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摘   要 

 

    本研究之主要目標在使用 T1 權重和擴散張量磁振造影影像來建立腦部影像模板。

近年來的研究中，許多腦部影像模板是建構在一個名為 ICBM-152 的模板空間，例如：

ICBM452、ICBM DTI-81 和 IIT DT 腦影像模板。然而，除了個人化變異之外，腦部結

構會受種族、性別、年齡或疾病的影響而有所差異。因此，我們發展了一套系統流程，

可針對所研究的族群建構其腦影像模板。為了減少在建構模板過程中所造成的影像失真，

我們使用了對稱且微分同構的對位演算法，以同時提供正、逆形變場。另外，我們也提

出可結合 T1 權重和擴散張量磁振造影影像資訊的目標函式，來改善影像對位的精準

度。 

  擴散張量影像是由對雜訊敏感的擴散權重影像所估計而成。在本研究中，我們嚴謹

地考量在擴散張量磁振造影影像的所有處理細節。首先，我們使用了 Medical Image 

Navigation and Research Tool by INRIA (MedINRIA)的方法來估計張量，此工具可適用於

低雜訊比的擴散權重影像，並可確保所有估計出的張量皆為正定矩陣。為了更進一步保

存所估計出張量的良好特性，我們使用了對數－歐幾里德的架構，以避免出現張量膨脹

效應與非正特徵值的問題。 

  在此研究中，我們針對六十四個受測者的影像來建構腦影像模板。首先，我們使用

剛性對位演算法將磁振造影對位到擴散權重之基準影像，以確保此二種影像對位在同一

個座標空間。接著，我們在所有的影像中，找出一個對位到其他受測者影像時，擁有最

小形變量的受測者作為代表。接著，我們重複地進行影像對位及逆形變場平均，直到影

像模板空間收斂到一個穩定的狀態。最後，即可在此空間建構代表性受測者影像模板和

平均影像模板。 

本研究使用了兩種系統評估方法，其一是利用特徵值和特徵向量的組合，來評估兩

個不同張量之間的重疊程度。另一個方法，則是利用擴散張量磁振造影來評估磁振造影

的對位精準度。評估的結果顯示，若在非剛性對位演算法之中，同時使用 T1權重和擴

散張量磁振造影資訊，則非剛性對位的精準度可以得到改善。並且，結果也顯示我們所
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建立出的影像模板與對位到此模板空間的受測者影像有很高的相關性。因此，我們所提

出的腦部影像模板建構流程與相關對位演算法，可以為所研究的族群提供一個腦結構分

析的座標空間。 
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Abstract 

 

This study aims at the development of a construction algorithm for brain templates using 

T1-weighted and diffusion tensor (DT) magnetic resonance imaging (MRI) data. Recently, 

several brain templates developed in the ICBM-152 stereotactic space, such as ICBM452, 

ICBM DTI-81 atlas, and IIT DT brain template. In addition to inter-subject variation, however, 

the brain structures vary with races, genders, ages, and diseases. Hence, a construction 

algorithm of the stereotactic space for a specific study group can facilitate the structure 

analysis of the brains. Moreover, we improved the accuracy of registration procedure to 

reduce the image distortion during the template construction procedure. First, a symmetric 

and diffeomorphic non-rigid registration algorithm was used to provide both forward and 

inverse deformation fields. Also, we proposed an objective function which simultaneously 

utilized both T1-weighted and DT data to improve the accuracy of registration.  

The DT image is estimated from noise-sensitive diffusion-weighted images (DWIs). All 

details of DT-MRI processing procedure were carefully considered in this study. First, DT 

images were estimated from DWIs by the MedINRIA tensor estimation tool, which can 

tolerate the low signal-to-noise ratio (SNR) in clinical MRI and ensure the positive 

definiteness of all tensors. For preserving the good property of estimated tensors, 

Log-Euclidean metrics was used to avoid the problems of the tensor swelling effect and 

non-positive eigenvalues.  

In this study, 64 normal subjects were recruited for MRI scanning and template 

construction. First, we rigidly registered the MRI image to baseline DWI image for each 

subject to align both modalities of images in the same stereotactic space. Second, a 

representative subject was chosen as the one having the smallest deformation magnitude when 

registering to other subject images. Third, each subject image was registered to the temporary 

template, which was initialized as the image of the representative subject. The average of the 

obtained inverse deformation fields was applied to the image of the representative subject to 

update the temporary template. Iteratively applying the third step until the template image 

converges. Finally, we constructed a representative template and an average template in this 

converged space.  

