zero, record it and set it to zero.
Then use original procedure to get a real port.

2. Otherwise, if virtual port (snum) is zero, choose one by ourselves.
And set snum to zero to let original procedure to get a real port.*/

if (sk->nodeID) {
int nid= sk->nodeID;
if (snum) {

if (!mt_lookupVport(nid, snum)) {
sk->sk_vport = snum;
snum = 0;

} else {
goto fail;

}
} else {

sk->sk_vport = mt_getunusevport(nid);
}

}
//NCTUNS

if (snum == 0) {
…

} else {
…

}
…

}

Original
procedure

To check whether the
virtual port (snum) has
been used in nid or not.

II. Perform port number translation

Let’s consider a situation: a Web server A is listening on the virtual port number

80 and actually it uses a real port number 5000 in the kernel. A Web browser B wants

to send a request to A and specifies the foreign port number 80 because B does not

know anything about the real port number. Therefore, the destination port number of

the request packet will be 80. Then, when the request packet arrives at the destination

node and the kernel attempts to look for the socket that will accept the request, it will

fail. This is because, actually, A is listening on the port number 5000 rather than 80.

As such, before the kernel attempts to look for the listening socket, it should translate

the destination port number to the corresponding real port number. For TCP and UDP

protocol, their main receiving handle functions are tcp_v4_rcv() and udp_rcv(). Here,

 46

we use udp_rcv() as an example:

int udp_rcv (struct sk_buff *skb)
{

…
//NCTUNS

nodeIDd = mt_iptonid1(daddr, skb->dev);
if (nodeIDd > 0) {

/* If the packet belongs to virtual connection,
we should follow the following rules:
src: R -> V (real port -> virtual port)
dst: V -> R (virtual port -> real port) */

rport = mt_VtoRport(nodeIDd, ntohs(uh->dest));
if (rport > 0)

uh->dest = htons(rport);
vport = mt_RtoVport(ntohs(uh->source));
if (vport > 0)

uh->source = htons(vport);
}

//NCTUNS
…

}

int udp_rcv (struct sk_buff *skb)
{

…
//NCTUNS

nodeIDd = mt_iptonid1(daddr, skb->dev);
if (nodeIDd > 0) {

/* If the packet belongs to virtual connection,
we should follow the following rules:
src: R -> V (real port -> virtual port)
dst: V -> R (virtual port -> real port) */

rport = mt_VtoRport(nodeIDd, ntohs(uh->dest));
if (rport > 0)

uh->dest = htons(rport);
vport = mt_RtoVport(ntohs(uh->source));
if (vport > 0)

uh->source = htons(vport);
}

//NCTUNS
…

}

Readers can refer to [13] to get more detailed information about the mechanism

of IP address translation and port number translation.

4.3.5 Support Different Time Scales

The simulation engine supports several different time scales (1 nanosecond/tick,

10 nanosecond/tick and 100 nanosecond/tick). 1 nanosecond per tick (1

nanosecond/tick) means that 1 virtual clock corresponds to 1 nanosecond in virtual

time. 10 nanosecond/tick means that 1 virtual clock corresponds to 10 nanosecond in

virtual time. Of course, the kernel should know which time scale is used in a new

simulation. Several related definitions and global variables are shown below:

 47

// The virtual clock of nodes. In current version, we only use node 0’s
// clock as the whole simulation system’s clock .
u_int64_t NCTUNS_nodeVC[MAX_NUM_NODE];

// For 64bit division
long NCTUNS_rem;

/* Microscale, default 10.
Because default time scale is 100, the default microscale would be 1000/100.
With microscale, the unit of NCTUNS_nodeVC[0]/microscale would be microsecond. */

unsigned long microscale = 10;

#define NCTUNS_ticks_to_us \
div_long_long_rem(NCTUNS_nodeVC[0], microscale, &NCTUNS_rem)

#define NCTUNS_ticks_to_ms \
div_long_long_rem(NCTUNS_nodeVC[0], (1000*microscale), &NCTUNS_rem)

#define NCTUNS_ticks_to_sec \
div_long_long_rem(NCTUNS_nodeVC[0], (1000000*microscale), &NCTUNS_rem)

#define NCTUNS_ticks NCTUNS_ticks_to_ms
#define NCTUNS_tcp_time_stamp NCTUNS_ticks_to_ms
#define NCTUNS_xtime_tvsec NCTUNS_ticks_to_sec

The NCTUNS_nodeVC[] is used to store the virtual time. The simulation engine

also maps these variables to the kernel via the memory mapping technique. A Kernel

function div_long_long_rem() is used to do 64-bit division. In Linux 2.4.22, original

kernel function do_div() that is defined as a macro in div64.h can not correctly do

64-bit division. As such, we add the new macro div_long_long_rem() to fix this bug

(In fact, the Linux 2.6.x already fixes the known bug.). the code of

div_long_long_rem() is shown below:

/* (long)X = ((long long)divs) / (long)div

(long)rem = ((long long)divs) % (long)div */

#define div_long_long_rem(a, b, c) div_ll_X_l_rem(a, b, c)

extern inline long
div_ll_X_l_rem(long long divs, long div, long *rem)
{

long dum2;
__asm__(“divl %2”:”=a”(dum2), "=d"(*rem) : "rm"(div), "A"(divs));
return dum2;

}

The variable, microscale, is used to turn the virtual time to a value based

 48

micro-seconds. When the simulation engine uses system call 261 with flag

NSC_TICKTONANO to bring the time scale value (time_scale) into the kernel, the

microscale will be calculated by 1000/time_scale. Then the unit of

NCTUNS_nodeVC[0]/microscale will be micro-second. Therefore,

NCTUNS_ticks_to_us will return how many micro-seconds the current virtual time

means. For the same reason, NCTUNS_ticks_to_ms or NCTUNS_ticks_to_sec will

return how many milli-seconds or seconds the current virtual time means. According

to above definitions, we also can know that NCTUNS_ticks and

NCTUNS_tcp_time_stamp are based on milli-second and NCTUNS_xtime_tvsec is

based on second.

4.3.6 Processing Kernel Timers and Kernel Events

In a simulation, the kernel may generate two kinds of kernel event – the tunnel

check event and the kernel timeout event. In section 4.3.2, we already explain why we

need to generate a tunnel check event and where we generate this kind of events. In

this section, we will clearly explain how a kernel timeout event helps us to trigger a

kernel software timer which is based on the virtual time (We call this kind of timer a

virtual-time timer and the original timer is called a real-time timer).

4.3.6.1 Maintain Virtual-time Timers

In the original Linux kernel, all software timers (real-time timers) are maintained

in a global structure tvecs[]. In order to manage real-time timers and virtual-time

timers individually, we create another global structure, callwheel, to store virtual-time

timers. When the kernel wants to schedule a timer, we should first know whether the

 49

timer is a virtual-time timer or not. If not, the timer should be inserted to tvecs[] and

triggered by the original kernel triggering mechanism. If yes, the timer should be

inserted to the callwheel and triggered by the simulation engine. As such, the original

kernel function internal_add_timer(), which is used to add a timer structure into

tvecs[], should be modified like the following code segment:

static inline void internal_add_timer(struct timer_list *timer)
{

unsigned long expires = timer->expires;
unsigned long idx = expires – timer_jiffies;
struct list_head *vec;

//NCTUNS
if (check_if_nctuns_timer(timer)) {

nctuns_callout_helper(timer, 0);
return;

}
//NCTUNS

…
//original procedure…
…

}

To insert the virtual-
time timer into the

callwheel

static inline void internal_add_timer(struct timer_list *timer)
{

unsigned long expires = timer->expires;
unsigned long idx = expires – timer_jiffies;
struct list_head *vec;

//NCTUNS
if (check_if_nctuns_timer(timer)) {

nctuns_callout_helper(timer, 0);
return;

}
//NCTUNS

…
//original procedure…
…

}

To insert the virtual-
time timer into the

callwheel

The added kernel function check_if_nctuns_timer() is used to check whether a

timer is based on the virtual time. If yes, it will return a value that is larger than zero.

Its implementation is shown as below:

 50

extern void tcp_write_timer(unsigned long);
extern void tcp_delack_timer(unsigned long);
extern void tcp_keepalive_timer(unsigned long);
extern void it_real_fn(unsigned long);
extern void process_timeout(unsigned long);

int check_if_nctuns_timer(struct timer_list *timer)
{

void (*fn)(unsigned long);

fn = timer->function;
if (fn==tcp_write_timer || fn==tcp_delack_timer || fn==tcp_keepalive_timer) {

struct sock *sk = (struct sock *)timer->data;
if (sk->nodeID)

return sk->nodeID;
}
if (fn==it_real_fn || fn==process_timeout) {

struct task_struct *p = (struct task_struct *)timer->data;
if (p->p_node)

return p->p_node;
}

}

extern void tcp_write_timer(unsigned long);
extern void tcp_delack_timer(unsigned long);
extern void tcp_keepalive_timer(unsigned long);
extern void it_real_fn(unsigned long);
extern void process_timeout(unsigned long);

int check_if_nctuns_timer(struct timer_list *timer)
{

void (*fn)(unsigned long);

fn = timer->function;
if (fn==tcp_write_timer || fn==tcp_delack_timer || fn==tcp_keepalive_timer) {

struct sock *sk = (struct sock *)timer->data;
if (sk->nodeID)

return sk->nodeID;
}
if (fn==it_real_fn || fn==process_timeout) {

struct task_struct *p = (struct task_struct *)timer->data;
if (p->p_node)

return p->p_node;
}

}

struct timer_list
{

struct list_head list;
unsigned long expires;
unsigned long data;
void (*function)(unsigned long);

}

The function field of the timer list structure contains the address of the function

to be executed when the timer expires. In check_if_nctuns_timer(), we only care

about five kinds of timer structure whose function filed points to the following

functions: tcp_write_timer(), tcp_delack_timer(), tcp_keepalive_timer(), it_real_fn(),

and process_timeout(). This is because only these five kinds of kernel timer will be

used by the NCTUns 1.0 network simulator. At the same time, if the sk->nodeID or

p->p_node in check_if_nctuns_timer() is larger than zero, it means that the timer

belongs to a simulated node and should be inserted into the callwheel.

The nctuns_callout_helper() is used to insert the virtual-time timer into the

callwheel and insert a kernel timeout event into the tunnel interface t0e0. The

 51

following shows its pseudo code:

#define callwheelsize 8192
#define callwheelmask (callwheelsize-1)

timerbucket callwheel[callwheelsize];

void nctuns_callout_helper(struct timer_list *timer, long us)
{

1. if t0e0 output queue is full
fatal error!

2. else
2.1 timeout = timer->expires*1000 + us;
2.2 insert timer to callwheel[timeout & callwheelmask]

2.3 insert a kernel timeout event into t0e0
with expire time = timeout

3. wake up the simulation engine
}

#define callwheelsize 8192
#define callwheelmask (callwheelsize-1)

timerbucket callwheel[callwheelsize];

void nctuns_callout_helper(struct timer_list *timer, long us)
{

1. if t0e0 output queue is full
fatal error!

2. else
2.1 timeout = timer->expires*1000 + us;
2.2 insert timer to callwheel[timeout & callwheelmask]

2.3 insert a kernel timeout event into t0e0
with expire time = timeout

3. wake up the simulation engine
}

Because we set the frequency of timer interrupt to 1000 HZ (once every 1

milli-second), the jiffies, a global variable which stores the number of happened timer

interrupts, will be based on milli-second. As such, the unit of expires field of a timer

structure will be milli-second. In other words, if we want to schedule a software timer,

the shortest time interval will be 1 milli-second. But 1 milli-second is too large for us,

we want a shorter time interval such as 1 micro-second. Therefore, in

nctuns_callout_helper(), there is an argument us to bring in the micro-second

information.

After inserting the kernel timeout event into the tunnel interface t0e0, we have to

wake up the simulation engine to receive the event. Then, the simulation engine will

read the event from t0e0 and insert the event to its event queue.

4.3.6.2 Kernel Timeout Event Triggering

When the event scheduler (in the simulation engine) processes a kernel timeout

 52

event, it will use a user-defined system call (system call 263) to trigger the

corresponding kernel timer. Inside the kernel, we implement a kernel function

nctuns_callback() to do this job:

void nctuns_callback(void)
{

1. timeout = NCTUNS_ticks_to_us
2. timer = callwheel[timeout & callwheelmask]
3. while timer

if timer->expires == NCTUNS_ticks
callback timer->function

timer = timer->next
}

In nctuns_callout_helper(), the unit of the hash key (timeout) is micro-second.

Therefore, in nctuns_callback(), the hash key (timeout) should also be based on

micro-second. As in the previous discussion, NCTUNS_ticks_to_us will turn the

current virtual time into micro-second. However, because the expires field of a timer

structure is based on milli-second, we need to compare the timer->expires with

NCTUNS_ticks rather than NCTUNS_ticks_to_us when in step 3 of

nctuns_callback().

4.3.7 Based on the Virtual Time

In this section, we will describe which part of the kernel should be modified to

reference the virtual time instead of the real time. There are two main parts that we

should modify when they are used in a simulation. They are TCP timers and

time-related system calls.

