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視訊編碼器在雙核心平臺上的最佳化 
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國立交通大學資訊工程學系﹙研究所﹚碩士班 

摘要 

在本篇論文中，我們提出一個方法使 MPEG-4 Simple Profile 視訊編碼

器在雙核心(RISC 以及 DSP)平臺上的執行能更具效能。在目前視訊編

碼器對於 RISC 核心以及 DSP 核心的使用，運算重心是以 DSP 核心為

主。但隨著 RISC 運算能力的強化，未來 RISC 核心也將有足夠的能力

來處理繁重的運算。因此，我們藉著評估分析視訊編碼器中各主要元

件的運算特性，建立出一套能動態分配工作至各運算單元使之平行運

算的雙核心視訊架構。而為了解決雙核心之間資料傳輸的負擔，該架

構中也使用 DMA 的機制來改進效能。而從實作結果證實，在使用我

們的雙核心視訊架構後，視訊編碼器效能將因此提升。 
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Abstract 

In this paper, we propose a dynamic task partitioning framework on dual-core 
architecture (RISC and DSP) for the MPEG-4 Simple Profile video codec. Using a 
dynamic task scheduler, an efficient dynamic partitioning framework of video encoder 
algorithm on dual-core architecture are developed. Existing practices of embedded 
software development on a dual-core platform either assign a subtask to the RISC core 
or the DSP core.  However, since new generations of RISCs are powerful enough for 
computationally intensive task as well, the proposed framework will invoke both the 
RISC and the DSP cores in parallel to complete a single subtask in a tightly-coupled 
manner. To alleviate the communication overhead between the two cores, DMA is used 
to transfer data between the MCU and the DSP.  From the experiments, it is shown 
that the proposed approach achieves higher performance than the conventional 
approach where only one of the cores (either MCU or DSP) is used for each subtask. 
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Chapter 1 Introduction 

MPEG-4 Simple Profile (SP) is a visual coding standard which is suitable for low 
bitrate, low delay applications such as those for mobile phones. The hardware 
architecture of a mobile phone is usually composed of a MCU for light-weight control 
tasks plus a DSP for computationally intensive tasks.  DSP has been a crucial 
component in mobile devices due to its excellent power/performance ratio for signal 
processing tasks. However, new generations of mobile multimedia applications 
involves complex blending of sophisticated control tasks and data-processing task.  In 
the meanwhile, the capability of the RISC core in the MCU has become more and more 
powerful. Therefore, executing the whole signal processing tasks on DSP alone may not 
be the most cost efficient ways anymore. 
 

In this thesis, a dynamic task-partitioning dual-core framework for MPEG-4 video 
SP encoder is presented. The TI OMAP processor comprised of a 16-bit DSP and a 
32-bit RISC ARM core is used as the target architecture. The efficiency of the proposed 
system is obtained by utilizing both processor cores in parallel to complete each codec 
task (e.g. motion estimation). The ratio of task division between the RISC core and the 
DSP core is determined dynamically at runtime by a control module.  In order to 
reduce the transfer overhead between the RISC core and the DSP core, a DMA is used 
to move the data among various memory banks. 
 
 The organization of this thesis is as follows. In the rest of chapter 1, the 
architecture of the TI-OMAP 1510/5910 processor and the PSI Innovator development 
board used in this thesis is introduced.  Chapter 2 presents some previous works on 
dual core implementation of media codecs. The proposed dynamic task-partitioning 
dual-core framework will be described in chapter 3.  Chapter 4 discusses the 
implementation of some of the codec modules using the hardware extension of the TI 
C5510 DSP core. In chapter 5, some experiment results are reported. Finally, chapter 6, 
conclusions and future work will be given. 

1.1 Introduction to the OMAP 1510 platform 

As the wireless industry moves into a new century of differentiated services, 
developer are seeking for better platforms for developing 2.5G and 3G wireless 
applications. The Open Multimedia Application Platform (OMAP) which combines 
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high-performance, power-efficient processor cores with easy-to-use, open software 
architecture is an intriguing platform for new mobile multimedia applications. These 
features provide a powerful hardware and software foundation for the development of 
innovative applications, and they help simplify development and thus save 
time-to-market for new embedded system products. 
 

 

Fig 1 The Innovator OMAP development board made by PSI 

The OMAP1510 device is efficient in performance and power consumption for 
wireless multimedia devices. The ARM core is well suited for handling control code, 
such as user interface, OS and applications. The DSP core is better suited for real-time 
multimedia signal-processing. 
 

The C55x DSP core architecture includes some extensions of the core functions 
for multimedia-specific operations. C55x devices are the first family of TI DSPs with 
such core-level multimedia extensions.  The extensions include, Motion estimation, 
discrete cosine transforms (DCT/IDCT), and pixel interpolation.  Software developers 
access the multimedia extensions through coprocessor-specific instructions that have 
been added to the general C5500 instruction set. The combination of coprocessor and 
general arithmetic instructions will get efficient execution and better performance. 
These features will be examined in our implementation. 

 
The OMAP1510 device, shown in Fig. 1, is based on two integrated 

microprocessor cores: a C55x DSP and a high-performance ARM 9 core. There are on 
chip caches for both processors which can reduce average fetch times to external 
memory and eliminate the power consumption of unnecessary external accesses. And 
the memory management units (MMU) for both cores provide virtual-to-physical 
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memory translation and task-to-task protection. Low-power operating modes are 
available to conserve power during periods when the OMAP device is not used 
frequently or is not in use. 

 

 

Fig 2 OMAP 1510 Architecture 

 In embedded systems, the I/O bottleneck is an important issue.  The OMAP 
platform adopts many techniques for improved I/O performance. There are two external 
memory interfaces and one single internal memory port in the OMAP platform. The 
first external interface supports a direct connection to synchronous DRAM at up to 100 
MHz; and the second external interface supports standard asynchronous memories 
systems such as SRAM, FLASH or burst Flash devices. This interface is typically used 
for program storage and can be configured as either 16- or 32-bit wide. The internal 
memory port allows direct connection to on chip SRAM or embedded Flash memory 
and can be used to save time and power for frequently accessed data, such as critical 
OS routines or the LCD frame buffer. Finally, all three interfaces are completely 
independent and allow concurrent access from either cores or the DMA units. 
 

The OMAP platform also contains many interfaces for connecting to peripherals or 
external devices. Each processor has its own external peripheral interface, which 
supports both direct connections to peripherals and DMA from the processor's DMA 
unit. The local bus interface is high-speed and bi-directional, and the controller of the 
bus can be used to connect to external peripherals or additional OMAP devices. 
Additionally, a high-speed access bus is available to allow an external device to share 
the main OMAP system memory, both external and internal. And in order to support 
common OS requirements, the OMAP platform includes on-chip peripherals such as 
timers, general-purpose I/O, a UART, and watchdog timers. A color LCD controller is 
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also included to support a direct connection to the LCD panel. The ARM DMA unit 
contains a dedicated channel used to transfer data to the LCD controller from the frame 
buffer, which can be allocated in either the external SDRAM or the internal SRAM. 
The follow functional block diagram shows the detail architecture of OMAP 
architecture. 

 

Fig 3 OMAP 1510 function block diagram 

 
The OMAP platform includes an open software architecture that is needed to 

support application development and provide a dynamic upgrade capability for 
heterogeneous multiprocessor system designs. This architecture includes a framework 
for developing software, which targets system design and application programmer 
interfaces (API) for executing software on the target system. Additionally, in order to 
simplify software development, the DSP software architecture was abstracted from the 
general-purpose programming (GPP) environment. In the OMAP platform, this 
abstraction is accomplished by defining an architectural interface that allows the GPP to 
be the system master. And the DSPBridge interface consists of a set of APIs that 
contain device driver interfaces which called DSPBridge interface. In our own design, 
the architecture of DSPBridge interface has been referenced and thus implement our 
proposed codec on dual-core architecture OMAP platform.  
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1.2 Introduction to MPEG Video Codec 

MPEG stands for "Moving Pictures Experts Groups". It is a group working under 
the directives of the International Standards Organization (ISO) and the International 
Electro-Technical Commission (IEC). The groups work concentrates on defining 
standards for the coding of moving pictures, audio and related data. MPEG video 
compression is used in many current and emerging products. It is at the heart of digital 
television set-top boxes, DSS, HDTV decoders, DVD players, video conferencing, 
Internet video, and other applications. These applications benefit from video 
compression in the fact that they may require less storage space for archived video 
information, less bandwidth for the transmission of the video information from one 
point to another or a combination of both. 

MPEG-1 defines a framework for coding moving video and audio, significantly 
reducing the amount of storage with minimal perceived difference in quality. In 
addition a System specification defines how audio and video streams can be combined 
to produce a system stream. This forms the basis of the coding used for the VCD format.  
MPEG-2 builds on the MPEG-1 specification, adding further pixel resolutions, and 
support for interlace picture, better error recovery possibilities, more chrominance 
information formats, non-linear macroblock quantization and the possibility of higher 
resolution DC components. 

MPEG-4 is good for both low and high bit-rate applications, since it has good 
error resilient coding and is capable of handle high quality video. The error resilient 
coding and low bit-rate capabilities can be utilized for instance in mobile phones or 
handheld computers with a wireless network connected to it. Other areas of usage can 
be where you want both high and low bit-rate video, like on the web, where you want to 
show a movie to the visitors.   

 
Following MPEG-4 is the not yet finalized standard MPEG7.  Metadata is added 

to the content of the multimedia, that is names or labels are added to the objects 
introduced in MPEG-4. This will allow advanced searching for certain content within 
an MPEG-7 encoded media. With the ever so fast growing amounts of available media 
this will become necessary sooner or later. There are drafts and proposals for the 
standard but it has not yet been finalized. MPEG-21, the work on this standard started 
in June 2000. It is aimed to identify and define the key elements needed to support the 
multimedia delivery chain. 
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MPEG-4 provides a large and rich set of tools for the coding of audio-visual 
objects.  In order to allow effective implementations of the standard, subsets of the 
MPEG-4 Systems, Visual, and Audio tool sets have been identified, that can be used for 
specific applications. These subsets, called ‘Profiles’, limit the tool set a decoder has to 
implement. For each of these Profiles, one or more Levels have been set, restricting the 
computational complexity. 

 
Generally speaking, MPEG-4 Simple Visual Profile provides efficient, error 

resilient coding of rectangular video objects, suitable for applications on mobile 
networks. It consists of several modules, including intra coding (I-VOP), inter coding 
(P-VOP), motion compensation, resynchronization, variable length coding (VLC). And 
it is compatible of H.263 baseline coding. 
 

Fig 4 is the block diagram of a MPEG-4 encoder.  The details functionality of the 
blocks is described in the following paragraph. 