In this study, two criteria were used to evaluate the constructed template images and the 

registration accuracy, including the DTI differences and overlaps between each subject and 



iv 
 

the template. The evaluation results showed that the accuracy of non-rigid registration was 

improved by simultaneously utilizing both T1-weighted and DT data. Furthermore, the results 

displayed a high correlation between the proposed template and registered subject images. 

Consequently, the proposed brain template construction could provide a stereotactic space for 

a specific subject group. 
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Chapter 1

Introduction



2 Introduction

1.1 Backgrounds

Brain morphometry, or computational anatomy, focuses on the quantitative analysis of

brain structure and the changes thereof. In order to increase the statistical reliability, a

large number of participants are necessary. Because the investigation of dissect living brain

is generally impossible, non-invasive neuroimaging techniques are emerged. A typically

non-invasive neuroimaging technique used in brain morphometry is magnetic resonance

imaging (MRI).

Magnetic resonance imaging is a widely-used medical imaging technique in clinical ap-

plications and brain research. It works with the effect of interaction between static magnetic

field and dynamic electromagnetic field on protons to display the inner structure of human

body. The different pulse sequences generated distinct images. For instance, T1-weighted

images (we briefly called MR image below) provide appreciable contrasts between differ-

ent soft tissues, such as gray matter (GM), white matter (WM), and cerebrospinal fluid

(CSF) in brains. It performs well at defining anatomy. T2-weighted scans are suited to the

diagnosis of edema, since they are susceptible to water. Diffusion-weighted images (DWIs)

are based on the diffusion effect of water molecules in biological tissues, and they mani-

fest the difference between molecular mobility in different gradient directions. Ischemic

stroke, multiple sclerosis, leukoencephalopathy, Alzheimers disease, etc. can be diagnosed

by DWIs or the indices derived from DWIs [1].

Basser et al., [3] introduced diffusion tensor magnetic resonance imaging (DT-MRI or

DTI), which can be estimated from DWIs (Figure 1.1) under an assumption that molecular

diffusion in tissues is Brown motion. A 3 × 3 symmetric and positive-definite matrix D

was called diffusion tensor (DT). DT can describe the main diffusivities λ1, λ2, λ3 (with

λ1 > λ2 > λ3) and the corresponding directions V1, V2, V3 of water diffusion. Eigen-

values λ1, λ2, λ3 can be combined to several scalar indices, such as relative anisotropy

(RA), fractional anisotropy (FA), and volume ratio (VR). Fractional anisotropy (FA) is the

most commonly used index to characterize diffusion anisotropy. The range of FA is from

1 (anisotropic diffusion) to 0 (isotropic diffusion). The FA is defined as:

FA =

√
3[(λ1 − λ)2 + (λ2 − λ)2 + (λ3 − λ)2]√

2(λ2
1 + λ2

2 + λ2
3)

(1.1)
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Figure 1.1: One slice of Diffusion tensor image (right) generated by diffusion-weighted
images (left)

, where

λ =
λ1 + λ2 + λ3

3
. (1.2)

1.2 Motivation

For subsequently statistical analysis and inter-subject brain comparison, spatial nor-

malization was indispensable. Spatial normalization is to transform each individual subject

into the same stereotactic space, which is also called a brain template coordinate.

The well-known template spaces are Talairach atlas, MNI-305 and ICBM-152. Ta-

lairach atlas [24] is based on dissection of a 60-year-old French females brain. It serves

detailed anatomical labels. Montreal Neurological Institute (MNI) averaged 305 (MNI-

305, [6,7]) MR images. These 305 MR images were aligned to the Talairach atlas. ICBM-

152 (Figure 1.2) is the current standard template. Before averaging the 152 western adult

MR images, they were registered to MNI-305 by using a 9 parameter affine transform.

