

國 立 交 通 大 學

資訊工程學系

碩 士 論 文

視訊編碼器在雙核心平臺上的最佳化

Video Codec Optimization for Dual-core
Architectures

研 究 生：曾建堂

指導教授：蔡淳仁 教授

中 華 民 國 九 十 三 年 六 月

 II

視訊編碼器在雙核心平臺上的最佳化

Video Codec Optimization for Dual-core
Architectures

研 究 生：曾建堂 Student：Chien-Tang Tseng

指導教授：蔡淳仁 Advisor：Chun-Jen Tsai

國 立 交 通 大 學

資 訊 工 程 學 系

碩 士 論 文

A Thesis

Submitted to Department of Computer Science and Information Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science and Information Engineering

June 2004
Hsinchu, Taiwan, Republic of China

中華民國九十三年六月

 III

博碩士論文授權書

 本授權書所授權之論文為本人在＿＿＿＿交通＿＿＿大學(學院)＿資訊工程＿＿＿＿系所

 ＿＿＿＿＿＿＿組＿＿＿九十三＿學年度第＿二＿學期取得＿碩士＿學位之論文。
 論文名稱：＿＿＿視訊編碼器在雙核心平臺上的最佳化＿＿＿＿＿＿＿＿＿＿＿
指導教授：＿＿＿蔡淳仁 教授＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿

1.□同意 □不同意
本人具有著作財產權之上列論文全文(含摘要)資料，授予行政院國家科學委員會科學技術資料中心(或改制

後之機構)，得不限地域、時間與次數以微縮、光碟或數位化等各種方式重製後散布發行或上載網路。
本論文為本人向經濟部智慧財產局申請專利(未申請者本條款請不予理會)的附件之一，申請文號

為:______________，註明文號者請將全文資料延後半年再公開。

2.□同意 □不同意
本人具有著作財產權之上列論文全文(含摘要)資料，授予教育部指定送繳之圖書館及國立交通大學圖書

館，基於推動讀者間「資源共享、互惠合作」之理念，與回饋社會及學術研究之目的，教育部指定送繳之

圖書館及國立交通大學圖書館得以紙本收錄、重製與利用；於著作權法合理使用範圍內，不限地域與時間，

讀者得進行閱覽或列印。
本論文為本人向經濟部智慧財產局申請專利(未申請者本條款請不予理會)的附件之一，申請文號

為:______________，註明文號者請將全文資料延後半年再公開。

3.□同意 □不同意
本人具有著作財產權之上列論文全文(含摘要)，授予國立交通大學與台灣聯合大學系統圖書館，基於推動

讀者間「資源共享、互惠合作」之理念，與回饋社會及學術研究之目的，國立交通大學圖書館及台灣聯合

大學系統圖書館得不限地域、時間與次數，以微縮、光碟或其他各種數位化方式將上列論文重製，並得將

數位化之上列論文及論文電子檔以上載網路方式，於著作權法合理使用範圍內，讀者得進行線上檢索、閱

覽、下載或列印。
論文全文上載網路公開之範圍及時間 –
本校及台灣聯合大學系統區域網路： 年 月 日公開
校外網際網路： 年 月 日公開
上述授權內容均無須訂立讓與及授權契約書。依本授權之發行權為非專屬性發行權利。依本授權所為之收

錄、重製、發行及學術研發利用均為無償。上述同意與不同意之欄位若未鉤選，本人同意視同授權。
研究生簽名： 學號：9117559
（親筆正楷） （務必填寫）

日期：民國 年 月 日

 IV

國家圖書館博碩士論文電子檔案上網授權書

本授權書所授權之論文為本人在＿＿＿交通＿＿＿大學(學院)＿資訊工程＿系所

 ＿＿＿＿＿＿＿組＿九十三＿學年度第＿二＿學期取得＿碩士 學位之論文。
論文名稱：＿＿視訊編碼器在雙核心平臺上的最佳化 ＿＿＿＿

指導教授：＿＿蔡淳仁 教授 ＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿

□同意 □不同意

本人具有著作財產權之上列論文全文(含摘要)，以非專屬、無償授權國家圖書館，

不限地域、時間與次數，以微縮、光碟或其他各種數位化方式將上列論文重製，

並得將數位化之上列論文及論文電子檔以上載網路方式，提供讀者基於個人非營

利性質之線上檢索、閱覽、下載或列印。

上述授權內容均無須訂立讓與及授權契約書。依本授權之發行權為非專屬性發行

權利。依本授權所為之收錄、重製、發行及學術研發利用均為無償。上述同意與

不同意之欄位若未鉤選，本人同意視同授權。

研究生簽名： 學號：9117559
（親筆正楷） （務必填寫）

日期：民國 年 月 日

視訊編碼器在雙核心平臺上的最佳化

學生：曾建堂 指導教授：蔡淳仁 教授

國立交通大學資訊工程學系﹙研究所﹚碩士班

摘要

在本篇論文中，我們提出一個方法使 MPEG-4 Simple Profile 視訊編碼

器在雙核心(RISC 以及 DSP)平臺上的執行能更具效能。在目前視訊編

碼器對於 RISC 核心以及 DSP 核心的使用，運算重心是以 DSP 核心為

主。但隨著 RISC 運算能力的強化，未來 RISC 核心也將有足夠的能力

來處理繁重的運算。因此，我們藉著評估分析視訊編碼器中各主要元

件的運算特性，建立出一套能動態分配工作至各運算單元使之平行運

算的雙核心視訊架構。而為了解決雙核心之間資料傳輸的負擔，該架

構中也使用 DMA 的機制來改進效能。而從實作結果證實，在使用我

們的雙核心視訊架構後，視訊編碼器效能將因此提升。

 ii

Video Codec Optimization for Dual-core Architectures

student：Chien-Tang Tseng Advisors：Dr. Chun-Jen Tsai

Department﹙Institute﹚of Computer Science and Information Engineering

National Chiao Tung University

Abstract

In this paper, we propose a dynamic task partitioning framework on dual-core
architecture (RISC and DSP) for the MPEG-4 Simple Profile video codec. Using a
dynamic task scheduler, an efficient dynamic partitioning framework of video encoder
algorithm on dual-core architecture are developed. Existing practices of embedded
software development on a dual-core platform either assign a subtask to the RISC core
or the DSP core. However, since new generations of RISCs are powerful enough for
computationally intensive task as well, the proposed framework will invoke both the
RISC and the DSP cores in parallel to complete a single subtask in a tightly-coupled
manner. To alleviate the communication overhead between the two cores, DMA is used
to transfer data between the MCU and the DSP. From the experiments, it is shown
that the proposed approach achieves higher performance than the conventional
approach where only one of the cores (either MCU or DSP) is used for each subtask.

 iii

Acknowledgement

能完成這篇論文，要感謝的人很多，首先要感謝的是我的指導老師 蔡淳仁 教授，

感謝教授提供了豐富的資源以及經驗、技術上的協助，讓我的研究能順利完成。

再來要感謝的是家人經濟上的支援，讓我在研究所生涯中能努力學習，無後顧之

憂。也感謝同學以及朋友的及時雨，讓我在研究上遭遇瓶頸時，能勇於面對不被

打倒。最後，感謝交大資工，這裡的研究風氣讓我成長，讓我更有信心來面對未

來的挑戰。

 iv

 Index of content

摘要... i
Abstract .. ii
Acknowledgement .. iii
Index of content .. iv
List of figures... v
List of tables... vii
Chapter 1 Introduction ... 1

1.1 Introduction to the OMAP 1510 platform.. 1
1.2 Introduction to MPEG Video Codec.. 5

Chapter 2 Previous work.. 9
Chapter 3 The Proposed Framework ... 13

3.1 Dual-core processing architecture.. 14
3.2 Pre-processing and Post-processing... 16
3.3 Intra-frame processing ... 17

3.3.1 Intra macroblock encoding ... 18
3.4 Inter-frame processing ... 26

3.4.1 Interpolation processing.. 27
3.4.2 Motion estimation ... 30
3.4.3 Inter macroblock encoding ... 37

 Implementation... 41
Chapter 4 using DSP Hardware Extension for Video Coding 41

4.1 FDCT module and IDCT module .. 41
4.2 Interpolation module.. 44
4.3 Motion estimation module ... 46

Chapter 5 Experimental results .. 49
5.1 Experiment of Intra frame processing.. 49

5.1.1 Overall result... 49
5.1.2 Profile for dual-core I macroblock encoding module 53

5.2 Experiment of Inter frame processing.. 55
5.2.1 Overall results ... 55
5.2.2 Profile for dual-core Interpolation module ... 59
5.2.3 Profile for dual-core Motion Estimation module.................................. 61
5.2.4 Profile for dual-core P macroblock encoding module 63

Chapter 6 Conclusions and Future Works.. 66
Chapter 7 References ... 67

 v

 List of figures

Fig 1 The Innovator OMAP development board made by PSI 2
Fig 2 OMAP 1510 Architecture ... 3
Fig 3 OMAP 1510 function block diagram ... 4
Fig 4 MPEG4 encoding scheme .. 6
Fig 5 MP3 decoding system on dual-core architecture.................................... 9
Fig 6 DMA and dual buffer mechanism on DSP ... 10
Fig 7 Multi-core architecture ... 12
Fig 8 Our MPEG4 encoding scheme ... 13
Fig 9 Fetch data on ARM and DSP.. 14
Fig 10 Main phases of dual-core execution flow... 15
Fig 11 Pre-processing and Post-processing ... 17
Fig 12 Intra macroblock encoding ... 19
Fig 13 Dual-core intra macroblock encoding scheme 20
Fig 14 Control module ... 22
Fig 15 Protection of control module .. 22
Fig 16 DSP interface architecture .. 23
Fig 17 Improvement from DMA support... 24
Fig 18 DMA architecture for dual-core intra macroblock encoding.............. 25
Fig 19 Dual-core interpolation processing scheme.. 27
Fig 20 Example of interpolation processing on DSP..................................... 29
Fig 21 DMA architecture for dual-core interpolation processing.................. 30
Fig 22 Dual-core motion estimation scheme ... 31
Fig 23 Mode decision module.. 33
Fig 24 Four step hierarchy search algorithm ... 34
Fig 25 DMA architecture for motion estimation processing 35
Fig 26 Motion estimation with on-the-fly architecture on DSP 36
Fig 27 Inter macroblock encoding scheme .. 37
Fig 28 Execution flow in Inter macroblock encoding scheme 39
Fig 29 DMA architecture for dual-core P MB encoding................................ 40
Fig 30 Format conversion .. 43
Fig 31 Macroblock encoding with built-in hardware extension support 44
Fig 32 Interpolation processing with built-in hardware extension support ... 46
Fig 33 Motion estimation with built-in hardware extension support............. 48

 vi

Fig 34 Profile for dual-core I macroblock encoding module......................... 53
Fig 35 profile for dual-core Interpolation module ... 60
Fig 36 Profile for dual-core Motion Estimation module 61
Fig 37 Profile for dual-core P macroblock encoding module 64
Fig 38 Architecture of future work .. 66

 vii

 List of tables

Table 1 Combination of transform coding ... 10
Table 2 Intra frame encoding result ... 18
Table 3 Description of dual core I MB encoding module.............................. 20
Table 4 Specification of DSP I macroblock encoding 21
Table 5 Inter-frame processing result... 26
Table 6 Description of DSP interpolation processing module 28
Table 7 Specification of DSP interpolation processing.................................. 28
Table 8 Description of dual core motion estimation processing module....... 31
Table 9 Specification of DSP motion estimation processing 32
Table 10 Specification of DSP ME processing with interpolation on the fly 36
Table 11 Description of dual-core P MB encoding module........................... 38
Table 12 Specification of DSP P MB encoding ... 38
Table 13 Specification of FDCT with HW extensions................................... 42
Table 14 Specification of IDCT with HW extensions 42
Table 15 Specification of Interpolation with HW extensions 45
Table 16 Specification of ME in HW extensions... 47
Table 17 Setup of experiment environment ... 49
Table 18 Experiment result of pure ARM core .. 49
Table 19 Experiment result of pure DSP core.. 50
Table 20 Experiment result of pure DSP core, FIQ 50
Table 21 Experiment result of pure DSP core, FIQ, HW extensions............. 51
Table 22 Experiment result of dual-core.. 51
Table 23 Experiment result of dual-core with DMA 52
Table 24 Performance comparison... 52
Table 25 Experiment result of profile I MB encoding 53
Table 26 Calculated result of profile P MB encoding.................................... 54
Table 27 Experiment result of pure ARM core .. 55
Table 28 Experiment result of pure DSP core.. 56
Table 29 Experiment result of pure DSP core, FIQ 56
Table 30 Experiment result of pure DSP core, FIQ, HW extensions............. 57
Table 31 Experiment result of dual-core core.. 57
Table 32 Experiment result of dual-core with DMA 58

 viii

Table 33 Experiment result of dual-core, DMA, enhanced ME 59
Table 34 Performance comparison... 59
Table 35 Experiment result of profile interpolation module.......................... 60
Table 36 Calculated result of profile interpolation module 61
Table 37 Experiment result of profile Motion estimation module................. 62
Table 38 Calculated result of profile Motion estimation module 62
Table 39 Experiment result of profile Motion estimation module................. 63
Table 40 Calculated result of profile Motion estimation module 63
Table 41 Experiment result of profile P MB encoding 64
Table 42 Calculated result of profile P MB encoding.................................... 65
Table 43 Experiment result of profile P MB encoding 65
Table 44 Calculated result of profile P MB encoding.................................... 65

