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ABSTRACT: A computer-aided method for simplification and identification of linear 
discrete systems via step-response matching is presented. Golub’s algorithm for solving 
least-squares problem is used to find the optimum coefficients of the reduced model. The 
advantages of this method are (1) for model reduction, both the time response and 
frequency response within the bandwidth region of the reduced model are very close to 
those of the original system; and (2) for system identification, the identified model is very 
close to the original system. In the illustrative examples considered in this paper the results 
of the proposed method appear to be better than those of other methods in the current 
literature. 

1. Zntroduction 

Since the analysis of higher-order systems is tedious and costly, the problem 
of approximating a high-order system by a low-order model is important in the 
analysis and design of complex control systems. In this paper a computer-aided 
approach for model reduction and system identification of discrete systems via 
step-response matching is presented. 

The problem of model reduction of linear time-invariant causal discrete 
systems can be defined as finding a low-order model with transfer function 

H(z) = 
d,i?+d,_lzm-l+. . .+d,z+d, 

Zn+C,_lZnP1+. . .+c,+c() ’ n’m 
(1) 

to approximate a high-order system with transfer 

G(z) = 
bMzM + b,_,P-’ + . . . + b,z + b, 

zN + aN-lz N-l + . . . +a,z+a, ’ 
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function 

N>MandN>n (2) 
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so that the performance of the model H(z) is very close to that of the original 
system G(z). A number of methods for the reduction of discrete transfer 
functions have been presented in the current literature (l-7). Shih and Wu (2) 
applied the continued fraction method to discrete transfer functions. The 
disadvantage of this method is that the initial output response of the reduced 
model may not be zero, although that of the original system is zero. Shamash 
(3) proposed the method of continued fraction expansion about z = 1 or z = 03 to 
reduce the order of discrete transfer functions. The disadvantage is that the 
resulted model may not be stable although the original system is stable. 
Chuang (5) used linear transformation and homographic transformation to 
transform the original transfer function into the u-plane, and then applied 
Pade’ approximation to find the reduced-model. Although the reduced model 
found by this method has no stability problem, the performance seems not 
good. Shieh et al. (6) used the method of moment matching and retaining 
dominant eigenvalues to reduce the order of the discrete transfer functions. 
The accuracy of this method seems better than the others. Recently, a 
reduction method based on the stability-equations has been presented by Chen 
and Han (7). In this method the original transfer function is transformed into 
stability equations, then the roots of stability-equations having large mag- 
nitudes are discarded. Finally the reduced models are constructed based on the 
reduced stability-equations. 

The concept of using step-response matching to find the reduced model of 
the original system was first proposed by Edgar (8). Since all poles of the 
reduced model should be real in Edgar’s method this would be difficult to apply 
to discrete systems. 

If the original discrete system is stable, its step response will reach steady 
state after a finite time. Since the number of sampling instants in this finite time 
can be assumed constant, the square errors between the response at the 
sampling instants of the original system and that of the reduced model can be 
used as the criterion of the matching between the original system and the 
reduced model. In this paper, Golub’s algorithm is applied in order to find the 
coefficients of the reduced model because it can give the true minimum point of 
the square errors. If the step response of the reduced model matches that of 
the original system very closely, the reduced model will be stable, so the stability 
problem can be relaxed. In addition, the poles of the reduced model can be 
real and complex, hence it has less restriction than Edgar’s method. 

II. Review of G&b’s AZgorithm 

Golub’s algorithm is a numerical algorithm for solving least-squares prob- 
lems in a highly accurate manner. Breen et al. (9) and Kao (10) have applied this 
algorithm in circuit analysis and optimization very successfully. The concept of 
this algorithm for least-squares problems is described briefly as follows. 

Consider the system of linear equations 

AX=B (3) 
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where A is a given (n x m) real matrix of rank m, B is a given (n x 1) real 
column vector, and X is an unknown (m x 1) real column vector. Equation (31 
has a unique solution if n = m. Suppose n > m, and we wish to find a vector X 
such that 

/B--A%\]= min (4) 

where I(. . . (1 indicates the euclidean norm. Then we may choose an orthogonal 

matrix Q such that 

mXm 

(3 

(n-m)Xm 

and R is an upper triangular matrix as 

rll r12 . . . rh 
0 r2, . . . r2, 

fi=, . . . . . . 