I. TCP Timers

As we know, a TCP socket will use several timers to manage its connection such

as re-transmission timer, delay-ack timer, keep alive timer etc. Of course, if the TCP

 53

connection is used for a simulation, its TCP timers should be triggered based on the

virtual time rather than the real time. Therefore, when any statement refers to

tcp_time_stamp, jiffies, and xtime.tv_sec, they should be respectively changed to refer

to NCTUNS_tcp_time_stamp, NCTUNS_ticks, and NCTUNS_xtime_tvsec. Following

shows some example code segments:

void tcp_keepalive_timer (unsigned long data)
{

…
//NCTUNS

//elapsed = tcp_time_stamp – tp->rcv_stamp;
elapsed = (sk->nodeID ? NCTUNS_tcp_time_stamp : tcp_time_stamp) – tp->rcv_stamp;

//NCTUNS
…

}
modified code

Unmodified code

void tcp_keepalive_timer (unsigned long data)
{

…
//NCTUNS

//elapsed = tcp_time_stamp – tp->rcv_stamp;
elapsed = (sk->nodeID ? NCTUNS_tcp_time_stamp : tcp_time_stamp) – tp->rcv_stamp;

//NCTUNS
…

}
modified code

Unmodified code

void tcp_reset_keepalive_timer (struct sock *sk, unsigned long len)
{
//NCTUNS

//if (!mod_timer(&sk->timer, jiffies+len))
if (!mod_timer(&sk->timer, (sk->nodeID ? NCTUNS_ticks : jiffies) + len))

//NCTUNS
sock_hold(sk);

}

Unmodified code

modified code

void tcp_reset_keepalive_timer (struct sock *sk, unsigned long len)
{
//NCTUNS

//if (!mod_timer(&sk->timer, jiffies+len))
if (!mod_timer(&sk->timer, (sk->nodeID ? NCTUNS_ticks : jiffies) + len))

//NCTUNS
sock_hold(sk);

}

Unmodified code

modified code

int tcp_v4_connect (struct sock *sk , struct sockaddr *uaddr, int addr_len)
{

…
//NCTUNS

// if (peer && peer->tcp_ts_stamp + TCP_PASW_MSL >= xtime.tv_sec)
if (peer && peer->tcp_ts_stamp + TCP_PAWS_MSL >=

(tp->nodeID ? NCTUNS_xtime_tvsec : xtime.tv_sec))
//NCTUNS

{
…

}

Unmodified code

modified code

int tcp_v4_connect (struct sock *sk , struct sockaddr *uaddr, int addr_len)
{

…
//NCTUNS

// if (peer && peer->tcp_ts_stamp + TCP_PASW_MSL >= xtime.tv_sec)
if (peer && peer->tcp_ts_stamp + TCP_PAWS_MSL >=

(tp->nodeID ? NCTUNS_xtime_tvsec : xtime.tv_sec))
//NCTUNS

{
…

}

Unmodified code

modified code

II. Time-related System Calls and Kernel Functions

gettimeofday()

In the kernel, it is implemented by do_gettimeofday():

 54

void getvirtualtime(struct timeval *tv)
{

long rem = 0;
tv->tv_sec = NCTUNS_xtime_sec;
tv->tv_usec = div_long_long_rem (NCTUNS_rem, microscale, &rem);

}

void do_gettimeofday(struct timeval *tv)
{

unsigned long flags;
unsigned long usec, sec;

read_lock_irqsave(&xtime_lock, flags);
//NCTUNS

if (current->p_node) {
getvirtualtime(tv);
read_unlock_irqrestore(&xtime_lock , flags);

}
//NCTUNS

…
}

void getvirtualtime(struct timeval *tv)
{

long rem = 0;
tv->tv_sec = NCTUNS_xtime_sec;
tv->tv_usec = div_long_long_rem (NCTUNS_rem, microscale, &rem);

}

void do_gettimeofday(struct timeval *tv)
{

unsigned long flags;
unsigned long usec, sec;

read_lock_irqsave(&xtime_lock, flags);
//NCTUNS

if (current->p_node) {
getvirtualtime(tv);
read_unlock_irqrestore(&xtime_lock , flags);

}
//NCTUNS

…
}

alarm(), ualarm(), select(), set_itimer(), usleep()

These APIs provided by the standard C library are implemented by the

system call set_itimer(). In the kernel, the kernel function do_setitimer() is

used to service this system call. Therefore, if the calling process belongs to

a simulation, we should change do_setitimer() to refer to the virtual time:

 55

int do_setitimer(int which, struct itimerval *value, struct itimerval *ovalue)
{

register unsigned long i, j;
int k;

//NCTUNS
struct task_struct *nctuns_proc;

//NCTUNS

i = tvtojiffies(&value->it_interval);
j = tvtojiffies(&value->it_value);
if (ovalue && (k=do_getitimer(which, ovalue) < 0))

return k;
switch (which) {
case ITIMER_REAL:

//NCTUNS
if (nctuns>0 && nctuns_proc=find_task_by_pid(nctuns) && current->p_node) {

nctuns_del_timer_sync(¤t->real_timer);
current->it_real_value = j;
current->it_real_incr = i;

if (!j) break;
if (j > (unsigined long)LONG_MAX)

j = LONG_MAX;
i = j + NCTUNS_ticks;
current->real_timer.expires = i;
nctuns_callout_helper(¤t->real_timer, (value->it_value.usec)%1000);
break;

}
//NCTUNS

…
break;

case ITIMER_VIRTUAL:
…

}

To be based on the
virtual time

int do_setitimer(int which, struct itimerval *value, struct itimerval *ovalue)
{

register unsigned long i, j;
int k;

//NCTUNS
struct task_struct *nctuns_proc;

//NCTUNS

i = tvtojiffies(&value->it_interval);
j = tvtojiffies(&value->it_value);
if (ovalue && (k=do_getitimer(which, ovalue) < 0))

return k;
switch (which) {
case ITIMER_REAL:

//NCTUNS
if (nctuns>0 && nctuns_proc=find_task_by_pid(nctuns) && current->p_node) {

nctuns_del_timer_sync(¤t->real_timer);
current->it_real_value = j;
current->it_real_incr = i;

if (!j) break;
if (j > (unsigined long)LONG_MAX)

j = LONG_MAX;
i = j + NCTUNS_ticks;
current->real_timer.expires = i;
nctuns_callout_helper(¤t->real_timer, (value->it_value.usec)%1000);
break;

}
//NCTUNS

…
break;

case ITIMER_VIRTUAL:
…

}

int do_setitimer(int which, struct itimerval *value, struct itimerval *ovalue)
{

register unsigned long i, j;
int k;

//NCTUNS
struct task_struct *nctuns_proc;

//NCTUNS

i = tvtojiffies(&value->it_interval);
j = tvtojiffies(&value->it_value);
if (ovalue && (k=do_getitimer(which, ovalue) < 0))

return k;
switch (which) {
case ITIMER_REAL:

//NCTUNS
if (nctuns>0 && nctuns_proc=find_task_by_pid(nctuns) && current->p_node) {

nctuns_del_timer_sync(¤t->real_timer);
current->it_real_value = j;
current->it_real_incr = i;

if (!j) break;
if (j > (unsigined long)LONG_MAX)

j = LONG_MAX;
i = j + NCTUNS_ticks;
current->real_timer.expires = i;
nctuns_callout_helper(¤t->real_timer, (value->it_value.usec)%1000);
break;

}
//NCTUNS

…
break;

case ITIMER_VIRTUAL:
…

}

To be based on the
virtual time

In do_setitimer(), value->it_value indicates how much time away from

now that the kernel needs to trigger the timer. Value->it_interval indicates

the period of the timer (the interval time that is used to periodically to

trigger this timer). Then we directly use nctuns_callout_helper() to insert

the real timer structure of the current process into the callwheel rather than

using the internal_add_timer(). The reason is that we want to bring the

micro-second information into nctuns_callout_helper(). The handle function

of the real timer structure of a process is it_real_fn(). It processes periodical

interval timers. Therefore it also needs some modifications:

 56

void it_real_fn(unsigned long __data)
{

struct task_struct *p = (struct task_struct *)__data;
unsigned long interval;

//NCTUNS
struct task_struct *nctuns_proc;

//NCTUNS
send_sig(SIGALARM, p, 1);
interval = p->it_real_incr;

if (interval) {
if (interval > (unsigned long) LONG_MAX)

interval = LONG_MAX;
//NCTUNS

if (nctuns>0 && nctuns_proc=find_task_by_pid(nctuns) && p->pnode) {
p->real_timer.expires = NCTUNS_ticks + interval;
nctuns_callout_helper(&p->real_timer, 0);

} else {
p->real_timer.expires = jiffies + interval;
add_timer(&p->real_timer);

}
//NCTUNS

}
}

The process which the
kernel will send a signal

to belongs to a simulation.

The real timer of this
process is a periodical timer.

Re-schedule
this timer

void it_real_fn(unsigned long __data)
{

struct task_struct *p = (struct task_struct *)__data;
unsigned long interval;

//NCTUNS
struct task_struct *nctuns_proc;

//NCTUNS
send_sig(SIGALARM, p, 1);
interval = p->it_real_incr;

if (interval) {
if (interval > (unsigned long) LONG_MAX)

interval = LONG_MAX;
//NCTUNS

if (nctuns>0 && nctuns_proc=find_task_by_pid(nctuns) && p->pnode) {
p->real_timer.expires = NCTUNS_ticks + interval;
nctuns_callout_helper(&p->real_timer, 0);

} else {
p->real_timer.expires = jiffies + interval;
add_timer(&p->real_timer);

}
//NCTUNS

}
}

void it_real_fn(unsigned long __data)
{

struct task_struct *p = (struct task_struct *)__data;
unsigned long interval;

//NCTUNS
struct task_struct *nctuns_proc;

//NCTUNS
send_sig(SIGALARM, p, 1);
interval = p->it_real_incr;

if (interval) {
if (interval > (unsigned long) LONG_MAX)

interval = LONG_MAX;
//NCTUNS

if (nctuns>0 && nctuns_proc=find_task_by_pid(nctuns) && p->pnode) {
p->real_timer.expires = NCTUNS_ticks + interval;
nctuns_callout_helper(&p->real_timer, 0);

} else {
p->real_timer.expires = jiffies + interval;
add_timer(&p->real_timer);

}
//NCTUNS

}
}

The process which the
kernel will send a signal

to belongs to a simulation.

The real timer of this
process is a periodical timer.

Re-schedule
this timer

sleep(), nanosleep()

These two functions of the standard C library are implemented by the

system call nanosleep(). In the kernel, the sys_nanosleep() is used to service

this system call.

 57

asmlinkage long sys_nanosleep(struct timespec *rqtp, struct timespec *rmtp)
{

…
//NCTUNS

/* Because we can control the virtual time precisely */
if (nctuns>0 && find_task_by_pid(nctuns) && current->p_node)

goto skip_udelay;
//NCTUNS

if (t.tv_sec==0 && t.tv_nsec <= 2000000L &&
current->policy != SCHED_NORMAL) {

udelay((t.tv_nsec + 999)/1000);
return 0;

}
//NCTUNS
sk ip_udelay:

if (nctuns>0 && find_task_by_pid(nctuns) && current->p_node) {
expire = 1000*t.tv_sec + t.tv_nsec/1000000;
current->stat = TASK_INTERRUPTIBLE;
expire = schedule_timeout_us(expire, t.tv_nsec/1000);

} else {
expire = timespec_to_jiffies(&t) + (t.tv_sec || t.tv_nsec);
current->stat = TASK_INTERRUPTIBLE;
expire = schedule_timeout(expire);

}
//NCTUNS

…
}

asmlinkage long sys_nanosleep(struct timespec *rqtp, struct timespec *rmtp)
{

…
//NCTUNS

/* Because we can control the virtual time precisely */
if (nctuns>0 && find_task_by_pid(nctuns) && current->p_node)

goto skip_udelay;
//NCTUNS

if (t.tv_sec==0 && t.tv_nsec <= 2000000L &&
current->policy != SCHED_NORMAL) {

udelay((t.tv_nsec + 999)/1000);
return 0;

}
//NCTUNS
sk ip_udelay:

if (nctuns>0 && find_task_by_pid(nctuns) && current->p_node) {
expire = 1000*t.tv_sec + t.tv_nsec/1000000;
current->stat = TASK_INTERRUPTIBLE;
expire = schedule_timeout_us(expire, t.tv_nsec/1000);

} else {
expire = timespec_to_jiffies(&t) + (t.tv_sec || t.tv_nsec);
current->stat = TASK_INTERRUPTIBLE;
expire = schedule_timeout(expire);

}
//NCTUNS

…
}

Schedule_timeout() is a kernel function used to make the current process

sleep until a specified value have elapsed. Schedule_timeout_us() is a kernel

function added by us. Actually, schedule_timeout_us() is modified from

schedule_timeout(). Their difference is that the schedule_timeout_us() can

use a argument to bring in the micro-second information.

 58

signed long schedule_timeout_us (signed long timeout, long us)
{

struct timer_list timer;
…
expire = timeout + NCTUNS_ticks;

init_timer(&timer);
timer.expires = expire;
timer.data = (unsigned long)current;
timer.function = process_timeout;

nctuns_callout_helper(&timer, (us%1000));
schedule();
nctuns_del_timer_sync(&timer);

timeout = timer.expires – NCTUNS_ticks;
out:

return timeout < 0 ? 0 : timeout;
}

4.3.8 NCTUns Divert Socket

In Linux 2.4.x, the kernel does not support the divert socket. However, some

daemons such as emulation daemons and Mobile-IP daemons need a similar

mechanism like the divert socket. In part II of this paper, we will describe why these

daemons must use this mechanism. In this section, we will describe how we bring

FreeBSD’s divert socket into Linux.