 

Fig 4 MPEG4 encoding scheme 

The “DCT” block stands for “Discrete Cosine Transform”, which is a function that 
transforms image data in YCbCr format into frequency domain representation. After the 
transform, the same information is presented in a form that is more suitable for 
compression. In effect, the image is represented in a range of frequency components, 
where higher frequency components denote 'sharper' edges and changes in the image 
and lower frequency components denote more gradual changes in the image. 
 

The “Q” block stands for “Quantization”, which is a process whereby values after 
the DCT block are divided by the quantization factor. The higher the factor, the higher 
the compression ratio (and lower the image quality). The quantization factor is either 
selected by the user or by the automatic rate control algorithm that is responsible for 
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ensuring that the amount of data generated by the encoder is within the bounds set by 
the transmission channel or storage device. The general aim is to provide the best image 
quality that is permissible by the transmission channel or by the video quality selected 
by the user on a storage device. The coefficients divided by the quantization factor are 
then rounded according to certain rules, and as a result the higher the quantization 
factor, the more often the result of the division is zero. This phase in the process causes 
data rates to drop dramatically because the higher frequency components (depending on 
the quantization factor and the image content) end up being rounded to zero. The 
benefit of carrying out the quantization in the frequency domain, as opposed to in the 
XY spatial domain, is that discarding the higher frequency components compromises 
the sharp edges and contrast of the image (more or less depending on quantization), 
which, when done within reason, is not easily perceived by the human eye. 

Motion estimation is an important part of the codec. Whereas DCT and 
quantization serve to compress the spatial aspects of one frame, motion estimation is 
used to compress temporal redundancy, i.e., in the time domain over two consecutive 
frames. Take a typical scene, from a feature film for example. 25-30 consecutive frames 
are displayed every second by the TV or film projector. However, chances are that 
within an arbitrary one second sequence most aspects of the image remain the same.  
The background may not change at all, the characters remain the same and therefore the 
consecutive frames are very similar.  

The motion estimation performs a delta analysis between two consecutive frames 
and determines whether areas of the image have changed or moved between the frames.  
In many cases an area stays exactly as it was in the previous frame and therefore it is 
sufficient for the encoder to inform the decoder to display this area as it was in the 
previous frame. If the area moves in a certain direction, the motion estimation 
algorithm directs the decoder to use the same piece of image as in the previous frame, 
but to move it a certain amount in a defined direction. In practice this will be 
accomplished by sending motion vectors within the MPEG4 bit stream. These vectors 
will guide the decoder in choosing the appropriate portions of the previously decoded 
frame to be used in the reconstruction of the current frame.  

It should be clear that this vastly increases the compression rates. In fact, some 
types of content can be compressed to an enormous extent due to the lack of movement 
in the image. One example is the 'talking head' type of content, such as a newscaster, 
which results in a very compact MPEG4 stream. As one may expect, the motion 
estimation is a very computationally intensive function. Searching through an image for 
all the possible areas that could change place for every potential location requires a lot 
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of calculations. If we are concerning of real time application, there exists a very 
restricted time limit to achieve real time constraint, only 1/15th to 1/30th of a second to 
do this before the next frame arrives for processing. 

Motion compensation performs the reconstruction of the frame based on the 
received motion vectors, received delta frame data (different data between two 
consecutive frames, see motion estimation) and the previously decoded image. So, if 
delta data is received, the current frame is reconstructed by adding the delta frame data 
to the data from the previously decoded frame in the specific locations indicated by the 
received motion vectors. 

As illustrated previously, the combination of motion estimation, cosine transform 
and quantization alone can dramatically reduce the bit rate needed for digital video.  
However, a few more steps are required before full MPEG4 compressed video stream is 
at hand. As stated, MPEG4 compression works in a block level, i.e., 8 x 8 pixel blocks 
(or matrices) are compressed at the same time. The output coming from the 
quantization function is further processed by a Zigzag scan coder. This coder forms a 
64 (8 x 8 pixel) element long vector out of the 8 x 8 matrix so that the low frequency 
components will be placed at the front of the vector. The reason for this action becomes 
useful in the later stages of processing.  

Next, the 64 element long vector is analyzed by the run-length encoder module.  
The run-length encoder calculates the number of consecutive zeros in the vector and 
forms Run-Length Code (RLC) words based on the calculation. As noted before, after 
the quantization there is a high probability of a significant amount of zeros in the 8 x 8 
matrix (likely to be in the high frequency components) and there is no need to transmit 
or store such information. So, one RLC word represents the number of zeros between 
the consecutive non-zero elements in the vector. Also, the value of the last non-zero 
element after the zeros is represented in one RLC word as well as the information as to 
whether this value was the very last component in the vector. Thus, each RLC word 
consists of three components.   

 
The RLC words are then Huffman-coded using Variable Length Codes (VLC). 

Basically this means that certain RLC words are given a specific bit pattern. The most 
common RLC words are given the shortest VLC bit pattern. The VLC patterns are 
specified in the MPEG4 standard and were generated based on the vast amount of video 
test material. 
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Chapter 2 Previous work 

The multimedia processing ability and the implementation of a MPEG-4 SP codec 
on the OMAP platform is described in [3]. However, the system described in [3] utilizes 
only the DSP core for the codec.  Even though the performance numbers published in 
[3] are higher than the numbers we have achieved, it is probably due to extensive use of 
assembly codes and a more efficient C model to begin with.  With similar optimization, 
it should be possible for the proposed method to achieve even better performance.  
Another codec framework for dual-core architecture is described in [4], where an MP3 
decoding system is implemented. In this paper, MP3 decoding algorithm runs on DSP 
core, and RISC core acts as the mater of the system. The RISC core receives commands 
such as: play, stop, previous, and next from the user interface and send a corresponding 
instruction to the DSP core, and the RISC core will fall into an idle status. Upon 
reception of an instruction, the DSP core will execute a function to complete the 
requested task. Finally, when DSP core finished the task, it will assert an interrupt to the 
RISC core to report current status. Fig. 5 shows the software architecture of this work. 

 

Fig 5 MP3 decoding system on dual-core architecture 

 
As described in [4], the RISC core in this design play the operating system role, its 

main duty is to communicate with peripherals, including I/O devices and storage 
devices. The DSP core handle the complete MP3 decoding algorithm alone. This 
dual-core architecture is a typical architecture generally adopted on most applications.  

At close examination, the characteristic of audio processing and video processing 
tasks is a little bit different. It is clear that audio processing are composed of mainly 
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signal processing tasks which need lots operation of multiplication and accumulate 
(MAC).  But in video processing, in addition to traditional signal processing tasks, it 
also contains many sophisticated control operations such as the address generation unit 
of  motion estimation, interpolation and motion compensation. With new generations 
of RISC cores for MCU, the cost/performance ratio for executing these tasks may not 
be that far away behind the DSP cores.  Therefore, in this thesis, we investigate the 
efficiency of executing the codec tasks in parallel by both the RISC and the DSP cores. 
 

In [5], an implementation of the H.263 visual codec is implemented on a 
TMS320C6201 DSP. In this implementation, DCT, Quantization, Dequantization, and 
IDCT are combined into a single module for efficient memory utilization. Table 1 
shows the concept. This technique has been adopted in our implementation as well. 
 

For(every macroblock in INTRA frame) 
{ 
   DCT_and_Quantize_Macroblock();   //DCT-transform 
   VLC_Code_INTRA_Macroblock_to_Stream();  //Coding 
   IDCT_and_InverseQuantize_Macroblock();   //Reconstructing 
} 

Table 1 Combination of transform coding 
 

In [5], the motion estimation search method is Parallel hierarchical one 
dimensional search (PHODS).  This method has low computation complexity since 
the x-component and y-component of motion vector are computed in one dimensional 
space separately and later assembled into a complete motion vector. In our 
implementation, in order to take advantage of the built-in hardware motion estimation 
extension of TI C55x DSP, the four steps hierarchical search is used. 

 
Fig 6 DMA and dual buffer mechanism on DSP 
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In [6], it presents an implementation of MPEG-4 video codec on a general DSP 
core (NEC uPD77210). The paper analyzes the effects of different motion search 
algorithms and discusses why DMA module can improve the transfer efficiency. The 
paper also presents a concept of dual buffer mechanism to avoiding waiting transfer on 
DSP core. The execution flow of its DMA module and dual buffer concept is shown in 
Fig. 6. 
 
In [8], the same concept of DMA module and dual buffer mechanism on DSP core are 
mentioned again. Whenever there are dual buffers on the DSP core, the DSP core 
should execute a task using the data in one of the buffer while a DMA is preparing in 
parallel the data in the other buffer for the next task. As soon as the first job is 
completed, the DSP core can move on to the next job using the other buffer without 
waiting for the data. 
 

A multi-core architecture is presented in [14]. The paper discusses how a 
multi-core architecture is useful for multimedia processing applications. Multi-core 
architecture is an attractive architecture for multimedia processing as multimedia tasks 
in general can be partitioned into stream oriented, block oriented, and DSP oriented 
functions, which can all be processed in parallel on different cores. Each core can be 
adapted towards a specific class of algorithms, and individual tasks can be mapped 
efficiently to the most suitable core. In general, parallelism can be employed at 
instruction level (e.g., very long instruction word, VLIW), data level (e.g., single 
instruction multiple data, SIMD), or task level (e.g., simultaneous multithreading). 
Another technique to accelerate multimedia processing is to adapt programmable 
processors to specific algorithms by introducing specialized instructions for frequent 
operations of higher complexity. 
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Fig 7 Multi-core architecture 

The multi-core architecture proposed in [14] is shown in Fig. 7, comprises three 
programmable cores that have each been specifically optimized towards a particular 
class of algorithms by employing different architectural strategies. The HiPAR-DSP is a 
16-datapath SIMD processor core controlled by a four-issue VLIW and is particularly 
optimized towards high-throughput two-dimensional DSP-style processing, such as 
FFT-intensive applications or filtering. The second core, the Stream Processor (SP), 
consists of a scalar 32-Bit RISC architecture that is more optimized towards 
control-dominated tasks such as bit stream processing or global system control with a 
particular focus on high-level language programmability. The Macroblock Processor 
(MP), finally, has been designed specifically for the efficient processing of data blocks 
or macroblocks that are typical for many video coding schemes. It has a heterogeneous 
data path structure consisting of a scalar and a vector unit controlled by a dual-issue 
VLIW, offers flexible sub word parallelism, and contains instruction set extensions for 
typical video processing computation steps. This architecture provides multi-core to let 
each processor to do suitable task for best utilization. 
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Chapter 3 The Proposed Framework 

In this thesis, MPEG-4 Simple Profile (SP) encoder is used as the experimental 
target. MPEG-4 SP codec is a typical block-based motion compensated hybrid 
transform codec composed of several modules including temporal predictive coding, 
transform coding, quantization, and entropy coding.  Some systems also implement 
pre-processing and post-processing. The follow figure is the system architecture of 
MPEG-4 Simple Profile visual encoder. 

 

 

Fig 8 Our MPEG4 encoding scheme 

 
The code for OMAP is ported from an implementation for Intel IA32 architecture. 