[ .:I . . . . . . . . . . . . . . . : 
‘. . . .: 

r mm 

(6) 

Then 

IIB -MI = llQB - Q=ll = I\C - =ll (7) 

where C = QB. And equation (7) can be rewritten as 

IlB-AX(l=[(c, -r11x1-r12x2 _. . -r,,x,)2 +(c2-r22x2-. . . -r2mxm)2 

+ . . . +(~,-r,,~x,)~+c~+~+c~+2+. . . +CZP. (8) 

Thus IIB-AXj( is minimized when 

rllxl i- r12x2 + . . . + rlmx, = cl 

r22x2 + . . . + rZmxm = c2 
‘... 

. . . 1 
(9) 

‘,.. : 
.., 

r,,x, = cm 1 
and the minimized value is 

\\B-AX~~=(C",+,+C~+~+...+C~,)~. (10) 

The decomposition of (5) can be realized by the Householder transforma- 
tions. The detail of decomposition can be found in Kao (lo), Householder (ll), 
and Wilkinson (12). 

From the above analysis, it can be seen that Golub’s algorithm is suitable 
and can be applied to the least-squares errors problems. Assume the cost 
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function F is defined as 

F(d) = 2 ef(d, 4) 
i=l 

(11) 

where ti represents the independent variable sampled in T, d is a dependent 
variable vector with m elements, ei is the error function at ti, and n is the total 
number of sampled points in T. The purpose is to find the optimum parameter 
vector such that the cost function F is minimized. The partial derivative of 
ei(d) with respect to d is e:(d) = (&,(d))/(t~d). And Taylor’s series of e,(d) is 

e,(d+Ad)=e,(d)+e:(d)Ad+&e:(d)(Ad)”+. . . (12) 

If Ad is very small, the second-order and higher-order terms can be neglected, 
then we get 

e,(d+Ad)=e,(d)+el(d)Ad. (13) 

In order to minimize the cost function F(d), the direction vector Ad should be 
in the direction so that ei (d + Ad) = 0. So Ad can be determined by the equation 

e,(d+Ad)=e,(d)+ee’,(d)Ad=O i=l,2,...,n (14) 

or 

e;(d)Ad = -ei(d) 

which can be rewritten as 

Since n > m, we 
Ad. 

can apply Golub’s algorithm to solve (15) and find the value 

However, due to the approximation made in (14) and the fact that Ad is only 

de, de, ae, -- 
adI ad, .” ad, 
ae, ae, ae2 -- 
ad, ad, ..’ ad,,, 
. . . . . . . . . . . . . . . . . . 

ae, ae, ae n 
34 ad, ... a&_ 

_I = -el 

-e2 

-en. 

(15) 

(16) 

a least square solution, the new parameter vector d+Ad does not, in general, 
minimize the cost function F(d). The direction of Ad can only indicate that if d 
is changed infinitesimally small in the direction of Ad the cost function F(d) will 
be reduced. That means 

F(d + a Ad) <F(d) (17) 

where CY is called step size and 0 <(Y 5 1. The cost function F(d) vs (Y can be 
plotted as shown in Fig. 1. The value of cx should be chosen properly, 
otherwise, F(d+aAd) wil be greater than F(d) or the convergent rate is too 
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FIG. 1. The cost function F(d+aAd) vs the step size a. 

slow. There are many algorithms which can be used to find the optimum cy 
(lo), but we will not describe the details here. 

Given the initial d as do, we may evaluate the value of the cost function F(d) 
as F”. Using the above procedures to find Ad and (Y, we get the new value of d 
as d’ and have F(d’) >F(dl). Repeat the above procedures until F(d+aAd) or 
the difference between F(d + a Ad) and F(d) is within the desired range, then 
the optimum parameter vector can be obtained. All the above procedures can 
be programmed in FORTRAN IV or other high-level languages, and the 
results can be easily obtained. 

111. Description of the Reduction Method 

Consider the transfer function in (2), which can be written in a non-recursive 
form as 

G(z)=r,+r,z-‘fr*z-*+. . . (18) 

where ri is equivalent to g(iT), which is the impulse response of this discrete- 
time system at the sampling instant iT. Since the z-transform of the unit-step 
function is 

R(z)=&= 1+2-‘+Z-2+Z-3+. . . (19) 

the unit-step response of G(z) is 

Y(z) = G(z)R(z) 

=(r,+r,z-‘+r,z-*+. _ .)(l+zpl+z-*+. . .) 

