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1. INTRODUCTION 

In this paper we study the asymptotic behavior for the hyperbolic conser- 
vation law 

u, +.I-@), = 0, t > 0, --oo<x<co, (1.1) 
u(x, 0) = uO(x), -al<x<co, (1.2) 

with Riemann-like data for (x] large. The function f is a smooth nonlinear 
function of U. In general, Eq. (1.1) does not have a continuous solution for 
all time. Shock curves appear after finite time. We will consider a piecewise 
continuous weak solution of (1.1) 19, lo]. It is well known that across a 
discontinuity line x =x(t), the solution satisfies the Rankine-Hugoniot 
condifion (R-H) and the entropy condition (E) ] 111, 

(R-H) x’(t) = a@-, u,), 

W a(u..,uJ<a(u-,u) for all u between u _ and u I , 

where U- = u(x(t) k 0, t) and a(ui, u2) is the shock speed defined as 

a(u, u2) _ .f-(Ul) -J-w 1 
u,--2 . 

We will consider the solution of (1.1). (1.2) when the initial data u”(x) are 
Riemann-like data for 1x1 large, or more specifically, when u”(x) satisfies 

u”(x) = u, for x < 4, 

= u, for x > S, 
(I.31 
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for some constants uI, U, and S, S > 0. For the case when f is convex (or 
concave) and u, = u,, the asymptotic behavior was discussed by Lax [8], 
Keylitz [7], DiPerna [4] and Dafermos [3]. For the case when f is convex 
(or concave) and uI z u,., the asymptotic behavior with decay rates was 
recently obtained by Liu [ 91. For more generally smooth f; the asymptotic 
behavior of solutions of (1.1~(1.3) without decay rates was partially 
answered by Liu [IO]. It is interesting to note that for the case when the 
initial data are periodic, for generalf, the asymptotic behavior of solutions of 
(l.l), (1.2) with decay rates was also only partially answered by Greenberg 
and Tong [6] and Conlon 121. In this paper we will investigate the 
asymptotic behavior of solutions of (l.l), (1.2) with initial conditions of the 
form (1.3). We assume that f”(u) vanishes at a finite number of points and 
changes sign at these points. The main result which we obtain is that the 
solution approaches that of the corresponding Riemann problem at algebraic 
rates (we need the assumption that f’“‘(u) f 0 for some n < CO at points 
f”(u) = 0). In Section 2, we will consider the case whenf”(u) has only one 
zero. This case will illustrate the nature of the difficulties involved in the 
general one and will also be needed for the general case. In Section 3, we will 
consider the general case. 

2. THE CASE WHEN~“(U) HAS ONE ZERO 

Without loss of generality we assume that the smooth function f satisfies 

f “(24) 2 0 for u $0. (2.1) 

We need some definitions and notation. The readers are referred to Ballou 
[l] for details. 

DEFINITION 2.1. Let n ( 0 be given and define q* = r*(y) by 

Let q > 0 be given and define ra = q*(v) by 

Let r < 0 be given and define q** as the unique number that satisfies i;l= 
(r**)*. Similarly we can define r** for q > 0 as the unique number that 
satisfies q = (q**)*. Note that r* = +eo and v* = -co are possible. 
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DEFINIIIOZ 2.2. Under assumption (2.1). the solution of Eq. (1.1) with 
the following initial condition 

24,(x, 0) - u”,(x) = U[ for x< -s, 

=CY for -s<x<s. 

=u r for s < x, 

where a is a constant, is called uu(x, t). 

The following lemmas on properties of special solutions are proved by 
direct constructions of these solutions. 

LEMMA 2.1. If u1 < u, < u) or uI > u, > u,*, then there exists t, and x,, 
ta > 0, such that for all t > t,, 

UJX, t> = u/ for x-at<x,, 

= u, for x-oat >x,, 

where u = cr(u,, u,) and 

x n =& [?-.I (2s). 

Proof. Since the case u, > u, > uI* can be considered similarly, we prove 
the case uI < u, < u;” only. We divide the proof into several cases: 

A. u,<u,.<O 

(i) a ,< u, ; then the solution u,(x, t) is 

u,(x, t) = u/ for x <x,(f), 

for x,(t) < x < x2(t), 
o< t<t,, 

for x2(t) < x < x3(t), 

for x,(t) < x, 

for x <xl(t), 

for x,(t) < x <x4(f), t, < t < tz, 

for x4(t) < x, 

for x < q(t), 

for x,(t) < x, 
t, < t, 
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where h, is the inverse function off’ restricted in u < 0, 

x,(t) = -s tS’(u,)t. 

x*(t) = 4 t./-‘(a)& 

x,(t) = s + a(a, u,) 1. 

x4(t) satisfies 

x;(t)=u (h, (x4(f;+s),u+ X4(t,)=x*(t,)=X3(t,),fZ>t~f*, 

and 

-~4(f2) = X,(t,>> 

x,(t) = x, + du,, 4) 4 X5@*) = x,(t*) =x40*); 

t, is the time x3(t) meets x2(t) and t, is the time x4(f) meets x,(t). It is easy 
to calculate t,; in fact, 

t, = 2S/(f’(a) -- u(a, 24,)). 

Note that f’(a) - ~(a, u,) > 0 is the consequence of entropy condition (E) 
and assumption (2.1). To see that x4(f) will meet x,(t) at finite time t,, we 
recall that 

f’(q) <xi(t) <f’ (h, (“‘(“t’“)) =: -y+s , 
which is condition (E). (The strict inequalities are due to assumption (2.1).) 
We can calculate x:(t), 

xC(r) = _ h’,(b,W + www - (X4(9 + W)’ 
@ I((X4W + w> - ur) 

G _ minkWx4W + WWW - (x4(f) + W>‘l 
Cur - 4 +o. (2.2) 

Thus for sufficiently large t, x;(t) <f’(u)). This would ensure that x,(t) 
meets x,(t) at finite time t,. To find x,, we proceed as in Liu (91. We take A 
sufficiently large so that u,(x, t) = U, for x = A + at. It is easy to see from 
(1.1) and (R-H) that 

VW = J .- cL (U&G t) - u,) dx 
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is time invariant. For t > t, = t,, q(t) = (u, - u,)(A - x,). SO 

V(I)=1(0)= jA (u,(x,O)-u,)dx 
. u 

.s 
= 1 (a-u,)dx+ r (u,-U,)dK. 

7 -s 
Thus 

1 
x =--- u, + u/ 

a 
ur-- u/ [ 

___- a (2s). 
2 I 

We prove the lemma in this subcase. 