Chapter 1 Introduction

MPEG-4 Simple Profile (SP) is a visual coding standard which is suitable for low
bitrate, low delay applications such as those for mobile phones. The hardware
architecture of a mobile phone is usually composed of a MCU for light-weight control
tasks plus a DSP for computationally intensive tasks. DSP has been a crucial
component in mobile devices due to its excellent power/performance ratio for signal
processing tasks. However, new generations of mobile multimedia applications
involves complex blending of sophisticated control tasks and data-processing task. In
the meanwhile, the capability of the RISC core in the MCU has become more and more
powerful. Therefore, executing the whole signal processing tasks on DSP alone may not
be the most cost efficient ways anymore.

In this thesis, a dynamic task-partitioning dual-core framework for MPEG-4 video
SP encoder is presented. The TI OMAP processor comprised of a 16-bit DSP and a
32-bit RISC ARM core is used as the target architecture. The efficiency of the proposed
system is obtained by utilizing both processor cores in parallel to complete each codec
task (e.g. motion estimation). The ratio of task division between the RISC core and the
DSP core is determined dynamically at runtime by a control module. In order to
reduce the transfer overhead between the RISC core and the DSP core, a DMA is used
to move the data among various memory banks.

 The organization of this thesis is as follows. In the rest of chapter 1, the
architecture of the TI-OMAP 1510/5910 processor and the PSI Innovator development
board used in this thesis is introduced. Chapter 2 presents some previous works on
dual core implementation of media codecs. The proposed dynamic task-partitioning
dual-core framework will be described in chapter 3. Chapter 4 discusses the
implementation of some of the codec modules using the hardware extension of the TI
C5510 DSP core. In chapter 5, some experiment results are reported. Finally, chapter 6,
conclusions and future work will be given.

1.1 Introduction to the OMAP 1510 platform

As the wireless industry moves into a new century of differentiated services,
developer are seeking for better platforms for developing 2.5G and 3G wireless
applications. The Open Multimedia Application Platform (OMAP) which combines

 2

high-performance, power-efficient processor cores with easy-to-use, open software
architecture is an intriguing platform for new mobile multimedia applications. These
features provide a powerful hardware and software foundation for the development of
innovative applications, and they help simplify development and thus save
time-to-market for new embedded system products.

Fig 1 The Innovator OMAP development board made by PSI

The OMAP1510 device is efficient in performance and power consumption for
wireless multimedia devices. The ARM core is well suited for handling control code,
such as user interface, OS and applications. The DSP core is better suited for real-time
multimedia signal-processing.

The C55x DSP core architecture includes some extensions of the core functions
for multimedia-specific operations. C55x devices are the first family of TI DSPs with
such core-level multimedia extensions. The extensions include, Motion estimation,
discrete cosine transforms (DCT/IDCT), and pixel interpolation. Software developers
access the multimedia extensions through coprocessor-specific instructions that have
been added to the general C5500 instruction set. The combination of coprocessor and
general arithmetic instructions will get efficient execution and better performance.
These features will be examined in our implementation.

The OMAP1510 device, shown in Fig. 1, is based on two integrated

microprocessor cores: a C55x DSP and a high-performance ARM 9 core. There are on
chip caches for both processors which can reduce average fetch times to external
memory and eliminate the power consumption of unnecessary external accesses. And
the memory management units (MMU) for both cores provide virtual-to-physical

 3

memory translation and task-to-task protection. Low-power operating modes are
available to conserve power during periods when the OMAP device is not used
frequently or is not in use.

Fig 2 OMAP 1510 Architecture

 In embedded systems, the I/O bottleneck is an important issue. The OMAP
platform adopts many techniques for improved I/O performance. There are two external
memory interfaces and one single internal memory port in the OMAP platform. The
first external interface supports a direct connection to synchronous DRAM at up to 100
MHz; and the second external interface supports standard asynchronous memories
systems such as SRAM, FLASH or burst Flash devices. This interface is typically used
for program storage and can be configured as either 16- or 32-bit wide. The internal
memory port allows direct connection to on chip SRAM or embedded Flash memory
and can be used to save time and power for frequently accessed data, such as critical
OS routines or the LCD frame buffer. Finally, all three interfaces are completely
independent and allow concurrent access from either cores or the DMA units.

The OMAP platform also contains many interfaces for connecting to peripherals or
external devices. Each processor has its own external peripheral interface, which
supports both direct connections to peripherals and DMA from the processor's DMA
unit. The local bus interface is high-speed and bi-directional, and the controller of the
bus can be used to connect to external peripherals or additional OMAP devices.
Additionally, a high-speed access bus is available to allow an external device to share
the main OMAP system memory, both external and internal. And in order to support
common OS requirements, the OMAP platform includes on-chip peripherals such as
timers, general-purpose I/O, a UART, and watchdog timers. A color LCD controller is

 4

also included to support a direct connection to the LCD panel. The ARM DMA unit
contains a dedicated channel used to transfer data to the LCD controller from the frame
buffer, which can be allocated in either the external SDRAM or the internal SRAM.
The follow functional block diagram shows the detail architecture of OMAP
architecture.

Fig 3 OMAP 1510 function block diagram

The OMAP platform includes an open software architecture that is needed to

support application development and provide a dynamic upgrade capability for
heterogeneous multiprocessor system designs. This architecture includes a framework
for developing software, which targets system design and application programmer
interfaces (API) for executing software on the target system. Additionally, in order to
simplify software development, the DSP software architecture was abstracted from the
general-purpose programming (GPP) environment. In the OMAP platform, this
abstraction is accomplished by defining an architectural interface that allows the GPP to
be the system master. And the DSPBridge interface consists of a set of APIs that
contain device driver interfaces which called DSPBridge interface. In our own design,
the architecture of DSPBridge interface has been referenced and thus implement our
proposed codec on dual-core architecture OMAP platform.

 5

1.2 Introduction to MPEG Video Codec

MPEG stands for "Moving Pictures Experts Groups". It is a group working under
the directives of the International Standards Organization (ISO) and the International
Electro-Technical Commission (IEC). The groups work concentrates on defining
standards for the coding of moving pictures, audio and related data. MPEG video
compression is used in many current and emerging products. It is at the heart of digital
television set-top boxes, DSS, HDTV decoders, DVD players, video conferencing,
Internet video, and other applications. These applications benefit from video
compression in the fact that they may require less storage space for archived video
information, less bandwidth for the transmission of the video information from one
point to another or a combination of both.

MPEG-1 defines a framework for coding moving video and audio, significantly
reducing the amount of storage with minimal perceived difference in quality. In
addition a System specification defines how audio and video streams can be combined
to produce a system stream. This forms the basis of the coding used for the VCD format.
MPEG-2 builds on the MPEG-1 specification, adding further pixel resolutions, and
support for interlace picture, better error recovery possibilities, more chrominance
information formats, non-linear macroblock quantization and the possibility of higher
resolution DC components.

MPEG-4 is good for both low and high bit-rate applications, since it has good
error resilient coding and is capable of handle high quality video. The error resilient
coding and low bit-rate capabilities can be utilized for instance in mobile phones or
handheld computers with a wireless network connected to it. Other areas of usage can
be where you want both high and low bit-rate video, like on the web, where you want to
show a movie to the visitors.

Following MPEG-4 is the not yet finalized standard MPEG7. Metadata is added

to the content of the multimedia, that is names or labels are added to the objects
introduced in MPEG-4. This will allow advanced searching for certain content within
an MPEG-7 encoded media. With the ever so fast growing amounts of available media
this will become necessary sooner or later. There are drafts and proposals for the
standard but it has not yet been finalized. MPEG-21, the work on this standard started
in June 2000. It is aimed to identify and define the key elements needed to support the
multimedia delivery chain.

 6

MPEG-4 provides a large and rich set of tools for the coding of audio-visual
objects. In order to allow effective implementations of the standard, subsets of the
MPEG-4 Systems, Visual, and Audio tool sets have been identified, that can be used for
specific applications. These subsets, called ‘Profiles’, limit the tool set a decoder has to
implement. For each of these Profiles, one or more Levels have been set, restricting the
computational complexity.

Generally speaking, MPEG-4 Simple Visual Profile provides efficient, error

resilient coding of rectangular video objects, suitable for applications on mobile
networks. It consists of several modules, including intra coding (I-VOP), inter coding
(P-VOP), motion compensation, resynchronization, variable length coding (VLC). And
it is compatible of H.263 baseline coding.

Fig 4 is the block diagram of a MPEG-4 encoder. The details functionality of the
blocks is described in the following paragraph.

Fig 4 MPEG4 encoding scheme

The “DCT” block stands for “Discrete Cosine Transform”, which is a function that
transforms image data in YCbCr format into frequency domain representation. After the
transform, the same information is presented in a form that is more suitable for
compression. In effect, the image is represented in a range of frequency components,
where higher frequency components denote 'sharper' edges and changes in the image
and lower frequency components denote more gradual changes in the image.

The “Q” block stands for “Quantization”, which is a process whereby values after
the DCT block are divided by the quantization factor. The higher the factor, the higher
the compression ratio (and lower the image quality). The quantization factor is either
selected by the user or by the automatic rate control algorithm that is responsible for

 7

ensuring that the amount of data generated by the encoder is within the bounds set by
the transmission channel or storage device. The general aim is to provide the best image
quality that is permissible by the transmission channel or by the video quality selected
by the user on a storage device. The coefficients divided by the quantization factor are
then rounded according to certain rules, and as a result the higher the quantization
factor, the more often the result of the division is zero. This phase in the process causes
data rates to drop dramatically because the higher frequency components (depending on
the quantization factor and the image content) end up being rounded to zero. The
benefit of carrying out the quantization in the frequency domain, as opposed to in the
XY spatial domain, is that discarding the higher frequency components compromises
the sharp edges and contrast of the image (more or less depending on quantization),
which, when done within reason, is not easily perceived by the human eye.

Motion estimation is an important part of the codec. Whereas DCT and
quantization serve to compress the spatial aspects of one frame, motion estimation is
used to compress temporal redundancy, i.e., in the time domain over two consecutive
frames. Take a typical scene, from a feature film for example. 25-30 consecutive frames
are displayed every second by the TV or film projector. However, chances are that
within an arbitrary one second sequence most aspects of the image remain the same.
The background may not change at all, the characters remain the same and therefore the
consecutive frames are very similar.

The motion estimation performs a delta analysis between two consecutive frames
and determines whether areas of the image have changed or moved between the frames.
In many cases an area stays exactly as it was in the previous frame and therefore it is
sufficient for the encoder to inform the decoder to display this area as it was in the
previous frame. If the area moves in a certain direction, the motion estimation
algorithm directs the decoder to use the same piece of image as in the previous frame,
but to move it a certain amount in a defined direction. In practice this will be
accomplished by sending motion vectors within the MPEG4 bit stream. These vectors
will guide the decoder in choosing the appropriate portions of the previously decoded
frame to be used in the reconstruction of the current frame.