= r,+(r,+r,)z~~+(r,+r,+r2)z~*+. . . 

=po+plz-1+p2z-*+. . . (20) 

where pi = C;, =0 r,, and pi is the unit-step response of this discrete system at 
sampling instant iT. In (2) substituting z by ej”‘T, the frequency response of G(z) 
is resulted as: 

G (e”‘? = 
b ejMwT+ bM_,ej’M-l)wT+. . . + b,ejuT+ b, 
yjNwT+ a N_lejCN-““T+. . . + ale’“=+ a, ’ 

(21) 
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If the system G(Z) is stable, the steady-state unit-step response will be equal to 
the corresponding frequency response at o = 0, i.e. 

Similarly, if the 
reduced model, 

G(e’“T),,=o = b&f + b-1 +. . . + h+ bo 
l+a,_l+a,_,+. . .+a,+a,’ 

(22) 

reduced model H(z) is stable, the frequency response of the 
H(e’-y, at w = 0 can be expressed by 

H(eia3,,,,= d,+L,+...+dr+d, 
1+c,_l+C,_2+. . .+c,+c,’ 

(23) 

If the steady-state unit-step response of the reduced model is equal to that of 
the original system, then 

Hence 

G(ei”T)I,,o = H(e’“T)I,=, 

d,,,+d,,-l+. . .+d,+d, 

=1-c,_r+c,_,+. . .+c,+&J’ 

d,=G(e’O’)[l+~~~ci]-i~*di. 

(24) 

(25) 

Suppose the unit step response of G(z) and H(Z) are denoted as y,(Z) and 
y,(iT) and they reach steady state at the sampling instant KT (where K is a 
positive integer). For simplicity of notation let us define C = (co, cr, . . . , c,_J, 
and D=(dr,d*,..., &). Now the closeness of the reduced model and the 
original system can be defined by the cost function 

E(C, D) = t ef = 5 [y,(iT)- y,(iT, C, D)] (26) 
i=l i=l 

which is equivalent to the sum of square-errors between the step response of 
the original system, y,(iT), and that of the reduced model, y,(iT), for i from 1 
to K. Then the coefficients of the reduced model (i.e. the coefficient vectors C 
and D) can be found by minimizing the cost function. 

Thus the initial values of coefficient vectors C and D of the reduced model as 
Co and Do will make the resulting system stable. We may use (20) to find the 
step-responses of G(z) and H(z). Since K is usually chosen very large (i.e., 
K 2 15) and the order of H(z) should be as low as possible, hence K is always 
greater than n + rn, and the process described in Section II can be applied 
iteratively to find the optimum coefficients of the reduced model. 

Since the sampling frequency is defined as o, = 2rr/T, from (21) the fre- 
quency response of G(z) can be rewritten as 

G(ejm7) = G(eiz”(-‘-“) = ro+ T1e-jZ”(y’“s’+ 12e-j2”(zw’w~l f. . . 

= [hl+rlcoS j27r~)+r,cos (2?9+. . .] 

-j[r,sin (2ri$)+r,sin (2,$)+. . -1. (27) 
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At low frequency, cos (oT) approaches 1 and sin (UT) approaches 0, so that 

the real part of G(e’“7) dominates the frequency response and the value is 
approximately equal to CT&, ri which is equivalent to the unit-step response of 
G(z). Thus we find from the illustrative examples that the frequency response 
within bandwidth region of the reduced model is very close to that of the 
original system. 

If two systems are equivalent, they will have the same unit-step response. 
Therefore this method can be used to identify the parameters of linear 
time-invariant discrete systems. 

It should be noted that, since the proposed method has less restrictions than 
the other methods in the current literature, the accuracy of the proposed 
method is high. This will be shown by the following examples. 

Example 1. Consider the transfer function used by Shih et al. (2,6,7): 

G(z) 

280.333z7+ 186z6-35z5+25.333z4-86z3-43.666z2+7.333z - 1 

= 666z8-28O.333z7-186z6+35zs-25.333z4+86z3+43.666z2-7.333~+1 

(28) 

The sampling period is T = 40.5. Suppose the second-order model is chosen as 

H(z) = 
0.52 +0.15 

~~-0.8~ +0.15 
(29) 

and the step responses of G(Z) and H(z) at first 30 sampling instants are 
chosen for comparison. Using the process described in Section II, after 8 
iterations the reduced model can be obtained as 

Hz(z) = 

0.460997-0.303206 

z2- 1.530156~ +0.687127. 