(ii) U, < a < u,, then the solution u,(xI t) is 

u,(x, t) = u/ for X <x,(t), 

a for x,(t) < x <x*(t), O<t<t,, 

=U , for x*(t) < x, 

u,b-9 0 = u/ for x < x3(t), 
t, (1: 

UT for x3(f) < x, 

where 

x,(t) = -4 + a@,, a)t, 
x,(t) = s + a(a, u,)t, 
x,(t) = x, + 4% u,)t, t > t,, 

XlOl> = Xl@,) = x3(1,). 

It is easy to see that t, = r, exists and x, can be obtained as in A(i). This 
proves the lemma for this subcase. 

(iii) u,. < a < OI then the solution u,(x, t) is 

UJX, 1) = u/ for x <x,(t), 

for x,(f) < x < x1(t), 

x-s c i 
O<t<t,, =h, -y- for x*(t) < x < x.Jt)? 

= 11, for x1(t) < x, 
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u,(x, t) = u, for x Q x4(t), 

x-s 
=h, - 

( i 
for 

t 
x,(t) < x <xx,(r), t, c t<t,, 

= 24, 

u,(x, t) = uj 

= 24, 

where 

for x3(t) < x, 

for x < x,(t), 

for x,(t) < x, 

x1(t) = -s + u(u,, a) t, 

x1(t) = s +$‘(a)t, 

x3(t) = s +f’(u,>t, 

t, < t, 

x4(1) satisfies 

x;(t)=o (,,A, (“‘yS)), 
x4@,) = x,(t,) = h@,), t>t,, 

and 
x,(t) =x, + u(u,, u,)t = x, + ut, x5(h) = x,(t*) = x,(t*)* 

Using arguments similar to those in case A(i), we can prove that t, is finite. 
Thus we can choose t, = t, in this case. x, can be similarly determined. 

(iv> u,** > UT, 0 < Q ,< uT, then the solution u,(x, t) is 

U,(& t) = u/ for x,<x,(t) 

=a for x,(t) < x <x*(t), 
O<t<t,, 

for x2(t) < x < x3(t), 

= u, for x3(t) < x, 

U,(& t> = u/ for x <x4(t), 

x-s = h -j- ( ) for x4(t) < x(x&), t, < t<t,, 

for x3(t) < x, 

for x < x,(t), 

for x5(t) < x, 
t, < L 
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x,(t) satisfies 
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xl(t) = 7s + U(U,? a)t, 

x2(t) = S t a(a, a,)t = S tf’(a*)t, 

X3(f) = s l tf’(U,)C 

xl,(t>=o (u,,h, (“‘y S))) 

x4@,) = Xl@,) =-a,), t> t,, 

x,(t) = x, + at, x&) = .df*) = x,(t,). 

Similar arguments as in A(i,iii) can be used to complete the proof of the 
lemma in this subcase. 

(v) uT* > 247, ul* < a < u T*, then the solution u~(x, t) is 

a 

= UF(X, t) 

x-s 
h, - ( 1 t 

= u, 

u,(x, t) = u/ 

= u,(x, t) 

x-s = h, - ( 1 t 

= 24, 

505:40:7 4 

for x < x1(t), 

for x,(t) < x <x,(t), 

for x,(t) < x s q(t), O<lSl,, 

for x3(t) < x < x4(f), 

for x,(f) < x, 

for x ,< x,(t), 

for x,(t) < x <x,(t), 

for x5(f) < x <x3(t), I, ctst,, 

for x3(t) < x S x,(t), 

for x4(l) < x, 

for x < x6(t), 

for x6(t) < x < x3(l), 
t, < 1s t,: 

for -q(t) < x S x4(f), 

for x4(t) < x, 
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for x < x,(r), 

X-S =h, 7 ( 1 for x,(f) < x < x4(t), t, <t<t,, 

= u, for x4(t) < x, 

&(X, 0 = u/ for x <x,(t), 

= 24, for x,(t) < x, 

where 

x,(r) = -s + a(u,, ul*)t = -6s +f’(ul*)t, 

x2(r) = -s +./-‘(a)& 

x,(t) = s + u(a, a*)t = s +f’(a*)t, 

x,(t) = s +f’(q)4 

x5(f) satisfies 

X;(f)=u (h* (x5(l)r+s) ,h, (x~“‘l+s),) 

with 

x6(f) satisfies 

with 

x,(f) satisfies 

with 

and finally 

x5@,) =x*0,) =x3@,), t>t,, 

X:(t) = 4% ~&h(f), 0) 

x,(b) =x*(b) = X5@,)~ t>t,, 

x;(t)=o (u,,h, (“ys)) 

X7(b) = X6(4) = x&h tat,, 

x,(t) =x, + at, x&d = x,&l) =x404) 
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The curve x&) has the property that x;(t) < 0. The function u~(x, t) can be 
constructed as follows: First, we draw a line through (x, t) which is tangent 
to curve x,(t). This line is unique and contacts with x,(t) at one point, let it 
be (2, ?). Then we let 

.f+S q.(x, t) = h, 7 ( ) * * 

The existence of the curve x,,(f) and the solution u,(x, t) can be found in 
Ballou [ I]. The fact that times f, , 2, t t, and t, exist and are finite can be 
established similarly. This completes the proof in this subcase. 

(4 u,** > uI*, u;* -C a, then the solution u,(x, t) is 

= u, 

u,(x, f) = u/ 

= u,(x, f) 

= u, 

u,(x, t) = u/ 

= f+(x, I) 

= u, 

u,(x, t) = u/ 

= u, 

for 

for 

for 

for 

for 

for 

for 

for 

for 

for 

for 

for 

for 

for 

for 

for 

x,(t) < x < x&>, 

q(t) < x < X4(f), 

-Q(f) < x, 

X,(f) < x < q(t), 

q(t) < x1 

x <x,(0, 

x,(t) < x <-Q(f), 

X6(f) < x < x2(t), 

x*(t) < & 

x < -q(t)r 

x,(f) < x <x*(t), 

x2(t) < x, 

x < x,(t). 

X,(f) < x. 

O<f<f,, 

t, c f < t,, 

t, (t<t,, 

t, ‘c t < t,, 

t, < f, 
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where 

x5(t) satisfies 

with 

x6(l) satisfies 

with 

x,(f) satisfies 

with 

and 

x,(t) = -s + u(u,, ufy = 7s -tf’(U~)f 
X*(f) = -s +S’(u,*“)t, 

x3(t) = -s +f’(a)t, 

Xq(f) = s + u(a, 24,) f, 

X;(f)=u (h: (+(f)l+S) ,&) 

X5((,) =-a,> =x&,)9 (>,f,, 

X6(t,) = x,(f,) = x,(t,), (>b, 

X,(f3) = x,(t,) = x,(f,), t>,t,, 

x*(f) = x, -t ut, 44) =x&> = al). 