It should be clear that this vastly increases the compression rates. In fact, some
types of content can be compressed to an enormous extent due to the lack of movement
in the image. One example is the 'talking head' type of content, such as a newscaster,
which results in a very compact MPEG4 stream. As one may expect, the motion
estimation is a very computationally intensive function. Searching through an image for
all the possible areas that could change place for every potential location requires a lot

 8

of calculations. If we are concerning of real time application, there exists a very
restricted time limit to achieve real time constraint, only 1/15th to 1/30th of a second to
do this before the next frame arrives for processing.

Motion compensation performs the reconstruction of the frame based on the
received motion vectors, received delta frame data (different data between two
consecutive frames, see motion estimation) and the previously decoded image. So, if
delta data is received, the current frame is reconstructed by adding the delta frame data
to the data from the previously decoded frame in the specific locations indicated by the
received motion vectors.

As illustrated previously, the combination of motion estimation, cosine transform
and quantization alone can dramatically reduce the bit rate needed for digital video.
However, a few more steps are required before full MPEG4 compressed video stream is
at hand. As stated, MPEG4 compression works in a block level, i.e., 8 x 8 pixel blocks
(or matrices) are compressed at the same time. The output coming from the
quantization function is further processed by a Zigzag scan coder. This coder forms a
64 (8 x 8 pixel) element long vector out of the 8 x 8 matrix so that the low frequency
components will be placed at the front of the vector. The reason for this action becomes
useful in the later stages of processing.

Next, the 64 element long vector is analyzed by the run-length encoder module.
The run-length encoder calculates the number of consecutive zeros in the vector and
forms Run-Length Code (RLC) words based on the calculation. As noted before, after
the quantization there is a high probability of a significant amount of zeros in the 8 x 8
matrix (likely to be in the high frequency components) and there is no need to transmit
or store such information. So, one RLC word represents the number of zeros between
the consecutive non-zero elements in the vector. Also, the value of the last non-zero
element after the zeros is represented in one RLC word as well as the information as to
whether this value was the very last component in the vector. Thus, each RLC word
consists of three components.

The RLC words are then Huffman-coded using Variable Length Codes (VLC).

Basically this means that certain RLC words are given a specific bit pattern. The most
common RLC words are given the shortest VLC bit pattern. The VLC patterns are
specified in the MPEG4 standard and were generated based on the vast amount of video
test material.

 9

Chapter 2 Previous work

The multimedia processing ability and the implementation of a MPEG-4 SP codec
on the OMAP platform is described in [3]. However, the system described in [3] utilizes
only the DSP core for the codec. Even though the performance numbers published in
[3] are higher than the numbers we have achieved, it is probably due to extensive use of
assembly codes and a more efficient C model to begin with. With similar optimization,
it should be possible for the proposed method to achieve even better performance.
Another codec framework for dual-core architecture is described in [4], where an MP3
decoding system is implemented. In this paper, MP3 decoding algorithm runs on DSP
core, and RISC core acts as the mater of the system. The RISC core receives commands
such as: play, stop, previous, and next from the user interface and send a corresponding
instruction to the DSP core, and the RISC core will fall into an idle status. Upon
reception of an instruction, the DSP core will execute a function to complete the
requested task. Finally, when DSP core finished the task, it will assert an interrupt to the
RISC core to report current status. Fig. 5 shows the software architecture of this work.

Fig 5 MP3 decoding system on dual-core architecture

As described in [4], the RISC core in this design play the operating system role, its

main duty is to communicate with peripherals, including I/O devices and storage
devices. The DSP core handle the complete MP3 decoding algorithm alone. This
dual-core architecture is a typical architecture generally adopted on most applications.

At close examination, the characteristic of audio processing and video processing
tasks is a little bit different. It is clear that audio processing are composed of mainly

 10

signal processing tasks which need lots operation of multiplication and accumulate
(MAC). But in video processing, in addition to traditional signal processing tasks, it
also contains many sophisticated control operations such as the address generation unit
of motion estimation, interpolation and motion compensation. With new generations
of RISC cores for MCU, the cost/performance ratio for executing these tasks may not
be that far away behind the DSP cores. Therefore, in this thesis, we investigate the
efficiency of executing the codec tasks in parallel by both the RISC and the DSP cores.

In [5], an implementation of the H.263 visual codec is implemented on a
TMS320C6201 DSP. In this implementation, DCT, Quantization, Dequantization, and
IDCT are combined into a single module for efficient memory utilization. Table 1
shows the concept. This technique has been adopted in our implementation as well.

For(every macroblock in INTRA frame)
{
 DCT_and_Quantize_Macroblock(); //DCT-transform
 VLC_Code_INTRA_Macroblock_to_Stream(); //Coding
 IDCT_and_InverseQuantize_Macroblock(); //Reconstructing
}

Table 1 Combination of transform coding

In [5], the motion estimation search method is Parallel hierarchical one
dimensional search (PHODS). This method has low computation complexity since
the x-component and y-component of motion vector are computed in one dimensional
space separately and later assembled into a complete motion vector. In our
implementation, in order to take advantage of the built-in hardware motion estimation
extension of TI C55x DSP, the four steps hierarchical search is used.

Fig 6 DMA and dual buffer mechanism on DSP

 11

In [6], it presents an implementation of MPEG-4 video codec on a general DSP
core (NEC uPD77210). The paper analyzes the effects of different motion search
algorithms and discusses why DMA module can improve the transfer efficiency. The
paper also presents a concept of dual buffer mechanism to avoiding waiting transfer on
DSP core. The execution flow of its DMA module and dual buffer concept is shown in
Fig. 6.

In [8], the same concept of DMA module and dual buffer mechanism on DSP core are
mentioned again. Whenever there are dual buffers on the DSP core, the DSP core
should execute a task using the data in one of the buffer while a DMA is preparing in
parallel the data in the other buffer for the next task. As soon as the first job is
completed, the DSP core can move on to the next job using the other buffer without
waiting for the data.

A multi-core architecture is presented in [14]. The paper discusses how a
multi-core architecture is useful for multimedia processing applications. Multi-core
architecture is an attractive architecture for multimedia processing as multimedia tasks
in general can be partitioned into stream oriented, block oriented, and DSP oriented
functions, which can all be processed in parallel on different cores. Each core can be
adapted towards a specific class of algorithms, and individual tasks can be mapped
efficiently to the most suitable core. In general, parallelism can be employed at
instruction level (e.g., very long instruction word, VLIW), data level (e.g., single
instruction multiple data, SIMD), or task level (e.g., simultaneous multithreading).
Another technique to accelerate multimedia processing is to adapt programmable
processors to specific algorithms by introducing specialized instructions for frequent
operations of higher complexity.

 12

Fig 7 Multi-core architecture

The multi-core architecture proposed in [14] is shown in Fig. 7, comprises three
programmable cores that have each been specifically optimized towards a particular
class of algorithms by employing different architectural strategies. The HiPAR-DSP is a
16-datapath SIMD processor core controlled by a four-issue VLIW and is particularly
optimized towards high-throughput two-dimensional DSP-style processing, such as
FFT-intensive applications or filtering. The second core, the Stream Processor (SP),
consists of a scalar 32-Bit RISC architecture that is more optimized towards
control-dominated tasks such as bit stream processing or global system control with a
particular focus on high-level language programmability. The Macroblock Processor
(MP), finally, has been designed specifically for the efficient processing of data blocks
or macroblocks that are typical for many video coding schemes. It has a heterogeneous
data path structure consisting of a scalar and a vector unit controlled by a dual-issue
VLIW, offers flexible sub word parallelism, and contains instruction set extensions for
typical video processing computation steps. This architecture provides multi-core to let
each processor to do suitable task for best utilization.

 13

Chapter 3 The Proposed Framework

In this thesis, MPEG-4 Simple Profile (SP) encoder is used as the experimental
target. MPEG-4 SP codec is a typical block-based motion compensated hybrid
transform codec composed of several modules including temporal predictive coding,
transform coding, quantization, and entropy coding. Some systems also implement
pre-processing and post-processing. The follow figure is the system architecture of
MPEG-4 Simple Profile visual encoder.

Fig 8 Our MPEG4 encoding scheme

The code for OMAP is ported from an implementation for Intel IA32 architecture.

The original data structure of our codec processes frame data in 8-bit width pixels.
However, the DSP core, TMS320C55x, of the OMAP platform accesses data in 16-bit
width. Therefore, the data structure has to be modified accordingly to improve the
performance. To be more specific, each time DSP fetches pixel data from memory for
computation, it can’t just fetch one pixel alone if data is arranged in 8 bits per pixel. In
fact, it will also fetch the adjacent pixel. As a result, packing and unpacking between
8-bit pixel per pixel and 16-bit per pixel data formats has to be done whenever the
ARM core is exchanging data with the DSP core. Fig. 9 represents the difference fetch
behavior on ARM core and DSP core when the pixel of p2 needs to be processed.

 14

Fig 9 Fetch data on ARM and DSP

Another approach to sovle the data access unit problem on OMAP is to use the

hardware extension of the TI C55x DSP. In C55x, there is a built-in hardware extension
module with the ability to process pixels in 8-bit width. However, if this strategy
adopted, our codec may spending lots time on developing corresponding function
module which uses the built-in hardware extension, and it will become harder to
maintain and modify because of its readability. In spite of these concerns, it is no doubt
that it will increase the efficiency. So, this is a tradeoff between developing time,
memory utilization, maintain concern and efficiency.

3.1 Dual-core processing architecture

There are two computation cores, ARM and DSP, on the OMAP Innovator board.
Before using DSP core to improve our codec for better performance, it is essential to
design the dual-core control architecture first. The control architecture contains the
communication mechanisms between ARM and DSP. In our proposed architecture, each
type of subtasks in encoding a frame will be dispatched to ARM and DSP
simultaneously and executed in parallel. There is no need to pre-arrange the execution
order and the portion of tasks assigned to each core because the processing cores will
work asynchronously. So that ARM core can execute its job continuously without
waiting, and just need to handle the begin section and end section while corresponding
DSP event happens in the encoding loop.

Although the detail architecture of each module may be different, the general

architecture can be summarized in Fig. 10..

 15

Fig 10 Main phases of dual-core execution flow

Generally speaking, each codec module can be divided into three phases when
implemented on a dual-core platform. In phase I, task units in each frame will be
defined; basically, a task unit can be defined as a block or a macroblock in each frame.
After task unit has been defined, the operations of this task will be specified, such as
motion estimation, interpolation, and sometimes a series processing which contains
DCT, Quantization, de-Quantization, and IDCT.

In phase II of the figure, since jobs to ARM or DSP have been defined and

assigned in phase I, then it will fetch data for computations. On the ARM side, source
input data for computation can be fetched directly. But on the DSP side, it should
transfer all input data from ARM side into DSP core’s memory for computations. There
are two transfer methods have been implemented on the Innovator board, one is transfer
by CPU directly, and the other one is transfer by DMA support. Obviously, transfer data
by DMA support will get better performance than transfer data by CPU. After each core
has received its input for computation, they start execute their jobs in parallel. ARM
core and DSP core can be communicated with each other by the mailbox to hold the
progress of executions.

In phase III of this figure, after ARM and DSP have produced the computation

results, then the dual-core module start to receive and integrate these results from each
core at this stage. On the ARM side, the results can be integrated directly. On the DSP
side, when DSP core has completed its job, it will asserts interrupt to ARM, and thus

 16

control center can know the execution status of DSP core. An ARM interrupt routine
will be invoked to receive computation results from DSP for integration. Again, using
DMA module will improve the efficiency of transfer.

These three phases generally summarize the execution flow of our proposed

dual-core architecture. How to perform this dual-core architecture to improve each
computation intensive modules in our codec will be discussed detail in follow sections.

The main procedures for implementing these dual-core computation modules are
described as follows. First, adjust data structure and execution flow of each module to
fit dual-core architecture. It is because that if data structure doesn’t be defined properly,
it may just be able to execute one task at a time from the limit of control parameter, or
any other resource conflictions. And about the execution flow, if each task’s execution
flow with deep dependency from other task unit’s computation result, it may lead tasks
execute sequentially, not in parallel.