The original data structure of our codec processes frame data in 8-bit width pixels.  
However, the DSP core, TMS320C55x, of the OMAP platform accesses data in 16-bit 
width. Therefore, the data structure has to be modified accordingly to improve the 
performance.  To be more specific, each time DSP fetches pixel data from memory for 
computation, it can’t just fetch one pixel alone if data is arranged in 8 bits per pixel. In 
fact, it will also fetch the adjacent pixel. As a result, packing and unpacking between 
8-bit pixel per pixel and 16-bit per pixel data formats has to be done whenever the 
ARM core is exchanging data with the DSP core. Fig. 9 represents the difference fetch 
behavior on ARM core and DSP core when the pixel of p2 needs to be processed. 
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Fig 9 Fetch data on ARM and DSP 

 
Another approach to sovle the data access unit problem on OMAP is to use the 

hardware extension of the TI C55x DSP. In C55x, there is a built-in hardware extension 
module with the ability to process pixels in 8-bit width. However, if this strategy 
adopted, our codec may spending lots time on developing corresponding function 
module which uses the built-in hardware extension, and it will become harder to 
maintain and modify because of its readability. In spite of these concerns, it is no doubt 
that it will increase the efficiency. So, this is a tradeoff between developing time, 
memory utilization, maintain concern and efficiency.  
 

3.1 Dual-core processing architecture 

There are two computation cores, ARM and DSP, on the OMAP Innovator board. 
Before using DSP core to improve our codec for better performance, it is essential to 
design the dual-core control architecture first. The control architecture contains the 
communication mechanisms between ARM and DSP. In our proposed architecture, each 
type of subtasks in encoding a frame will be dispatched to ARM and DSP 
simultaneously and executed in parallel. There is no need to pre-arrange the execution 
order and the portion of tasks assigned to each core because the processing cores will 
work asynchronously. So that ARM core can execute its job continuously without 
waiting, and just need to handle the begin section and end section while corresponding 
DSP event happens in the encoding loop. 

 
Although the detail architecture of each module may be different, the general 

architecture can be summarized in Fig. 10..  
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Fig 10 Main phases of dual-core execution flow 

 
 

Generally speaking, each codec module can be divided into three phases when 
implemented on a dual-core platform. In phase I, task units in each frame will be 
defined; basically, a task unit can be defined as a block or a macroblock in each frame. 
After task unit has been defined, the operations of this task will be specified, such as 
motion estimation, interpolation, and sometimes a series processing which contains 
DCT, Quantization, de-Quantization, and IDCT. 

 
In phase II of the figure, since jobs to ARM or DSP have been defined and 

assigned in phase I, then it will fetch data for computations. On the ARM side, source 
input data for computation can be fetched directly. But on the DSP side, it should 
transfer all input data from ARM side into DSP core’s memory for computations. There 
are two transfer methods have been implemented on the Innovator board, one is transfer 
by CPU directly, and the other one is transfer by DMA support. Obviously, transfer data 
by DMA support will get better performance than transfer data by CPU. After each core 
has received its input for computation, they start execute their jobs in parallel. ARM 
core and DSP core can be communicated with each other by the mailbox to hold the 
progress of executions. 

 
In phase III of this figure, after ARM and DSP have produced the computation 

results, then the dual-core module start to receive and integrate these results from each 
core at this stage. On the ARM side, the results can be integrated directly. On the DSP 
side, when DSP core has completed its job, it will asserts interrupt to ARM, and thus 
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control center can know the execution status of DSP core. An ARM interrupt routine 
will be invoked to receive computation results from DSP for integration. Again, using 
DMA module will improve the efficiency of transfer. 

 
These three phases generally summarize the execution flow of our proposed 

dual-core architecture. How to perform this dual-core architecture to improve each 
computation intensive modules in our codec will be discussed detail in follow sections.  
 

The main procedures for implementing these dual-core computation modules are 
described as follows. First, adjust data structure and execution flow of each module to 
fit dual-core architecture. It is because that if data structure doesn’t be defined properly, 
it may just be able to execute one task at a time from the limit of control parameter, or 
any other resource conflictions. And about the execution flow, if each task’s execution 
flow with deep dependency from other task unit’s computation result, it may lead tasks 
execute sequentially, not in parallel. 

 
 Second, since operations of each function module are different, specific 

corresponding signals and interrupt handlers for each function module and its relational 
operations must define well. After define these control signals and handler routine, such 
information will be added into ARM core’s interrupt architecture and DSP core’s DSP 
interface which manage receiving ARM core’s signal and assign job to corresponding 
function module.  
 

Third, if DMA module is used to improve memory transfer in this dual-core 
processing framework, then one must also define corresponding interrupt handler, 
signals, and operations. 

 
Following these procedure, almost all computation modules in the MPEG4 Simple 

Profile encoder can be constructed to execute efficiently on dual-core architecture. 

3.2 Pre-processing and Post-processing 

This section describes the pre-processing and post-processing in our codec, and the 
follow figure shows the detail behavior of these two processing. At this moment, our 
codec implement without operation system support, so that loading program and test 
sequences into the Innovator board is completely through the JTAG device. Loading 
complete input sequence from HOST (PC) to memory on Innovator board will be 
completed before encoding starts. This is because loading data through JTAG device 
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transfers slowly, if reading each input frame from HOST in encoding loop, and then it 
will spend most time on waiting transfer of frame. This condition should be resolved in 
the future by using different input channel such as USB or SD/MMC card. After 
completion of loading program and input sequence, adjust input sequence into proper 
format for our codec input is performed and besides, the bit width concern between 
ARM and DSP which mentioned before will also adjust here.  
 

 

Fig 11 Pre-processing and Post-processing 

About the post-processing block, after encoder has completed each frame in 
encoding loops, it can be optionally shows the reconstructed frame for present purpose 
by sending frame data into the LCD display frame buffer and then the LCD dedicated 
DMA will automatically transfer it to LCD display module and show the image on the 
screen. Since the output reconstructed frame was based on YUV format, and LCD 
display module was based on RGB module. As a result, in order to display, it should do 
conversions of our reconstructed frame from YUV color space into RGB color space.  

 
Until after all of the encoding have finished, writing out the whole encoded bit 

stream from Innovator board to HOST through JTAG starts. This is also because the 
data transfer through JTAG is very slow, so this is a temporal method to avoid waiting.  

3.3 Intra-frame processing 

In the intra-frame processing, it encodes the input frame itself without any other 
reference frames. According to the experiment result which the encoder compresses 
sequential 150 frames in intra mode; the follow table shows the weightings between 
each module in the intra-frame processing. Clearly, the intra macroblock encoding 
(FDCT, Quantization, Dequantization, and IDCT) occupies most computation time of 
all. So, it is no doubt to improve this module with DSP support for better performance 
in the Intra-frame processing. 
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Table 2 Intra frame encoding result 

Qcif,150 I frames Execution time (ms) Percentage 
Initialization 236 0.735 
Coding 4111 12.793 
Sequence conversion 1684 5.241 
Prediction 2631 8.190 
DCT/Q/Q-1 /IDCT 22297 69.396 
Total 30963 100 
Encoding frame rate =4.7 

3.3.1 Intra macroblock encoding 

In order to let ARM and DSP execute its own tasks parallel and smoothly, it is 
essential to define a task unit properly. As the Mpeg4 Simple Profile standard 
mentioned, each frame was divided into macroblocks for encoding. As a result, with 
adjust corresponding data structure and execution flow, and then, the encoder can 
dispatch tasks on macroblock level in scan line order in a frame.  

 
After observe memory utilization from these four computation modules: FDCT, 

Quantization, Dequantization and IDCT, respectively. Since their memory utilization 
are relative between each other, it isn’t reasonable to just divide them to run in DSP 
core individually, because it may cause memory transfer redundancy and wasting of 
time while transfer the source macroblock data to DSP and just do one of these four 
computation modules. As a result, our design is to combine these four computation 
modules into one function module called intra macroblock encoding for best memory 
utilization and thus reduce the transfer load.  

The follow figure shows the execution flow and memory utilization in intra 
macroblock encoding.   
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Fig 12 Intra macroblock encoding 

Since task unit has been defined in intra macroblock encoding, and thus this 
module can start dispatch jobs and execute them. The follow figure is our proposed 
dual-core intra macroblock encoding architecture. And the follow two tables give some 
descriptions of the control flow and the specification which DSP core treated in this 
figure. At first, it divides input source frame into macroblocks as task units, and then 
dispatch the first task and macroblock data of this frame into DSP. And then ARM core 
will do next job and fall into an encoding loop until all tasks are completed. Since the 
first job has been dispatched to DSP, DSP core will start work according to the signal 
which ARM sent through mailbox. Each time while DSP core has completed its work, it 
will assert an interrupt to ARM core. And thus, ARM core’s original job will be paused 
and fall into the interrupt handler to receive the computation result from DSP. After 
receiving and integrating the results from DSP, the control module will decide whether 
to send next job to DSP or not. And then ARM will resume its original job in encoding 
loop. 
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Fig 13 Dual-core intra macroblock encoding scheme 

 

 

 

 

 

Table 3 Description of dual core I MB encoding module 

Step Description 
1 Process the frame in scanline order 
2 Control module decide to dispatch job to DSP 
3 Transfer MB data and control parameter to DSP 
4 DSP enters I MB encoding 
5 After I-MB coding, DSP asserts an interrupt 
6 MCU executes handler routine 
7 Control module decides next step 
8 Integrate result from DSP. 
9 Control module decides to let MCU do I MB encoding 
10 Integrate the result from ARM 
11 The encoding loop repeats, until all jobs have been completed 
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Table 4 Specification of DSP I macroblock encoding 

Specification of DSP I macroblock encoding 

DSP  
Input 

1. One source macroblock data 
 Four Y data blocks (8*8*4*2 bytes) 
 One U data blocks (8*8*2 bytes) 
 One V data blocks (8*8*2 bytes) 

2. QP parameter for DSP quantization 
 2 bytes 

DSP  
output 

1. One Q coefficient macroblock data 
 Four Y data blocks (8*8*4*2 bytes) 
 One U data blocks (8*8*2 bytes) 
 One V data blocks (8*8*2 bytes) 

2. One reconstructed macroblock data 
 Four Y data blocks (8*8*4*2 bytes) 
 One U data blocks (8*8*2 bytes) 
 One V data blocks (8*8*2 bytes) 

 
The control module maintained here contains some important synchronous 

parameters such as global status, finish flag, ARM core status and DSP core status. 
Actually, the control module can be treated as a synchronous control table. Each time 
before job dispatched to DSP or ARM, the control module must be accessed first. In the 
control module, it checks the global progress status with the finish condition to decide 
whether to dispatch job to DSP or ARM. If it decides to dispatch job, then we will 
update DSP core or ARM core’s status with corresponding parameter such as MB axis, 
CPU status, or even the profile information. By this way, after either ARM or DSP has 
completed its job, integration module could thus know how to integrate the 
computation result according to the status set before. The control module contains a 
finish flag, if the global status matches the condition of the finish condition, it won’t 
dispatch jobs, and it will set the finish flag to announce ARM core, and then intra 
macroblock encoding finishes. With the support of control module, ARM and DSP can 
avoid to do the same jobs in the execution flow, and thus hold the execution progress 
exactly without out of control. The follow figure is the data structure and control flow 
of control module. 
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Fig 14 Control module 

Control module plays an important role on this dual-core architecture; as a result, 
there should be a protection mechanism to promise that every time when either ARM 
core or DSP core accessing the control module, it can’t be corrupted by any interrupt 
events, or that it will lead bad results. This is because interrupt may assert any time, if 
interrupt is asserted while control module are modifying the control parameter, it will 
cause that global status can’t be updated successfully, and thus the same task may be 
dispatched more than one time.  