Several brain templates developed in ICBM-152 space, such as ICBM452 [20], ICBM

DTI-81 atlas [19], IIT2 DT brain template [27] (Figure 3.6(a)(b)(c)(d)). However, Zilles
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Figure 1.2: ICBM 152 nonlinear atlases (version 2009)

et al., [28] confirmed that the brain structures are distinct from races. For example, the

Japanese brains are shorter and wider than European brains. Furthermore, if a template

has large variances from subjects, the large deformation may induce large distortion when

subjects were registered. Hence, we want to provide a construction of the stereotactic space

for a specific subject group. Namely, the template construction can be applied to different

races, genders, ages, or diseases. There were some customized DTI brain template con-

struction algorithms, such as Zhang et al., [26] and Goodlett et al., [9] (Figure 3.6(e)(f)).

Zhang et al., [26] constructed an unbiased white matter atlas by using a piecewise affine al-

gorithm to improve the accuracy of registration. They used traditional linear regression [3]

to estimate tensor, and the tensor was calculated on Euclidean metrics. Goodlett et al., [9]

proposed an unbiased atlas building for DTI population studies. The method they used

in tensors estimation was based on the smoothed raw data [25]. Also, they applied Log-

Euclidean metrics [2] (More detail in Section 2.2.6) on tensor calculation, such as inter-

polation and averaging. Since the diffusion tensor is unsuitable to calculate in commonly

Euclidean framework, we used the same strategy as Goodlett et al., on DTI calculation.

Moreover, we chose an estimation tool to ensure the positive definiteness of all tensors,

and the tool can tolerate the low SNR in clinical DWIs. All details of DTI processing were

carefully considered in this study.

Additionally, we expect that this template space can reduce distortion from registration

procedure. In order to increase the accuracy of registration, we considered the character
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(a) ICBM 452 T1 Atlas (T1-weighted image, 2007) (b) ICBM DTI-81Atlas (FA image, 2009)

(c) IIT2mean DTI template (V1 weighted by FA im-

age, 2011)

(d) Zhang et al., (V1 weighted by FA image, 2007)

(e) Goodlett et al., (FA image, 2006)

Figure 1.3: (a),(b) and (c) were developed in the ICBM-152 space. (d) and (e) were cus-
tomized DTI brain templates.
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of MR and DT images. In MR images, boundaries between different tissues can be well

aligned by utilizing the information of intensity differences. However, it is difficult to ac-

curately register the voxels within the same tissue solely relying on smoothness constraint.

Castro et al., [5] assessed three MRI registration algorithms using the additional informa-

tion carried out by DTI. They showed that the error increases with increasing FA value.

That is, the accuracy of MRI registration in WM is lower than other tissues. Moreover, in

DT images, different voxels have different diffusion tensors, which contain the diffusive

direction, magnitude, and anisotropy of fibers. The information of DTI might be a remedy

for registering WM voxels. Besides, the similarity of FA was commonly employed for

non-rigid registration of DTI. Nevertheless, non-rigid registration of MRI performs better

at the contours of tissues than FA. Hence, we proposed to register MR and DT images by

simultaneously using both DT and MR information. As a consequence, the T1 and DTI

templates were constructed by co-registering DT and MR images.
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Material and Methods
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2.1 Materials

The MRI scans are obtained from Integrated Brain Research Unit (IBRU) of Taipei

Veterans General Hospital. The MR images were acquired on a 1.5 Tesla GE MR scanner,

using 3D-FSPGR pulse sequence (TR = 8.548 ms, TE = 1.836 ms, FOV = 260×260×1.5,

TI = 400 ms, NEX = 1, flip angle = 15◦, bandwidth = 15.63 kHz, matrix size = 256×256×
124, voxel size = 1.02× 1.02× 1.5); and diffusion weighted images (TR = 17000 ms, TE

= 70.2 ms, FOV = 260× 260× 2.2, NEX = 6, matrix size = 128× 128× 70, voxel size =

2.03 × 2.03 × 2.2) consisted of 13 gradient directions with b = 900 s/mm2, and one b =

0 s/mm2 image. The subject group includes 20 males and 44 females in total 64 normal

subjects. Age range is from 21 to 62.

2.2 Methods

The purpose of our study is to create a template which can provide a stereotactic space

for a subject group. Additionally, the subject images can be registered to this template space

with little deformation. Hence, the goal is to minimize the variance between template and

subject images. An adapted template construction and an accurate registration are needed.

We modified the procedure of MRI template construction proposed by Lee [15] to construct

our MRI and DTI templates. The new strategy of registration will be described in Section

2.3.

2.2.1 Template construction

Figure 2.1, 2.2 and 2.3 illustrate our procedure for MR/DT template construction.