 Second, since operations of each function module are different, specific

corresponding signals and interrupt handlers for each function module and its relational
operations must define well. After define these control signals and handler routine, such
information will be added into ARM core’s interrupt architecture and DSP core’s DSP
interface which manage receiving ARM core’s signal and assign job to corresponding
function module.

Third, if DMA module is used to improve memory transfer in this dual-core
processing framework, then one must also define corresponding interrupt handler,
signals, and operations.

Following these procedure, almost all computation modules in the MPEG4 Simple

Profile encoder can be constructed to execute efficiently on dual-core architecture.

3.2 Pre-processing and Post-processing

This section describes the pre-processing and post-processing in our codec, and the
follow figure shows the detail behavior of these two processing. At this moment, our
codec implement without operation system support, so that loading program and test
sequences into the Innovator board is completely through the JTAG device. Loading
complete input sequence from HOST (PC) to memory on Innovator board will be
completed before encoding starts. This is because loading data through JTAG device

 17

transfers slowly, if reading each input frame from HOST in encoding loop, and then it
will spend most time on waiting transfer of frame. This condition should be resolved in
the future by using different input channel such as USB or SD/MMC card. After
completion of loading program and input sequence, adjust input sequence into proper
format for our codec input is performed and besides, the bit width concern between
ARM and DSP which mentioned before will also adjust here.

Fig 11 Pre-processing and Post-processing

About the post-processing block, after encoder has completed each frame in
encoding loops, it can be optionally shows the reconstructed frame for present purpose
by sending frame data into the LCD display frame buffer and then the LCD dedicated
DMA will automatically transfer it to LCD display module and show the image on the
screen. Since the output reconstructed frame was based on YUV format, and LCD
display module was based on RGB module. As a result, in order to display, it should do
conversions of our reconstructed frame from YUV color space into RGB color space.

Until after all of the encoding have finished, writing out the whole encoded bit

stream from Innovator board to HOST through JTAG starts. This is also because the
data transfer through JTAG is very slow, so this is a temporal method to avoid waiting.

3.3 Intra-frame processing

In the intra-frame processing, it encodes the input frame itself without any other
reference frames. According to the experiment result which the encoder compresses
sequential 150 frames in intra mode; the follow table shows the weightings between
each module in the intra-frame processing. Clearly, the intra macroblock encoding
(FDCT, Quantization, Dequantization, and IDCT) occupies most computation time of
all. So, it is no doubt to improve this module with DSP support for better performance
in the Intra-frame processing.

 18

Table 2 Intra frame encoding result

Qcif,150 I frames Execution time (ms) Percentage
Initialization 236 0.735
Coding 4111 12.793
Sequence conversion 1684 5.241
Prediction 2631 8.190
DCT/Q/Q-1 /IDCT 22297 69.396
Total 30963 100
Encoding frame rate =4.7

3.3.1 Intra macroblock encoding

In order to let ARM and DSP execute its own tasks parallel and smoothly, it is
essential to define a task unit properly. As the Mpeg4 Simple Profile standard
mentioned, each frame was divided into macroblocks for encoding. As a result, with
adjust corresponding data structure and execution flow, and then, the encoder can
dispatch tasks on macroblock level in scan line order in a frame.

After observe memory utilization from these four computation modules: FDCT,

Quantization, Dequantization and IDCT, respectively. Since their memory utilization
are relative between each other, it isn’t reasonable to just divide them to run in DSP
core individually, because it may cause memory transfer redundancy and wasting of
time while transfer the source macroblock data to DSP and just do one of these four
computation modules. As a result, our design is to combine these four computation
modules into one function module called intra macroblock encoding for best memory
utilization and thus reduce the transfer load.

The follow figure shows the execution flow and memory utilization in intra
macroblock encoding.

 19

Fig 12 Intra macroblock encoding

Since task unit has been defined in intra macroblock encoding, and thus this
module can start dispatch jobs and execute them. The follow figure is our proposed
dual-core intra macroblock encoding architecture. And the follow two tables give some
descriptions of the control flow and the specification which DSP core treated in this
figure. At first, it divides input source frame into macroblocks as task units, and then
dispatch the first task and macroblock data of this frame into DSP. And then ARM core
will do next job and fall into an encoding loop until all tasks are completed. Since the
first job has been dispatched to DSP, DSP core will start work according to the signal
which ARM sent through mailbox. Each time while DSP core has completed its work, it
will assert an interrupt to ARM core. And thus, ARM core’s original job will be paused
and fall into the interrupt handler to receive the computation result from DSP. After
receiving and integrating the results from DSP, the control module will decide whether
to send next job to DSP or not. And then ARM will resume its original job in encoding
loop.

 20

Fig 13 Dual-core intra macroblock encoding scheme

Table 3 Description of dual core I MB encoding module

Step Description
1 Process the frame in scanline order
2 Control module decide to dispatch job to DSP
3 Transfer MB data and control parameter to DSP
4 DSP enters I MB encoding
5 After I-MB coding, DSP asserts an interrupt
6 MCU executes handler routine
7 Control module decides next step
8 Integrate result from DSP.
9 Control module decides to let MCU do I MB encoding
10 Integrate the result from ARM
11 The encoding loop repeats, until all jobs have been completed

 21

Table 4 Specification of DSP I macroblock encoding

Specification of DSP I macroblock encoding

DSP
Input

1. One source macroblock data
 Four Y data blocks (8*8*4*2 bytes)
 One U data blocks (8*8*2 bytes)
 One V data blocks (8*8*2 bytes)

2. QP parameter for DSP quantization
 2 bytes

DSP
output

1. One Q coefficient macroblock data
 Four Y data blocks (8*8*4*2 bytes)
 One U data blocks (8*8*2 bytes)
 One V data blocks (8*8*2 bytes)

2. One reconstructed macroblock data
 Four Y data blocks (8*8*4*2 bytes)
 One U data blocks (8*8*2 bytes)
 One V data blocks (8*8*2 bytes)

The control module maintained here contains some important synchronous

parameters such as global status, finish flag, ARM core status and DSP core status.
Actually, the control module can be treated as a synchronous control table. Each time
before job dispatched to DSP or ARM, the control module must be accessed first. In the
control module, it checks the global progress status with the finish condition to decide
whether to dispatch job to DSP or ARM. If it decides to dispatch job, then we will
update DSP core or ARM core’s status with corresponding parameter such as MB axis,
CPU status, or even the profile information. By this way, after either ARM or DSP has
completed its job, integration module could thus know how to integrate the
computation result according to the status set before. The control module contains a
finish flag, if the global status matches the condition of the finish condition, it won’t
dispatch jobs, and it will set the finish flag to announce ARM core, and then intra
macroblock encoding finishes. With the support of control module, ARM and DSP can
avoid to do the same jobs in the execution flow, and thus hold the execution progress
exactly without out of control. The follow figure is the data structure and control flow
of control module.

 22

Fig 14 Control module

Control module plays an important role on this dual-core architecture; as a result,
there should be a protection mechanism to promise that every time when either ARM
core or DSP core accessing the control module, it can’t be corrupted by any interrupt
events, or that it will lead bad results. This is because interrupt may assert any time, if
interrupt is asserted while control module are modifying the control parameter, it will
cause that global status can’t be updated successfully, and thus the same task may be
dispatched more than one time.

Fig 15 Protection of control module

The above figure shows protection scheme of the control module. Each time when
control module will be accessed, it will mask corresponding interrupt first, this will

 23

promise that control module can execute and update the global status without any
bother. Until finishing accessing control module, corresponding interrupts will be
unmask and work again.

Since that DSP has to do different functions for each need, construct an interface

as a bridge between ARM and DSP is essential. This DSP interface is implemented like
a shell; it starts when DSP core have enabled, it checks mailbox in repeat until ARM
send signal through mailbox. The detail execution flow of the DSP interface is shown in
the follow figure, which presents the relation between ARM core, DSP core, and DSP
interface.

Fig 16 DSP interface architecture

Each time when ARM dispatches task for DSP, it will write signals into the
mailbox which contains command for DSP. And then DSP interface will receive this
signal, and it will decode the command in the mailbox immediately. After DSP realizes
the content of the command, DSP will transfer its control into corresponding function
module to handle tasks. After function module has completed its jobs, it returns the
control to DSP interface. Then DSP interface write signal to the mailbox, and this will
also assert an interrupt to ARM. Then, ARM will check the information in the mailbox
for executing corresponding handler routine to receive computation result from DSP.

When ARM and DSP have completed its task in a frame, then it will integrate

computation result. Since each time when job dispatched to ARM or DSP, the control
module will record the corresponding the axis of this macroblock to control module,
and thus integration module can use this to construct our integration module. The
integration module is implemented by maintaining two buffers with identical size of
source frame, one is for storing quantized coefficient, and the other one is for storing
reconstructed frame. When either ARM or DSP complete its current job, it puts

 24

computation result into corresponding position into these two buffers according to the
axis in control module which we set before. By this way, ARM and DSP can do their
jobs in parallel without corrupt each other.

For reduce the transfer load, DMA module has been used to improve transfer

efficiency between ARM and DSP on our proposed architecture. Based on our original
design, transfer data to DSP and retrieve computation result from DSP was
implemented by CPU support. This implementation will cause CPU spending lots time
on handling memory movement and thus decrease ARM core’s processing ability.

The follow figure shows how DMA module improves the performance on

dual-core architecture. Instead of moving data by CPU directly, ARM will just need to
setup a DMA module for moving data. After ARM has setup the DMA control module
properly, DMA module transfers data immediately. When DMA is the transferring,
ARM can do its original job in parallel. After DMA module has finished its transfer,
DMA will assert an interrupt to ARM, so that ARM can hold the transfer status, and
decide what next to do.

Fig 17 Improvement from DMA support

Our DMA architecture uses one system DMA channel. As a result, when receiving
two macroblocks under one channel, since two macroblocks may exist in two different
memory addresses and the DMA module’s control parameter seems not powerful
enough, so that our DMA control module will be accessed twice to get these two MB
results. The follow figure shows the transfer behavior of how DMA receives results
from DSP.

 25

Fig 18 DMA architecture for dual-core intra macroblock encoding

And there is one concern that should be notified that whether if the time interval of

setup DMA module will greater than the time interval of moving data by ARM directly.
If yes, this design may decrease the original performance. It is because that every time
when using DMA module to improve performance, it will also need to handle some
overheads. There are two factors in the DMA overheads; one is that before DMA
module really starts its transfer, DMA control parameter must set first. And the other
one is that after DMA module has complete its transfer, it will assert interrupt to tell
ARM about the fact. This will cause ARM pause its original job to handle DMA
interrupt routine and this will be the main overhead of using DMA module. Fortunately,
such worse case doesn’t happen in our architecture even in our minimum transfer unit.

In our implementation of using the system DMA module, we still have some

problems now. The problem is that when we set some reasonable control parameter to
drive DMA module, it will leads some strange conditions such as interrupt disable, or
makes DSP hardware extension set out of control. Although assign other control
parameter which is equal transfer result but different transfer behavior to resolve this
problem is possible. But it decreases some DMA performance; we will still pay
attention to this problem.

 26

3.4 Inter-frame processing

In inter-frame processing, it removes the temporal redundancy in current frame
and last frame. Although this processing can get great coding efficiency, but it also
costs more processing energy than intra-frame processing. Before we start improve this
inter-frame processing, we can see the experiment result in the follow table first. The
follow table shows the weightings between each module in the inter-frame processing.

Table 5 Inter-frame processing result

Qcif, 150 frames (IPPP…) Execution time (ms) Percentage
Initialization 236 0.140

Coding 767 0.456
Set edge 1027 0.610

Sequence conversion 1686 1.002
Prediction 70 0.042

Rate control 3464 2.058
Motion compensation 4375 2.600

I MB encoding 60 0.035
Interpolation 8693 5.166

Motion estimation 132649 78.831
DCT/Q/Q-1 /IDCT 13328 7.921

Total 168270 100
Encoding frame rate =0.9

According to the weighting from table, it shows that interpolation module, motion

estimation module, and P macroblock encoding takes most percentage of all in the
inter-frame processing. As a result, these modules will be improved with DSP support
for better execution performance. Detail design of each module will be described in the
follow sections.