The function u,(x, t) is connected to the curve x6(t) as in A(v). It is 
straightforward to verify that I, is finite; however, we do not go through this 
here. 

(vii) u,** < u,*, 0 < a < UT*, then the solution u,(x, t) is 

u,(x, 0 = u/ for x <xl(t), 

=Ct for x,(t) < x S x*(t), 

x-s 
o<tst,, 

=h, - 
( 1 

for 
f 

x,(f) < x < x3(f), 

= 24, for x3(f) < x, 
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u,(x, f) = u/ for x < x4(t), 

x - s 
=h, - 

( 1 
for 

t 
X4(f) < x < x,(t), t, <*<t,, 

= u, for x3(t) < x, 

u,(x, *> = u/ for x < x,(t), 

= u, for x,(t) < x, 

where 

x,(t) = 4 + a(u,, a)t, 

x*(t) = s +./-‘(a*)*, 

x3(*) = s +f’(U,>t, 

tz < 1, 

x4(t) satisfies 

Xi(f) = (u,, h, (“y- ” )) 

with 

and 

x40,) =x1(*,) =-a*,), *a*,, 

X!(f) =x, + fft, 

with I = x4(t,) = x3(t,). This completes the proof for this subcase. 

(viii) lp < UT, u;** < u < u:, then the solution u,(x, t) is 

U,(& t) = Uf for x < x,(t), 

=cI for x,(t) < x < x2(t), O<t<t,, 

= u, for x,(t) < x, 

U,(& *) = u/ for x < x&>, 
*, < *, 

= u, for x3(t) < x, 

where 
Xl(f) = 4 + a(u,, a)*, 

x2(t) = S + a(a, u,)t, 

x,(t) = x, + at 

with x,(l,) = xz(t,) = x3(t,). This complete the proof for this subcase. 
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0x1 u,** < u:, UT < a, then the solution u(x, t) is 

u&9 t) = u/ for x < x,(t), 

for x,(t) < x < X?(f), 
0 < t<t,, 

for x#) < x < X3(I), 

for x&) < x, 

for x < x,(t), 

for xl(t) < x < x4(C), t, <t,<t,, 

=U I for x4(f) < x, 

u,(x, t) = u/ for x < x5(t), 
t, ‘c & 

=24 r for x,(t) < x, 

where 

x,(t) = -s + u(u,, z$)t= -s +f’(zq)t, 

x,(t) = -S -i-f’(a)& 

x,(t) = s + u(a, u,)t, 

x,(t) satisfies 

~#)=a (h2 (““‘,+“) ,ur) 

with 

x4@1) =x*@,) = x30,), t>t,, 

and finally 
x,(t) =x, + ut 

with x5(&) = x,(1,) =x4(1,). This complete the proof for subcase A. 

B. u,< O<u, < u: 

(i) a < u,, this case is similar to A(i). 
(ii,) U, < a < u,, this case is similar to A(ii,iv,v). 
(iii) U, < a < ~7, this case is also similar to A(ii) (two shocks). 
(iv) UT < a, then the solution U(X, t) is 
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24,(x. t) = u, for x < X,(f), 

for X2(f) < x < x,(t), 
0 < t<f,, 

=a 

u, 

u,(x, I) = u/ 

for x2(t) < x <x,(t), 

for x,(t) < x, 

for x < x,(t). 

XfS ZZ h2 - ( 1 for t xl(t) < x < x4(t), 1, < t <t,, 

= 24, 

u,(x, t) = u/ 

= u, 

for x,(t) < x, 

for x < x,(t), 

for x,(t) < x, 
t, < t, 

where 

x*(t) =-s + u(u,, ugt, 

X2(f) = -S +f’(a)t, 

X3(t) = S + u(a, u,) t, 

x,(t) satisfies 

x;(t)=a (h2 (x4(f)l+s) !z+) 

with 

and 

X4@,) =-M,) = x,(t,h 

x5(t) = x, + (32 

with x,(t,) = x4(t,) = x,(f,). This completes the proof for this subcase B. 
Q.E.D. 

LEMMA 2.2. If0 < u, < u,, then there exists t,, X,(a) and X,(a), t, > 0, 
such that 

for x < x,(a), 

for x,(a) < x < x,(a), 

for X,(a) < x, 
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Remark. We have a similar theorem for I(, < u, ( 0. 

ProoJ We divide the range of a into several cases: 

(i) 0 <a, this case is trivial. 
(ii) u,* < a < 0, then the solution u,(x, 1) is 

u,(x. t) = u, 

=a 

for x <x,(f), 

for x,(t) < x < x,(t), 
o<t<t,, 

for x2(r) < x < x4(f), 

for x,(t) < x, 

for x < x,(t), 

for x,(t) < x <x,(l), I, <t<t,, 

= u, for x4(t) < x, 

where 

x,(t) = -S + u(u!, a)t, 

x,(t) = S + a(a, a*)t = S +J’(a*)t, 

X3(f) = s +J’((u,.>*)t, 

x,(t) = s +f’(u,)t, 

x,(r) satisfies 

x;(t)=o (u[,h, (“‘“‘t-“1) 

with 

x&,) = X,(fl> =-%(I*), tat,, 

and finally xs(t,) = x3(t,). It is obvious that we can choose t = t,, X,(a) = 
xs(t,), X,(a) = x4(t,) to complete the proof for this subcase. 
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(iii) (u,)** < a < u,*, then the solution u,(x, tj is 

351 

=Cf 

x-s =h, -j-- 
( 1 

= 24, 

U,(X, 1) = u, 
x+s =h, 7 

( 1 
= u,(x, t) 

where 

= 24, 

for x <x,(t), 

for x,(t) < x ,< x2(t), 

for X2(I) < x ,< x3(t), O<t<t,, 

for x3(t) < x <x4(t), 

for x4(t) < x, 

for x < x,(t), 

for x,(t) < x < x5(t), 

for x5(t) < x < x3(t), 1, < t<t,, 

for x3(t) < x < x,(r), 

for x,(t) < x, 

x,(t) satisfies 

x,(t) =-s + u(u, up)1 = -s -tf’(u,.)t, 
xl(t) = -S + f ‘(a)& 

x?(t) = S + a(a, a*)t = S +f’(a*)f$ 

x,(t) .= s +f’(u,)t, 

x;(t)=o (h, (x5(t)I+s).h, (x’(t’(+s),) 

with x,(t,> = x+,) = x,(t,), t 2 t,, and t, is the time when x5(t,) =x,(t,). 
The curve x,(t) and function u,(x, t) is similar to the case A(v). Choose 
t, = I,, X,(a) = x5(t,), and X,(a) = x,(12) to complete the proof. 