First, if a user-level program wants to use our divert socket (Here, we call it

NCTUns divert socket), it should include a header file, nctuns_divert.h :

 59

#ifndef __nctuns_redirect_h__
#define __nctuns_redirect_h__

/* IP Hooks */
#define NF_IP_PRE_ROUTING 0 // After promisc drops, checksum checks.
#define NF_IP_LOCAL_IN 1 // If the packet is destined for this box.
#define NF_IP_FORWARD 2 // If the packet is destined for another interface.
#define NF_IP_LOCAL_OUT 3 // Packets coming from a local process
#define NF_IP_POST_ROUTING 4 // Packets about to hit the wire.
#define NF_IP_NUMHOOKS 5

/* Divert Operations */
#define DIVERT_INFO 0x01
#define DIVERT_FLUSH 0x02
#define DIVERT_ADDHEAD 0x03
#define DIVERT_ADDTAIL 0x04
#define DIVERT_DELETE 0x05
#define DIVERT_MOVETAIL 0x06

struct divert_entry {
int proto; // protocol
u_long srcip; // source ip
u_long smask; // netmask for source ip
u_long dstip; // destination ip
u_long dmask; // netmask for destination ip
u_long sport; // source port number
u_long dport; // destination port number

}

#ifdef __KERNEL__

#define MAX_DIVERT_ADDR 128

struct divert_rule {
struct list_head nextdr;
int fd;

/* The socket where packets that was filtered by this rule will be sent to */
struct sock *sk;

u_long hook;

int proto;
u_long srcip;
u_long smask;
u_long dstip;
u_long dmask;
u_long sport;
u_long dport;

}

#endif /* __KERNEL__ */
#endif /* __nctuns_redirect_h */

The divert_entry structure is used to store the filter rule. Then the user-level

program can use a user-defined system call (system call 259) to register a filter rule

that is stored in a divert_entry structure into a specified hook number list. At system

call 259, there is an important argument that must be set: a RAW socket file descriptor.

This is used to specify which socket to receive filtered packets. As such, when a

 60

packet is filtered by a filter rule, we can know which socket we will send the packet

to. Finally, the user-level program can issue the recvfrom() system call to receive the

filtered packets from the RAW socket that is created by itself. The following shows

an example:

#include “nctuns_divert.h”

int main()
{

struct divert_entry de;
int rawfd;
struct sockaddr_in addr;
char buf[8192];

rawfd = socket(AF_INET, SOCK_RAW, IPPROTO_RAW);
if (setsockopt(rawfd, IPPROTO_IP, IP_HDRINCL, (char *)&sm, sizeof(sm)) < 0)

perror(“setsockopt”);

de.proto = IPPTOTO_IP;
de.srcip = inet_addr(“140.113.1.1”);
de.smask = inet_addr(“255.255.255.0”);
de.dstip = inet_addr(140.113.17.5);
de.dmask = inet_addr(“255.255.255.0”);
de.sport = 0; // 0 means don’t care
de.dport = 80;

syscall(259, DIVERT_ADDHEAD, rawfd, NF_IP_LOCAL_OUT, (char *)&de, sizeof(de));
while(1) {

recvfrom(rawfd, buf, sizeof(buf), 0, (struct sockaddr*)&addr, sizeof(addr));
…

}
}

In the kernel, we implement several kernel functions to service this work:

nctuns_reg_divert_rule(), divert_hook(), and nctuns_pkt_match().

Nctuns_reg_divert_rule() is the main function used to maintain all filter rules such as

adding a rule, moving a rule, deleting a rule, flushing all rules, displaying filter rules

etc. It maintains a rule table that has five rule lists; every list represents a hook

number.

Nctuns_pkt_match() is used to check whether a packet is matched by a filter rule

or not. Divert_hook() will be registered to the netfilter [5] module as a call-back

function. It will be called for every packet that traverses the respective hook within

 61

the network stack. When divert_hook() is called with a packet, it will call

nctuns_pkt_match() to check whether we should capture this packet. If yes,

divert_hook() will put it into the corresponding RAW socket’s receive queue.

Furthermore, when the user-level program uses recvfrom() to receive a filtered

packet, we want to provide the assigned IP address of the interface where the packet

came from. According to the above example code, if the program receives a packet

from recvfrom(), the structure addr will be filled with the IP address of the packet’s

incoming interface. If the packet is an outgoing packet, addr will be filled with the

packet’s source IP address. This enables the program to give packets different

treatment according to the incoming interface, especially for multi-interface devices.

As such, some original RAW socket implementation needs a little change:

 62

int raw_rcvmsg(struct sock *sk, struct msghdr *msg, int len,
int noblock, int flags, int *addr_len)

{
…
struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
…
if (sin) {

sin->sin_family = AF_INET;
sin->sin_addr.s_addr = skb->nh.iph->saddr;

//NCTUNS
/* Return IP address that is bound in the input device */
if (sk->nodeID && (skb->pkt_type==PACKET_DIVERT)) {

struct in_device *in_dev;
struct in_ifaddr *ifa;
if (skb->dev)

in_dev = in_dev_get(skb->dev);
else

goto next;
if (in_dev==NULL || (ifa=in_dev->ifa_list)==NULL) {

printk (“raw_rcvmsg(): Can’t find interface IP!\n”);
in_dev_put(in_dev);
goto next;

}
ifa = in_dev->ifa_list;
if (ifa)

sin->sin_addr.s_addr = ifa->ifa_local;
in_dev_put(in_dev);
skb->dev = NULL;

} else if (sk->nodeID > 0) {
u_char *p1;
p1 = (u_char *)&(sin->sin_addr.s_addr);
p1[0] = 1;
p1[1] = 0;

}
next:
//NCTUNS

…
}
…

}

The RAW socket
is not a divert

socket.

The skb is queued
to the RAW socket
by divert_hook().

int raw_rcvmsg(struct sock *sk, struct msghdr *msg, int len,
int noblock, int flags, int *addr_len)

{
…
struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
…
if (sin) {

sin->sin_family = AF_INET;
sin->sin_addr.s_addr = skb->nh.iph->saddr;

//NCTUNS
/* Return IP address that is bound in the input device */
if (sk->nodeID && (skb->pkt_type==PACKET_DIVERT)) {

struct in_device *in_dev;
struct in_ifaddr *ifa;
if (skb->dev)

in_dev = in_dev_get(skb->dev);
else

goto next;
if (in_dev==NULL || (ifa=in_dev->ifa_list)==NULL) {

printk (“raw_rcvmsg(): Can’t find interface IP!\n”);
in_dev_put(in_dev);
goto next;

}
ifa = in_dev->ifa_list;
if (ifa)

sin->sin_addr.s_addr = ifa->ifa_local;
in_dev_put(in_dev);
skb->dev = NULL;

} else if (sk->nodeID > 0) {
u_char *p1;
p1 = (u_char *)&(sin->sin_addr.s_addr);
p1[0] = 1;
p1[1] = 0;

}
next:
//NCTUNS

…
}
…

}

The RAW socket
is not a divert

socket.

The skb is queued
to the RAW socket
by divert_hook().

If the RAW socket is not turned into a divert socket, we should recover the IP

address from the S.S.D.D format to the normal 1.0.X.X format. For example, the

“ping” program uses a RAW socket to send and receive ICMP packets. When it

receives a ICMP reply packet via recvfrom(), we should recover the IP address;

otherwise the ping program will get an IP address with S.S.D.D format.

 63

5. Evaluation

In this section, we will use some simulation cases to verify the accuracy of the

Linux version of the NCTUns 1.0 network simulator. We also will run several

simulation cases to test the scalability of our simulator. For these cases, we will

discuss their results respectively.

5.1 Simulation and Experiment Result Comparison

Interface module

ARP module

FIFO module

802.3 module

PHY module

Link module

Tcpdump module

Interface module

ARP module

FIFO module

802.3 module

PHY module

Link module

Tcpdump module

The sending host The receiving host

TCP 1

TCP 2

Interface module

ARP module

FIFO module

802.3 module

PHY module

Link module

Tcpdump module

Interface module

ARP module

FIFO module

802.3 module

PHY module

Link module

Tcpdump module

The sending host The receiving host

TCP 1

TCP 2

I. Experiment Case Setup

Figure I-5.1.1 depicts a simple network topology. Both the experiment case and

the simulation case follow figure I-5.1.1 to set up their network topologies. As the

figure shows, there are two hosts connected to each other by a link. The bandwidth of

the link is 100Mbps (Fast Ethernet). We use two IBM A30 notebook computers to

Figure I-5.1.1: The testing network topology

 64

help us complete this experiment. An IBM A30 is equipped with a 1.6GHz Pentium

processor, 256MB RAM, and a Fast Ethernet network interface (100Mbps). Both of

those two A30s are installed with the Fedora Core Release 1 package [16] whose

Linux kernel version is 2.4.22.

By default, the Linux kernel will create a per-interface FIFO queue to hold

outgoing packets for each network interface, and the default maximum queue length

is 100 packets. We do not change this value. During an experiment, we will set up 2

greedy TCP connections from the sending host to the receiving host. The two TCP

connections will contend for the sending host’s output FIFO queue. In other words,

the sending host’s output queue will be the bottleneck.

II. Simulation Case Setup

In the simulation case, the organization of each node is shown in the upper side

of figure I-5.1.1. In the FIFO (First-In-First-Out) module, we set the maximum queue

length to 110 packets rather than 100. This is because there is an unknown packet

buffer in the hardware of the Fast Ethernet NIC that will be used by the experiment

case. The buffer size will influence the simulation result. In order to solve this

problem, we purposely increase the maximum queue length of the FIFO module. The

simulation machine is also an IBM A30 notebook. The Linux kernel version modified

to support the NCTUns 1.0 network simulator is 2.4.22, which is the same with the

experiment case.

III. Result Comparison

Figure I-5.1.2 shows the total throughput comparison of the two cases. From

figure I-5.1.2, we can obviously discover that the total throughput of the experiment

 65

case is larger than the throughput of the simulation case. The average difference is

about 376 Kbytes/sec. The difference is caused by our MAC 802.3 module and the

MAC 802.3 implementation of the A30’s Ethernet NIC. In our MAC 802.3 module,

we add a little random delay between two successive packets that are pushed onto the

link. The average ratio is about 5% of the transmission delay of the outgoing packet.

As we know, the random delay time between two successive packets will influence

the total throughput significantly. If there is a smaller average delay ratio, the total

throughput will be larger. Therefore, we think that the difference in figure I-5.1.2 is

due to the difference between the two implementation of the MAC 802.3 protocol.

Figure I-5.1.3 shows the experimental result of two contending TCP connections.

Figure I-5.1.4 shows the corresponding simulation result. By comparing these two

figures, we can see that their competitive behaviors are almost the same. This result

verifies the accuracy of the NCTUns network simulator.

Total Throughput Comparison

11000

11100

11200

11300

11400

11500

11600

11700

11800

11900

1 11 21 31 41 51 61 71 81 91 101 111 121

Elapsed Time (second)

T
hr

ou
gh

pu
t

(K
by

te
/s

ec
)

The total throughput of the experiment case

The total throughput of the simulation case

 Figure I-5.1.2: The total throughput comparison

between the experiment case and the simulation case

 66

Experiment Result

5500

5550

5600

5650

5700

5750

5800

5850

5900

5950

6000

1 11 21 31 41 51 61 71 81 91 101 111 121

Elapsed Time (second)

T
hr

ou
gh

pu
t (

K
by

te
/s

ec
)

TCP1 TCP2

Simulation Result

5500

5550

5600

5650

5700

5750

5800

5850

5900

5950

6000

1 11 21 31 41 51 61 71 81 91 101 111 121

Elapsed Simulation Time (second)

T
hr

ou
gh

pu
t (

K
by

te
/s

ec
)

TCP1 TCP2

Figure I-5.1.4: The simulation result of two
contending TCP connections

Figure I-5.1.3: The experiment result of two
contending TCP connections

 67

5.2 Simulation Speed

I. Simulation Setup

In the simulation case, two hosts are connected with a link whose bandwidth is

100 Mbits/sec. The link delay is set to 1 milli-second. The traffic is a one-way

constant-bit-rate (CBR) UDP packet stream. Each UDP packet size is set to 1400

bytes. The total simulation time is set to 500 seconds and the used machine is an IBM

A30 notebook.

We vary the packet interval time between two successive packet transmissions.

The tested intervals are 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, and greedy

transmission. The greedy transmission means that the sending host will try its best to

push out its UDP packets.

II. Result

915.751

683.060

425.170

297.619

105.932

59.425

13.169

6.719

1.853

0 100 200 300 400 500 600 700 800 900 1000

Simulation Time (500sec)/Elapsed Time

Greedy

0.0005

0.0010

0.0050

0.0100

0.0500

0.1000

0.5000

1.0000

C
B

R
 P

ac
ke

t
In

te
rv

al
 T

im
e

(s
ec

on
d)

The Simulation Perfromance

Figure I-5.2.1: The simulation performance under
various constant-bit-rate UDP traffic loads. (A higher
ratio means a better performance)

 68

The performance metric is the ratio of the simulated seconds to the elapsed real

seconds for running the simulation. A higher ratio means a higher performance.

Figure I-5.2.1 shows the simulation performance plot. We can see that the simulation

can be very quickly finished at a lower traffic load. When the interval time is 1

second, the ratio is 915.751. In other words, our simulator just spends 0.546

(500/915.751) seconds in the real time to finish the simulation. This result verifies

that the discrete event simulation methodology can significantly speed up the

simulation speed very much. Even at the very high traffic load such as 0.0005

seconds and the greedy transmission condition, the ratio is still greater than 1. In other

words, the simulation speed is still faster than the real-world time. For the greedy

transmission, the simulator still can run 1.853 times faster than the real-world time

(Note that the link bandwidth is 100 Mbps.).

5.3 Fixed CBR UDP Stream on Multiple Hop
Networks Case

I. Simulation Setup

 We also use an IBM A30 notebook computer to run these simulation cases. In

the suite, we want to see the performance about a CBR UDP packet stream to be

passing through a different number of forwarding nodes. We will test two kinds of

forwarding nodes -- switch and router. Figure I-5.3.1 shows the network configuration

of this simulation case.