 27

3.4.1 Interpolation processing

In the MPEG4 standard, it not only computes motion vector for compressing on
pixel level, but also takes consider of the half-pixel level to find out better motion
vector for better coding efficiency. Since there are two modules: motion estimation,
motion complementation will reference the half pixel frame. As a result, at this moment,
this interpolation module will be implemented individually instead of on–the-fly
architecture. The follow figure and table shows out our proposed dual-core
interpolation module.

Fig 19 Dual-core interpolation processing scheme

 28

Table 6 Description of DSP interpolation processing module

Step Description
1 Process the frame in scanline order
2 Control module decides to dispatch next job to DSP
3 Transfer MB data and control parameter to DSP
4 DSP enters interpolation process
5 After interpolation, DSP asserts an interrupt
6 MCU executes handler routine
7 Control module decides next step
8 Integrate results from DSP
9 Control module decides to dispatch next job to MCU
10 Integrate results from MCU
11 The encoding loop repeats, until all jobs have been completed

Table 7 Specification of DSP interpolation processing

Specification of DSP interpolation module

DSP
Input

1. One extension source macroblock data
 One Y data macroblock (16*16*2 bytes)

2. Rounding parameter for DSP interpolation
 2 bytes

DSP
output

1. Interpolated macroblock in horizontal
 One Y data macroblock (16*16*2 bytes)

2. Interpolated macroblock in vertical
 One Y data macroblock (16*16*2 bytes)

3. Interpolated macroblock in horizontal and vertical
 One Y data macroblock (16*16*2 bytes)

Our proposed architecture of dual-core interpolation module is similar to the

architecture of dual-core I macroblock encoding which mentioned before. This is
because these modules were constructed based on the same communication architecture
which adopts the DSP interface module between ARM and DSP. As a result, only the
main execution flow and main features of this dual-core interpolation architecture will
be discussed in the follow.

 29

Before this module start works, the task unit in each reference frame must be
defined first. It is similar as before that macroblocks in the reference frame will be
treated as task units. And there is one thing need to notify that since DSP core can’t see
the whole frame, so that ARM needs to prepare all relational data to DSP. Thus, since
our goal is to receive the computation results in macroblock level from DSP, transfer
content will includes not only the data of reference macroblock, but also the boundary
of this macroblock for computation need. The follow figure shows an example to
realize this condition. If results of 2x2 size blocks are expected, it needs to transfer a
3x3 size block to DSP for interpolation processing.

Fig 20 Example of interpolation processing on DSP

After task unit has been defined in this dual-core interpolation processing, then
this module can start to dispatch the first job to DSP; and then ARM will execute next
job and fall into a processing loop. Each time when DSP complete its job, DSP will
assert an interrupt to ARM. When ARM receives the interrupt event, it starts to receive
three interpolated reference macroblock computation results from DSP. After receiving
computation results, the control module will decide whether if dispatch next job to DSP.
Until all tasks in the reference frame have completed, then the encoder will exit this
dual-core interpolation module. By the way, the control module in this architecture is
similar to the control module in the dual-core I macroblock encoding module. Each
time when ARM and DSP want to clan a task to execute, control module will update the
global progress status and corresponding control parameters, and thus hold the
execution flow running exactly.

 30

Fig 21 DMA architecture for dual-core interpolation processing

Besides improving performance by DSP, DMA module can also added to this

dual-core architecture to improve transfer. Since there three interpolated reference
macroblocks need to be receive from DSP, some modifications are needed to let our
DMA control architecture to fit the need. The above figure represents that how to use
system DMA module to receive three interpolated macroblocks from DSP with one
system DMA channel.

3.4.2 Motion estimation

In the video compression, motion estimation play an important role to reduce the
temporal redundancy that may exist within a video sequence, while spatial redundancy
is reduced by other techniques such as DCT. Generally speaking, it is the technique to
provide the sum of absolute difference (SAD) and the corresponding location (motion
vector) between a 16x16 reference block and some blocks in a reference frame for
video compression. Therefore, for an efficient video coding, a robust motion estimation
technique is required. The motion estimation usually takes a very long processing time
and thus, we will improve this module by dual-core processing. The follow figure
shows the dual-core motion estimation architecture.

 31

Fig 22 Dual-core motion estimation scheme

Table 8 Description of dual core motion estimation processing module

Step Description
1 Process the frame in scanline order.
2 Control module decides to dispatch next job to DSP.
3 Transfer MB data and control parameter to DSP.
4 DSP executes Motion Estimation.
5 Do mode decision.
6 Continue to do motion estimation in block level.
7 Mode decision module set as intra mode, and asserts interrupt.
8 After motion estimation, DSP asserts an interrupt.
9 MCU executes handler routine.
10 Control module decides next step.
11 Integrate results from DSP.
12 Control module decide let ARM do motion estimation.
13 Do mode decision.
14 Continue to do motion estimation in block level.

15,16 Integrate motion estimation computation result from ARM.
17 The encoding loop repeats, until all jobs have completed.

 32

Table 9 Specification of DSP motion estimation processing

The task units of each frame in this dual-core motion estimation module are still

defined in macroblocks of the frame. Basically, this motion estimation can be divided
into two continuous sub-modules. One is search in macroblock level, and the other is
search in block level, and there is a mode decision module in the middle of these two
motion search sub-modules. The functionality of this mode decision module is to avoid
the condition that if motion vector we have found isn’t good enough for compressing, it
will take more bits on compressing this macroblock than encoding it by intra-coding
method directly. Generally speaking, in order to avoid wasting time on motion
estimation while current macroblock is more suitable for intra macroblock encoding
such as scene change condition, mode decision must works as early as possible.

And there will be a threshold for mode decision module to decide whether

continue to search in block level right after search in macroblock level or not. In the
current status, this threshold is decided by two factors, one is the deviation of current
macroblock, and the other is the SAD result calculated from search in macroblock level.
Each time while motion search in MB level has completed, it will fall into the mode
decision module, and then compare the SAD and the deviation value of current
macroblock to decide what mode it suits. The follow figure describes how mode
decision module works.

Specification of DSP Motion Estimation module

DSP
Input

1. One current macroblock
 One Y data macroblock (16*16*2 bytes)

2. Four reference frames
 Reference frame (48*48*2 bytes)
 Reference frame in horizontal (48*48*2 bytes)
 Reference frame in vertical (48*48*2 bytes)
 Reference frame in horizontal and vertical

(48*48*2 bytes)

DSP
output

1. One set of motion vector
 4*2 bytes

2. SAD result
 4 bytes

3. Motion Estimation execution status
 2 bytes

 33

Fig 23 Mode decision module

After brief description about the execution flow of motion estimation, then the
dual-core execution flow will be discussed. At first, control module dispatch the first
job to DSP including of current macroblock, reference frames and some control
parameters. And ARM will do next jobs and fall into an encoding loop. As same as
architectures mentioned before, ARM and DSP will execute their jobs which dispatched
by control module in parallel. And after motion search has completed, it will return the
motion vectors, corresponding SADs, and ME execution status if it executed in DSP.
The ME execution status records the result of mode decision module in the side of DSP
core. Through implement on proposed dual-core method, this most computation
intensive module takes full advantage of dual-core platform and thus become more
efficient than before. After integrating all computation results in this frame, it will then
encode the motion vector mode of these task units, and then the dual-core motion
estimation module finished.

About our motion estimation algorithm, in order to get balance between efficiency,

accuracy, and TI DSP C55X hardware extension image library, we adopt the four step
hierarchy search algorithm. This motion search algorithm are adopted whether search in
macroblock level or search in block level. And the reference frame size as 48*48 pixels
and search range is from -16 to +16. The search pattern of our motion estimation
algorithm is shown in the follow figure and the detail algorithm is as follows.

 34

Fig 24 Four step hierarchy search algorithm

Step one: At first, search start at the position of (0, 0) motion vector. And then
searches nine search positions with distance eight, and decide the best match point
according to which SAD is minimal between these search points as the starting point
for next step search.

Step two: According to the best match point decided by step one; it still searches

nine points corresponding to the starting point with distance four, and decide the best
match point as the starting point for next step search.

Step three: Same, according to the best match point decided by step two; it still

searches nine points corresponding to the starting point with distance two and then
decide the best starting point for next step search.

Step four: According to the best match point decided by step three; it still searches

nine points corresponding to the starting point with distance one. Then, we will choose
the best match point as the starting point for next step search – half pixel refine.

Step five: According to the best match point decided by step four; it will do half

pixel refine. It is like the search pattern in step four, but the reference frames will be
changed according to the corresponding search point when it performs search.

Final step: After these search, it returns the best motion vector and corresponding

SAD result, and then finish this motion search algorithm.

 35

DMA module also can be used to reduce transfer time in this architecture. Since
that our motion estimation algorithm searches in full pixel level and half pixel level.
ARM need to transfer full pixel reference frame and half pixel reference frames to DSP
for motion estimation processing. The follow figure shows the DMA transfer module
for dual-core motion estimation processing with one system channel.

Fig 25 DMA architecture for motion estimation processing

Besides above architecture, we also implement other method to improve

performance. We observe that each time while job dispatched to DSP, DSP is in idle
status before transferring of all reference frames including of frames in half pixel to
DSP has completed. Since DSP has great computation performance, so that we use DSP
to computes reference frames in half pixel from reference frame in full pixel instead of
just stays in idle status. And from the experiment, this way will be faster than waiting
for receiving all reference frames in half pixel from ARM. The follow figure describes
this method.

 36

Fig 26 Motion estimation with on-the-fly architecture on DSP

Through this method, each time when dispatching jobs to DSP, it just needs to
transfer one reference frame in full pixel to DSP, and after DSP receives the reference
frame in full pixel, it interpolate this reference frame and thus gets three reference
frames in half pixel for motion estimation. The follow table defines the inputs and
outputs of DSP module while implement this method. And there are something need to
notify, there is a difference of the reference frame size we transfer to DSP has became
49 pixels * 49 pixels. This is for interpolation concern which mentioned in DSP
interpolation module before.

Table 10 Specification of DSP ME processing with interpolation on the fly

Specification of DSP Motion Estimation module

DSP Input

1. One current macroblock
 One Y data macroblock (16*16*2 bytes)

2. One reference frame
 Reference frame (49*49*2 bytes)

3. Rounding parameter for interpolation in ME
 2 bytes

DSP output

1. One set of motion vector
 4*2 bytes

2. SAD result
 4 bytes

3. Motion Estimation execution status
 2 bytes

 37

Through this method, if DMA module is adopted to improve the transfer of
reference frame from ARM to DSP, its control architecture will become easier than
before. Since its need is just to transfer the reference frame in full pixel only, the
numbers of setting DMA control module will be decrease to just one time only.

3.4.3 Inter macroblock encoding

As same as I macroblock encoding in intra frame processing, there is also a
transform coding module in inter frame processing. And there are some differences
between these two encodings. First, in this P macroblock encoding, our input changes
as the residuals between current frame and last frame. Second, the control flow of P
macroblock encoding is more complex than I macroblock encoding. There are I
macroblock encodings and P macroblock encodings in the inter frame processing
according to result of the mode decision module in the motion estimation processing. In
order to handle these encodings in parallel and reasonable for transform coding of inter
frame, our design is to combine these two encodings in this architecture. As a result,
before we dispatch jobs to ARM or DSP, we will check this macroblock’s feature for
executing proper function module. It also means that we define the P macroblock
encoding as a series of processing of FDCT, Quantization, Dequantization, and IDCT
for the same reason of I macroblock encoding. The follow figure and tables shows and
describes the dual-core inter macroblock encoding architecture.