(iv) a < (u,),,, then the solution u,(x, t) is 

u,(x, t) = u, for x < xl(t), 

for x,(t) < x < x.&h 
o<r<r,, 

a for x3(t) < x <x?(t), 

= u, for X4(f) < x, 
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where 

x5(t) satisfies 

with 

x6(l) satisfies 

with 

for x < x, (1), 

for x,(t) < x < x,(l), 1, < r B f,, 

for x,(t) < x, 

for x < x,(t), 

for x,(t) < x < X6(l), 

for x,(t) < x <x2(t), 

for x,(t) < x, 

x,(t) = -s + a(u,, ur*) f, 
X*(f) = 4 +Y(Qt = 4 t o(u,)**, u,)t, 
x3(t) = -s +f’(a)t, 
x,(l) = s + u(a, u,) t, 

x;(t)=a (h2 (x5ct;+s) ,ur) 

x5@,) =x3@*) =x&J t> t,, 

x;(t)=a (h2 (X6(f)1SS).h2 (“6(‘)1+s)*) 

x6&) = X,(f,> = X,(t,), t>t,, 

and finally x6(t,) = x,(I,). Choose I, = t,, X,(a) = x,(r,), and X,(a) = x,(t, 
to complete the proof, Q.E.D 

LEMMA 2.3. ifu, < UT <U,, let 

x,(t) = sup(x: z&(x’, t) = u, Vx’ < x}, 
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then there exists x,, t, > 0 such that 

(i) x;(t) > cs(u,, u?) for all t > 0 except at Jnite points oft, 

(ii) x,(t) < x, + u(u,, uf) t, 

(iii) Cm,-, [xn + a(u,, uf)t -x,(t)] = 0. 

(iv) u,(x, 1) >, 247 for x > x, + a(u,, u;“) t, t > t,. 

Remark. We have a similar lemma for the case uI > u,* > u,. 

Proof: (i) a < (q)**, then the solution u,(x, t) is 

ll,(XI t) = u, 

= l+.(x, t) 

= u, 

u,(x, t) = u, 

= 2+(x, t) 

= u, 

where 

for x < xl(t), 

for x,(t) < x < x,(t), 

for x3(t) < x <x4(t), 

for x4(t) < x, 

for x ,< x,(t), 

for x,(t) < x < x,(t), 

for x5(t) < x, 

for x <x,(t), 

for x,(t) < x < x,(t), 

for x6(t) < x < x,(t), 

for x,(t) < x, 

for x < x,(t), 

for x,(t) < x,<x,(t), 

for x9(t) < x, 

0 < t<t,, 

t, <t<t,, 

t j  < I, 

359 

x,(t) = 4 +&f’(q) t, 

XI(l) = -7s +f’(u,**)t, 

x3(t) = 4 +f’(a) t, 

x,(t) = s + a(a, 24,) t, 
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x,(t) satisfies 

x#)=a (h, (X5”‘,+“) ,q.) 

with 

x5QJ = 4,) =-at,>> t>t,, 

x6(t) satisfies 

with 

and 

x&J =x2(4) = x,(U tat,, 

X,(f) = x,(f,) + c(u,, uf>(t - 13) = xs(t,) +f’($w - &), tat,, 
x,(t) = x&J + o(u,**, u,)(t - tz) 

= Q,) +f’(u,)O - [*I* 
Obviously, 

Xl@> = Xl @I, 0 < t,<t,, 

= x,(f): xj < t; 

choose x, = x,(t,) -f’(uS)t3, t, = t, to complete the proof for this subcase. 

(ii) u,** < a < ul, then the solution u,(x, r) is 

u,(x, q = uj for x < x,(t), 

for x,(t) < x <x2(t), 

=Ct for x2(t) < x < X3(f), O<t<r,, 

for x3(f) < x < x,(t), 

= u, for x4(f) < x, 
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u,(x, t) = U( 

= 

= &(X, r) 

= 

= u, 

K,(X, t) = u/ 

= UJX, t) 

u, 

where 

for x < x1(t), 

for x,(t) < x < x,(t), 

for x5(t) < x < x&)9 

for x3(r) < x 6 x,(t), 

for x,(t) < x. 

for x <x,(t), 

for x,(t) < x <x3(f), 

for x3(r) < x < x4(t), 

for x4(t) < x, 

t,<t<t2, 

I, < t, 

x,(t) satisfies 

x,(t) = 4 +f’(uJ t, 

x*(t) = -s +f’(a) t, 

x3(t) = s +f’(a”)t, 

-Q(f) = s +f’(u,) t, 

x;(t)=u (h, (“‘(‘)its),h, (x5(t)r+s),) 

with 

and 

X50,) =x&J = x,(t,), t>t, 

X6(f) = x,Uz) +S’WN - t2) =x5(b) +S’(m(t - a* 

It is obvious that we have 

x,(t) = x,(0, O<f,<l,, 

=x&)7 t, < t. 

Choose x, = x, (tz) -p(uF) t2, t, = rz to complete the proof for this subcase. 
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(iii) uI < a ( 0, then the solution u,(x, t) is 

&(X9 t) = U[ for x < x,(t), 

=C? for x,(t) < x < X2(f), 

X-S 
=h, y-- 

( ) 

O<t<t,, 
for x,(t) < x ( X.$(f), 

for x,(t) < x <x4(f), t, <t, 

=.U r 

where 

x,(t) satisfies 

with 

It is obvious that 

for x4(t) < x, 

x,(t) = 4 + u(u,, a) t, 

x2(t) = S + a(a, a*) = S +f’(a”)t, 

x,(t) = s +f’(uT)t, 

x,(4 = s +f’(U,>t, 

x;(t)=u (u,,h, ( x”“l-s)) 

x50,) =x,@,> = x*(tA t> t,. 

x,(f) =x,(t) for O<t,<t,, 

= x5 (4 for t, < t. 

Choose x, = S, t, = 0 to complete the proof. 

(iv) 0 <a < UT, this case is similar to the above case. 

(v) u: < a, this case is trivial. 

Thus we complete the proof for the lemma. Q.E.D. 
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Before we present our main theorems, we state an ordering principle due 
originally to Douglis IS]. See also Wu [ 13 1, Ballou [ 1) and Keyfrtz 171. 

ORDERING PRINCIPLE. Let the function f be smooth function, and let 
u(x, t) and u(x, t) be piecewise smooth weak solutions satisfying condition 
(E) to the Cauchy problem (l.l), (l-2), where the initial data are u(x, 0) and 
u(x, 0), respectively. Then u(x, 0) < zi(x, 0) Vx E (-co, co) implies u(x, t) < 
u(x, t) vt 2 0, vx E (-co, 00). 

DEFINITION 2.3. For solutions of (1. l), (1.2), (1.3), u(x, t), let 

x,(t) = sup(x: u(x’, 1) = u, Vx’ <x), 

x,(t) = inf(x: u(x’, t) = u, Vx’ > x). 