 69

2-hop

3-hop

8-hop

A switch or a router

2-hop

3-hop

8-hop

A switch or a router

0

10

20

30

40

50

60

70

80

90

100

2 3 4 5 6 7 8

Number of hops (Router or Switch in between)

E
la

ps
ed

 T
im

e
(s

ec
on

d)

Switch-without-ptr

Router-without-ptr

Switch-with-ptr

Router-with-ptr

Figure I-5.3.2: The performance under different
forwarding nodes (switch or router)

Figure I-5.3.1: The
different number of
forwarding nodes in each
simulation case

 70

6000

6200

6400

6600

6800

7000

7200

2 3 4 5 6 7 8

Number of hops (Router or Switch in between)

M
em

or
y

us
ag

e
of

 th
e

si
m

ul
at

io
n

en
gi

ne
 (

K
by

te
)

Switch-without-ptr

Route-without-ptr

Switch-with-ptr

Router-with-ptr

 The bandwidth and delay of all links are set to 10 Mbps and 10 milli-seconds

respectively. The interval time of the CBR UDP packet stream is set to 0.002 seconds

and the packet length of each UDP packet is set to 1400 bytes. The total simulation

time is set to 100 seconds. In these simulation cases, we care about two performance

metrics -- the elapsed real-world time and the memory usage of the simulation engine.

In addition, we will observe how the logging mechanism of packet trace influences

the performance.

II. Report

Figure I-5.3.2 shows the performance plot about the elapsed real-world time.

“Switch-without-ptr” means that the forwarding nodes are switches, and the simulator

does not turn on the logging mechanism of packet trace. “Switch-with-ptr” means that

Figure I-5.3.3: The memory usage under different
forwarding nodes (switch or router)

 71

the simulator turns on the logging mechanism of packet trace. By comparing the

switch-without-ptr case and the router-without-ptr case, we can see that the

performance of the router-without-ptr case always takes more time than the

switch-without-ptr case. This result is reasonable. When simulating a packet to be

forwarded by a router, the simulator should write the packet into kernel and then read

it from the kernel. However, when simulating a packet to be forwarded by a switch,

all forwarding operation is simulated in the simulation engine. The overhead of

issuing the read and write system calls is very high. Therefore, the router-without-ptr

case and the router-with-ptr case will spend more time than the switch ones,

respectively.

In figure I-5.3.2, we also can discover that the router-with-ptr case takes much

more time than the router-without-ptr case. The switch-with-ptr case and the

switch-without-ptr case also have the same result. Obviously, this result is caused by

the logging mechanism of packet trace. Therefore, we can know that the simulator

spends a lot of time logging the trace of each packet. This influences the performance

very much. In figure I-5.3.3, we can also see that the simulator will consume much

more memory when turning on the logging mechanism. This is because the simulator

should maintain a lot of structures to record the trace of every packet. As such, if we

want to further speed up the simulation speed in the future, the logging mechanism

will be the most important part.

5.4 MANET in the NCTUns network simulator

I Simulation Setup

In this test suite, the network topology is a two dimensional array in which each

 72

element is a ad-hoc mode mobile node. Figure I-5.4.1 shows this topology. We will

vary the dimensions of the array to see how the simulator’s speed and memory usage

will change when there are more packets exchanged in the simulation network.

 The tested dimensions are 2 by 2, 4 by 4, 6 by 6, 8 by 8, and 10 by 10. In other

words, the total numbers of mobile nodes are 4, 16, 36, 64, and 100, respectively. For

all mobile nodes, their bandwidths are set to 11 Mbps and the distance between two

mobile nodes is 150 meters. For the traffic settings, four corner mobile nodes will use

three CBR UDP packet stream to send packets to other 3 mobile nodes. For example,

in figure I-5.4.1, the destination of three CBR UDP packet stream that are generated

by the node A will be the node B, C, and D. As such, for different dimensional cases,

there are 12 CBR UDP packet streams carried on to the simulation network. The

packet interval time is 0.01 seconds and each UDP packet size is 1400 bytes. The

total simulation time is set to 100 seconds. The used machine is an IBM A30

notebook computer.

3 4

2 1

C D

B A

Figure I-5.4.1: The network topology that is organized by
the ad-hoc mode mobile nodes.

 73

II. Report

In figure I-5.4.2, we can see the performance of the MANET (Mobile Adhoc

NETwork) in the NCTUns network simulator. When the simulator simulates a

MANET under a high traffic load, the performance is much worse than the wired

simulation cases. As the network size grows, the performance decreases more quickly.

This is because the simulation network concurrently has much more packets in it

although the rate of injecting packets into the simulation network is the same. By

comparing figure I-5.4.2 and figure I-5.3.2, we can discover that the logging

mechanism has a smaller effect on the MANET case. This is because the simulator

spends a lot of time processing the 802.11 protocol so that the portion of the logging

processing is not as high as in figure I-5.3.2. The ad-hoc mode mobile network is also

an important case that needs to be improved to increase the performance of the

NCTUns network simulator in the future.

185.931

460.278

1064.875

1233.089

37.332
13.523

19.504
47.179

223.769

560.317

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

2x2 4x4 6x6 8x8 10x10

Number of ad-hoc mode mobile node

E
la

ps
ed

 T
im

e
(s

ec
on

d)

without ptr with ptr

 Figure I-5.4.2: The performance under different network
sizes (different dimensions)

 74

6600

7164

9200

10548

12096

6684

7196

12346

10820

9304

6500

8000

9500

11000

12500

2x2 4x4 6x6 8x8 10x10

Number of ad-hoc mode mobile node

M
em

or
y

us
ag

e
of

 th
e

si
m

ul
at

io
n

en
gi

ne
 (

K
by

te
)

without ptr with ptr

6. Future Work

After many years of development, the NCTUns 1.0 network simulator has

became a high-fidelity and extensible network simulator. However we are never

satisfied with its current status. We will continually improve it and develop more

functions for it. Here, we list some possible future work. One is to support larger

network topologies. In the current version, it can not create a simulation network that

has more than 254 network subnets or more than 4095 tunnel interfaces. This is the

limit of the S.S.D.D IP scheme and size of the UNIX device number.

Another one is the performance of the simulation. Although applying the discrete

time event simulation methodology to the NCTUns 1.0 can already speed up

simulations, we think there are still several approaches that can help us speed up the

simulation speed. These include implementing the simulation engine as a kernel

Figure I-5.4.3: The memory usage under different network
sizes (different dimensions)

 75

module, parallel simulation, etc.

Yet another is to overcome the drawback that all layer-3 devices must share the

same TCP/IP protocol settings in the kernel. Due to the kernel re-entering simulation

methodology, all layer-3 devices use the same TCP/IP protocol stack and will refer to

the same settings. If a node wants to use different settings from those used by other

nodes, the NCTUns 1.0 can not support this case. For example, a simulated node 1

wants to set its TCP keep-alive timer as 7000 but the simulated node 2 want to use a

value of 7500. In the current design, it is impossible to achieve this goal. An approach

to overcome this problem is to modify the kernel to support per-node TCP/IP protocol

settings. Another approach is to port the FreeBSD’s or Linux’s TCP/IP protocol stack

as modules of the simulation engine. As such, a simulation network may concurrently

have several different TCP/IP protocol stacks to work together.

7. Concluding Remarks for Part I

In part I, we clearly describe the architecture of the NCTUns 1.0 network

simulator. We also present the detail about how we port the NCTUns network

simulator to the Linux platform. Based on the kernel re-entering simulation

methodology and the discrete event simulation methodology, the NCTUns 1.0

provides many useful functions and good performance. After this tool is released to

the network community, many people or organizations have visited its Web site and

download this tool. Many users also provide various suggestions. Among these

suggestions, porting NCTUns from FreeBSD to Linux is the most desired one.

Therefore, we decide to port the NCTUns to the Linux platform. In the future, we will

continue to improve it and develop new functions and protocol modules for it.

 76

Part II: Supporting
Emulation

1. Introduction

Emulation is a kind of ability that can allow a network simulator to interact with

real network devices. An emulator allows real-world devices to interact with a

simulation network and forces real-world packets to experience user-specified

network conditions. In this application, we can call a network simulator a network

emulator. The network emulator is a very useful tool for testing the functions and

performance of a real-world machine because we can see how it will perform under

various network conditions.

Today, customers have high expectations from their vendors. They demand

products to be reliable, complete and fully tested. However, in modern market

competition, time-to-market is a very important factor to achieve more customers.

Therefore, developers would like to shorten their development cycle and limit their

testing time in order to release their products earlier than other companies. Therefore,

a tool having extensive testing capabilities would help developers very much. The

NCTUns emulator is qualified to do the job. It is a useful and powerful tool for IP

technology developers and vendors to develop and test their products. Basically, an

emulator can create a configurable and repeatable network environment. In the

environment, developers or testing engineers can configure and monitor the whole

testing simulation network. We can configure various network conditions and

 77

parameters in an emulator including packet dropping, delay, queuing, reordering, jitter,

limited bandwidth, fragment, routing, etc. By using this kind of tool, developers can

easily and quickly build a simulation network that can interact with real-world device

or any IP product. Therefore, they can thoroughly test their products in limited time

and reduce the time-to-market delay.

Network emulation with NCTUns is based on NCTUns network simulator [1, 2].

A real-world network can interact with a simulation network that is built by NCTUns

network simulator. The simulation network and real-world network can become a

mixed simulation network. In the mixed simulation network, real-world traffic and

simulated traffic can communicate with each other. For example, a TCP connection

can be set up between a real-world host and a host that is simulated by the NCTUns

network simulator. Also, a TCP connection can be set up between two real-world

hosts with their packets traversing a simulated network.

In our design, we can allow a simulation network to exchange packets with

external hosts or external routers. In an emulation, we call a real-world host (or

device that has one IP interface) an external host. In the meantime, we call a

real-world router (or device that has multiple IP interfaces) an external router. Packets

can be sent from an external host and then be directed into a simulation network.

Furthermore, packets generated in a simulation network can also be directed to an

external router, experience the router’s packet scheduling and processing, and then

return back to the simulation network.

We implement a user-level daemon to achieve these purposes. The user-level

daemon is used to correctly guide packets between real-world devices and the

 78

simulation network. Due to the kernel re-entering simulation methodology, the

NCTUns 1.0 applies several un-natural schemes in the kernel such as the S.S.D.D IP

format, port number translation, etc. Of course, these schemes are never used by

normal real-world hosts or devices. As such, if we want real-world packets to traverse

between the real-world network and the simulation network, we should clearly know

the detail about the internal design of the NCTUns 1.0. With this knowledge, we can

design and implement the emulation daemon in an easy way.

In part I of this paper, we already clearly describe and explain the design and

implementation of the NCTUns 1.0. In part II, we will extensively refer to these

concepts that are introduced in part I. Before readers read this part of the paper, we

strongly recommend that readers should first thoroughly understand the content of

part I. In the following chapters, we will explain how the NCTUns 1.0 supports

emulation in details.

2. Design Goals

First, we want to use a simple way to support emulation under NCTUns network

simulator. We hope that we don’t need to modify the original architecture too much to

easily achieve our goals. At the same time, we also want our emulator to have

numerous functionalities that most related work have and even have more

functionalities than they have. Second, we hope that the emulation can be easily

implemented on all UNIX-like platforms (especially FreeBSD and Linux) because

now the NCTUns network simulator can run on both FreeBSD 4.x and Linux 2.4.x

platforms. In addition, we also want to find a good solution that can easily suit most

UNIX-like systems. To sum up, we decide to use a user-level daemon to do this job.

 79

This is because a user-level daemon has all advantages described above.

By using a user-level daemon, all features and functions that the NCTUns

network simulator has can be used by the emulator. We can use all modules

provided by the NCTUns including WAN (wild-area-network), DiffServ modules,

optical network modules, packet scheduling modules, mobile node routing modules,

802.3 related modules, 802.11 related modules, etc. Most importantly, we want to

provide a function that almost all exiting work can not do this function is to set up a

TCP/UDP connection between a simulated node and a real-world host. This is a very

useful feature to test and evaluate any IP product with emulation. We can see how the

product would perform under various network conditions without getting, knowing,

or modifying its internal protocol stack. In the meantime, developers can test and

verify whether their product’s protocol behavior is correct or not. Most related work

only provide an environment that let packets experience various simulated network

conditions and then direct packets back to the real-world network. Both source and

destination host must be in the real-world network and they just exchange their

packets via the simulation network. In this situation, it is hard to verify their product’s

correctness unless that using a fully tested device to communicate with their products.

However, if they use the NCTUns emulator, they can easily test all functionalities and

correctness of a product. This capability saves their time and money.

3. Features

In this section, we will introduce and describe our emulator’s features.

3.1 Based On IP Protocol

 80

Our emulator obeys IP protocol. Any application and network protocol that are

based on IP protocol can run on our emulation environment. For example, TCP, UDP,

or ICMP protocol can easily work well. Therefore, any applications that are based on

these protocols can be used in an emulation. For example, FTP, HTTP, SMTP, SSH,

TELNET, RTP/RTCP, VoIP (Voice over IP), and IP tunneling can directly work in the

emulation environment.

3.2 Interact With Real Hosts

We can physically connect the external host (or real-world device) and the

network emulator together via a real-world network. Normally, we can use 100 Mbps

Fast Ethernet network to connect them together. After performing some appropriate

settings, packets generated by the real-world device can be directed into the

simulation network built by NCTUns 1.0. Packets generated by simulated hosts can

also be injected into a real-world network. That is, packets can be exchanged between

real-world hosts and simulated hosts. Furthermore, packets can be exchanged

between two real-world hosts. In this scenario, packets from real-world hosts will be

directed to the simulation machine. After they traverse the simulation network, they

will be injected to the real-world network and then arrive at another real-world host.

3.3 Interact With Real Routers

Our emulator can also co-operate with real-world routers. Packets generated by

simulated hosts can be directed to the real router and then the real router sends reply

packets back to the simulation machine. The emulator will then send these packets to

their destination nodes in the simulation. This is a useful function for testing a real

router or a multi-interface device.

 81

3.4 Can Establish TCP/UDP Connections between the
Emulator and Real Hosts

The feature that connections can be set up between real-world hosts and

simulated hosts is a remarkable facility compared with other existing related work.