Fig 27 Inter macroblock encoding scheme

 38

Table 11 Description of dual-core P MB encoding module

Step Description
1 Process the frame in scanline order
2 Control module decide to dispatch next job to DSP
3 Transfer MB data and control parameter to DSP
4 DSP interface decide to do I MB encoding
5 After DSP completing I MB encoding, it asserts interrupt.
6 DSP interface decide to do P MB encoding
7 After DSP completing P MB encoding, it asserts interrupt.
8 MCU executes handler routine.
9 Control module decides next step.
10 Integrate results from DSP.
11 Control module decides to let ARM do I MB encoding.
12 Integrate the computation result from ARM.
13 Control module decides to let ARM do P MB encoding.
14 Integrate the computation result from ARM.
15 The encoding loop repeats, until all jobs have completed

Table 12 Specification of DSP P MB encoding

Specification of DSP P macroblock encoding

DSP Input

1. One source macroblock data
 Four Y data blocks (8*8*4*2 bytes)
 One U data blocks (8*8*2 bytes)
 One V data blocks (8*8*2 bytes)

2. QP parameter for DSP quantization
 2 bytes

DSP output

1. One Q coefficient macroblock data
 Four Y data blocks (8*8*4*2 bytes)
 One U data blocks (8*8*2 bytes)
 One V data blocks (8*8*2 bytes)

2. One reconstructed macroblock data
(transfer according to execution status)

 Four Y data blocks (8*8*4*2 bytes)
 One U data blocks (8*8*2 bytes)
 One V data blocks (8*8*2 bytes)

3. P MB encoding execution status
 2 bytes

 39

From the above execution flow figure, this module’s dual architecture is similar to
the dual-core intra I MB encoding with extra P MB encoding module. The main feature
of this P MB encoding is that it may decide whether to do Dequantization and IDCT or
not according to the status of quantization result. In the follow figure, it shows the
detail execution flow of these two transform encoding component in this dual-core
module. In the middle of the figure is the control module which decides either I MB
encoding or P MB encoding need to be performed. And the modules in left side and
right side show the detail execution flow of each module. And if P MB encoding is
performed, the condition of getting different amounts of DSP computation result will
occur, and thus, it will have less transfer of computation result from DSP than I MB
encoding.

Fig 28 Execution flow in Inter macroblock encoding scheme

 DMA module is still used to improve this architecture, there are two
implementation method for this module, one is as same as I macroblock encoding DMA
module which may have redundant transfer but has lower complexity on DMA handler,
and the other one is shown in the follow figure. There is an issue between these two
methods, since P macroblock encoding sometimes doesn’t reconstruct blocks from Q
coefficients, we may let DMA module ignores these transfers for efficiency. But if we
make our DMA module support the detection of whether transfer each block or not, our
DMA control module will become more complex and thus may decrease DMA
performance. This is because we should concern with the overhead of DMA module
and interrupt overhead. So that before we finalize our design, we reference the
implement results of these two methods, and find that the DMA module support
detection has better performance.

 40

Fig 29 DMA architecture for dual-core P MB encoding

 41

Chapter 4 Implementation using DSP Hardware

Extension for Video Coding

The TMS320C55x DSP core was created with an open architecture that allows the
addition of application-specific hardware to boost performance on specific algorithms.
And the TI C55x IMGLIB is an optimized image/video processing functions library for
C programmers using TMS320C55x devices. It includes many C-callable,
assembly-optimized, general-purpose image/video processing routines. This library is
implemented by using the TI C55x hardware extension set, so that through this
IMGLIB library, we can utilize the max power of TI C55x easily. And these routines
are typically used in computationally intensive real-time applications where optimal
execution speed is critical. By using these routines, it will help us to achieve execution
speeds considerably faster than equivalent code written in standard ANSI C language.
In addition, by providing ready-to-use DSP functions, TI IMGLIB may shorten our
image/video processing application development time. The TI C55x IMGLIB contains
commonly used image/video processing routines. And it also provides source code for
us to modify functions to match our specific needs. There are many application fields it
provides, and since our focus is on the compressing application at this moment, so that
we will describe how to use this motion estimation, interpolation, FDCT, and IDCT
algorithms in TI IMGLIB library which implement in TI DSP hardware extension set.

4.1 FDCT module and IDCT module

In the TI C55x IMGLIB library, it provides DCT and IDCT algorithms which is
implemented in TI DSP C55x hardware extension set. We can use these two modules to
improve our design in I macroblock encoding, and P macroblock encoding. We can
instead our own FDCT and IDCT modules by TI IMGLIB’s DCT and IDCT modules.
The follow two tables show the specification of FDCT and IDCT modules.

 42

Table 13 Specification of FDCT with HW extensions

FDCT for an 8x8 Image using built-in hardware extensions
Syntax void IMG_fdct_8x8(short *fdct_data, short *inter_buffer);

Inputs:
 fdct_data: Points to a short format array [0…63] containing

an 8x8 macroblocks row by row. Data format is Q16.0.
 inter_buffer: Points to a short format array [0...71] used as

a temporary buffer that contains intermediate results in the
transform.

Outputs:

Arguments

 fdct_data: Points to a short format array [0…63] containing
the results of 2-D DCT for the macro-block. Data format is
Q16.0.

Description

The routine IMG_fdct_8x8 implements the Forward Discrete Cosine
Transform (FDCT) using built-in hardware extensions for an 8x8
image block. Input terms are expected to be signed Q16.0 values,

producing signed Q16.0 results.

Table 14 Specification of IDCT with HW extensions

IDCT for an 8x8 image block using built-in hardware extensions
Syntax void IMG_idct_8x8(short *idct_data, short *inter_buffer);

Inputs:
 idct_data: Points to a short format array [0...63] containing

an 8x8 macro-block row by row. Data format is Q13.3.
 inter_buffer: Points to a short format array [0...71] used as

a temporary buffer that contains intermediate results in the
transform.

Outputs:

Arguments

 idct_data: Points to a short format array [0..63] containing the
results of 2-D IDCT for the input block. Data format is Q16.0.

Description
The routine IMG_idct_8x8 implements the Inverse Discrete Cosine

Transform (IDCT) using built-in hardware extensions for an 8x8
image block. Input terms are expected to be signed Q13.3 values,

 43

producing signed Q16.0 results.

After realizing these specifications, we can find that their input and output are

similar to our original design. So, in IMGLIB’s FDCT module, there should be a source
block data and one temp buffer for it, and then take it instead of our FDCT module
directly. But in IMGLIB’s IDCT module, there is one thing need to be notified that its
input data format is Q13.3, so that we must adjust our input of Q coefficients from Q16
format into Q13.3 format to fit the specification. The follow figure shows how to
perform format conversion from Q16 format to Q13.3 format by shifting.

Fig 30 Format conversion

After realizing corresponding background, the follow figure shows how to add
FDCT and IDCT hardware extension set modules into our I MB encoding, and P MB
encoding.

 44

Fig 31 Macroblock encoding with built-in hardware extension support

4.2 Interpolation module

 There is an interpolation module in IMGLIB, it implements pixel interpolation for
a 16x16 source block located in reference window using built-in hardware extensions.
As a result, this module can be used to instead our original interpolation module for
accelerating computations.

 Before we use this module, there is an issue need us to think. The design in our
visual encoder processes pixels in 16-bit width for the concern of processing in ARM
and DSP which we mentioned before. But this interpolation module in IMGLIB
processes two pixels data in 16-bit width. As a result, before we use this module, some
format conversion to fit its specification is needed, and this operations decrease
performance. But in the other hand, if we process pixels data in 8-bit width, this will
increase the complexity of function modules in DSP side which don’t have
corresponding hardware extension set support. So, this exist a tradeoff. By the way,
FDCT and IDCT modules don’t have such issue; this is because they process source
data in 16-bit width in theory. And then, we can know its specification of this module
from the follow table.

 45

Table 15 Specification of Interpolation with HW extensions

Pixel Interpolation for 16x16 Image block using built-in hardware extensions

Syntax
IMG_pix_inter_16x16(short *reference_window, short
*pixel_inter_block, int offset, short *align_variable);

Inputs:
 reference_window: Points to a packed integer format

buffer [0...1152] that contains a 48x48 image block row
by row. Must be doubleword aligned. Every four pixels
are packed into one 32-bit doubleword. Data format
Q16.0.

 offset: Specifies the top-left corner index of the 18x18
MBE (MBE=16x16 macroblock + extension) in
reference_window. Offset is even because of the
doubleword alignment.

 align_variable: Configures four alignment cases of the
MBE in the reference_window.

Outputs:

Arguments

 pixel_inter_block: Points to a packed integer format
buffer [0...612] that contains the 36x34 interpolated
result. Only the lower 33x33 part that corresponds to the
whole 36x34 interpolated zone is usually used. Every
four pixels are packed into one 32-bit doubleword.

Description

The routine IMG_pix_inter_16x16 implements pixel interpolation
for a 16x16 source block located in reference_window using

built-in hardware extensions and it is useful in video compression.
To implement full interpolation for the 16x16 source block, the
18x18 MBE (MBE=16x16 macroblock + extension) is needed.

The full interpolated zone is composed of 36x34 pixels, but only
the lower 33x33 part corresponding to the full interpolated zone is

usually interested.

In this specification, we can see that it supports some align modes for us to use.

We can choose the align mode which is most fit for our architecture to implement. In
the format of input reference frame, it announces large space to put source data, and
just use the size of macroblock to interpolate. The purpose of this design is that, TI’s

 46

IMGLIB want to corresponding modules to help each other. So, this design will help
the motion estimation module to do half refine, since they have the identical size of
reference frame. But in our own design, we design the interpolation module as an
individual module, so there are some modifications need to be performed before using
this interpolation in IMBLIB.

Fig 32 Interpolation processing with built-in hardware extension support

 We can see the above figure to realize the execution flow of using IMGLIB’s
interpolation module. At first, we need to adjust our input source macroblock from one
pixel in 16-bit width to two pixels in 16-bit width. And then put it into corresponding
position in the specific input buffer as the input of IMGLIB’s interpolation module.
Because there is a little difference of the computation behavior between these two
modules, so that we will shift right 1 pixel unit for exactness. And there are two
important control parameters which we must set by ourselves. The first one is the
rounding signal; it decides whether do rounding in this interpolation, the default value
in IMGLIB is enabling. The second one is the output format; it decides the arrangement
of the interpolation module’s output.

4.3 Motion estimation module

 Motion estimation is the most time-consuming part in video compression
algorithms such as MPEG4 and H263. So that, it is no doubt that there will be a motion
estimation module in IMGIB. The follow table shows the specification of this motion
estimation module. And its motion estimation algorithm is as same as our motion
estimation algorithm: four step hierarchy search algorithm.

 47

Table 16 Specification of ME in HW extensions

Motion Estimation by 4-step search using built-in hardware extensions

Syntax
IMG_mad_16x16_4step(short *src_data, short *search_window,

unsigned int *match);
Inputs:

 src_data: Points to a packed integer format buffer
[0…128] that contains 16x16 source data row by row.
Data format is Q16.0. Every two pixels are packed into
one 16-bit integer.

 search_window: Points to a packed integer format buffer
[0...1152] that contains the 48x48 search-window row
by row. Data format is Q16.0. Every two pixels are
packed into one 16-bit integer.

Outputs:
Arguments

 match [2]: The location of the best match block is
packed in match[0]. The upper halfword contains the
horizontal pixel position, and the lower halfword
contains the vertical pixel position of the best matching
16x16 block in the search window. The minimum
absolute difference value at the best match location is
packed in match [1].

Description

The routine IMG_mad_16x16_4step implements the motion
estimation by 4-step (distance=8, 4, 2, 1) search using built-in

hardware extensions. The 4-step search is a popular fast searching
technique. Input terms are packed in 16-bit integers and

doubleword aligned. Input and output data format is Q16.0.

Before using this motion estimation module to improve our codec, there are
something need to pay attentions. Generally, one often calculate the motion vectors by
comparing with the center point of the reference frame. But, in this built-in hardware
extension motion estimation module, it calculates the motion vectors by comparing
with the left top point of the reference frame. So some compensation to its motion
vector to fit our codec is needed. The follow figure shows the execution flow of our

 48

motion estimation module with built-in hardware extension module.

Fig 33 Motion estimation with built-in hardware extension support

 From the above figure, it shows how to add IMGLIB’s motion estimation module
to our architecture. Our own motion estimation module is replaced by IMGLIB’s
motion estimation module with some adjust of inputs and outputs. And thus, it gets
better performance from the support of built-in HW extensions.

In fact, we just complete partial of the motion estimation module with built in
hardware extension motion estimation module. Because we face the conditions of
implementation time and little information about the instruction set of the
hardware extension set now. As a result, we just use the IMGLIB provided by TI, and
follow the rules provided by IMGLIB. So that since we haven’t know the detail
specifications and algorithms of remain motion search modules provided by IMGLIB,
we can’ add them into our motion estimation architecture. We will improve this
condition in the future.