Now we state our main theorems. 

THEOREM 2.4. If u, < u, c ~7, then there exists t, and x,, t, > 0, such 
that for all t > I,, 

u(x, t) = U[ for x < x0 + ut, 

= 11, for x > x0 + or, 

where u = u(u,, u,) and . 

1 
X” = ___ 4 -t Ul ___- 

u, - u/ 2 Iv> s. 
- 

Remark. We have a similar theorem for u, > u, > u[*. 

ProoJ Let 
M=sup(uO(x):--S<x<S}, (2.3) 

m = influ’( -S <x ,< S}. (2.4) 

From Lemma 2.1, let the solutions corresponding to a = M and a = m be 
respectively uw(x, t) and u,(x, t) with corresponding x,~, x,, cM, t,,. It is 
easy to see that x,~ < x,,. If x,,, =x,, which is the case M = m, then we are 
done. So assume x,~ < x,. Using the Ordering Principle, we have 

4&, q < u(x, t) < u‘&, t) vx, vt >, 0. 

Thus for all t > T= max(t,, tm}, we have 

u(x, t) = u, for x < x,+r t at, 

= 11, for x > x,, -t ot 
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and 

u/ = u,(x, t) < u(x, 1) < u,&, t) = u, for x,~ + at < x < x, + ut. 

From Definition 2.3, for t > E it is easy to see that 

x, + ut < x,(t) < x,(t) < x, + ut. 

Furthermore x,(t) and x,.(t) are Lipschitz continuous curves with slopes 

x;(t) = u(u,, u@,(t) + 0, t)), 

and 

x:(t) = @, , u(x# - 0, t)), 

respectively, and with bounded second derivatives. Since u(x,(t) + 0, t) and 
u(x,(t) - 0, t) are both between uI and u, for t > < we have from (E) 

xi(t) > u(u,, 24,) = u > xi(t). 

Thus g(t) - u 20 and x;(t) -a< 0 or (x,(t)-at) is nondecreasing and 
x,(t) - ut is nonincreasing for t > i But x,(t) - at <x,(t) - ut for t > i Thus 
if there exists t, > F such that x,(t,) = x,.(t,,), then we have x,(t) = x,(t) and 
x;(t) = u = xi(t) for all t > t,. If this is the case, then we are done. Now 
suppose the opposite, that is, x,(t) < x,(t) for all t > E then x,(t) - at is 
nondecreasing and bounded and x,(t) - ut is nonincreasing and bounded for 
all t > l Hence 

‘,iz (x,(t) - ut) = X,, fiz x;(t) = u, (2.5 > * 

‘,‘“, (x,(t) - ut) = X,) fim, x:(t) = u, (2.6) 
+ 1 

with X, <X,. From the entropy condition (E), 

f’W > +4,%J >f’(u,), 

we can choose sufficiently small 6 such that 

f’(u) > u >f’(u) for all u E (u,, u, + S), u E (u, - 6, 24,). (2.7) 

From (2.5) and (2.6), we can choose sufficiently large t,, such that 
u(x,(t) + 0, t) E (u, - 6, u,.) and u(x,(t) - 0, t) E (u,, u, + 6) for all t > t,. 
Now for t> t,, through (x,(t) + 0, t) and (x,(t) - 0, t) we draw charac- 
teristics backward in time. They would intersect along a discontinuity line 
whose slope is approximately u due to (2.7) and (R-H). (Note that they 
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cannot terminate to a contact discontinuity before they meet.) But it is 
obvious that this discontinuity line violates (E). Q.E.D. 

THEOREM 2.5. If0 < u,< u,, let 

p,(t) = m;tn j” (4YT t> - u,) dY3 
--co 
.a: 

q,(r) = my 1 My, 4 - u,) 44 
‘X 

then 

0) A(l) 2 0, q;(t) ,< 0, 
(ii) there exists I,, t, > 0, such that fur all t > c,, p,(t) =p,(tJ = 

Pl(Wh q,(t) = s,(hJ = q,(a)* 

Proof: (i) follows from Liu 19, Theorem l(i)]. Let M and m be as defined 
in (2.3), (2.4). From Lemma 2.2 and the Ordering Principle, we know that 

%(X7 q > 4x3 0 > u,(x, a t > 0, --co<x<m, 

and for t > t, = max(t,+,, t,,,), 

u,& 4 > (u, *I*, &(X, q > @I*)** 

Hence U(X, t) > (u,*)* for all t > t, and 

u(x, 4)) = u/ for x < X,(M), 

= u, for x > X,(m). 

Thus for t > I,, U(X, t) are restricted in the region f”(u(x, t) > 0. Hence the 
theorem follows from Liu 19, Theorem l(ii)]. Q.E.D. 

Remark. We have a similar theorem for the case U, < U, < 0. 

THEOREM 2.6. If 0 <u, < ur, let p,(r) and q,(r) be as defined in 
Theorem 2.5. Define the generalized N-waces as 

Nz(x, t> = u/ for x -f’(u,)l< - -@,(oo)f”(u,)t, 

= u, for x -S’h,>t 2 d2q,(~lfN(u,)4 t > 0. 

otherwise; 
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then we have 

(i) the edges of N, and u .have finite distance for all time, i.e., 

+ Ix,(t) -f’w - d2mwYur)tl = O(S)9 
(ii) (u(x, t) - Nz(x, t)l <A; ‘O(S) t- ’ for any x fhat lies between 

max(x,(t),f ‘(u,)t - +2P,Wf “(u,)t) and min(x,(t),f’(u,)t + 
dzz )f”(ur)t), 

(iii) 1 u(x, t) - N,(x, t)l = O(S) t- ‘I2 for x between x,(f) and (f’(u,)t - 
J--2p,(co)f”(q) or between x,.(t) and (f’(u,)t + d2q,(oo)f”(u,)t), 

(iv) 4x, t) =N,( , > P x t I x 1 ies outside the regions of (ii) and (iii), 
where xl(t) and x,(t) are defined in DeJinition 2.3, A, = minB>rr>(u ,.,. f “(u), 
and B is a bound for u”(x). 

Remark. We have a similar theorem for the case u,. < uI < 0. 

ProoJ This theorem is an easy consequence of Lemma 2.2, Theorem 2.5, 
and Theorem 4 of Liu 191. We omit the proof. 

THEOREM 2.7. If u, < UT < u,, then there exist x0, t, > 0, such that 

0) x;(t) > 4q, 43 
(ii) x,(t) ,< x0 + @q, 46 
(iii) lim,_, [x, + @I’ uT”)t -x,(t)] = 0, 
(iv) ~(4 t) > ((IL:)*)* for x > x,(t), t > to. 