The most related work acts like a router allowing real-world traffic to be passed

through the simulation network. They can only generate different network conditions

and impairments in the emulator but can not be used as an end-point to generate

TCP/UDP traffic. Ns-2 [3] claims that it can also support this kind of function (ns-2

calls it “Protocol Mode”). However, until now, this function is still incomplete. Just

like other related work, ns-2 only implements the “Opaque Mode”, in which the

emulator acts like a router (We will further discuss ns-2 in section 4 of part I).

Figure II-3.4(a) illustrates how the NCTUns emulator can be used as a TCP/UDP

end-point. In addition, the TCP/UDP connection can also be set up between two

real-world hosts with their packets traversing a simulated network. Figure II-3.4(b)

depicts this concept. Most related work can only support the function that figure

II-3.4(b) shows.

Figure II-3.4(a):
A TCP connection can
be set up between the
simulated node and the
external host.

 82

3.5 An External Host Can Be an
Ad-hoc/Infra-structure Mode Mobile Node in
Emulator

An external host in the real-world can be an external ad-hoc/infra-structure mode

mobile node in the simulation network. The real-world device does not need to be a

mobile device (e.g., a notebook equipped with an IEEE 802.11 interface). Actually, it

can be a fixed host which uses a normal Ethernet link to connect to the simulation

machine. Because the external mobile node’s IEEE 802.11 MAC protocol is

simulated in the virtual network, the IEEE 802.11 MAC protocol is not used between

the external host and the simulation machine to exchange their packets. In addition,

the mobility is simulated by the emulator rather than by the user physically moving

the real-world device around the simulation machine. As such, packets generated by

real-world host can experience wireless network conditions such as mobility via an

emulation.

3.6 Can Use All Features and Capabilities of NCTUns
Network Simulator

The NCTUns network simulator is a high fidelity and extensible network

Figure II-3.4(b):
A TCP connection can
be set up between two
external hosts.

 83

simulator. It has many unique advantages that cannot be achieved by traditional

network simulators [1]. When the simulator is turned into an emulator, all of the

capabilities that NCTUns has can still be used by an emulation. Having these

advantages, the NCTUns network emulator is very powerful and can provide many

capabilities that other emulators can not support. In the following, we will list some

capabilities and features of the NCTUns network simulator.

3.6.1 Support for Various Networks

It can simulate wired networks with fixed nodes and point-to-point links. It can

also simulate wireless networks with mobile nodes and IEEE 802.11 (b) wireless

network interfaces. For IEEE 802.11 (b), both the ad-hoc and infrastructure modes are

supported.

3.6.2 Support for Various Networking Devices

It can simulate various networking devices such as Ethernet hubs, switches,

routers, hosts, IEEE 802.11 wireless access points and interfaces, etc. A more realistic

802.11 (b) wireless physical module that considers the used modulation scheme, the

received power level, the noise power level, and the derived BER is provided

3.6.3 Support for Various Network Protocols

Because of the module-based platform, users can easily develop and add new

protocols on the NCTUns simulator. Now, it can simulate numerous protocols such as

IEEE 802.3 CSMA/CD MAC, IEEE 802.11 (b) CSMA/CA MAC, the learning bridge

protocol used by switches, the spanning tree protocol used by switches, IP, Mobile-IP,

RTP/RTCP, RIP, OSPF, UDP, TCP, HTTP, FTP, Telnet, etc. More protocols and

 84

devices are for other types of networks such as GSM/GPRS cellular networks and

optical networks have been developed.

3.6.4 Application Compatibility and Extensibility

All real-life existing or to-be-developed UNIX application programs can be run

on a simulation network to generate realistic network traffic. Users do not need to

modify these programs. These programs can be easily run on a simulated network as

long as these UNIX programs can be correctly run on the real-world network. In

addition, all real-life existing UNIX network configuration tools (e.g. route, ifconfig,

netstat, tcpdump) can be run on a simulated network to configure or monitor a

simulated network. Users can easily use these tools provided by a UNIX system.

3.6.5 User Friendliness

NCTUns 1.0 provides an integrated and professional GUI environment in which

users can easily conduct network simulations. All settings and configurations can be

easily set up through GUI. This includes drawing network topologies, configuring the

protocol modules used inside a node, specifying the initial locations and moving

paths of mobile nodes, plotting network performance graphs, playing back the

animation of a logged packet transfer trace, etc.

3.6.6 Open System Architecture

By using a set of module APIs that are provided by the simulation engine, a

protocol module developer can easily implement his or her own protocol and

integrate it into the simulation engine. For example, user can easily develop and test

his or her routing protocol used by ad-hoc mode mobile node in our simulator.

 85

4. Related Work

In this section, we will discuss some related work.

The NIST Net [14] network emulator is a general-purpose tool for emulating

performance in IP networks. It mainly operates at the IP level. It can emulate the

critical end-to-end performance characteristics imposed by various wide area network

situations (e.g. congestion loss) or by various underlying subnetwork technologies

(e.g., asymmetric bandwidth situations of xDSL and cable modems.). It is

implemented as a Linux kernel module, and user can install the module into a Linux

system running on a PC-based machine. This approach is very similar to ours. Both

the NIST Net and the NCTUns emulator use the in-kernel IP layer to do an emulation.

However, the NCTUns emulator can do more things that the NIST Net can do. This is

because the NIST Net only allows a single Linux PC to be set up as a router to

emulate a wide variety of network. It can not become an end-point of a TCP or UDP

connection. Furthermore, it can not allow users to develop his/her protocol modules.

For example, if a user develops a new packet scheduling algorithm, the NIST Net can

not provide a mechanism to allow the user to test their algorithms in an emulation.

Due to the module-based platform provided by the NCTUns 1.0, however, users can

easily implement their protocol modules and test these modules in an emulation.

There is another kind of network emulators. Unlike the NIST Net and the

NCTUns emulator, they do not develop a general package to be installed on a

FreeBSD or Linux system running on a general-purpose PC. Rather, they develop a

special device or hardware to achieve the emulation purpose. The PacketStorm IP

network emulator [4] and the Hammer PacketSphere [15] belong to this kind of

network emulator. Their advantages may be the performance because they can be

 86

equipped with varied network interfaces, high-speed processors, larger memory, and

more efficient operating system, etc. A general PC-based machine on the other hand

may not have these powerful equipments. This is because a general operating system

such as FreeBSD or Linux is not specially designed for the emulation purpose.

Despite this disadvantage, our emulator and other similar related work provide a

low-cost way to implement a network emulator. Normal users, researchers or students

do not need to spend too much money to do emulation experiments with our network

emulator.

A related work that is very similar to ours is the ns-2 [3]. Originally Ns-2 is a

network simulator just like the NCTUns 1.0 network simulator. It also has the ability

to turn itself into a network emulator. Ns-2 is a traditional network simulator and is

implemented as a user-level program. Therefore, when it is turned into a network

emulator, it needs a mechanism to capture packets from kernel just like that our

emulation daemons do. Ns-2 with emulation has two modes: opaque mode and

protocol mode. In the opaque mode, the simulator (ns-2) acts like a router allowing

real-world traffic to be passed through. In this mode, its function is similar to NIST

Net. In the protocol mode, ns-2 can be used as an end-point to generate TCP or UDP

traffic. In other words, ns-2 can also provide the function shown by figure II-3.4(a).

So far to the best of the author’s knowledge, only the NCTUns emulator and ns-2 can

provide this kind of ability.

5. Design and Implementation
In this chapter, we will describe and discuss how NCTUns network simulator

can be turned into a network emulator. We will introduce the concepts about our

emulation design. After reading this chapter, readers will get a big map of the

 87

NCTUns emulator.

5.1 User-Level Daemon

We implement a user-level daemon to direct packets to the correct direction.

This is the main job of the emulation daemon. The emulation daemon will capture

packets from the kernel, and then ether put packets into the simulation network or

inject packets to the real-world network. Figure II-5.1(a) and II-5.1(b) depict what the

emulation daemon does. In the following sections, we will use the two figures to

explain our design in details.

Using user-level daemons has two advantages. First, it is easier to implement

than using a kernel module. Second, it is easy to port them to UNIX-like systems.

Because NCTUns network simulator can be run on FreeBSD 4.x and Linux 2.4.x, we

also want to support emulation on both systems. Therefore, a kernel module would

not suit our needs.

 Figure II-5.1(a):

The emulation daemon receives packets from the
real-world network (Ethernet network), and then
directs them into the simulation network.

 88

5.2 Capture Packets from the Kernel

The emulation daemon should have an approach or a mechanism to capture

packets from the kernel. The emulation daemon also should be able to set packet filter

rules according to its requirement. As such, the kernel should provide appropriate

services to help the emulation daemon filter packets. In this section, we will describe

how emulation daemon can capture packets from the kernel under FreeBSD and

Linux systems.

5.2.1 Using Divert Socket in FreeBSD

In FreeBSD, there is a special socket type that Linux does not support. This is

the divert socket. At the user-level, a program can create a divert socket with a port

number (e.g. 2000). When a user configures an IP filter rule (normally using Berkeley

Figure II-5.1(b):
The emulation daemon receives packets from the
simulation network, and then injects them into the
real-world network (Ethernet network).

 89

Packet Filter, called BPF), she can indicate which port number a captured packet

should be to divert to if that packet is matched by this rule. The following command

is an example of setting a filter rule with a divert port number:

ipfw divert 2000 ip from 192.168.1.2 to any in

“ipfw” is the user-level program which is used to manage filter rules that are

maintained in the kernel. The rule means that if there is any packet that uses IP

protocol, its source ip address is 192.168.1.2, and it is a incoming packet (not

outgoing), the kernel should divert this packet to the divert socket with port number

2000 (“to any” means that we do not care the destination IP address). Therefore, as

long as we set appropriate rules, the emulation daemon can capture packets that it

wants via recvfrom() system call. If the emulation daemon wants to put the packet

back to the kernel, it can simply use sendto() system call via the divert socket. In

figure II-5.1 (a) and (b), the “IP filter” and the arrow of sending matched packets to

the emulation daemon are the result of using divert socket and BPF. This situation is

feasible under FreeBSD.

5.2.2 Using Netfilter and Added System Calls in Linux

 90

NetLink
Socketnetfilter

module

0

1

2

3
4

iptables
module Divert_hook()

Divert_hook()

ip_queue module

RAW Socket RAW Socket

User level
Kernel level

Program B Program C Program DProgram A

network
interface 1

network
interface 2

IP Layer
IP_FORWARD

PRE_ROUTING

POST_ROUTING

NetLink
Socketnetfilter

module

0

1

2

3
4

iptables
module Divert_hook()

Divert_hook()

ip_queue module

RAW Socket RAW Socket

User level
Kernel level

Program B Program C Program DProgram A

network
interface 1

network
interface 2

IP Layer
IP_FORWARD

PRE_ROUTING

POST_ROUTING

I. The Original Filtering Mechanism

In Linux, the kernel does not support the divert socket type. In the Linux kernel,

it supports a mechanism to filter packets which is netfilter [5]. Netfilter is a set of

hooks inside the Linux kernel that allows kernel modules or functions to register

callback functions with the network stack. A registered callback function is then

called for every packet that traverses the respective hook within the network stack.

Based on the netfilter, iptables is a generic table structure for the definition of filter

rulesets.

Figure II-5.2.2 shows the architecture of these modules. In the netfilter module,

it maintains a global structure which has five lists and each list represents a hook

number. Every hook number corresponds to a packet filtering point inside the

network stack. For example, in figure II-5.2.2, a packet incoming from the network

interface 1 will be forwarded at the IP layer, and the IP layer will choose the network

Figure II-5.2.2: The original architecture of the IP packet
filtering mechanism in Linux and our proposed approach

 91

interface 2 as the packet’s output device. In the forwarding path, the packet will pass

through three filtering points (note that each hook number represents a filtering point)

-- IP_PRE_ROUTING, IP_FORWARD, and IP_POST_ROUTING. When the packet

passes through the IP_FORWARD filtering point, it means that the IP layer is being

used to forward this packet. For the same definition, IP_PRE_ROUTING or

IP_POST_ROUTING means that the kernel is filtering this packet before or after

routing it. Totally, there are five filtering points in the IP network stack. In figure

II-5.2.2, we only show three filtering points. The other two are IP_LOCAL_IN and

IP_LOCAL_OUT and their corresponding hook numbers are 1 and 3, respectively.

They respectively represent the filtering point where the kernel sends out a packet

generated by the local host or where the kernel receives a packet whose destination is

the same as the local host.

 When a packet passes through a filtering point, the kernel will send this packet

to the netfilter module. Then the netfilter module will relay this packet to those

functions that are registered in the corresponding filtering point (hook number). For

example, in figure II-5.2.2, when packet A passes through the filtering point

IP_FORWARD, the kernel will send packet A to the netfilter module. The netfilter

module will first relay packet A to the iptables module in the list of hook number 2. If

the iptables module does not capture packet A, packet A will be sent back to the

netfilter module, then the netfilter module will continually relay packet A to the next

registered function, divert_hook(). If divert_hook() does not capture packet A, packet

A will be sent back to the netfilter module again. At this time, the netfilter module

will discover that there is no registered function in the list of hook number 2. Finally,

the netfilter module will send packet A back to the network stack (the IP layer) and

the packet will continually go through the original path.

 92

In Linux 2.4.x, if a user wants to send packets to the user space, she should use

the kernel module “ip_queue” and libipq library. The ip_queue module uses a Netlink

socket for kernel/user space communication. After netfilter/iptables match packets,

the ip_queue module can queue these packets into a Netlink socket. Then, the

user-level program can use the APIs of libipq to get and process these packets from

the Netlink socket. In other words, libipq provides some APIs to handle the packets

queued in the Netlink socket. In figure II-5.2.2, we can clearly see these related

operations. The following is an example showing how to specify a rule via iptables:

iptables -A OUTPUT -p icmp -j QUEUE

This rule means that any locally generated ICMP packets (e.g. ping output) should be

sent to the ip_queue module, which will then attempt to deliver the packets to a user

space application. If no user space application is waiting, the packets will be dropped.