 

 

Fig 15 Protection of control module 

The above figure shows protection scheme of the control module. Each time when 
control module will be accessed, it will mask corresponding interrupt first, this will 
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promise that control module can execute and update the global status without any 
bother. Until finishing accessing control module, corresponding interrupts will be 
unmask and work again. 

 
Since that DSP has to do different functions for each need, construct an interface 

as a bridge between ARM and DSP is essential. This DSP interface is implemented like 
a shell; it starts when DSP core have enabled, it checks mailbox in repeat until ARM 
send signal through mailbox. The detail execution flow of the DSP interface is shown in 
the follow figure, which presents the relation between ARM core, DSP core, and DSP 
interface.  

 

Fig 16 DSP interface architecture 

Each time when ARM dispatches task for DSP, it will write signals into the 
mailbox which contains command for DSP. And then DSP interface will receive this 
signal, and it will decode the command in the mailbox immediately. After DSP realizes 
the content of the command, DSP will transfer its control into corresponding function 
module to handle tasks. After function module has completed its jobs, it returns the 
control to DSP interface. Then DSP interface write signal to the mailbox, and this will 
also assert an interrupt to ARM. Then, ARM will check the information in the mailbox 
for executing corresponding handler routine to receive computation result from DSP.  

 
When ARM and DSP have completed its task in a frame, then it will integrate 

computation result. Since each time when job dispatched to ARM or DSP, the control 
module will record the corresponding the axis of this macroblock to control module, 
and thus integration module can use this to construct our integration module. The 
integration module is implemented by maintaining two buffers with identical size of 
source frame, one is for storing quantized coefficient, and the other one is for storing 
reconstructed frame. When either ARM or DSP complete its current job, it puts 
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computation result into corresponding position into these two buffers according to the 
axis in control module which we set before. By this way, ARM and DSP can do their 
jobs in parallel without corrupt each other. 

 
For reduce the transfer load, DMA module has been used to improve transfer 

efficiency between ARM and DSP on our proposed architecture. Based on our original 
design, transfer data to DSP and retrieve computation result from DSP was 
implemented by CPU support. This implementation will cause CPU spending lots time 
on handling memory movement and thus decrease ARM core’s processing ability.  

 
The follow figure shows how DMA module improves the performance on 

dual-core architecture. Instead of moving data by CPU directly, ARM will just need to 
setup a DMA module for moving data. After ARM has setup the DMA control module 
properly, DMA module transfers data immediately. When DMA is the transferring, 
ARM can do its original job in parallel. After DMA module has finished its transfer, 
DMA will assert an interrupt to ARM, so that ARM can hold the transfer status, and 
decide what next to do.  

 

Fig 17 Improvement from DMA support 

Our DMA architecture uses one system DMA channel. As a result, when receiving 
two macroblocks under one channel, since two macroblocks may exist in two different 
memory addresses and the DMA module’s control parameter seems not powerful 
enough, so that our DMA control module will be accessed twice to get these two MB 
results. The follow figure shows the transfer behavior of how DMA receives results 
from DSP.  
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Fig 18 DMA architecture for dual-core intra macroblock encoding 

 
 
 
 
And there is one concern that should be notified that whether if the time interval of 

setup DMA module will greater than the time interval of moving data by ARM directly. 
If yes, this design may decrease the original performance. It is because that every time 
when using DMA module to improve performance, it will also need to handle some 
overheads. There are two factors in the DMA overheads; one is that before DMA 
module really starts its transfer, DMA control parameter must set first. And the other 
one is that after DMA module has complete its transfer, it will assert interrupt to tell 
ARM about the fact. This will cause ARM pause its original job to handle DMA 
interrupt routine and this will be the main overhead of using DMA module. Fortunately, 
such worse case doesn’t happen in our architecture even in our minimum transfer unit. 

 
In our implementation of using the system DMA module, we still have some 

problems now. The problem is that when we set some reasonable control parameter to 
drive DMA module, it will leads some strange conditions such as interrupt disable, or 
makes DSP hardware extension set out of control. Although assign other control 
parameter which is equal transfer result but different transfer behavior to resolve this 
problem is possible. But it decreases some DMA performance; we will still pay 
attention to this problem. 
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3.4 Inter-frame processing 

In inter-frame processing, it removes the temporal redundancy in current frame 
and last frame. Although this processing can get great coding efficiency, but it also 
costs more processing energy than intra-frame processing. Before we start improve this 
inter-frame processing, we can see the experiment result in the follow table first. The 
follow table shows the weightings between each module in the inter-frame processing. 

Table 5 Inter-frame processing result 

Qcif, 150 frames (IPPP…) Execution time (ms) Percentage 
Initialization 236 0.140 

Coding 767 0.456 
Set edge 1027 0.610 

Sequence conversion 1686 1.002 
Prediction 70 0.042 

Rate control 3464 2.058 
Motion compensation 4375 2.600 

I MB encoding 60 0.035 
Interpolation 8693 5.166 

Motion estimation 132649 78.831 
DCT/Q/Q-1 /IDCT 13328 7.921 

Total 168270 100 
Encoding frame rate =0.9 

 
 
According to the weighting from table, it shows that interpolation module, motion 

estimation module, and P macroblock encoding takes most percentage of all in the 
inter-frame processing. As a result, these modules will be improved with DSP support 
for better execution performance. Detail design of each module will be described in the 
follow sections. 
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3.4.1 Interpolation processing 

In the MPEG4 standard, it not only computes motion vector for compressing on 
pixel level, but also takes consider of the half-pixel level to find out better motion 
vector for better coding efficiency. Since there are two modules: motion estimation, 
motion complementation will reference the half pixel frame. As a result, at this moment, 
this interpolation module will be implemented individually instead of on–the-fly 
architecture. The follow figure and table shows out our proposed dual-core 
interpolation module. 

 
Fig 19 Dual-core interpolation processing scheme 
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Table 6 Description of DSP interpolation processing module 

Step Description 
1 Process the frame in scanline order 
2 Control module decides to dispatch next job to DSP 
3 Transfer MB data and control parameter to DSP 
4 DSP enters interpolation process 
5 After interpolation, DSP asserts an interrupt 
6 MCU executes handler routine 
7 Control module decides next step 
8 Integrate results from DSP 
9 Control module decides to dispatch next job to MCU 
10 Integrate results from MCU 
11 The encoding loop repeats, until all jobs have been completed 

 

Table 7 Specification of DSP interpolation processing 

Specification of DSP interpolation module 

DSP  
Input 

1. One extension source macroblock data 
 One Y data macroblock (16*16*2 bytes) 

2. Rounding parameter for DSP interpolation  
 2 bytes 

DSP  
output 

1. Interpolated macroblock in horizontal 
 One Y data macroblock (16*16*2 bytes) 

2. Interpolated macroblock in vertical 
 One Y data macroblock (16*16*2 bytes) 

3. Interpolated macroblock in horizontal and vertical 
 One Y data macroblock (16*16*2 bytes) 

  
Our proposed architecture of dual-core interpolation module is similar to the 

architecture of dual-core I macroblock encoding which mentioned before. This is 
because these modules were constructed based on the same communication architecture 
which adopts the DSP interface module between ARM and DSP. As a result, only the 
main execution flow and main features of this dual-core interpolation architecture will 
be discussed in the follow.    
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Before this module start works, the task unit in each reference frame must be 
defined first. It is similar as before that macroblocks in the reference frame will be 
treated as task units. And there is one thing need to notify that since DSP core can’t see 
the whole frame, so that ARM needs to prepare all relational data to DSP. Thus, since 
our goal is to receive the computation results in macroblock level from DSP, transfer 
content will includes not only the data of reference macroblock, but also the boundary 
of this macroblock for computation need. The follow figure shows an example to 
realize this condition. If results of 2x2 size blocks are expected, it needs to transfer a 
3x3 size block to DSP for interpolation processing.  
 

 

Fig 20 Example of interpolation processing on DSP 

After task unit has been defined in this dual-core interpolation processing, then 
this module can start to dispatch the first job to DSP; and then ARM will execute next 
job and fall into a processing loop. Each time when DSP complete its job, DSP will 
assert an interrupt to ARM. When ARM receives the interrupt event, it starts to receive 
three interpolated reference macroblock computation results from DSP. After receiving 
computation results, the control module will decide whether if dispatch next job to DSP. 
Until all tasks in the reference frame have completed, then the encoder will exit this 
dual-core interpolation module. By the way, the control module in this architecture is 
similar to the control module in the dual-core I macroblock encoding module. Each 
time when ARM and DSP want to clan a task to execute, control module will update the 
global progress status and corresponding control parameters, and thus hold the 
execution flow running exactly.  
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Fig 21 DMA architecture for dual-core interpolation processing 

 
Besides improving performance by DSP, DMA module can also added to this 

dual-core architecture to improve transfer. Since there three interpolated reference 
macroblocks need to be receive from DSP, some modifications are needed to let our 
DMA control architecture to fit the need. The above figure represents that how to use 
system DMA module to receive three interpolated macroblocks from DSP with one 
system DMA channel.  

3.4.2 Motion estimation 

In the video compression, motion estimation play an important role to reduce the 
temporal redundancy that may exist within a video sequence, while spatial redundancy 
is reduced by other techniques such as DCT. Generally speaking, it is the technique to 
provide the sum of absolute difference (SAD) and the corresponding location (motion 
vector) between a 16x16 reference block and some blocks in a reference frame for 
video compression. Therefore, for an efficient video coding, a robust motion estimation 
technique is required. The motion estimation usually takes a very long processing time 
and thus, we will improve this module by dual-core processing. The follow figure 
shows the dual-core motion estimation architecture.  
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Fig 22 Dual-core motion estimation scheme 

Table 8 Description of dual core motion estimation processing module 

Step Description 
1 Process the frame in scanline order. 
2 Control module decides to dispatch next job to DSP. 
3 Transfer MB data and control parameter to DSP. 
4 DSP executes Motion Estimation. 
5 Do mode decision. 
6 Continue to do motion estimation in block level. 
7 Mode decision module set as intra mode, and asserts interrupt. 
8 After motion estimation, DSP asserts an interrupt. 
9 MCU executes handler routine. 
10 Control module decides next step. 
11 Integrate results from DSP. 
12 Control module decide let ARM do motion estimation. 
13 Do mode decision. 
14 Continue to do motion estimation in block level. 