 49

Chapter 5 Experimental results

Some experimental results are shown in this section. The QCIF version of the
Stefan sequence is used for the experiments. The first 150 frames of this sequence is
encoded and the target bit rate is set at 96 kbps. The test environment are configured
similarly to the general test environment which often used by TI on OMAP platforms.
The follow table shows the main features of the test environment in this experiment. On
the ARM side, the main program is stored in SDRAM, and the SRAM is used as the
frame buffer for the LCD controller. On the DSP side, main program sections are put in
the SARAM, and data sections are put on the DARAM. And the MPUI mode is set as
shared mode for ARM core to access DSP core’s memory.

Table 17 Setup of experiment environment

Experiment environment

ARM core 150 MHz

DSP core 150 MHz

Traffic controller 75MHz

System DMA No burst, 16-bit width

5.1 Experiment of Intra frame processing

5.1.1 Overall result

In this section, the main goal is to experiment with the I MB encoding module, and
the encoding mode of all frames are set as intra frame mode for intra frame processing
experiment. The implementation result and improvement will be shown step by step
here.

Execution with pure ARM core

At first, we see the experiment result of Intra frame processing. The follow table
shows the implementation result of execution on ARM core alone. Thus, we can know
the original performance of our codec which ported from PC on intra frame processing.

Table 18 Experiment result of pure ARM core

Qcif,150 I frames Execution time (ms) Percentage

 50

Initialization 236 0.735
Coding 4111 12.793
Sequence conversion 1684 5.241
Prediction 2631 8.190
DCT/Q/Q-1 /IDCT 22297 69.396
Total 30963 100
Encoding frame rate =4.7

Execution with pure DSP core

The follow table shows the implementation result of execution on DSP core alone.
This illustrates the computation ability of the DSP core.

Table 19 Experiment result of pure DSP core

Qcif,150 I frames Execution time (ms) Percentage
Initialization 236 0.885
Coding 4123 15.455
Sequence conversion 1683 6.308
Prediction 2637 9.886
DCT/Q/Q-1 /IDCT 16811 63.011
Total 26680 100
Encoding frame rate =5.6

Execution with pure DSP core, FIQ

The follow table shows the implementation result of execution using only the DSP
core with interrupt mode - FIQ. Through this experiment, it shows that the interrupt
mode improve the performance of our codec minor.

Table 20 Experiment result of pure DSP core, FIQ

Qcif,150 I frames Execution time (ms) Percentage
Initialization 236 0.886
Coding 4123 15.470
Sequence conversion 1683 6.314
Prediction 2637 9.895
DCT/Q/Q-1 /IDCT 16785 62.974
Total 26654 100

 51

Encoding frame rate = 5.6

Execution with pure DSP core, FIQ, HW extensions

The follow table shows the implementation result of execution using only the DSP
core with interrupt mode – FIQ. And the built-in hardware extension module of DCT
and IDCT are used for improving I MB encoding. Through this experiment, it shows
the outstanding performance from the support of hardware extension.

Table 21 Experiment result of pure DSP core, FIQ, HW extensions

Qcif,150 I frames Execution time (ms) Percentage
Initialization 236 1.158
Coding 4121 20.214
Sequence conversion 1683 8.255
Prediction 2638 12.941
DCT/Q/Q-1 /IDCT 10519 51.598
Total 20388 100
Encoding frame rate = 7.4

Execution with dual-core

The follow table shows the implementation result of the proposed dual-core
architecture with interrupt mode – FIQ. And we also use the built-in hardware extension
module of DCT and IDCT for improving I MB encoding. It shows that this architecture
will increase efficiency if ARM core take a part to share the computation load from
DSP core. And the content of A/D in the follow table shows the ratio of tasks executed
on ARM core and DSP core.

Table 22 Experiment result of dual-core

Qcif,150 I frames Execution time (ms) A/D Percentage
Initialization 236 1.212
Coding 4133 21.227
Sequence conversion 1684 8.647
Prediction 2652 13.622
DCT/Q/Q-1 /IDCT 9572 1:6.07 49.159

 52

Total 19471 100
Encoding frame rate = 7.7

Execution with dual-core, DMA

The follow table shows the implementation result of the proposed dual-core
architecture with interrupt mode – FIQ. DMA module is used to improve the transfer
between ARM core and DSP core. And we use the built-in hardware extension module
of DCT and IDCT for improving I MB encoding. Through this design, ARM can reduce
the transfer overhead from transfer data to DSP by ARM core support. Instead of
transfer completely by ARM core, we just let ARM core to set the DMA module for
transfer and then ARM core can continue its original job. And thus, since ARM have
more ability to handle its original jobs; we can see the condition that ARM executes
more jobs of all from the content of A/D.

Table 23 Experiment result of dual-core with DMA

Qcif,150 I frames Execution time (ms) A/D Percentage
Initialization 236 1.266
Coding 4128 22.147
Sequence conversion 1685 9.042
Prediction 2620 14.059
DCT/Q/Q-1 /IDCT 8765 1:3.71 47.031
Total 18637 100
Encoding frame rate =8.0

Performance comparison

In the follow table, it lists main experiment result of Intra frame processing and
show the final improvement ratio on our dual-core architecture.

Table 24 Performance comparison

Module name ARM core DSP core Dual-core
Dual-core

with DMA
Improvement ratio

DCT/Q/Q-1

/IDCT
22297 10519 9572 8765 2.54

From the above table, it shows that execution on DSP alone has higher efficiency

 53

than execution on ARM core alone. But even though, dual-core architecture will still
have the ability to improve the performance. And from the experimental result, one can
also see that if the system does transfers complete by ARM core’s support, the
performance increase is minor. But if DMA modules are added to this dual-core
architecture, the system will have great improvement.

5.1.2 Profile for dual-core I macroblock encoding module

After seeing the general results of each module on intra frame processing, we will
further measure the detail execution status of each module for realizing each module’s
behavior and its bottlenecks for future improvements.

In the follow figure, it shows the main computation components of dual-core Intra

macroblock encoding module. The execution time of each module will be measured in
the follow table.

Fig 34 Profile for dual-core I macroblock encoding module

Table 25 Experiment result of profile I MB encoding

Number Execution time (ms) Description
1 1253 Time in pre-processing
2 5286 Time in dual-core processing
3 682 Time in interrupt mode
4 343 Time in handling DMA handler
5 122 Time in handling Dual-core handler

 54

6 761 Time in transfer data to DSP by DMA
7 1520 Time in receive data from DSP by DMA
8 2191 Time in post-processing

A/D 1:4.18
Total time 8730

In the above figure, we can generally classify the sequentially execution time into

three sections. The first one is pre-processing section; in this section it perform the
operations of adjust the data format of this frame into proper format for intra MB
encoding.

And the second section is the main dual-core execution section in this I

macroblock encoding module, it lets ARM core, DSP core and DMA module executes
in parallel. And there is an interrupt mode component in the figure; this module is
accessed while either DMA or DSP asserts an interrupt and then the control of ARM
will fall into corresponding interrupt handler. Besides executing these handlers, there
are some overheads on handling the interrupt architecture, so that we can see the
overhead component in this interrupt mode. And by these experiment result, ARM core
execution time and DSP core execution time can thus be calculated from the follow two
equations.

ARM core execution time = Execution time of ((2) – (3))
DSP core execution time = Execution time of ((2) - ((3) + (6) + (7)))

In the third section, we do format adjustment from the dual-core execution section

to proper format for later use.

As a result, we can compute these two execution times in the follow table.

Table 26 Calculated result of profile P MB encoding

Description
Execution time (ms)

or Percentage

ARM core execution time 4604

DSP core execution time 2323

Pre-processing section percentage in this module 14%

Dual-core execution section percentage in this module 60%

Post-processing section percentage in this module 25%

 55

5.2 Experiment of Inter frame processing

5.2.1 Overall results

In this section, the experiments for inter frame processing is presented. The
encoder prediction pattern used here is IPPP…. The main focus here is to test the
interpolation module, the motion estimation module, and the transform/quantization
module. Since dual-core I MB encoding module has been tested before, it will set to
the fastest mode in this experiment.

Execution with pure ARM core

The follow table shows the implementation result of execution on the ARM core
alone. Thus, the original performance of this codec will be presented.

Table 27 Experiment result of pure ARM core

Qcif, 150 frames (IPPP…) Execution time (ms) Percentage
Initialization 236 0.140

Coding 767 0.456
Set edge 1027 0.610

Sequence conversion 1686 1.002
Prediction 70 0.042

Rate control 3464 2.058
Motion compensation 4375 2.600

I MB encoding 60 0.035
Interpolation 8693 5.166

Motion estimation 132649 78.831
DCT/Q/Q-1 /IDCT 13328 7.921

Total 168270 100
Encoding frame rate =0.9

Execution with pure DSP core

The follow table shows the implementation result of execution on theDSP core

 56

alone.

Table 28 Experiment result of pure DSP core

Qcif, 150 frames (IPPP…) Execution time (ms) Percentage
Initialization 236 0.277

Coding 771 0.903
Set edge 1027 1.203

Sequence conversion 1686 1.975
Prediction 75 0.088

Rate control 3463 4.057
Motion compensation 4370 5.120

I MB encoding 60 0.070
Interpolation 6917 8.104

Motion estimation 54712 64.096
DCT/Q/Q-1 /IDCT 10124 11.861

Total 83559 100
Encoding frame rate =1.8

Execution with pure DSP core, FIQ

The follow table shows the implementation result of execution using only the DSP
core with fast interrupt mode.

Table 29 Experiment result of pure DSP core, FIQ

Qcif, 150 frames (IPPP…) Execution time (ms) Percentage
Initialization 236 0.277

Coding 779 0.913
Set edge 1027 1.203

Sequence conversion 1686 1.975
Prediction 74 0.086

Rate control 3463 4.058
Motion compensation 4370 5.120

I MB encoding 58 0.068
Interpolation 6908 8.093

Motion estimation 54703 64.092
DCT/Q/Q-1 /IDCT 10118 11.854

Total 85351 100

 57

Encoding frame rate =1.8

Execution with pure DSP core, FIQ, HW extensions

The follow table shows the implementation result of execution using only the DSP
core with fast interrupt mode and built-in hardware extensions.

Table 30 Experiment result of pure DSP core, FIQ, HW extensions

Qcif, 150 frames (IPPP…) Execution time (ms) Percentage
Initialization 236 0.309

Coding 783 1.024
Set edge 1028 1.344

Sequence conversion 1686 2.205
Prediction 73 0.095

Rate control 3464 4.530
Motion compensation 4373 5.719

I MB encoding 58 0.076
Interpolation 6695 8.755

Motion estimation 50745 66.362
P MB encoding 5409 7.074

Total 76466 100
Encoding frame rate =2.0

Execution with dual-core

The follow table shows the implementation result of execution on the proposed
dual-core architecture with fast interrupt mode and built-in hardware extensions.

Table 31 Experiment result of dual-core core

Qcif, 150 frames (IPPP…) Execution time (ms) A/D Percentage
Initialization 236 0.324

Coding 768 1.053
Set edge 1029 1.411

Sequence conversion 1686 2.311
Prediction 72 0.098

Rate control 3464 4.749

 58

Motion compensation 4375 5.999
I MB encoding 58 0.080
Interpolation 6505 1:18.8 8.919

Motion estimation 48013 1:15.299 65.828
P MB encoding 4814 1:6.35 6.600

Total 72937
Encoding frame rate =2.0

Execution with dual-core, DMA

The follow table shows the implementation result of execution on the proposed
dual-core architecture with fast interrupt mode and built-in hardware extensions. And
DMA module is used to help the transfer between ARM and DSP.

Table 32 Experiment result of dual-core with DMA

Qcif, 150 frames (IPPP…) Execution time (ms) A/D Percentage
Initialization 236 0.461

Coding 787 1.537
Set edge 1027 2.006

Sequence conversion 1686 3.292
Prediction 74 0.145

Rate control 3464 6.764
Motion compensation 4370 8.534

I MB encoding 58 0.114
Interpolation 5026 1:2.96 9.816

Motion estimation 28209 1:4.31 55.088
DCT/Q/Q-1 /IDCT 4343 1:3.85 8.481

Total 51207 100
Encoding frame rate =2.9

Execution with dual-core, DMA, ME with interpolate on the fly

The follow table shows the implementation result of execution on our proposed
dual-core architecture with fast interrupt mode and built-in hardware extensions. And
DMA module is used to help the transfer between ARM and DSP. Besides, motion
estimation module which interpolates half-pixel reference frames on-the-fly is adopted
to reduce the load of transfer.