Using ip_queue, a user space program can get and modify these queued packets in the

userspace. Then the user space program can specify what to do with these packets

(such as ACCEPT or DROP) before reinjecting them back to the kernel. However,

this mechanism is not suitable for our design. This is because this mechanism has a

big difference with FreeBSD’s divert socket.

II. Using Netfilter and Added System Calls in Linux

The difference is in the number of packet queues. In FreeBSD, every divert

socket has one packet receive queue that can store the filtered packets. Each user

space program can create a divert socket with its own socket receive queue. Because

every rule can specify its own port number (see the example in section 5.2.1), every

program can easily get the packets that it wants. Therefore, when more than one

 93

program creates divert sockets with different port numbers, packets captured by the

kernel can be sent to the different divert sockets according to their port numbers.

However, in Linux, there is only one packet queue available in the whole system. In

other words, the ip_queue module only creates a Netlink socket to queue captured

packets. In this design, every program needs to read matched packets from the same

global queue and decides whether they are what it wants. Figure II-5.2.2 clearly

illustrates this concept. As such, program A may receive packets that program B

wants. However, program A may not want these packets. Program A may thus drop

these packets or put them back to the kernel. If this situation happens, program B may

not get the packets that it wants from the global queue.

In the NCTUns emulator, we use an emulation daemon to manage each external

host (i.e., an emulation daemon for an external router). Multiple daemons will want to

capture their packets from the kernel. For example, mobile-IP daemons or NAT

daemons also needs this mechanism. Therefore, multiple programs may capture

packets from the kernel at the same time. Obviously, iptables and ip_queue can not

satisfy our requirement.

Therefore, we decide to design a mechanism similar to FreeBSD’s divert socket

by ourselves. Basically, there are two approaches. One is to directly build the divert

socket into Linux kernel. This solution mainly has three tasks. First, we need to create

a new socket type in the kernel. Second, we need to modify C library to support divert

socket type. Third, we need to modify iptables to support queuing packets to different

queues based on different divert port numbers. Although this solution can achieve our

requirement, we do not take it. The reason is simple -- the effort of using this solution

is larger than the other.

 94

The other solution is to turn a RAW socket into a divert socket via added system

calls and by hacking the kernel. First, the user space program needs to create a RAW

socket. Then it downloads the filter rule and his RAW socket file descriptor into the

kernel via a user-defined system call. Of course, we have to maintain the rule table

and filtering mechanism by ourselves in the kernel. Every filter rule would be

associated with the RAW socket file descriptor. If any packet is matched by this rule,

we can simply queue the packet into the corresponding RAW socket receive queue.

In the kernel, we implement a simple kernel function divert_hook() to be

registered to the netfilter module. In this function, it can filter packets according the

downloaded filter rules. If any packet is matched, it will queue the packet into the

RAW socket’s receive queue that is corresponding to the filter rule. In figure II-5.2.2,

we can clearly see the difference between the ip_queue module and our proposed

approach.

Therefore, in figure II-5.1 (a) and (b), the “IP filter” and the arrow of sending

matched packets to the emulation daemon are the result of using netfilter module,

divert_hook() function, and the added system calls. Of course, this platform is under

Linux. In section 4.3.8 of part I, we will present the implementation of related kernel

functions and system calls.

5.3 Design of Emulation Daemon for External Host

Besides capturing packets from the kernel, the emulation daemon has another

important task. This is to direct packets to the correct direction. This section will

 95

describe how to divert packets from real-world hosts to the simulation machine and

how to divert packets from the simulation machine to real-world hosts.

5.3.1 Adding Routing Entries

In figure II-5.1(a), the external host (the real-world host) is equipped with a Fast

Ethernet interface and this interface is configured with an IP address 10.0.0.2. The

simulation machine’s Fast Ethernet interface is configured with an IP address 10.0.0.1.

In simulation network, the external host node 1 represents the external host and the

external host node 1 has a tunnel interface with an assigned IP address 1.0.1.1 (in our

simulator, the IP address format is always 1.0.X.X. [1]). In figure II-5.1(a), if a TCP

sender that is running on the external host wants to communicate with the TCP

receiver that is running on host node 2, it should use 1.0.1.2 as the destination IP

address. On the other hand, if a TCP sender running on host node 2, it should use

1.0.1.1 as the destination IP address to establish a TCP connection with the TCP

receiver that is run on the external host (Note: we can not and should not use 10.0.0.2

as the destination IP address. We will explain this in section 5.3.2). As such, when the

external host wants to send packets to the simulation machine, we can simply add a

routing entry at the external host:

route add 1.0/16 10.0.0.1

 (Assuming that the external host is a FreeBSD system)

The above command indicates that all outgoing packets whose destination IP

address is 1.0.X.X should be first sent to the gateway whose IP address is 10.0.0.1.

Because the simulation machine is configured with the IP address 10.0.1.1. As such, if

any packet matches this rule, it will be sent to the simulation machine.

 96

5.3.2 Translate IP Address

Until now, readers may be confused with the two IP address: 1.0.1.1 and

10.0.0.2. This is also the reason why the emulation daemon has to translate IP

addresses. In figure II-5.1(a), the TCP sender establishes a TCP connection with the

TCP receiver that binds 1.0.1.2 as its source IP address. Therefore, the TCP sender

would think that the TCP connection is built between 10.0.0.2 and 1.0.1.2. However,

when the TCP sender sends its packets to 1.0.1.2, these packets will be captured and

delivered to the emulation daemon and their source IP address may be modified from

10.0.0.2 to 1.0.1.1. This is because the external host node 1 represents the external

host in the simulation network and node 1’s IP address is 1.0.1.1. All packets

generated by the external host should be treated as that they were sent out from

1.0.1.1. If we do not do this, the simulation network will not know which node

10.0.0.2 belongs to. With this modification, the TCP receiver will think that the TCP

connection is built between 1.0.1.1 and 1.0.1.2. The TCP receiver will return a TCP

ack packet with destination IP address 1.0.1.1 (Of course, the source IP address is

1.0.1.2).

When the TCP ACK packet comes back to the external host node 1 (figure

II-5.1(b)), the packets will be captured and delivered to the emulation daemon by the

IP filter II. Then, the daemon will modify the destination IP address 1.0.1.1 to

10.0.0.2. In the mean time, its source IP address is still 1.0.1.2. Therefore, the ack

packet can easily reach the external host and the TCP sender will not know that its

packets’ IP addresses have been modified.

 97

5.3.3 Translate Port Number

Why does the emulation daemon need to translate the port number that is inside

the UDP/TCP header? This is due to the design of NCTUns network simulator. In

section 4.3.4 of part I, we have explained why to do port number mapping and

translation in the kernel. In figure II-5.1(a), we assume that the TCP receiver’s virtual

port number is 8000 and the real port number is 5000. We also assume that the TCP

sender’s port number is 4000 (The TCP sender does not have virtual port number

because it is run on a real-world host.). When the TCP sender sends out a TCP data

packet A, the packet’s destination port number will be 8000, and its source port

number is 4000. Then, when the packet A arrives at host node 2, the destination port

number will need to be modified to 5000 (Source port number will still be 4000

because the kernel can not find any virtual port corresponding to port number 4000 in

external host node 1). Continuing with figure II-5.1(b), the kernel will just exchange

the destination/source port number pair of packet A to be as the TCP ack packet B’s

destination/source port number pair. Therefore, the ack packet B’s destination/source

port number pair will be 4000/5000. If we do not modify packet B’s port number, the

TCP sender may think the TCP receiver is bound at port number 5000. However, the

TCP sender originally expects to establish a TCP connection with the foreign port

number 8000, not 5000. Therefore, this connection can not be set up. For this reason,

when the packet B is captured by the emulation daemon, we should modify its source

port number from 5000 to 8000.

Here, a problem happens. How the emulation daemon knows how to modify the

packet B’s port number? It is simple. When the packet A is captured by the emulation

daemon, the emulation daemon records the packet’s destination/source port number

 98

pair and destination/source IP address pair. If any packet B is captured by the

emulation daemon, we just compare B’s destination/source IP address and destination

port number with the emulation daemon’s record table. If a record is matched, we fill

the record’s destination port number into B’s source port number.

5.3.4 Setting Packet Filter Rules

In figure II-5.1 (a), the IP filter rule used by IP filter I should be set like the

following:

ipfw add divert 2000 ip from 10.0.0.2 to any in

This is very obviously. All packets from 10.0.0.2 should be captured to the emulation

daemon that creates a divert socket with divert port number 2000.

In figure II-5.1 (b), the IP filter rule used by IP filter II should be set like the

following:

ipfw add divert 2000 ip from any to 1.0.1.1 in

This means that all packets whose destination IP address is 1.0.1.1 should be captured

to the emulation daemon. Here, readers may find a problem: when host node 2 sends

out the packet B (we describe it in section 5.3.3), its destination IP address will be

1.0.1.1 (In section 5.3.2, we already explain why the destination IP address is 1.0.1.1

instead of 10.0.0.2). It is possible that packet B is captured at host node 2 instead of

the external host node 1 and as such the packet B will not experience the simulation

of the two virtual links and a switch node. However, this situation will not happen.

This is because we use the S.S.D.D IP scheme in the kernel, packet B’s destination IP

address is 1.2.1.1 rather than 1.0.1.1. Only when packet B reaches the tunnel interface

1.0.1.1 (when the packet arrives at the destination node), the destination IP address

 99

will be modified back to 1.0.1.1.

5.4 Design of Emulation Daemon for External Router

The emulation daemon design for external routers is very similar to the one for

external hosts. Figure II-5.4 (a) and II-5.4 (b) illustrate what the emulation daemon

does.

Figure II-5.4 (a): the trace of TCP SYN packet with external router

 100

In figure II-5.4 (a) and (b), the external router node represents the external router

(the real-world router) in the simulation network. The simulation machine has two

Ethernet interface whose assigned IP address are 10.0.1.1 and 10.0.2.1. The external

router has two interfaces 10.0.1.2 and 10.0.2.2. At the same time, the external router

node has two tunnel interfaces whose assigned IP addresses are 1.0.3.4 and 1.0.2.1 in

the simulation network. We assume that the TCP sender is on subnet 3 and the TCP

receiver is on subnet 2 according to the IP address of the host that the program is run

on. The IP filter 1, 2, 3 and 4 represent different filter rules.

In figure II-5.4 (a) and (b), the TCP sender wants to establish a TCP connection

with the TCP receiver. Figure II-5.4 (a) shows how the TCP SYN packet reaches host

node 2 and figure II-5.4 (b) shows how host node 2 sends a TCP SYN-ACK packet to

node 1. From section 5.4.1 to 5.4.4, we will describe our approach. In section 5.4.5 of

Figure II-5.4 (b): the trace of TCP SYN-ACK packet with external router

 101

part I, we will explain why we use a special IP scheme (200.X.Y.Z format).

5.4.1 Translate IP Address

We apply a special IP scheme to those packets which are sent to the external

router. We will use figure II-5.4 (a) and (b) to illustrate the detail. In figure II-5.4 (a),

the TCP sender wants to establish a TCP connection with the TCP receiver. The TCP

sender will send out a SYN packet with its destination/source IP address pair being

1.0.2.2/1.0.3.5. In kernel, we will translate the IP address pair into the S.S.D.D format

[1]. Therefore, 1.0.2.2/1.0.3.5 will be translated to 3.5.2.2/3.5.3.5. When the SYN

packet reaches the tunnel interface with the IP address 1.0.3.4, the IP address pair will

be modified to 3.4.2.2/3.4.3.5. Then, the SYN packet will be captured to the

emulation daemon via IP filter 1. At this moment, the emulation daemon will modify

the IP address pair from 3.4.2.2/3.4.3.5 to 200.3.2.2/200.3.2.5. In our scheme, all

packets directed to the external router will have the IP address pair

200.X.Y.A/200.X.Y.B. Here, 200 is a special number chosen for setting IP filter rule

and routing entries (we will discuss this in section 5.4.5). X.Y means the

source/destination subnet number pair. In figure II-5.4(a), the SYN packet starts off

from the TCP sender on subnet 3 and wants to communicate with the TCP receiver on

subnet 2. So X.Y will be set to 3.2. In practice, emulation daemon can simply get X.Y

value according to 3.4.2.2/3.4.3.5. This is because, from the destination/source IP pair

3.4.2.2/3.4.3.5, we can easily know that the packet’s original source IP address is

1.0.3.5 and its destination IP address is 1.0.2.2. From the two addresses’ third field,

we can know that the packet’s source subnet is 3 and destination subnet is 2. Finally,

A and B are the original forth value in 3.4.2.2/3.4.3.5. In this example, A is 2 and B is

5. Figure II-5.4.1 shows the concepts.

 102

3 . 4 . 2. 2 3 . 4 . 3 . 5

200 . 3 . 2 . 2 200 . 3 . 2 . 5

Destination IP Source IP

Destination IP Source IP

3 . 4 . 2. 2 3 . 4 . 3 . 5

200 . 3 . 2 . 2 200 . 3 . 2 . 5

Destination IP Source IP

Destination IP Source IP

Then, the SYN packet will be directed to the external router according to

appropriate routing entry settings. After experiencing the router’s packet scheduling

and processing, it will return to the simulation machine (In section 5.4.2, we will

describe how the external router correctly directs these packets back to the simulation

machine). The SYN packet will be captured by IP filter 2. In the emulation daemon,

the SYN packet’s IP address pair will be modified from 200.3.2.2/200.3.2.5 to

2.1.2.2/2.1.3.5. According to 200.3.2.2, we can know that the destination subnet is 2

(200.X.Y.A, Y means the destination subnet) and the destination IP address’s forth

field is 200.3.2.2’s forth field. Therefore, we can know that the destination IP address

is 1.0.2.2. According to 200.3.2.5, we can know that the source subnet is 3

(200.X.Y.B, X is source subnet) and the source IP address’s forth byte is 200.3.2.5’s

forth byte. Therefore, we can realize that the source IP address is 1.0.3.5. Then, in

order to put the packet into simulation network, the packet’s IP format should use the

S.S.D.D format. Therefore, we translate 1.0.2.2/1.0.3.5 to 2.1.2.2/2.1.3.5 so that the

packet will be injected into the simulation network via tunnel interface with IP

address 1.0.2.1. Then, the SYN packet can correctly reach the TCP receiver.