15,16 Integrate motion estimation computation result from ARM. 
17 The encoding loop repeats, until all jobs have completed. 
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Table 9 Specification of DSP motion estimation processing 

 
 
 

 

 

 

 

 

 

 

 

 

 
The task units of each frame in this dual-core motion estimation module are still 

defined in macroblocks of the frame. Basically, this motion estimation can be divided 
into two continuous sub-modules. One is search in macroblock level, and the other is 
search in block level, and there is a mode decision module in the middle of these two 
motion search sub-modules. The functionality of this mode decision module is to avoid 
the condition that if motion vector we have found isn’t good enough for compressing, it 
will take more bits on compressing this macroblock than encoding it by intra-coding 
method directly. Generally speaking, in order to avoid wasting time on motion 
estimation while current macroblock is more suitable for intra macroblock encoding 
such as scene change condition, mode decision must works as early as possible. 

  
And there will be a threshold for mode decision module to decide whether 

continue to search in block level right after search in macroblock level or not. In the 
current status, this threshold is decided by two factors, one is the deviation of current 
macroblock, and the other is the SAD result calculated from search in macroblock level. 
Each time while motion search in MB level has completed, it will fall into the mode 
decision module, and then compare the SAD and the deviation value of current 
macroblock to decide what mode it suits. The follow figure describes how mode 
decision module works. 

Specification of DSP Motion Estimation module 

DSP  
Input 

1. One current macroblock 
 One Y data macroblock (16*16*2 bytes) 

2. Four reference frames 
 Reference frame (48*48*2 bytes) 
 Reference frame in horizontal (48*48*2 bytes) 
 Reference frame in vertical (48*48*2 bytes) 
 Reference frame in horizontal and vertical 

(48*48*2 bytes) 

DSP  
output 

1. One set of motion vector  
 4*2 bytes 

2. SAD result  
 4 bytes 

3. Motion Estimation execution status  
 2 bytes 
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Fig 23 Mode decision module 

After brief description about the execution flow of motion estimation, then the 
dual-core execution flow will be discussed. At first, control module dispatch the first 
job to DSP including of current macroblock, reference frames and some control 
parameters. And ARM will do next jobs and fall into an encoding loop. As same as 
architectures mentioned before, ARM and DSP will execute their jobs which dispatched 
by control module in parallel. And after motion search has completed, it will return the 
motion vectors, corresponding SADs, and ME execution status if it executed in DSP. 
The ME execution status records the result of mode decision module in the side of DSP 
core. Through implement on proposed dual-core method, this most computation 
intensive module takes full advantage of dual-core platform and thus become more 
efficient than before. After integrating all computation results in this frame, it will then 
encode the motion vector mode of these task units, and then the dual-core motion 
estimation module finished.  

 
About our motion estimation algorithm, in order to get balance between efficiency, 

accuracy, and TI DSP C55X hardware extension image library, we adopt the four step 
hierarchy search algorithm. This motion search algorithm are adopted whether search in 
macroblock level or search in block level. And the reference frame size as 48*48 pixels 
and search range is from -16 to +16. The search pattern of our motion estimation 
algorithm is shown in the follow figure and the detail algorithm is as follows. 
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Fig 24 Four step hierarchy search algorithm 

Step one: At first, search start at the position of (0, 0) motion vector. And then 
searches nine search positions with distance eight, and decide the best match point 
according to which SAD is minimal between these search points as the starting point 
for next step search.  

 
 
Step two: According to the best match point decided by step one; it still searches 

nine points corresponding to the starting point with distance four, and decide the best 
match point as the starting point for next step search. 

 
Step three: Same, according to the best match point decided by step two; it still 

searches nine points corresponding to the starting point with distance two and then 
decide the best starting point for next step search. 

 
Step four: According to the best match point decided by step three; it still searches 

nine points corresponding to the starting point with distance one. Then, we will choose 
the best match point as the starting point for next step search – half pixel refine. 

 
Step five: According to the best match point decided by step four; it will do half 

pixel refine. It is like the search pattern in step four, but the reference frames will be 
changed according to the corresponding search point when it performs search. 

 
Final step: After these search, it returns the best motion vector and corresponding 

SAD result, and then finish this motion search algorithm. 
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DMA module also can be used to reduce transfer time in this architecture. Since 
that our motion estimation algorithm searches in full pixel level and half pixel level. 
ARM need to transfer full pixel reference frame and half pixel reference frames to DSP 
for motion estimation processing. The follow figure shows the DMA transfer module 
for dual-core motion estimation processing with one system channel. 

 

Fig 25 DMA architecture for motion estimation processing 

 
Besides above architecture, we also implement other method to improve 

performance. We observe that each time while job dispatched to DSP, DSP is in idle 
status before transferring of all reference frames including of frames in half pixel to 
DSP has completed. Since DSP has great computation performance, so that we use DSP 
to computes reference frames in half pixel from reference frame in full pixel instead of 
just stays in idle status. And from the experiment, this way will be faster than waiting 
for receiving all reference frames in half pixel from ARM. The follow figure describes 
this method.  
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Fig 26 Motion estimation with on-the-fly architecture on DSP 

Through this method, each time when dispatching jobs to DSP, it just needs to 
transfer one reference frame in full pixel to DSP, and after DSP receives the reference 
frame in full pixel, it interpolate this reference frame and thus gets three reference 
frames in half pixel for motion estimation. The follow table defines the inputs and 
outputs of DSP module while implement this method. And there are something need to 
notify, there is a difference of the reference frame size we transfer to DSP has became 
49 pixels * 49 pixels. This is for interpolation concern which mentioned in DSP 
interpolation module before.  

Table 10 Specification of DSP ME processing with interpolation on the fly 

Specification of DSP Motion Estimation module 

DSP Input 

1. One current macroblock 
 One Y data macroblock (16*16*2 bytes) 

2. One reference frame 
 Reference frame (49*49*2 bytes) 

3. Rounding parameter for interpolation in ME 
 2 bytes 

DSP output 

1. One set of motion vector  
 4*2 bytes 

2. SAD result  
 4 bytes 

3. Motion Estimation execution status  
 2 bytes 
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Through this method, if DMA module is adopted to improve the transfer of 
reference frame from ARM to DSP, its control architecture will become easier than 
before. Since its need is just to transfer the reference frame in full pixel only, the 
numbers of setting DMA control module will be decrease to just one time only.  

3.4.3 Inter macroblock encoding 

As same as I macroblock encoding in intra frame processing, there is also a 
transform coding module in inter frame processing. And there are some differences 
between these two encodings. First, in this P macroblock encoding, our input changes 
as the residuals between current frame and last frame. Second, the control flow of P 
macroblock encoding is more complex than I macroblock encoding. There are I 
macroblock encodings and P macroblock encodings in the inter frame processing 
according to result of the mode decision module in the motion estimation processing. In 
order to handle these encodings in parallel and reasonable for transform coding of inter 
frame, our design is to combine these two encodings in this architecture. As a result, 
before we dispatch jobs to ARM or DSP, we will check this macroblock’s feature for 
executing proper function module. It also means that we define the P macroblock 
encoding as a series of processing of FDCT, Quantization, Dequantization, and IDCT 
for the same reason of I macroblock encoding. The follow figure and tables shows and 
describes the dual-core inter macroblock encoding architecture.  

 

Fig 27 Inter macroblock encoding scheme 
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Table 11 Description of dual-core P MB encoding module 

Step Description 
1 Process the frame in scanline order 
2 Control module decide to dispatch next job to DSP 
3 Transfer MB data and control parameter to DSP 
4 DSP interface decide to do I MB encoding 
5 After DSP completing I MB encoding, it asserts interrupt. 
6 DSP interface decide to do P MB encoding 
7 After DSP completing P MB encoding, it asserts interrupt. 
8 MCU executes handler routine. 
9 Control module decides next step. 
10 Integrate results from DSP. 
11 Control module decides to let ARM do I MB encoding. 
12 Integrate the computation result from ARM. 
13 Control module decides to let ARM do P MB encoding. 
14 Integrate the computation result from ARM. 
15 The encoding loop repeats, until all jobs have completed 

Table 12 Specification of DSP P MB encoding 

Specification of DSP P macroblock encoding 

DSP Input 

1. One source macroblock data 
 Four Y data blocks (8*8*4*2 bytes) 
 One U data blocks (8*8*2 bytes) 
 One V data blocks (8*8*2 bytes) 

2. QP parameter for DSP quantization  
 2 bytes 

DSP output 

1. One Q coefficient macroblock data 
 Four Y data blocks (8*8*4*2 bytes) 
 One U data blocks (8*8*2 bytes) 
 One V data blocks (8*8*2 bytes) 

2. One reconstructed macroblock data 
(transfer according to execution status) 

 Four Y data blocks (8*8*4*2 bytes) 
 One U data blocks (8*8*2 bytes) 
 One V data blocks (8*8*2 bytes)  

3. P MB encoding execution status 
 2 bytes 
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From the above execution flow figure, this module’s dual architecture is similar to 
the dual-core intra I MB encoding with extra P MB encoding module. The main feature 
of this P MB encoding is that it may decide whether to do Dequantization and IDCT or 
not according to the status of quantization result. In the follow figure, it shows the 
detail execution flow of these two transform encoding component in this dual-core 
module. In the middle of the figure is the control module which decides either I MB 
encoding or P MB encoding need to be performed. And the modules in left side and 
right side show the detail execution flow of each module. And if P MB encoding is 
performed, the condition of getting different amounts of DSP computation result will 
occur, and thus, it will have less transfer of computation result from DSP than I MB 
encoding.  

 

Fig 28 Execution flow in Inter macroblock encoding scheme 

 DMA module is still used to improve this architecture, there are two 
implementation method for this module, one is as same as I macroblock encoding DMA 
module which may have redundant transfer but has lower complexity on DMA handler, 
and the other one is shown in the follow figure. There is an issue between these two 
methods, since P macroblock encoding sometimes doesn’t reconstruct blocks from Q 
coefficients, we may let DMA module ignores these transfers for efficiency. But if we 
make our DMA module support the detection of whether transfer each block or not, our 
DMA control module will become more complex and thus may decrease DMA 
performance. This is because we should concern with the overhead of DMA module 
and interrupt overhead. So that before we finalize our design, we reference the 
implement results of these two methods, and find that the DMA module support 
detection has better performance. 
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Fig 29 DMA architecture for dual-core P MB encoding 
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Chapter 4 Implementation using DSP Hardware 

Extension for Video Coding 

The TMS320C55x DSP core was created with an open architecture that allows the 
addition of application-specific hardware to boost performance on specific algorithms. 
And the TI C55x IMGLIB is an optimized image/video processing functions library for 
C programmers using TMS320C55x devices. It includes many C-callable, 
assembly-optimized, general-purpose image/video processing routines. This library is 
implemented by using the TI C55x hardware extension set, so that through this 
IMGLIB library, we can utilize the max power of TI C55x easily. And these routines 
are typically used in computationally intensive real-time applications where optimal 
execution speed is critical. By using these routines, it will help us to achieve execution 
speeds considerably faster than equivalent code written in standard ANSI C language. 
In addition, by providing ready-to-use DSP functions, TI IMGLIB may shorten our 
image/video processing application development time. The TI C55x IMGLIB contains 
commonly used image/video processing routines. And it also provides source code for 
us to modify functions to match our specific needs. There are many application fields it 
provides, and since our focus is on the compressing application at this moment, so that 
we will describe how to use this motion estimation, interpolation, FDCT, and IDCT 
algorithms in TI IMGLIB library which implement in TI DSP hardware extension set. 