Remark. We have a similar theorem for the case I(, > u,* > u,. 

ProoJ (i) is obvious. From (i), (xl(t) - o(u,, uT)t) is nondecreasing. But 
x,(t) < x,,, + u(u(, uf) t, where x, is the x, when a = m in Lemma 2.3 and m 
is the number defined in (2.4). Thus (x,(f) - a(~,, uT)f) is nondecreasing and 
bounded. Hence, lim,.,,(x,(t) - u(u[, u:)t) exists; let it be x0. We already 
proved (ii) and (iii). Now it is easy to see that we can find a time t, 
sufficiently large, such that u(x, t,) > ((UT)*)* for x,(t,) < x < x, + 
a(~,, UT) t, and u(x, + o(u,, UT) t, + 0, t,) = UT. Furthermore, the line 
segment x0 + a(~,, u;“)t, t > t, : is the characteristic line passing through the 
point (x0 + a(~,, ur) t, + 0, t,) and t, > t,. Thus we have u(xo + 
~(a,, uT)t + 0, t) = UT and U(X, t) > UT for all t 2 t,, x > x, + u(u,, uT)t. 
Hence we can choose t, suf’ficiently large, such that u(x, t) > UT for ail 
t > t,, x > x0 -t- u(u,, uT)t. Choose to = t, to complete the proof for (iv). 

Q.E.D. 
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THEOREM 2.8. Under the assumptions of Theorem 2.7, let 

4(t) = mfx jm (u(Y, t) - u,) dy; 
x 

then 

(i> 4’(t) < 0, 
(ii) there exists t,, such that q(t) = q(t,)for aZZ t > t,. 

Proof: (i) follows from Liu [9, Theorem l(i)]. To prove (ii), take the t, 
of Theorem 2.7 as the to we want. Assume that the maximum point in the 
definition of q(t) is taken place at X*(C). We want to prove (1) u(x*(t), t) = u, 
and u(x, t) is continuous at x*(t), and (2) q’(t) - 0 for all t > to. If x*(t) is a 
discontinuity, then since x*(t) > x,(t), we must have u(x*(t) - 0, t) > 
u(x*(t) + 0, t). But in this case, x*(t) is not the maximum point. Hence 
U(X, t) must be continuous at x*(t). Now if u(x*(t), t) # u,, then x*(f) 
cannot be the maximum point too. This proves (1). To prove (2), we know 
that from (l), ak*(t)/dt exists and is equal tof’(u,). From the definition of 
q(t), we have 

s(t) = jy; -0 (u(Y, t) - u,) dy. 

Hence 

4’(t) = [W(t) - 0, t) - 11, ] X;(t) +- 
.X,(l) 0 
J u, 4 X’(l) 

= luW4 - 03 t> - %I X:0) -f(u(x,(t> - 0)) -f(u,) 
=o (R-H). 

This proves (ii). Q.E.D. 

THEOREM 2.9. Under the assumptions of Theorems 2.1 and 2.8, let x0 
and q(c0) = q(t,) be the respective constants in Theorems 2.7 and 2.8. Define 
the following one-sided generalized N-wave 

N(x, t) = u, for x < x0 + o(u,, ul*> t, 

for x > f’(u,)t -!- dw(u,)t + x0, 

otherwise. 
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Then we haue 

(i) there exists t, > 0, such fhat xl(t) = x, + u(u,, $)t for all t > t,, 

(ii) Ju(x, t) -N(x, t)l <A-‘O(S) t-’ for x between x, + u(u,, $)t 
and min(x,(t),S(u,) t + d2q( ao)f”(u,) t + x0 j. 

(iii) [xr(t) -f’(u,)t - &qb >f%,)t i = O(S), 
(iv) ] 24(x, t) - N(x, t)j < O(S) t-l’* for x between x,(t) and f’(u,)t + 

d2q(oo)S”(u,)t +x0, where A = min((ui),).(,~RS'(u). 

Remark. We have a similar theorem for the case u, < uI* < u,. 

Proof: Let -X(t) =x,(t) - x0 -f’(uF) t, then 

-X’(l) = xi(t) -f’(@) = u(u,, 24(X,(f) -t 0, t) - u(u,, 24:). 

From Theorem 2.7, X(t) -P 0, X(I)-, 0 as t -+ co. Hence we can expand 
u(u,, U(X)(C) + 0, t) to obtain 

u(up u(x[(t) + 0, t) z qu,, uI*) - 2;;y;& (u - fq)! 

But 

u: = hQ’(uT)) = h, 
x, +f’(uf)t - x, 

t 
9 

hence for t large 

u(x,(t) + 0, t) r h, 
tx’@)l- xo 1 

z h, 
-X(t) +f’(ul*) t 

t 

Hence 

or 

x(t) Z -A 9 with A = 2$“t,, (h;df’(@)))‘, 

and as t-+cO. 
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But as we know X(t) + 0 as t + co. Hence c = co, which means that for 
some finite t,, X(t,) = 0. This proves (i). Parts (ii), (iii) and (iv) are an easy 
consequence of Theorem 2.7, Theorem 2.8 and Liu 19: Theorem 41. 

LEMMA 2.10. If uI = u, = 0 and f(u) zf’(O)u + Au”’ ’ ‘, n > 1, A > 0, 
for / ui small, then we have 

Iu,(x, t)l = O(S) t- lit*” + I). 

Proof: If a < 0, then the solution u,(x, t) is 

u,(x, t) = 0 for x < x1(t), 

for x,(t) < x <x2(t), 
O<t<t,, 

=(Y for x2(t) < x < x3(t), 

=o for x,(t) < x, 

z&(x, t) = 0 for x <x,(t), 

x + s = h, - 
( ) 

for t x,(t) < x <x4(t), t, <t, 

=o for x,(t) < x, 

where 

x,(t) = -s t.r(0> t, 
x2(t) = -s tf’(a) t, 
x,(t) = s + a(a, 0) t, 

x4(t) satisfies 

x;(t)=o (h, (x4”‘t+S),0)=f(h, (x4(r~ts))/h,(x4(t)ifS), 

with 

X4@,) =x&J = x&)9 t> t,. 

From the entropy condition, 
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hence 

But it is obvious that 

x4(t)I+ s >f’(O); 
hence (x4(f) + S)/t -f’(O) as t -+ 00. And thus h,((x4(f) + S)/t)+ 0 as 
t-+ 00. Now for t large, we can have 

xi(t) g(O) + Ah:” (x4(t:+s)- 
But on the other hand, from the definition of h,, 

(2n + 1) Ah;” 
cx4(‘)I+ s 1 

+f’(tqzf (h, (x4Q)l+S)) = X’y+s ) 

Letting X(t) = x4(t) + S, we get 

X’(t) rf’(0) + & (+ -f’(O)) for t large. 