Continuing with figure II-5.4 (b), the TCP receiver will reply a SYN-ACK

Figure II-5.4.1:
Translate the IP address
pair from the S.S.D.D
format to the 200.X.Y.Z
format

 103

packet with destination/source IP address pair 1.0.3.5/1.0.2.2. Actually, it will be

translated to 2.2.3.5/2.2.2.2 in the kernel. The following steps are the same as those in

figure II-5.4(a). When the SYN-ACK packet reaches the tunnel interface with IP

address 1.0.2.1, the IP address pair will be modified to 2.1.3.5/2.1.2.2. After capturing

the packet via IP filter 4, the emulation daemon will modify the IP address pair to

200.2.3.5/200.2.3.2. Then, the SYN-ACK packet will traverse to the external router

and return to the simulation machine. Then, IP filter 3 will filter the packet out and

send it to the emulation daemon. The daemon will translate IP address pair

200.2.3.5/200.2.3.2 to 3.4.3.5/3.4.2.2. Then, the SYN-ACK packet can be directed

back to the simulation network and will reach the TCP sender. Following the steps of

figure II-5.4 (a) and (b), the TCP sender and receiver can complete the TCP

three-way handshaking and send data packets to each other.

5.4.2 Adding Routing Entries

To automatically divert packets from the simulation machine to the external

router, we should add some routing entries on the simulation machine. On the

external router, we should also add some routing entries to correctly forward packets

back to the simulation machine.

5.4.2.1 Adding Routing Entries on the Simulation Machine

In figure II-5.4 (a), the emulation daemon would modify the SYN packet’s

destination/source IP address to 200.3.2.2/200.3.2.5 before injecting the packet into

the real-world network. Therefore, we can simply use the following command to add

the corresponding routing entry:

 104

route add 200.3.2/24 10.0.1.2

This command means that any packet whose destination IP address’s first three fields

are equal to 200.3.2 should be sent to the gateway with IP address 10.0.1.2. In this

case, we know that the SYN packet will reach the external router via the real link 1.

Therefore, we can add the above routing entry in advance. According to our

discussion in section 5.4.1 of part II, we also know that packets will be routed by this

rule only if they leave from subnet 3 and their destination subnet is 2.

In figure II-5.4 (b), the emulation daemon will modify the SYN-ACK packet’s

destination/source IP address pair to 200.2.3.5/200.2.3.2 before injecting the packet

into the real-world network. In section 5.4.1, we know that the packet should be sent

to the external router via the real link 2. As such, in advance, we can use the

following command to add a routing entry on the simulation machine:

route add 200.2.3/24 10.0.1.1

It means that any packet whose destination IP address’s first three fields are equal to

200.2.3 should be sent to the gateway with IP address 10.0.1.1. We also can know

that all of these packets (destination IP address is equal to 200.2.3.X) have the same

behavior: leaving from subnet 2 and their destination is subnet 3. To sum up, if a user

wants the external router to work correctly in figure II-5.4 (a) and (b), two routing

entries listed above should be set simultaneously. Let’s to consider a more complex

case depicted in figure II-5.4.2.

 105

In figure II-5.4.2, there are four subnets in the network topology. For all packets

sent out from subnet 1, 2 and 3, they want to reach subnet 4. As such, we should set

these packets’ gateway to be 10.0.1.2. When these packets traverse to the external

router node and are captured by the emulation daemon, their IP addresses will be

modified to the corresponding 200.X.Y.Z format and we should tell the kernel how to

route these packets. The following are the required routing entries:

route add 200.1.4/24 10.0.1.2……………………………..(1)
route add 200.2.4/24 10.0.1.2……………………………..(2)
route add 200.3.4/24 10.0.1.2……………………………..(3)

We have discussed the meaning of 200.X.Y format. It means that the packet is sent

out from subnet X and destination subnet is Y. If a packet is sent out from subnet 4

Figure II-5.4.2: A complex topology for
an external router

 106

and wants to reach subnet 1, 2, or 3, we should set its gateway to be 10.0.2.2. The

following are the required routing entries:

 # route add 200.4.1/24 10.0.2.2……………………………..(4)
 # route add 200.4.2/24 10.0.2.2……………………………..(5)
 # route add 200.4.3/24 10.0.2.2……………………………..(6)

5.4.2.2 Adding Routing Entries on the External Router

On the external router, some routing entries need to be added to its routing table

so that packets originated from the simulation network can be redirected back to the

simulation network. We use figure II-5.4.2 to show how to add routing entries on the

external router.

In figure II-5.4.2, the simulation machine adds routing entry (1), (2), and (3) to

divert packets originated from subnet 1, 2, or 3 to the external router. When these

packets reach the external router, the external router should send them back to the

simulation machine via the Ethernet interface 10.0.2.2. And the simulation machine’s

Ethernet interface that is connected to the external router’s Ethernet interface with IP

address 10.0.2.2 is assigned with the IP address 10.0.2.1. Therefore, the external

router should set these packets’ gateway 10.0.2.1. The following are the required

routing entries that should be added on the external router:

 # route add 200.1.4/24 10.0.2.1
 # route add 200.2.4/24 10.0.2.1
 # route add 200.3.4/24 10.0.2.1

For the same reason, the external router should add the following routing entries for

those packets that are diverted to the external router according to routing entry (4), (5),

or (6):

 # route add 200.4.1/24 10.0.1.1

 107

 # route add 200.4.2/24 10.0.1.1
 # route add 200.4.3/24 10.0.1.1

5.4.3 Unnecessary to Translate the Port Number

In the external host case, the emulation daemon needs to record the packet’s

destination/source port number pair (in section 5.3.3). However, for the external

router case, the emulation daemon does not need to do this. This is because the

external router only processes the IP packet’s routing, it never touches the transport

layer information inside the packet. As everyone knows, port number belongs to the

transport layer. In the current version, we do not support running a traffic generator

on the external router.

5.4.4 Setting Packet Filter Rules

In figure II-5.4(a), IP filter 1 should be set like the following:

 # ipfw add divert 2000 ip from 3.4.0.0/16 to 3.4.0.0/16 in

According to the S.S.D.D IP scheme, the destination/source IP address pair will be

modified to 3.4.x.x/3.4.x.x format after packets arrive at the tunnel interface 1.0.3.4.

Therefore, we should use the above rule to capture packets which has reached the

tunnel interface 1.0.3.4.

 In figure II-5.4 (a), IP filter 2 should be set like the following:

 # ipfw add divert 2000 ip from 200.0.0.0/8 to 200.0.0.0/8 in

According to section 5.4.1 of part II, we know that all packets from the external

router have the 200.X.Y.Z IP format. Therefore, we can simply use the above rule to

 108

capture packets that are returned from the external router to the emulation daemon. In

figure II-5.4 (b), the above rule also suits IP filter 3.

In figure II-5.4(b), IP filter 4 should be set as:

ipfw add divert 2000 ip from 2.1.0.0/16 to 2.1.0.0/16 in

5.4.5 “200.X.Y.Z” Format Discussion

In this section, we will discuss why we need to modify IP address to the

200.X.Y.Z format. In figure II-5.4(a), the TCP SYN packet filtered by IP filter 1 has

the destination/source IP address pair of 3.4.2.2/3.4.3.5. First, we should set a filter

rule like the following command to capture this packet:

ipfw add divert 2000 ip from 3.4.0.0/16 to 3.4.0.0/16 in……….(a)

If any packet originated from the simulation network reaches the tunnel interface

1.0.3.4, their destination/source IP address pair will be modified to 3.4.x.y/3.4.a.b

format. We can easily use the above filter rule to capture the SYN packet from kernel

and the packet will be sent to the external router by the emulation daemon. Therefore,

we can just add a routing entry using the following command:

 # route add 3.4/16 10.0.1.2……….(7)

In fact, the SYN packet would be correctly directed to the external router according to

above routing entry. However, a problem will happen when the SYN packet returns

back to the simulation machine. When the SYN packet is back to the simulation

machine, its destination IP address would match the filter rule (a), then the packet will

be captured again and again by the emulation daemon.

Here, readers may see a problem. Both the SYN packet from the simulation

 109

network and the SYN packet from the external router will be matched by rule (a). The

packet from the simulation network should be sent to the external router and the

packet from the external router should be directed to the simulation network. How

does the emulation daemon recognize the two different kinds of packets? In other

words, how does the emulation daemon know that the packet is coming from the

simulation network or from the external router? The solution is simple. In FreeBSD,

when a program receives packets from a divert socket, the kernel would provide the

program with the packet’s incoming interface’s IP address via recvfrom() system call.

Therefore, the incoming interface’s IP address of the packet from the simulation

network is 1.0.3.4 however the other is 10.0.2.1. Therefore, the emulation daemon

can recognize the two packets. In Linux, we also use the same method. We hack the

RAW socket implementation. If the RAW socket is turned into a divert socket

(section 5.2.2 of part II), the kernel would return the incoming interface’s IP address

when the program calls recvfrom() system call.

Then, the emulation daemon will put the SYN packet back to the simulation

network (now, the SYN packet’s IP address pair is 3.4.2.2/3.4.3.5), and the packet

will pass through the tunnel interface with an assigned IP address 1.0.2.1. In the

original design of the NCTUns 1.0, we add a routing entry to route the packet to the

tunnel interface 1.0.2.1 in advance:

route add 3.4.2/24 1.0.2.1……….(8)

Because the NCTUns network simulator directly uses the system’s routing table to

forward packets, all routing entries used by NCTUns network simulator are put into

the system’s routing table. Therefore, the above routing entry (7) and (8) will be put

into the same routing table.

 110

Then a problem happens here. We assume that the routing entry (7) is found

before the routing entry (8) when the kernel looks up the routing table (We call the

SYN packet captured from the simulation network packet A and call the SYN packet

sent back from the external router packet B.). According to the previous description,

packet A and packet B have the same IP address pair so that packet A and packet B

match the entry (7) and the entry (8) at the same time. The packet A would be routed

to the external router by the routing entry (7). When it is sent back to the simulation

machine, the SYN packet (packet B) hopes to be injected into the simulation network

by the routing entry (8). However, because the entry (7) is listed prior to the entry (8)

and the packet B also matches the entry (7), the packet B will be routed by the entry

(7) instead of the entry (8). Therefore, the SYN packet will be sent to the external

router again and again. In this situation, the SYN packet will cause a loop between

the simulation machine and the external router (In fact, the kernel will discover this

situation and eventually drop the packet.).

Even if the routing entry (8) is located prior to the routing entry (7), the SYN

packet still does not traverse along our expected path. Because the packet A will

match the routing entry (8) first, the packet would be directly injected back to the

simulation network instead of the external router. As such, the SYN packet will reach

host node 2 without passing through the external router.

Therefore, we should find a way to solve the routing entry conflict. We propose

to modify IP address to 200.X.Y.Z format. When the SYN packet is captured from

the simulation network (packet A), we modify its IP address pair to the 200.X.Y.Z

format. In the case of figure II-5.4 (a), we will modify the SYN packet’s

 111

destination/source IP address pair to 200.3.2.2/200.3.2.5 (section 5.4.1). In order to

route the modified packet to the external router, we should add a routing entry like the

following:

route add 200.3.2/24 10.0.1.2……….(9)

The routing entry (9) will not conflict with the entry (8). At the same time, this

200.X.Y.Z format reserves the all the information needed to recover the original IP

address.

5.5 Simulation Speed Should Synchronize With the
Real Time

The NCTUns network simulator uses the discrete event simulation methodology

to speed up its simulation speed [2]. In a simulation, the simulator uses the virtual

clock (virtual time) rather than the real clock. It always advances the simulation time

to the smallest time stamp of the event in the even heap. Therefore, when a simulation

is running (or we can say an emulation is running), the time advance steps will not be

uniform. If more events need to be processed per virtual unit time, the virtual time

clock will advance more slowly. Because the external host/router uses the real-world

clock rather than the virtual clock, the simulation time must be adjusted to be as fast

as the speed of the real-world clock. Otherwise, the time speed would not be

synchronized with each other (the simulation network and the real-world host). The

emulation results therefore will be wrong.

Our approach is to synchronize the virtual clock with the real-world clock

periodically. We adjust the virtual clock to the real-world clock every 1 ms

(milli-second) in virtual time. Therefore, the emulation function’s latency accuracy is

 112

about 1 milli-second.

6. More Consideration

In this chapter, we will discuss more details about the emulation daemon design.

6.1 Re-compute Header Checksum

In NCTUns network simulator, we ignore the check of the IP and TCP/UDP

header checksum. This is because we will modify the IP address and the TCP/UDP

port number of a packet in a simulation [1]. If we do not ignore them, these packets

will be dropped due to bad header checksum. However, the external host normally

does not ignore the header checksum. Therefore, we should re-compute the IP and

TCP/UDP header checksum of a packet that will be sent to the external host or the

external router. This job is done by the emulation daemon.

6.2 More than One External Host

If there is more than one external host physically connected to the simulation

machine, we should take care about the order of the filter rules. We will use figure

II-6.2 to show what problems will happen.

 113

In figure 6.2, external host node 1 represents the external host 1 while external

host node 2 represents external host 2. The external host node 1 is configured with a

tunnel interface whose assigned IP address is 1.0.2.1 and the external host node 2 has

tunnel interface 1.0.2.2 (the two external host nodes are at the same subnet in this

emulation case). The two external hosts are respectively connected to the simulation

machine on Ethernet subnet 10.0.1/24 and 10.0.2/24. We assume that the emulation

daemon 1 binds to the divert port number 2000 while the emulation daemon 2 binds

to 3000.