4.1 FDCT module and IDCT module 

In the TI C55x IMGLIB library, it provides DCT and IDCT algorithms which is 
implemented in TI DSP C55x hardware extension set. We can use these two modules to 
improve our design in I macroblock encoding, and P macroblock encoding. We can 
instead our own FDCT and IDCT modules by TI IMGLIB’s DCT and IDCT modules. 
The follow two tables show the specification of FDCT and IDCT modules. 
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Table 13 Specification of FDCT with HW extensions 

FDCT for an 8x8 Image using built-in hardware extensions 
Syntax void IMG_fdct_8x8(short *fdct_data, short *inter_buffer); 

Inputs: 
 fdct_data: Points to a short format array [0…63] containing 

an 8x8 macroblocks row by row. Data format is Q16.0. 
 inter_buffer: Points to a short format array [0...71] used as 

a temporary buffer that contains intermediate results in the 
transform. 

Outputs: 

Arguments 

 fdct_data: Points to a short format array [0…63] containing 
the results of 2-D DCT for the macro-block. Data format is 
Q16.0. 

Description 

The routine IMG_fdct_8x8 implements the Forward Discrete Cosine 
Transform (FDCT) using built-in hardware extensions for an 8x8 
image block. Input terms are expected to be signed Q16.0 values, 

producing signed Q16.0 results. 

 

Table 14 Specification of IDCT with HW extensions 

IDCT for an 8x8 image block using built-in hardware extensions 
Syntax void IMG_idct_8x8(short *idct_data, short *inter_buffer); 

Inputs: 
 idct_data: Points to a short format array [0...63] containing 

an 8x8 macro-block row by row. Data format is Q13.3. 
 inter_buffer: Points to a short format array [0...71] used as 

a temporary buffer that contains intermediate results in the 
transform. 

Outputs: 

Arguments 

 idct_data: Points to a short format array [0..63] containing the 
results of 2-D IDCT for the input block. Data format is Q16.0. 

Description 
The routine IMG_idct_8x8 implements the Inverse Discrete Cosine 

Transform (IDCT) using built-in hardware extensions for an 8x8 
image block. Input terms are expected to be signed Q13.3 values, 
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producing signed Q16.0 results. 
 
 
After realizing these specifications, we can find that their input and output are 

similar to our original design. So, in IMGLIB’s FDCT module, there should be a source 
block data and one temp buffer for it, and then take it instead of our FDCT module 
directly. But in IMGLIB’s IDCT module, there is one thing need to be notified that its 
input data format is Q13.3, so that we must adjust our input of Q coefficients from Q16 
format into Q13.3 format to fit the specification. The follow figure shows how to 
perform format conversion from Q16 format to Q13.3 format by shifting. 

 

Fig 30 Format conversion 

After realizing corresponding background, the follow figure shows how to add 
FDCT and IDCT hardware extension set modules into our I MB encoding, and P MB 
encoding.  
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Fig 31 Macroblock encoding with built-in hardware extension support 

 

4.2 Interpolation module 

 There is an interpolation module in IMGLIB, it implements pixel interpolation for 
a 16x16 source block located in reference window using built-in hardware extensions. 
As a result, this module can be used to instead our original interpolation module for 
accelerating computations.  
 
 Before we use this module, there is an issue need us to think. The design in our 
visual encoder processes pixels in 16-bit width for the concern of processing in ARM 
and DSP which we mentioned before. But this interpolation module in IMGLIB 
processes two pixels data in 16-bit width. As a result, before we use this module, some 
format conversion to fit its specification is needed, and this operations decrease 
performance. But in the other hand, if we process pixels data in 8-bit width, this will 
increase the complexity of function modules in DSP side which don’t have 
corresponding hardware extension set support. So, this exist a tradeoff. By the way, 
FDCT and IDCT modules don’t have such issue; this is because they process source 
data in 16-bit width in theory. And then, we can know its specification of this module 
from the follow table. 
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Table 15 Specification of Interpolation with HW extensions 

Pixel Interpolation for 16x16 Image block using built-in hardware extensions 

Syntax 
IMG_pix_inter_16x16(short *reference_window, short 
*pixel_inter_block, int offset, short *align_variable); 

Inputs: 
 reference_window: Points to a packed integer format 

buffer [0...1152] that contains a 48x48 image block row 
by row. Must be doubleword aligned. Every four pixels 
are packed into one 32-bit doubleword. Data format 
Q16.0. 

 offset: Specifies the top-left corner index of the 18x18 
MBE (MBE=16x16 macroblock + extension) in 
reference_window. Offset is even because of the 
doubleword alignment. 

 align_variable: Configures four alignment cases of the 
MBE in the reference_window. 

Outputs: 

Arguments 

 pixel_inter_block: Points to a packed integer format 
buffer [0...612] that contains the 36x34 interpolated 
result. Only the lower 33x33 part that corresponds to the 
whole 36x34 interpolated zone is usually used. Every 
four pixels are packed into one 32-bit doubleword. 

Description 

The routine IMG_pix_inter_16x16 implements pixel interpolation 
for a 16x16 source block located in reference_window using 

built-in hardware extensions and it is useful in video compression. 
To implement full interpolation for the 16x16 source block, the 
18x18 MBE (MBE=16x16 macroblock + extension) is needed. 

The full interpolated zone is composed of 36x34 pixels, but only 
the lower 33x33 part corresponding to the full interpolated zone is 

usually interested. 
 
In this specification, we can see that it supports some align modes for us to use. 

We can choose the align mode which is most fit for our architecture to implement. In 
the format of input reference frame, it announces large space to put source data, and 
just use the size of macroblock to interpolate. The purpose of this design is that, TI’s 
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IMGLIB want to corresponding modules to help each other. So, this design will help 
the motion estimation module to do half refine, since they have the identical size of 
reference frame. But in our own design, we design the interpolation module as an 
individual module, so there are some modifications need to be performed before using 
this interpolation in IMBLIB. 

 

 

Fig 32 Interpolation processing with built-in hardware extension support 

 
 We can see the above figure to realize the execution flow of using IMGLIB’s 
interpolation module. At first, we need to adjust our input source macroblock from one 
pixel in 16-bit width to two pixels in 16-bit width. And then put it into corresponding 
position in the specific input buffer as the input of IMGLIB’s interpolation module. 
Because there is a little difference of the computation behavior between these two 
modules, so that we will shift right 1 pixel unit for exactness. And there are two 
important control parameters which we must set by ourselves. The first one is the 
rounding signal; it decides whether do rounding in this interpolation, the default value 
in IMGLIB is enabling. The second one is the output format; it decides the arrangement 
of the interpolation module’s output. 

4.3 Motion estimation module 

 Motion estimation is the most time-consuming part in video compression 
algorithms such as MPEG4 and H263. So that, it is no doubt that there will be a motion 
estimation module in IMGIB. The follow table shows the specification of this motion 
estimation module. And its motion estimation algorithm is as same as our motion 
estimation algorithm: four step hierarchy search algorithm.  
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Table 16 Specification of ME in HW extensions 

Motion Estimation by 4-step search using built-in hardware extensions 

Syntax 
IMG_mad_16x16_4step(short *src_data, short *search_window,

unsigned int *match); 
Inputs: 

 src_data: Points to a packed integer format buffer 
[0…128] that contains 16x16 source data row by row. 
Data format is Q16.0. Every two pixels are packed into 
one 16-bit integer. 

 search_window: Points to a packed integer format buffer 
[0...1152] that contains the 48x48 search-window row 
by row. Data format is Q16.0. Every two pixels are 
packed into one 16-bit integer. 

Outputs: 
Arguments 

 match [2]: The location of the best match block is 
packed in match[0]. The upper halfword contains the 
horizontal pixel position, and the lower halfword 
contains the vertical pixel position of the best matching 
16x16 block in the search window. The minimum 
absolute difference value at the best match location is 
packed in match [1]. 

Description 

The routine IMG_mad_16x16_4step implements the motion 
estimation by 4-step (distance=8, 4, 2, 1) search using built-in 

hardware extensions. The 4-step search is a popular fast searching 
technique. Input terms are packed in 16-bit integers and 

doubleword aligned. Input and output data format is Q16.0. 
  

Before using this motion estimation module to improve our codec, there are 
something need to pay attentions. Generally, one often calculate the motion vectors by 
comparing with the center point of the reference frame. But, in this built-in hardware 
extension motion estimation module, it calculates the motion vectors by comparing 
with the left top point of the reference frame. So some compensation to its motion 
vector to fit our codec is needed. The follow figure shows the execution flow of our 
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motion estimation module with built-in hardware extension module. 

 

Fig 33 Motion estimation with built-in hardware extension support 

 From the above figure, it shows how to add IMGLIB’s motion estimation module 
to our architecture. Our own motion estimation module is replaced by IMGLIB’s 
motion estimation module with some adjust of inputs and outputs. And thus, it gets 
better performance from the support of built-in HW extensions. 
 

In fact, we just complete partial of the motion estimation module with built in 
hardware extension motion estimation module. Because we face the conditions of 
implementation time and little information about the instruction set of the     
hardware extension set now. As a result, we just use the IMGLIB provided by TI, and 
follow the rules provided by IMGLIB. So that since we haven’t know the detail 
specifications and algorithms of remain motion search modules provided by IMGLIB, 
we can’ add them into our motion estimation architecture. We will improve this 
condition in the future.  
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Chapter 5 Experimental results 

Some experimental results are shown in this section. The QCIF version of the 
Stefan sequence is used for the experiments. The first 150 frames of this sequence is 
encoded and the target bit rate is set at 96 kbps. The test environment are configured 
similarly to the general test environment which often used by TI on OMAP platforms. 
The follow table shows the main features of the test environment in this experiment. On 
the ARM side, the main program is stored in SDRAM, and the SRAM is used as the 
frame buffer for the LCD controller. On the DSP side, main program sections are put in 
the SARAM, and data sections are put on the DARAM. And the MPUI mode is set as 
shared mode for ARM core to access DSP core’s memory. 