Hence 

X(f) zf’(O)t + O(S) f”(2nA ‘) 

and 

h, (qq [ (2n j l)A (+-‘(o)i]“2n 

= O(S) t-I/m+ 1). 

Similarly we can consider the case a > 0. This completes the proof. Q.E.D. 

THEOREM 2.11. Zf u, = u, = 0 andf(u) zf’(O)u + AU*“+ ‘, n > 1, A > 0, 
for IuI small, then we have 

) u(x, t)l = O(S) t - “(2n + I). 

ProoJ This theorem is a consequence of Lemma 2.10 and the Ordering 
Principle. 
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THEOREM 2.12. /fu,=O <u, andf(u)zf’(O)u +Au2”“. n 2 I, A > 0. 
for ( u 1 small, define 

p(f) = mjn I4 U(Y, 0 dx 
m 

g(t) = m,ax t3; (u(Y, I) - 11,) d?; 
-x 

then 

(i) ifp(0) = 0, then p(f) = Ofor all f, 

(ii) VP(O) < 0, then p’(f) > Ofor all t arzd p(f) + 0 as f -+ co, 

(iii) lyp(f) = min, 1-Y ~ U(U, t) dy = pz’ z&v, f) dy, (hen 

-u,(t) z-f’(O) t + O(S) fl’” - s for t large, 

where2nr2”-<2” ‘--~~-~-l=Oo,-l <<<O, 
(iv) q’(f)<Ofor all (20, 

(v) there exists r0 > 0, such that for all t > t,, q(t) = q(to). 
Prooj From Liu 19, Theorem l(i)], p’(t) > 0 and p(t) < 0; thus if 

p(O) = 0, then p(t) = 0 for all t which proves (i). Ifp(0) < 0, then we want to 
prove that the maximum point x,(t) as defined in (iii) is a shock curve with 
z&,(t) - 0. t) < 0 and 0 < z+,(t) + 0, t) < u(x,(t) - 0, f)*. If u(x, r) is 
continuous at x,(t), then u(x,(t). t) = 0 and u(x,(t) - E, t) < 0: 
u(x,(f) -t- E, t) > 0 for sufficiently small E > 0. But this is impossible, because 
the characteristics from the immediate left-hand side of x,(t) will intersect 
the characteristics from x,(t) immediately. Thus x,(t) must be a shock curve. 
It is then obvious that u(x,(t) - O1 t) ( 0 and 0 < ~(xJt> + 0, t) < 
u(x,(t) - 0, t)“. Thus 

P’(O = u(xpU) - 0, t> $A’> - VW,(t) - 090) -f(O)1 

2.4(x,(t) 0, t) B W,(t) - 0, l)) -f(~(xp(t) + 03 0) = - 
u(x,(O - 0, t) - + u(x,(t) 0, f) 

~fwp(o - 03 t)> -fP> 

u(x,(t) - 0, f) - 0 1 > o; 

this proves (ii). Now we would like to estimate the order of x,(r). From 
(R-H) and the above arguments, we have 

x, @) JW~) - O,O) -fWpU) + 030) 

R 
Il(XJf) - 0, f) - 24(x,(t) + 0, t) 

<f,(u(x 

P 
@) _ 0, t)) 

. . 
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For t large, ~(x~(f> - 0, I) z h,((x,(f) + S)/t); hence 

f (x”(f)I+s)<O and xp(r)t+s -f’(O) as t+ao. 

Thus for t large, we have u(x,(r) + 0, t) = u(x,(t) - 0, t)* and 

x,(f) z fM(-w + SF>) -f(MX,(~) + S)/t)*) 

P 
hl((Xp(f) + V/f) - h,((x,(t) + S)/t>* 

=f’(O) + A [I$ + /q--‘/q + . . . + &J”] 

=f’(O) + Ah:” (y+S). [1+~+<2+**~+r2”I, 

where r satisfies 

2,@” - y2n - ’ - y2n - 2 - ( . . . - c - 1 = 0, -1 <<<O. 

ThUS 

XL(f) zf’(0) + A (2n + 1) h:” (x,y+s) . y2n 

rf’(0) + cyn 

( 

xpcf)l+ s -f’(O)) . 

Hence 

xp(f) + s gyo)f + cqsj f? 

This proves (iii); (iv) follows from Liu [9, Theorem l(i)]. To prove (v), first, 
we use the solution u,Jx, f) to prove that u(x, t) > u,(x, t) > (u,)** for all 
t > t, , where m is the intimum of U(X, 0) and f, is some constant greater than 
zero. This is by direct construction of the solution u,,,(x, f). We do not want 
to repeat it here. Assume that the maximum point in the definition of q(f) is 
taken place at X(t). Since U(X, f) > (u,)**, for all f > t,, X(f) cannot be a 
shock curve. Hence u(x, t) is continuous at the point X(f) and u(X(f), f) = u,. 

Direct calculation of q’(f) will prove (v). Q.E.D. 

THEOREM 2.13. Under the same assumptions of Theorem 2.12, define the 
one-sided &-N-wave N,(x, f) as 

N,(x, f) = u, for x >f’W f + ~2q(co)f”(u,) f, 

for f’(E)f < x <f’(U,)f + &co)f”(u,)f; 
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then 

(i) Ix,(t) -f’(q) t - \/2q(oo)f”(u,) t ) = O(S)for all t, 
(ii) !N,(x, t) - u(x, t)l <A -I(E) O(S) t---I for x between f’(E)t and 

min(x,(l).f’(u,)t +Jh(03)f”(u,)l), 
(iii) (N,(x, t) - u(x, t)l < O(S) t-- li2 for x between x,(t) and f’(u,)t i- 

,,/2q( m)f”(u,) t, where E is a small fixed number with 0 < E < u, and q( co) 
is the constant q(t,J in Theorem 2.12(v) and A(s) = min,,,,,f”(u). 

Remark. We can have a similar theorem for the case uI = 0 > u,. 

Proof: From Theorem 2.12(iii), we find a time t, > 0, such that f’(s) t > 
x,(t) for t > t,. Thus for t > t,, u(x, t) > E for all x >f’(e)t. Then (i), (ii) 
and (iii) follows from Theorem 4 of Liu [9\. Q.E.D. 

~.THE CASE WHEN~” VANISHES AT n POINTS 
AND CHANGES SIGN AT THESE POINTS 

Without loss of generality, we assume that f” vanishes at a,, a,,...? a,., 
where a, < u2 < ... < a,V, and f”(u) < 0 for u < a,, f”(u) > 0 for a, < 
u < a2 ,..., etc. We also adopt the definitions of u,(x, t), M, m, x,(t) and x,(t) 
of Section 2. For convenience, we put a, = -co and a,,, , = +co. In this 
section, we use u(x, t) to denote the solution of (l.l), (1.2) with initial 
condition (1.3), where f is under the assumption of this section. 