As we discuss how to set the packet filter rule in section 5.3.4 of part II, the

emulation daemon 1 will set the following filter rules to capture packets that it wants:

Figure II-6.2: More than one external host

 114

ipfw add divert 2000 ip from any to 1.0.2.1 in……………...(IP filter 1)
ipfw add divert 2000 ip from 10.0.1.2 to any in…………….(IP filter 2)

At the same time, the emulation daemon 2 would set:

ipfw add divert 3000 ip from any to 1.0.2.2 in……………...(IP filter 3)
ipfw add divert 3000 ip from 10.0.2.2 to any in…………….(IP filter 4)

In FreeBSD, the filter rules are connected in a rule chain (In Linux, there are five

chains, but the similar problem would still happen.) and the packet will be checked

whether it is matched by any rule or not from the head of the chain. We assume that

the order of above four rules is IP filter 1 -> IP filter 2 -> IP filter 3 -> IP filter 4. We

consider a scenario: external host 1 sends a TCP data packet to external host 2. When

external host 2 receives the data packet, it would send a TCP ACK packet to external

host 1. The destination IP address of the data packet will be 1.0.2.2 instead of 10.0.2.2

(we already discuss this in section 5.3.2). As for the same reason, the ACK packet’s

destination IP address is 1.0.2.1.

First, the data packet will be filtered by IP filter 2. The data packet (now, its

destination/source IP address pair is 1.0.2.2/10.0.1.2) does not match the IP filter 1

and match the IP filter 2. After experiencing the simulation of a switch node and two

virtual links, it will be filtered by the IP filter 3. At this time, its IP address pair is

1.0.2.2/2.2.2.1. Then the data packet will be sent to the external host 2. Then, external

host 2 will send out the TCP ACK packet with IP address pair 1.0.2.1/10.0.2.2. After

the ACK packet is received by the Ethernet interface 10.0.2.1, we wish the ACK

packet to be filtered by the IP filter 4 and be diverted to the emulation daemon 2.

However, the ACK packet also matches the IP filter 1. According to our assumption,

the IP filter 1 is listed before the IP filter 4. Therefore, the ACK packet will be

filtered out by the IP filter 1 and diverted to the emulation daemon 1 instead of the

 115

emulation daemon 2.

According to above discussion, we know that we should put the filter rule used

to capture packet sent from the external host prior to other filter rules. In other words,

we should filter packets according its source IP address as early as possible.

Therefore, the correct order of the filter rules in this case should be: IP filter 2 -> IP

filter 4 -> IP filter 1 -> IP filter 3. Setting the filtering rules’ order is tricky. However,

the GUI program can automatically export the correct settings in the correct order for

a user.

6.3 More than One External Router

One problem will happen when supporting more than one external router. We

use figure II-6.3 to show this problem.

 Figure II-6.3: More than one external router

 116

In figure II-6.3, the simulation machine is equipped with four Ethernet interfaces

and their names are fxp1, fxp2, fxp3 and fxp4. The emulation daemon 1 binds to

divert socket port number 2000, and the emulation daemon 2 binds to 3000.

In section 5.4.4, we have discussed how to set the filter rules for one external

router. There are two different kinds filter rules to set. The first one is to capture

packets from the simulation network. Because the S.S.D.D IP scheme is used to set

this kind of rules, the rule will be unique. In other words, the problem in section 6.2

will not happen. The other kind of rule is to capture packets that are sent by the

external router. As we know, the IP address of the packets from external router has

the 200.X.Y.Z format. Therefore, we should set the following rules to divert packets

to the two emulation daemons:

ipfw add divert 2000 ip from 200.0.0.0/8 to 200.0.0.0/8 in……..(i)
ipfw add divert 3000 ip from 200.0.0.0/8 to 200.0.0.0/8 in……..(ii)

But packets from the external router 1 or from the external router 2 all match the rule

(i) and (ii) at the same time. As such, all packets will be diverted to the same

emulation daemon. Therefore, we should set filter rules like the following:

ipfw add divert 2000 ip from 200.0.0.0/8 to 200.0.0.0/8 in recv fxp1….(iii)
ipfw add divert 2000 ip from 200.0.0.0/8 to 200.0.0.0/8 in recv fxp2….(iv)
ipfw add divert 3000 ip from 200.0.0.0/8 to 200.0.0.0/8 in recv fxp3….(v)
ipfw add divert 3000 ip from 200.0.0.0/8 to 200.0.0.0/8 in recv fxp4….(vi)

These rules add a extra condition. That is, packets should be filtered according to

their input devices. Here, “in recv fxp1” means to capture the packets whose

incoming interface is the interface fxp1. With this arrangement, all packets whose

incoming interface is fxp1 or fxp2 will be diverted to the emulation daemon 1. All

packets whose incoming interface is fxp3 or fxp4 will be diverted to the emulation

 117

daemon 2.

7. Evaluation

In this section, we will run some emulation cases to test the accuracy of the

NCTUns emulator. All emulation cases are run on the Linux version of the NCTUns

network simulator.

7.1 Accuracy

I. Emulation Setup

Figure II-7.1.1 shows the network topology for the first emulation case. Both the

used emulation machine and the real external host are IBM A30 notebook computers.

The two machines are physically connected with a 100 Mbps Fast Ethernet network.

In figure II-7.1.1, the external host node represents the real external host in the

emulator. Other hosts and routers are all simulated by the NCTUns network simulator.

In the test suite, we vary the link delay and the synchronization interval time to show

the time precision of our emulator. Each link delay will be set to 0.5, 1, 5, 10, and 50

milli-seconds such that the expected RTT (Round Trip Time) between the external

host node and the node 1 will be 10 (0.5*20), 20 (1*20), 100 (5*20), 200 (10*20),

and 1000 (50*20) milli-seconds, respectively. The bandwidths of all links are set to

10 Mbps. At the real external host, we will run a “ping” program to measure the RTT

between node 1 and the real external host. The time interval of two successive ICMP

request packets is set to 0.5 seconds and the packet length is set to 64 bytes. The

synchronization interval time is set to 0.1, 1, and 10 milli-seconds in virtual time. We

will compare the average and the variance of measured RTTs to show the effect of

 118

the synchronization interval time.

Simulated
by NCTUns

The external
host node

Router

Host

Simulated
by NCTUns

The external
host node

Router

Host

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.5 1 5 10 50

Link delay of each link (ms)

V
ar

ia
nc

e

sync interval 0.1 ms

sync interval 1 ms

sync interval 10 ms

9.211

5.801

1.237

1.152

1.839
1.421

1.039

0.891

1.463

1.7981.364
0.992

5.575
5.594

2.091

0

1

2

3

4

5

6

7

8

9

10

0.5 1 5 10 50

Link delay of each link (ms)

T
he

 d
if

fe
re

nc
e

be
tw

ee
n

th
e

av
ea

ge
 a

nd
 th

e

ex
pe

ct
ed

 R
T

T
 (

m
s)

sync interval 0.1 ms

sync interval 1 ms

sync interval 10 ms

Figure II-7.1.1: The emulation case for testing
the accuracy of RTT

Figure II-7.1.2: The variance of RTT

Figure II-7.1.3: The difference between the average
and the expected RTT

 119

II Report

Figure II-7.1.2 shows the variance of the measured RTTs. We can see that the

two cases, whose synchronization interval times are 0.1 ms and 1 ms, have about the

same performance. However, the case whose synchronization interval time is 10 ms

has a worse performance. Figure II-7.1.3 shows the difference between the average of

measured RTTs and the expected RTT. The expected RTT will be 20 times the time

of each link delay because an ICMP request packet will pass through 20 links in a

RTT. In figure II-7.1.3, we can see that the case of using a synchronization interval

time of 10 ms has a large difference from the expected RTT. As such, we can say that

the synchronization interval time 10 ms is too large to let our emulator have a high

time precision. For the other two cases, the difference is about 1.4 milli-seconds. We

think that this overhead is made by some delays. The first is the delay of the Fast

Ethernet network. This is because packets need to be diverted from the real external

host to the simulation machine via the real-world network. The simulation machine

also needs to divert packets to the real external host via a real-world network.

Another one is the delay of the emulation daemon’s processing. The emulation

daemons should capture packets from kernel, and then should inject the packets into

either the simulation network or the real-world network. These operations is very

costly because the operation of memory copy needs to be done between the kernel

level and the user level. Another one is the transmission time of each packet. For this

emulation case, the transmission delay of each packet will be about 0.051

(64byte/10Mbps) milli-seconds. When passing through 20 links, the total time will be

1.02 (0.051*20) milli-seconds. Therefore, we can know that the transmission delay

will be the maximum portion of the difference between the average of measured

RTTs and the expected RTT. To sum up, the difference shown in figure II-7.1.3 is

reasonable. Therefore, we can say that the accuracy of our emulator is quite accurate

 120

for this emulation case.

7.2 Throughput

In this section, we will use an emulation case to show the behavior of two

contending greedy TCP connections in our emulator.

I. Emulation Setup

Figure II-7.2.1 shows the test network topology. All used machines are the same

with the previous emulation case. The link delays and bandwidths of all links are set

to 1ms and 10 Mbps. For the traffic settings, we will establish two greedy TCP

connections. The first one is between node 1 and node 4. We call this connection a

simulated TCP connection because both of two nodes are simulated by the NCTUns.

The other is between node 1 and the real external host. We call this connection a real

TCP connection because the real external host is a real-world host. The two

connections will contend for the output queue of the switch. In other words, the

output queue of the switch will be the bottleneck. Then we will change the real TCP

connection with a simulated connection and re-run this case. By comparing these two

cases, we can verify the behavior of two contending TCP connections.

II. Report

Figure II-7.2.2 shows the contending behavior between a real external host and a

simulated host. Figure II-7.2.3 shows the contending behavior of two simulated TCP

connections. We can clearly see that both of two figures show almost the same

behavior. This result verifies the accuracy of our emulator.

 121

The external
host node

Simulated
by NCTUns

Switch

The real TCP
connection

The simulated
TCP connection

The external
host node

Simulated
by NCTUns

Switch

The real TCP
connection

The simulated
TCP connection

500

550

600

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141

Elapsed Time (second)

T
hr

ou
gh

pu
t

(K
by

te
/s

ec
)

Real TCP

Simulated TCP

500

550

600

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141

Elapsed Time (second)

T
hr

ou
gh

pu
t

(K
by

te
/s

ec
)

Simulated TCP1

Simulated TCP2

Figure II-7.2.1: The emulation case for testing
two contended greedy TCP connections

Figure II-7.2.2: The contending behavior between a real
TCP connection and a simulated TCP connection

Figure II-7.2.3: The contending behavior
between two simulated TCP connections

 122

8. Concluding Remarks for Part II

In part II, we present the internal design and implementation of the NCTUns

network emulator. The emulator is based on the NCTUns 1.0 network simulator.

Therefore, it reserves the features of the NCTUns 1.0 simulator such as supporting

various networks, supporting various network devices, supporting various network

protocols, supporting open system architecture, having a user-friendly GUI

environment, etc. In addition, the NCTUns emulator provides several unique features

that other related work do not have. For example, it can establish TCP/UDP

connections between simulated nodes and real hosts. It can also let an external host

become an ad-hoc/infra-structure mode mobile node in an emulation. Our emulator

can also do the work that other emulators can do such as interacting with real hosts,

interacting with real routers. We think that the NCTUns emulator is among the best

regarding emulation functionality. In the future, we will continue to improve it and

develop new functions for it.

 123

Reference

[1] S.Y. Wang, C.L. Chou, C.H. Huang, C.C. Hwang, Z.M. Yang, C.C. Chiou, and

C.C. Lin , “The Design and Implementation of the NCTUns 1.0 Network
Simulator”, Computer Networks, Vol. 42, Issue 2, June 2003, pp. 175-197.

[2] S.Y. Wang, C.L. Chou, C.C. Hwang, A.J. Su, C.C. Lin, K.C. Liao, H.Y. Chen, and

M.C. Yu, “Applying Discrete Event Simulation to the NCTUns 1.0 Network
Simulator”.

[3] S. McCanne, S. Floyd, ns-LBNL Network Simulator,

http://www.isi.edu/nsnam/ns/

[4] PacketStorm Communications, Inc., http://www.PacketStorm.com

[5] The netfilter/iptables project, http://www.netfilter.org/

[6] S.Y. Wang and H.T. Kung, “A Simple Methodology for Constructing Extensible

and High-Fidelity TCP/IP Network Simulators”, IEEE INFOCOM’99, March
21-25, 1999, New York, USA.

[7] S.Y. Wang and H.T. Kung, “A New Methodology for Easily Constructing

Extensible and High-Fidelity TCP/IP Network Simulators”, accepted and to
appear in “Computer Networks” Journal.

[8] OPNET Inc., http://www.opnet.com

[9] Harvard TCP/IP network simulator 1.0, available at

http://www.eecs.harvard.edu/networking/simulator.html

[10] Richard M. Fujimoto, “Parallel and Distributed Simulation Systems,” John

Wiley & Sons, Inc, 2000.

[11] TrollTech Inc., http://www.trolltech.com/products/qt/index.html.

[12] Daniel P. Bovet and Macro Cesati, “Understanding the Linux Kernel, 2nd

Edition”, O’Reilly, 2002.

[13] Chih-Hua Hwang, “The Design and Implementation of the NCTUns 1.0

Network Simulation Engine”, Master thesis, National Chiao Tung University,
Hsinchu, Taiwan, 2002.

[14] Nist net, available at http://snad.ncsl.nist.gov/itg/nistnet.

[15] Empirix Inc., http://www.empirix.com/

 124

[16] Fedora project, http://fedora.redhat.com/