Table 17 Setup of experiment environment 

Experiment environment 

ARM core  150 MHz 

DSP core 150 MHz 

Traffic controller 75MHz 

System DMA No burst, 16-bit width 

5.1 Experiment of Intra frame processing 

5.1.1 Overall result 

In this section, the main goal is to experiment with the I MB encoding module, and 
the encoding mode of all frames are set as intra frame mode for intra frame processing 
experiment. The implementation result and improvement will be shown step by step 
here.  

Execution with pure ARM core 

At first, we see the experiment result of Intra frame processing. The follow table 
shows the implementation result of execution on ARM core alone. Thus, we can know 
the original performance of our codec which ported from PC on intra frame processing. 

Table 18 Experiment result of pure ARM core 

Qcif,150 I frames Execution time (ms) Percentage 
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Initialization 236 0.735 
Coding 4111 12.793 
Sequence conversion 1684 5.241 
Prediction 2631 8.190 
DCT/Q/Q-1 /IDCT 22297 69.396 
Total 30963 100 
Encoding frame rate =4.7 

Execution with pure DSP core 

The follow table shows the implementation result of execution on DSP core alone. 
This illustrates the computation ability of the DSP core. 

Table 19 Experiment result of pure DSP core 

Qcif,150 I frames Execution time (ms) Percentage 
Initialization 236 0.885 
Coding 4123 15.455 
Sequence conversion 1683 6.308 
Prediction 2637 9.886 
DCT/Q/Q-1 /IDCT 16811 63.011 
Total 26680 100 
Encoding frame rate =5.6 

Execution with pure DSP core, FIQ 

The follow table shows the implementation result of execution using only the DSP 
core with interrupt mode - FIQ. Through this experiment, it shows that the interrupt 
mode improve the performance of our codec minor.  

 

Table 20 Experiment result of pure DSP core, FIQ 

Qcif,150 I frames Execution time (ms) Percentage 
Initialization 236 0.886 
Coding 4123 15.470 
Sequence conversion 1683 6.314 
Prediction 2637 9.895 
DCT/Q/Q-1 /IDCT 16785 62.974 
Total 26654 100 
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Encoding frame rate = 5.6 

Execution with pure DSP core, FIQ, HW extensions 

The follow table shows the implementation result of execution using only the DSP 
core with interrupt mode – FIQ. And the built-in hardware extension module of DCT 
and IDCT are used for improving I MB encoding. Through this experiment, it shows 
the outstanding performance from the support of hardware extension. 

Table 21 Experiment result of pure DSP core, FIQ, HW extensions 

Qcif,150 I frames Execution time (ms) Percentage 
Initialization 236 1.158 
Coding 4121 20.214 
Sequence conversion 1683 8.255 
Prediction 2638 12.941 
DCT/Q/Q-1 /IDCT 10519 51.598 
Total 20388 100 
Encoding frame rate = 7.4 

Execution with dual-core 

The follow table shows the implementation result of the proposed dual-core 
architecture with interrupt mode – FIQ. And we also use the built-in hardware extension 
module of DCT and IDCT for improving I MB encoding. It shows that this architecture 
will increase efficiency if ARM core take a part to share the computation load from 
DSP core. And the content of A/D in the follow table shows the ratio of tasks executed 
on ARM core and DSP core. 

 
 
 

Table 22 Experiment result of dual-core 

Qcif,150 I frames Execution time (ms) A/D Percentage 
Initialization 236  1.212 
Coding 4133  21.227 
Sequence conversion 1684  8.647 
Prediction 2652  13.622 
DCT/Q/Q-1 /IDCT 9572 1:6.07 49.159 
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Total 19471  100 
Encoding frame rate = 7.7 

Execution with dual-core, DMA 

The follow table shows the implementation result of the proposed dual-core 
architecture with interrupt mode – FIQ. DMA module is used to improve the transfer 
between ARM core and DSP core. And we use the built-in hardware extension module 
of DCT and IDCT for improving I MB encoding. Through this design, ARM can reduce 
the transfer overhead from transfer data to DSP by ARM core support. Instead of 
transfer completely by ARM core, we just let ARM core to set the DMA module for 
transfer and then ARM core can continue its original job. And thus, since ARM have 
more ability to handle its original jobs; we can see the condition that ARM executes 
more jobs of all from the content of A/D. 

Table 23 Experiment result of dual-core with DMA 

Qcif,150 I frames Execution time (ms) A/D Percentage 
Initialization 236  1.266 
Coding 4128  22.147 
Sequence conversion 1685  9.042 
Prediction 2620  14.059 
DCT/Q/Q-1 /IDCT 8765 1:3.71 47.031 
Total 18637  100 
Encoding frame rate =8.0 

Performance comparison 

In the follow table, it lists main experiment result of Intra frame processing and 
show the final improvement ratio on our dual-core architecture.  

 
 

Table 24 Performance comparison 

Module name ARM core DSP core Dual-core 
Dual-core 

with DMA 
Improvement ratio 

DCT/Q/Q-1 

/IDCT 
22297 10519 9572 8765 2.54 

 
From the above table, it shows that execution on DSP alone has higher efficiency 
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than execution on ARM core alone. But even though, dual-core architecture will still 
have the ability to improve the performance. And from the experimental result, one can 
also see that if the system does transfers complete by ARM core’s support, the 
performance increase is minor. But if DMA modules are added to this dual-core 
architecture, the system will have great improvement. 

5.1.2 Profile for dual-core I macroblock encoding module 

After seeing the general results of each module on intra frame processing, we will 
further measure the detail execution status of each module for realizing each module’s 
behavior and its bottlenecks for future improvements.   

 
In the follow figure, it shows the main computation components of dual-core Intra 

macroblock encoding module. The execution time of each module will be measured in 
the follow table. 

 
Fig 34 Profile for dual-core I macroblock encoding module 

Table 25 Experiment result of profile I MB encoding 

Number Execution time (ms) Description 
1 1253 Time in pre-processing 
2 5286 Time in dual-core processing 
3 682 Time in interrupt mode  
4 343 Time in handling DMA handler 
5 122 Time in handling Dual-core handler 
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6 761 Time in transfer data to DSP by DMA 
7 1520 Time in receive data from DSP by DMA 
8 2191 Time in post-processing 

A/D 1:4.18 
Total time 8730 
 
In the above figure, we can generally classify the sequentially execution time into 

three sections. The first one is pre-processing section; in this section it perform the 
operations of adjust the data format of this frame into proper format for intra MB 
encoding.  

 
And the second section is the main dual-core execution section in this I 

macroblock encoding module, it lets ARM core, DSP core and DMA module executes 
in parallel. And there is an interrupt mode component in the figure; this module is 
accessed while either DMA or DSP asserts an interrupt and then the control of ARM 
will fall into corresponding interrupt handler. Besides executing these handlers, there 
are some overheads on handling the interrupt architecture, so that we can see the 
overhead component in this interrupt mode. And by these experiment result, ARM core 
execution time and DSP core execution time can thus be calculated from the follow two 
equations.  

 
ARM core execution time = Execution time of ((2) – (3)) 
DSP core execution time = Execution time of ((2) - ((3) + (6) + (7))) 
 
In the third section, we do format adjustment from the dual-core execution section 

to proper format for later use.  
 
As a result, we can compute these two execution times in the follow table. 

Table 26 Calculated result of profile P MB encoding 

Description 
Execution time (ms)  

or Percentage 

ARM core execution time 4604 

DSP core execution time 2323 

Pre-processing section percentage in this module 14% 

Dual-core execution section percentage in this module 60% 

Post-processing section percentage in this module 25% 
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5.2 Experiment of Inter frame processing 

5.2.1 Overall results 

In this section, the experiments for inter frame processing is presented. The 
encoder prediction pattern used here is IPPP…. The main focus here is to test the 
interpolation module, the motion estimation module, and the transform/quantization 
module. Since dual-core I MB encoding module has been tested before, it will set to 
the fastest mode in this experiment.  

Execution with pure ARM core 

The follow table shows the implementation result of execution on the ARM core 
alone. Thus, the original performance of this codec will be presented. 

 
 

Table 27 Experiment result of pure ARM core 

Qcif, 150 frames (IPPP…) Execution time (ms) Percentage 
Initialization 236 0.140 

Coding 767 0.456 
Set edge 1027 0.610 

Sequence conversion 1686 1.002 
Prediction 70 0.042 

Rate control 3464 2.058 
Motion compensation 4375 2.600 

I MB encoding 60 0.035 
Interpolation 8693 5.166 

Motion estimation 132649 78.831 
DCT/Q/Q-1 /IDCT 13328 7.921 

Total 168270 100 
Encoding frame rate =0.9 

Execution with pure DSP core 

The follow table shows the implementation result of execution on theDSP core 
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alone. 

Table 28 Experiment result of pure DSP core 

Qcif, 150 frames (IPPP…) Execution time (ms) Percentage 
Initialization 236 0.277 

Coding 771 0.903 
Set edge 1027 1.203 

Sequence conversion 1686 1.975 
Prediction 75 0.088 

Rate control 3463 4.057 
Motion compensation 4370 5.120 

I MB encoding 60 0.070 
Interpolation 6917 8.104 

Motion estimation 54712 64.096 
DCT/Q/Q-1 /IDCT 10124 11.861 

Total 83559 100 
Encoding frame rate =1.8 

Execution with pure DSP core, FIQ 

The follow table shows the implementation result of execution using only the DSP 
core with fast interrupt mode. 

 

Table 29 Experiment result of pure DSP core, FIQ 

Qcif, 150 frames (IPPP…) Execution time (ms) Percentage 
Initialization 236 0.277 

Coding 779 0.913 
Set edge 1027 1.203 

Sequence conversion 1686 1.975 
Prediction 74 0.086 

Rate control 3463 4.058 
Motion compensation 4370 5.120 

I MB encoding 58 0.068 
Interpolation 6908 8.093 

Motion estimation 54703 64.092 
DCT/Q/Q-1 /IDCT 10118 11.854 

Total 85351 100 
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Encoding frame rate =1.8 

Execution with pure DSP core, FIQ, HW extensions 

The follow table shows the implementation result of execution using only the DSP 
core with fast interrupt mode and built-in hardware extensions. 

 

Table 30 Experiment result of pure DSP core, FIQ, HW extensions 

Qcif, 150 frames (IPPP…) Execution time (ms) Percentage 
Initialization 236 0.309 

Coding 783 1.024 
Set edge 1028 1.344 

Sequence conversion 1686 2.205 
Prediction 73 0.095 

Rate control 3464 4.530 
Motion compensation 4373 5.719 

I MB encoding 58 0.076 
Interpolation 6695 8.755 

Motion estimation 50745 66.362 
P MB encoding 5409 7.074 

Total 76466 100 
Encoding frame rate =2.0 

Execution with dual-core 

The follow table shows the implementation result of execution on the proposed 
dual-core architecture with fast interrupt mode and built-in hardware extensions. 