We may need direct construction of solution u(x, t) in the proof of the 
following lemmas and theorems. We will give only some indications and 
omit the details. These constructions are similar to the constructions in 
Section 2. 

LEMMA 3.1. ff U, E (aim,, a,), U, E (Uj.-,? aj), where 1 < i <j < N + 1% 
then there exists t, > 0, such that for all t > t,, u,(x, t) E (Al, A,), where 
A,, A r are two fixed constants with A, E (a,-, , u,) and A,. E (ur, Uj). 

LEMMA 3.2. Under the assumptions of Lemma 3.1, there exists t, > 0, 
such that for all t >, t,, u(x. t) E (A,, A,.), where A,, A, are as in Lemma 3.1. 

Proof of Lemmas 3.1 and 3.2. Using the Ordering Principle, we can 
easily establish Lemma 3.2 from Lemma 3.1 if u(x, 0) E (a, aj) for all X. TO 
prove Lemma 3.1, we use induction. If a E (a,- i, aj), then Lemma 3.1 is 
obviously true. Now assume that when a E (uimk, Ui-k+,), Lemma 3.1 is 
true, and hence Lemma 3.2 is also true when u(x, 0) E (a, a,). We would like 
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to establish that when a E (ai-.- ,, ai-&, Lemma 3.1 is true. The solutions 
for the Riemann problems (u[, a) and (a, u,) are combinations of shock 
waves and rarefaction waves. Let us denote these simple wave resolutions of 
(G a) and (a, 4 by (u,, u,), (ul, Q,..., (u,, a) and (a, wJ, (wl, WA..., 
(w,, u,). It is easy to see that at least one of the simple waves (t.,,,, a) and 
(a, w,) must be a shock wave. It is this simple consequence of entropy 
condition (E) that causes the cancellation of waves. Now it is easy to see 
that shock wave (u,,,, a) or (a, wi) will kill the a-states in a finite time. After 
that, the remaining rarefaction wave, (urn, a) or (a, w,), will be killed by a 
combination of type I and type II shocks in a finite time. Thus there exists 
t, > 0, such that for t > t,, u,(x, t) E (aimk, a,). Using induction hypotheses, 
we prove that when a E (ai_ k.. i, a,- ,J, Lemma 3.1 is true. Similarly we can 
consider the case a > a,. This completes the proof of Lemmas 3.1 and 3.2. 

Q.E.D. 

Remark. We have two similar lemmas when 1 <j < i ( N + 1. 

DEFINITION. If the solution of the Riemann problem (u,, u,) consists of a 
simple shock wave with f’(u,) > u(u,. u,) >f’(u,) and a(u,, u) > u(u,, u,) > 
u(u, u,) for all u between u, and u,, then we call (u,, ur) a strict shock. 

THEOREM 3.3. If (u,, u,) is a strict shock, then there exists x,, and t,, 
t, > 0, such that for all t > t, , 

u(x, t) = u/ for x < x0 + o(u,, ur> t, 

= u, for ~>x~+(u,,u~)~, 

where 

u, + UI ~- 
2 

N>S. 

ProoJ From Lemma 3.2, if u, E [a,.. 1, ail, u, E [a,-, , uj] and i > j (note 
that the case i < j can be similarly considered), then we can choose A, E 
(ai.., , u,), A, E (ur, uj) such that (A,, u,) and (u,, A,) are all strict shocks. It 
is easy to construct the solutions uA,(x, I) and uA,(x, t) directly and find 
t,,, tAr and xA,, xA,, such that 

u&, t) = u/ 
zz u r 

u&3 f> = u/ 

= u, 

for x < xA, + u(u,, u,)t, 

for x > xa, + u(u,, u,>t, 
t > t,,, 

for x < x,, + a(~,, u,)t, 
t > t.4; 

for x > xA, + u(u,, u,)t, 
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Thus for 1 sufficiently large, say t > t’,, we have 

u(x, t) = u, for x < x,, + 0(u,, u,) t, 

= 24, for x > xA, + a(u,, ur)t, 

and u, = u,,(x, t) < u(x, t) < u,,,(x, t) = u, for xA, + u(u,, u,)t < x <x,, + 
a(u,, u,.)t. Using the strick shock properties of (u,, ur), we can prove this 
theorem by using the same arguments as in the proof of Theorem 2.4. 

Q.E.D. 

DEFINITION. If the solution of the Riemann problem (u,, u,) is a simple 
rarefaction wave and if u, # a, # u, for all i, then we call (u,, ur) a strict 
rarefaction wave. 

Remark. From this definition, a strict rarefaction wave can have two 
possibilities only. Either a, ._ , < uI < u, < cli and f”(u) > 0 for all u E 
(ai. ,.a)) or Uj_, < u,.<u, < Uj andf”(u) <O for all u E (aj-,,a,). 

THEOREM 3.4. If (u,, u,) is u strict rurefuction wave, with the proper 
definitions of p(t) and q(t) in Theorem 2.5 and the definition of N(x, t) in 
Theorem 2.6: where we have to replace h, by some proper h, and hi is the 
inverse function of f’(u) restn’cted in (ui _ , , ui), then the proper statements of 
Theorems 2.5 and 2.6 hold. 

Proof: In view of the Ordering Principle and Lemmas 3.1 and 3.2, we 
can push the solution u(x, t) at a finite time into the interval (aim,, a,) which 
contains u, and u,. Then the whole story of Liu [ 91 goes and the theorem is 
proved. Q.E.D. 

For nonstrict shocks and nonstrict rarefaction waves, they can be treated 
as in Theorems 2.9, 2.11, 2.12, and 2.13. We do not treat them here. 
Similarly we can treat the case of the combination of shocks and rarefaction 
waves. For example, if the resolutions of (u,, u,.) to simple waves are (u,, t’,), 
(u,. cl). (t.*, uI), where (u,, tli) is a shock with f ‘(u,) > o(uI, v,) =f’(c,), 
(c,, L.*) is a strict rarefaction wave, (t’*, c~) is a shock with f’(v2) = 
u(t’*, u,) >f’(u,.), then we can prove that after a finite time, xc(t) = X, -I- 
u(u,, u ,) t, x,(t) = X, + a(~, , u,) t and between these two shocks is rarefaction 
wave (L., . c~). The proof is similar to the proof of Theorem 2.9. For u, = 
u, = ui, the treatment is almost identical to the treatment of Theorem 2.11. 
Although we did not consider the case f”(ai) = 0 and f" does not change 
sign at a,, it is obvious that we can apply our technique to this case as well. 
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