By the same process, the third-order reduced model is 

H,(z) = 

0.42604z2- 0.304414~ + 0.000989 

z3- 1.722563z2+0.991368z-0.146425. 

(30) 

(31) 

For comparison, the reduced models obtained by Shih et al. (6) and by Chen et 
al. (7) are listed as follows: 

H(z) = 
0.4981~ -0.34194 

z2- 1.50189~ -to.65805 
(by Shih) 

Mz) = 
102-B 

25.1575z2-40.315~ + 17.158 
(by Chen) 

(32) 

(33) 

and 

F3k) = 

15.948z2-20.895z+6.948 

35.944z3-77.674z2+58.516z - 14.786 
(by Chen). (34) 
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t 

FIG. 2. Step responses of example 1. 

OrIgInal 
g:d”) Step-response matching 

2nd moment matching [Shih] 

‘3:: 
> 

StabWy-equation [Chen] 

w radian 
FIG. 3. Gain plots of frequency responses of example 1. 
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The step responses and frequency responses of all these reduced models are 
shown in Figs. 2 and 3, respectively. It can be seen that in both cases the 

reduced models based on the proposed method can give better results. Note 
that the frequency response within the bandwidth region of the reduced 
method obtained by the proposed method is very close to that of the original 
system. 

Example 2. Consider the system shown in Fig. 4 (13). The sampling period T 
is 0.15 set, and the closed-loop transfer function is 

G(z) = 
0.4240368z3+0.0125156z2-0.3118169z+0.570404 

z4- 1.0966632z3-0.1434224z2+0.6953299z -0.2734684’ 
(35) 

Assume the step response of the first 30 sampling instants are selected for the 
purpose of step-response matching. The 2nd and 3rd order reduced models are 

obtained as 

Hz(z) = 
0.4606312-0.1752814 

z*- 1.29955132 +0.5849011’ 
(36) 

and 

H3b) = 

0.4307344z2-0.2896451~ -0.0009796 

z3- 1.73355512*+ 1.1429416~ -0.2692771’ 
(37) 

The cost function of the 2nd and 3rd order reduced models are approximately 
equal to 4.5 x lop3 and 5.4~ 10e4, respectively. If the cost function obtained 

is not satisfied, we may assume a 4th order model based upon the optimum 3rd 
model as 

H:(z) = 
0.4307344z3-0.28964512*-0.00097962 

z4- 1.7335551z3+ l.l429416z*-0.2692771~. 
(38) 

After 8 iterations, the cost function is less than 10-l’ and the reduced model is 

H4(z) = 

0.4240368z3-O.O12518Oz*-0.3118165z-0.0570391 

~~-1.0966577z~-0.1434277z*+0.6953296z-0.2734668’ 

(39) 

Note that all the coefficients of (39) are almost the same as those of (35). 
Therefore, the proposed process can be applied to discrete system identifica- 
tion via step-response matching. 

For comparison, the step responses and frequency responses of the original 
system and the reduced models of all the methods considered are shown in 

zero- 
order =y-+Eb_l ho,d H zs j ‘(+l 

FIG. 4. A sampled-data control system. 
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D-D 

0.5 -.- 

-x- 

Original 
and 4th order 

23::) Step-response matching 

2nd 
3rd 1 

Stability equation [Chen] 

2nd moment matching [Shih] 

[Where -x- is almost the 
as--] 

same 

t, set 

FIG. 5. Step responses of example 2. 

Original and 4th order 

------- !$::I Step-response matching 

__b_ 2nd moment matching [Shih] 

WV radian 

FIG. 6. Frequency responses of example 2. 
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Figs. 5 and 6, respectively. It can be seen that the reduced models based on the 

proposed method can give better results. 

IV. Conclwions 

A method for simplification and identification of discrete transfer functions 
based on step-response matching have been presented. For simplification, both 
the step response and the frequency response of the reduced models are very 
close to those of the original transfer function. For identification, the proposed 
method has high accuracy. 
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