 

Table 31 Experiment result of dual-core core 

Qcif, 150 frames (IPPP…) Execution time (ms) A/D Percentage 
Initialization 236  0.324 

Coding 768  1.053 
Set edge 1029  1.411 

Sequence conversion 1686  2.311 
Prediction 72  0.098 

Rate control 3464  4.749 
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Motion compensation 4375  5.999 
I MB encoding 58  0.080 
Interpolation 6505 1:18.8 8.919 

Motion estimation 48013 1:15.299 65.828 
P MB encoding 4814 1:6.35 6.600 

Total 72937   
Encoding frame rate =2.0 

Execution with dual-core, DMA 

The follow table shows the implementation result of execution on the proposed 
dual-core architecture with fast interrupt mode and built-in hardware extensions. And 
DMA module is used to help the transfer between ARM and DSP.  

 

Table 32 Experiment result of dual-core with DMA 

Qcif, 150 frames (IPPP…) Execution time (ms) A/D Percentage 
Initialization 236  0.461 

Coding 787  1.537 
Set edge 1027  2.006 

Sequence conversion 1686  3.292 
Prediction 74  0.145 

Rate control 3464  6.764 
Motion compensation 4370  8.534 

I MB encoding 58  0.114 
Interpolation 5026 1:2.96 9.816 

Motion estimation 28209 1:4.31 55.088 
DCT/Q/Q-1 /IDCT 4343 1:3.85 8.481 

Total 51207  100 
Encoding frame rate =2.9 

Execution with dual-core, DMA, ME with interpolate on the fly 

The follow table shows the implementation result of execution on our proposed 
dual-core architecture with fast interrupt mode and built-in hardware extensions. And 
DMA module is used to help the transfer between ARM and DSP. Besides, motion 
estimation module which interpolates half-pixel reference frames on-the-fly is adopted 
to reduce the load of transfer. 
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Table 33 Experiment result of dual-core, DMA, enhanced ME 

Qcif, 150 frames (IPPP…) Execution time (ms) A/D Percentage 
Initialization 236  0.556 

Coding 803  1.891 
Set edge 1025  2.414 

Sequence conversion 1686  3.969 
Prediction 70  0.164 

Rate control 3464  8.156 
Motion compensation 4375  10.302 

I MB encoding 59  0.139 
Interpolation 5185 1:3.12 12.209 

Motion estimation 19212 1:6.59 45.238 
DCT/Q/Q-1 /IDCT 4430 1:3.82 10.430 

Total 42468  100 
Encoding frame rate =3.5 

Performance comparison 

And in the follow table, here lists some experiment results of Inter frame 
processing to show the improvement ratio of our dual-core architecture.  

Table 34 Performance comparison 

Module name ARM core DSP core Dual-core 
Dual-core 

with DMA 

Improvement 

ratio 

Interpolation 8693 6695 6505 5026 1.67 

Motion estimation 132649 50745 48013 
28209 

19212(OTF) 
6.90 

DCT/Q/Q-1 /IDCT 13328 5409 4814 4343 3.00 

From the above table, it shows that the dual-core architecture perform great 
performance on inter frame processing. And after the use of DMA module, the 
dual-core architecture becomes more efficient. 

5.2.2 Profile for dual-core Interpolation module 

The follow figure shows the main computation components of dual-core 
Interpolation module with the fastest mode experimented before. And the follow table 
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shows the execution time of each component in this module. 

 
Fig 35 profile for dual-core Interpolation module 

Table 35 Experiment result of profile interpolation module 

Number Execution time (ms) Description 
1 2106 Time in boundary interpolation 
2 2919 Time in dual-core processing 
3 808 Time in interrupt mode  
4 444 Time in handling DMA handler 
5 114 Time in handling Dual-core handler 
6 541 Time in transfer data to DSP by DMA 
7 1458 Time in receive data from DSP by DMA 

A/D 1:2.95 
Total time 5025 

  
The operation of boundary interpolation is to interpolate the margin of each frame, 

since its computation complexity is lower, so that in our implementation it is not 
included in the dual-core execution modules.  Besides, the transfer overhead may be 
greater than the performance gain from execution with DSP support. The results are 
shown in Table 36. 
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Table 36 Calculated result of profile interpolation module 

Description Execution time (ms) or Percentage 

ARM core execution time 2111 

DSP core execution time 112 

Boundary interpolation section percentage 41% 

Dual-core execution section percentage 58% 

 
From the above tables, we can find that the transfer time of DMA is greater than 

DSP core execution time. In fact, while we implement the dual-core interpolation 
module in the early stage, we sometimes face the condition that the performance 
decreases than execution on pure ARM core. Because the transfer overhead is very 
large, so that we can take the computation complexity of this module as a frame of 
reference before we implement other dual-core modules.   

5.2.3 Profile for dual-core Motion Estimation module 

The follow figure shows the main computation components of dual-core Motion 
estimation module with the fastest mode we experimented before. We have measured 
the motion estimation and the motion estimation with interpolation on the fly modules. 

 
Fig 36 Profile for dual-core Motion Estimation module 
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The operations of post processing here are deciding the motion vector mode of 

each macroblock after motion estimation. At first, it shows the result of motion 
estimation without interpolation on the fly on the DSP side.  

Table 37 Experiment result of profile Motion estimation module 

Number Execution time (ms) Description 
1 28303 Time in dual-core processing 
2 1406 Time in interrupt mode  
3 726 Time in handling DMA handler 
4 292 Time in handling Dual-core handler 
5 19269 Time in transfer data to DSP by DMA 
6 499 Time in post processing 

A/D 4.19 
Total time 28803 

 

Table 38 Calculated result of profile Motion estimation module 

Description Execution time (ms) or Percentage 

ARM core execution time 26897 

DSP core execution time 7628 

Dual-core execution section percentage 98% 

Post processing section percentage 1% 

  
The results in the above table were calculated from the above table. It shows that 

the transfer time is greater than the DSP core execution time. Obviously, this 
implementation does not take full advantage of the DSP core.  Therefore, we have 
implemented another one motion estimation method.  
 

The follow tables are the results of motion estimation with interpolation on the fly 
on the DSP side.  
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Table 39 Experiment result of profile Motion estimation module 

Number Execution time (ms) Description 
1 18599 Time in dual-core processing 
2 683 Time in interrupt mode  
3 217 Time in handling DMA handler 
4 292 Time in handling Dual-core handler 
5 5810 Time in transfer data to DSP by DMA 
6 489 Time in post processing 

A/D 6.58 
Total time 19088 

 

Table 40 Calculated result of profile Motion estimation module 

Description Execution time (ms) or Percentage 

ARM core execution time 17916 

DSP core execution time 12106 

Dual-core execution section percentage 97% 

Post processing section percentage 2% 

 
From the above tables, it illustrates that the DSP core execution time increases and 

the transfer time decreases. It also shows the DSP core’s computation ability is much 
greater than the transfer ability of system DMA in our experiment environment. As a 
result, this method has been adopted as our final implementation. 

 
 

5.2.4 Profile for dual-core P macroblock encoding module 

The follow figure shows the main computation components of dual-core P 
macroblock processing module with the fastest mode we mentioned before. 
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Fig 37 Profile for dual-core P macroblock encoding module 

We experimented with two different implementations of DMA control modules in 
this thesis. The first one transfers all memory section of the reconstructed frames from 
DSP to ARM. This implementation has lower complexity of DMA handler, but 
increases the amount of redundant transfer. The second implementation transfers 
memory sections of the reconstructed frames from DSP to ARM according to its 
encoding status. Although this approach makes the DMA handler more complex, it 
removes redundant data transfer. 

 
 The follow two tables show the result of transfer with redundant transfer. 
 

Table 41 Experiment result of profile P MB encoding 

Number Execution time (ms) Description 
1 4261 Time in dual-core processing 
2 689 Time in interrupt mode  
3 357 Time in handling DMA handler 
4 126 Time in handling Dual-core handler 
5 727 Time in transfer data to DSP by DMA 
6 1452 Time in receive data from DSP by DMA 
7 523 Time in post-processing 

A/D 3.11 
Total time 4785 
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Table 42 Calculated result of profile P MB encoding 

Description Execution time (ms) or Percentage 

ARM core execution time 3572 

DSP core execution time 1393 

Dual-core execution section percentage 89% 

Post processing section percentage 10% 

 
And the follow two tables show the result of transfer without redundant transfer. 

Table 43 Experiment result of profile P MB encoding 

Number Execution time (ms) Description 
1 3813 Time in dual-core processing 
2 742 Time in interrupt mode  
3 397 Time in handling DMA handler 
4 136 Time in handling Dual-core handler 
5 756 Time in transfer data to DSP by DMA 
6 895 Time in receive data from DSP by DMA 
7 526 Time in post-processing 

A/D 3.74 
Total time 4341 

 

Table 44 Calculated result of profile P MB encoding 

Description Execution time (ms) or Percentage 

ARM core execution time 3071 

DSP core execution time 1420 

Dual-core execution section percentage 87% 

Post processing section percentage 12% 

 
Obviously, it shows that the implementation which transfers data without 

redundancy is more efficient, although the overhead of the DMA handler becomes more 
complex than the other method, but its overall performance gain is better than the 
implementation redundant transfer. 
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Chapter 6 Conclusions and Future Works   

From these experiments, one can see that the proposed dual-core codec partitioning 
framework achieves better performance than using the DSP core alone.  The thesis 
also shows that data transfer overhead between the RISC core and the DSP core is 
crucial to the performance of the system. Efficient use of DMA module for data transfer 
also plays an important role in this framework. For future improvements, instead of 
executing jobs at frame-level, data structures and execution flows of our codec should 
be modified for execution at slice-level or macroblock-level. This allows the 
combination of multiple function modules into one single module and reduces large 
data transfer overhead. Fig. 38 shows this concept, the left-hand side of the figure 
shows current execution flow, and the right-hand side shows the improved architecture 
for future work. 

 

Fig 38 Architecture of future work 

In our current design, motion compensation module is running on the RISC core 
alone.  With the above-mentioned modification, the motion estimatin/compensation 
subtasks can be completely hosted on the same core (either RISC or DSP) without extra 
data transfer overhead. 

In addition, as demonstrated by many researches, employing dual buffer 
mechanism on the DSP core can increase memory bandwidth greatly. This is a key 
technique to improve system performance. It can be expected that we can also use 
similar design to increase performance of our design, since one of the major bottleneck 
of the proposed dual-core framework is from the limited memory bandwidth between 
the RISC core and the DSP core. 
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Finally, the research conducted in this thesis is a prelude to the design of a dynamic 
scheduling kernel for asymmetric multiple processors (AMP) platforms.  Based on the 
experiments conducted in this thesis and the simple shell-like DSP command processor 
developed for this work, one can design an AMP kernel that dispatch tasks to different 
processor cores on the fly. 
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