 59

Table 33 Experiment result of dual-core, DMA, enhanced ME

Qcif, 150 frames (IPPP…) Execution time (ms) A/D Percentage
Initialization 236 0.556

Coding 803 1.891
Set edge 1025 2.414

Sequence conversion 1686 3.969
Prediction 70 0.164

Rate control 3464 8.156
Motion compensation 4375 10.302

I MB encoding 59 0.139
Interpolation 5185 1:3.12 12.209

Motion estimation 19212 1:6.59 45.238
DCT/Q/Q-1 /IDCT 4430 1:3.82 10.430

Total 42468 100
Encoding frame rate =3.5

Performance comparison

And in the follow table, here lists some experiment results of Inter frame
processing to show the improvement ratio of our dual-core architecture.

Table 34 Performance comparison

Module name ARM core DSP core Dual-core
Dual-core

with DMA

Improvement

ratio

Interpolation 8693 6695 6505 5026 1.67

Motion estimation 132649 50745 48013
28209

19212(OTF)
6.90

DCT/Q/Q-1 /IDCT 13328 5409 4814 4343 3.00

From the above table, it shows that the dual-core architecture perform great
performance on inter frame processing. And after the use of DMA module, the
dual-core architecture becomes more efficient.

5.2.2 Profile for dual-core Interpolation module

The follow figure shows the main computation components of dual-core
Interpolation module with the fastest mode experimented before. And the follow table

 60

shows the execution time of each component in this module.

Fig 35 profile for dual-core Interpolation module

Table 35 Experiment result of profile interpolation module

Number Execution time (ms) Description
1 2106 Time in boundary interpolation
2 2919 Time in dual-core processing
3 808 Time in interrupt mode
4 444 Time in handling DMA handler
5 114 Time in handling Dual-core handler
6 541 Time in transfer data to DSP by DMA
7 1458 Time in receive data from DSP by DMA

A/D 1:2.95
Total time 5025

The operation of boundary interpolation is to interpolate the margin of each frame,

since its computation complexity is lower, so that in our implementation it is not
included in the dual-core execution modules. Besides, the transfer overhead may be
greater than the performance gain from execution with DSP support. The results are
shown in Table 36.

 61

Table 36 Calculated result of profile interpolation module

Description Execution time (ms) or Percentage

ARM core execution time 2111

DSP core execution time 112

Boundary interpolation section percentage 41%

Dual-core execution section percentage 58%

From the above tables, we can find that the transfer time of DMA is greater than

DSP core execution time. In fact, while we implement the dual-core interpolation
module in the early stage, we sometimes face the condition that the performance
decreases than execution on pure ARM core. Because the transfer overhead is very
large, so that we can take the computation complexity of this module as a frame of
reference before we implement other dual-core modules.

5.2.3 Profile for dual-core Motion Estimation module

The follow figure shows the main computation components of dual-core Motion
estimation module with the fastest mode we experimented before. We have measured
the motion estimation and the motion estimation with interpolation on the fly modules.

Fig 36 Profile for dual-core Motion Estimation module

 62

The operations of post processing here are deciding the motion vector mode of

each macroblock after motion estimation. At first, it shows the result of motion
estimation without interpolation on the fly on the DSP side.

Table 37 Experiment result of profile Motion estimation module

Number Execution time (ms) Description
1 28303 Time in dual-core processing
2 1406 Time in interrupt mode
3 726 Time in handling DMA handler
4 292 Time in handling Dual-core handler
5 19269 Time in transfer data to DSP by DMA
6 499 Time in post processing

A/D 4.19
Total time 28803

Table 38 Calculated result of profile Motion estimation module

Description Execution time (ms) or Percentage

ARM core execution time 26897

DSP core execution time 7628

Dual-core execution section percentage 98%

Post processing section percentage 1%

The results in the above table were calculated from the above table. It shows that

the transfer time is greater than the DSP core execution time. Obviously, this
implementation does not take full advantage of the DSP core. Therefore, we have
implemented another one motion estimation method.

The follow tables are the results of motion estimation with interpolation on the fly
on the DSP side.

 63

Table 39 Experiment result of profile Motion estimation module

Number Execution time (ms) Description
1 18599 Time in dual-core processing
2 683 Time in interrupt mode
3 217 Time in handling DMA handler
4 292 Time in handling Dual-core handler
5 5810 Time in transfer data to DSP by DMA
6 489 Time in post processing

A/D 6.58
Total time 19088

Table 40 Calculated result of profile Motion estimation module

Description Execution time (ms) or Percentage

ARM core execution time 17916

DSP core execution time 12106

Dual-core execution section percentage 97%

Post processing section percentage 2%

From the above tables, it illustrates that the DSP core execution time increases and

the transfer time decreases. It also shows the DSP core’s computation ability is much
greater than the transfer ability of system DMA in our experiment environment. As a
result, this method has been adopted as our final implementation.

5.2.4 Profile for dual-core P macroblock encoding module

The follow figure shows the main computation components of dual-core P
macroblock processing module with the fastest mode we mentioned before.

 64

Fig 37 Profile for dual-core P macroblock encoding module

We experimented with two different implementations of DMA control modules in
this thesis. The first one transfers all memory section of the reconstructed frames from
DSP to ARM. This implementation has lower complexity of DMA handler, but
increases the amount of redundant transfer. The second implementation transfers
memory sections of the reconstructed frames from DSP to ARM according to its
encoding status. Although this approach makes the DMA handler more complex, it
removes redundant data transfer.

 The follow two tables show the result of transfer with redundant transfer.

Table 41 Experiment result of profile P MB encoding

Number Execution time (ms) Description
1 4261 Time in dual-core processing
2 689 Time in interrupt mode
3 357 Time in handling DMA handler
4 126 Time in handling Dual-core handler
5 727 Time in transfer data to DSP by DMA
6 1452 Time in receive data from DSP by DMA
7 523 Time in post-processing

A/D 3.11
Total time 4785

 65

Table 42 Calculated result of profile P MB encoding

Description Execution time (ms) or Percentage

ARM core execution time 3572

DSP core execution time 1393

Dual-core execution section percentage 89%

Post processing section percentage 10%

And the follow two tables show the result of transfer without redundant transfer.

Table 43 Experiment result of profile P MB encoding

Number Execution time (ms) Description
1 3813 Time in dual-core processing
2 742 Time in interrupt mode
3 397 Time in handling DMA handler
4 136 Time in handling Dual-core handler
5 756 Time in transfer data to DSP by DMA
6 895 Time in receive data from DSP by DMA
7 526 Time in post-processing

A/D 3.74
Total time 4341

Table 44 Calculated result of profile P MB encoding

Description Execution time (ms) or Percentage

ARM core execution time 3071

DSP core execution time 1420

Dual-core execution section percentage 87%

Post processing section percentage 12%

Obviously, it shows that the implementation which transfers data without

redundancy is more efficient, although the overhead of the DMA handler becomes more
complex than the other method, but its overall performance gain is better than the
implementation redundant transfer.

 66

Chapter 6 Conclusions and Future Works

From these experiments, one can see that the proposed dual-core codec partitioning
framework achieves better performance than using the DSP core alone. The thesis
also shows that data transfer overhead between the RISC core and the DSP core is
crucial to the performance of the system. Efficient use of DMA module for data transfer
also plays an important role in this framework. For future improvements, instead of
executing jobs at frame-level, data structures and execution flows of our codec should
be modified for execution at slice-level or macroblock-level. This allows the
combination of multiple function modules into one single module and reduces large
data transfer overhead. Fig. 38 shows this concept, the left-hand side of the figure
shows current execution flow, and the right-hand side shows the improved architecture
for future work.

Fig 38 Architecture of future work

In our current design, motion compensation module is running on the RISC core
alone. With the above-mentioned modification, the motion estimatin/compensation
subtasks can be completely hosted on the same core (either RISC or DSP) without extra
data transfer overhead.

In addition, as demonstrated by many researches, employing dual buffer
mechanism on the DSP core can increase memory bandwidth greatly. This is a key
technique to improve system performance. It can be expected that we can also use
similar design to increase performance of our design, since one of the major bottleneck
of the proposed dual-core framework is from the limited memory bandwidth between
the RISC core and the DSP core.

 67

Finally, the research conducted in this thesis is a prelude to the design of a dynamic
scheduling kernel for asymmetric multiple processors (AMP) platforms. Based on the
experiments conducted in this thesis and the simple shell-like DSP command processor
developed for this work, one can design an AMP kernel that dispatch tasks to different
processor cores on the fly.

Chapter 7 References

[1] S. De-Gregorio, M. Budagavi, and C. Chaoui, Bringing Streaming Video to
Wireless Handheld Devices, Texas Instrument Technical White Paper SWPY005, May
2002

[2] ISO/IEC JTC 1/SC 29/WG11, Information technology -- Coding of Audio-visual
objects - Part II: Visual, ISO/IEC 14496-2:2003, Apr. 2003.

[3] Jamil Chaoui, Ken Cyr, Sebastien de Gregorio, Jean-Pierre Giacalone, Jennifer
Webb, Yves Masse, Open multimedia application platform: enabling multimedia
applications in third generation wireless terminals through a combined RISC/DSP
architecture, Proceeding of ICASSP2001, Pages:1009 - 1012 vol.2, May 2001

[4] Kyu Ha Lee, Keun-Sup Lee, Tae-Hoon Hwang, Young-Cheol Park and Dae Hee
Youn, An architecture and implementation of MPEG audio layerIII decoder using
dual-core DSP, IEEE Transactions on Consumer Electronics, Vol 47,No4,
NOVEMBER 2001

[5] Olli Lehtoranta, Timo Hamalainen and Jukka Saarinen, Real-time H.263 encoding
of QCIF-images on TMS320C6201 fixed point DSP, ISCAS 2000 - IEEE
International Symposium on Circuits and Systems, May6 28-31, 2000, Geneva,
Swizerland

[6] Atsushi Hatabu, Takashi Miyazaki, and Ichiro Kuroda, QVGA/CIF resolution
MPEG-4 video codec based on a low-power and general-purpose DSP, IEEE 2002

[7] James Song, Thomas Shepherd, Minh Chau, Ayesha Huq, Ikram Syed, Somdipta
Roy, Achuta Thippana, Kaijian Shi, Uming Ko. A low power open multimedia
application platform for 3G wireless, IEEE 2003

[8] Byeong-Doo Choi, Kang-Sun Choi, Sung-Jea Ko, Senior Member, IEEE, and Aldo
W. Morales, Senior Member, IEEE, Efficient real-time implementation of MPEG-4
audiovisual decoder using DSP and RISC chips. IEEE 2003

[9] TMS320 C55x User guide (TI publication)
[10] OMAP5910 Dual-Core Processor Technical Reference Manual, SPRU602B,

January 2003 (TI publication)
[11] Rishi Bhattacharya,System Initialization for the OMAP5910 Device, SPRA828A,

August 2002 (TI publication)
[12] TMS320C55x Hardware Extensions for Image/Video Applications Programmer's

Reference,SPRU098,February 2002 (TI publication)
[13] DSP/BIOS Bridge Programming Guide (WinCE/BIOS) Version 1.10, November 22,

2002 (TI publication)
[14] Hans-Joachim Stolberg, Mladen Berekovic, Lars Friebe, S¨oren Moch, Sebastian

Fl¨ugel, Xun Mao, Mark B. Kulaczewski, Heiko Klußmann, and Peter Pirsch,
HiBRID-SoC: A Multi-Core System-on-Chip Architecture for Multimedia Signal
Processing Applications, Proceedings of the Design,Automation and Test in

 68

Europe Conference and Exhibition (DATE’03), IEEE 2003
[15] Thanh Tran, Ph.D. OMAP5910 Video Encoding and Decoding, SPRA985 December 2003

(TI publication)
[16] Bill Winderweedle, OMAP System DMA Throughput Analysis,SPRA883 – December 2002

(TI publication)