The first step is to align MRI to the first volume (baseline image) of DWIs for each

intra-subject by using rigid registration (Figure 2.1). It is to ensure that MRI and DWIs are

in the same stereotactic space. The second step is the pre-processing for MRI and DWIs as

described in Section 2.2.2.

To construct a customized template, an initial reference templateR0 is needed. Accord-

ing to Lee [15], we selected a representative subject as an initial template. The representa-
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Figure 2.1: Intra-subject alignment

tive subject had the smallest deformation magnitude ‖φ‖ during registering this subject to

other subjects. To find the representative subject, all possible pairs for registering a source

image i to a target image j were considered. The equation can be expressed as follows:

R0 = arg min
i
{‖φi,j(x)‖ | ∀j 6= i, x ∈ brain coordinate} (2.1)

Note that, we only registered MR images to find the initial template, and directly as-

signed the same representative subject of DT image as the initial template to reduce the

calculus.

Following, the initial template was set as the temporary template (See Figure 2.3). each

source image (of MRI) was registered to the temporary template of MRI. Each affine trans-

formation will produce an affine matrix, which including four parameters: shearing, scal-

ing, rotation, and translation. Then, we averaged the inverse of these four parameters from

all affine matrices. Next, the average parameters were composed into an affine matrix. To

avoid the temporary template will be blurred during iterations, the affine matrix was ap-

plied on the representative subject instead of the temporary template. Finally, the affine

result was set to the temporary template for next iteration. Repeated above step until the

temporary template converges into a stable state (More detail about stopping criterion will

describe in Section 2.2.4). As a consequence, an affine matrix and a correspondingly affine
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Figure 2.2: Brief flowchart of the proposed methods for MR/DT template construction
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Figure 2.3: Detailed flowchart of the proposed methods for MR/DT template construction.
Color blue and purple show the construction of MRI and DTI respectively.
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template of MRI were generated.

We utilized the affine matrix of MRI to co-register the initial template of DTI to the

same template space. Subsequently, the features were extracted from preprocessed images

and affine templates of both MRI and DTI. More detail about feature extraction and the

new similarity function for non-rigid registration will describe in Section 2.2.3 and Section

2.2.4.

Iteratively affine transformation supplied the temporary template to iteratively non-rigid

registration. Each source image was registered to the temporary template by two step:

affine transformation and non-rigid registration. Affine transformation was a preliminary

registration and it provided an affine matrix to non-rigid registration. Non-rigid registration

generated a forward and an inverse deformation fields. In the similar way, the temporary

template was updated by averaging the inverse deformation fields from each transforma-

tion. Repeated these step until the template is convergent (More detail about stopping cri-

terion will describe in Section 2.2.4). As a result, the deformation field and corresponding

template (of MRI), called representative template, were created.

All subject images (of MRI) were registered to the representative template (of MRI).

Finally, we averaged all registered subject images to create the average template (of MRI).

The construction of DTI template is similar to MRI. The representative subject of DTI

was co-registered to the same template space by using the deformation field of MRI. To

maintain the property of DTI, the interpolation of DTI was computed in Log-Euclidean

framework [2] (Section 2.2.6). Moreover, Figure 2.4 shows that after transformation, the

position of voxels have been changed, but the direction have not. In order to maintain the

consistency of the anatomical structure, tensor reorientation (Section 2.2.5) was applied.

Then, the representative template of DTI was completed.

All subject images (of DTI) were co-registered to the representative template (of DTI)

by using the deformation field of MRI. The average template of DTI was constructed by

averaging the registered subject images as well. Nevertheless, we computed the average

operators in Log-Euclidean space [2] (Section 2.2.6) instead of Euclidean space to avoid

tensor swelling effect.

To summarize, we constructed four template: representative template and average tem-

plate of both MRI and DTI. These template are in the same stereotactic space, and they can
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Figure 2.4: This diagram shows the tensor reorientation. Left : Four diffusive directions
are located on the original stereotactic space. Mid : Four diffusive directions are located on
the new stereotactic space after transformation. Right: Four diffusive directions are located
on the new stereotactic space after transformation and tensor reorientation.

represent the subject group.

2.2.2 Preprocessing procedure

Preprocessing of MRI includes brain extraction and intensity inhomogeneity correction.

We used Brain Extraction Tool (BET) version 2.1 [13, 23] and Bias Field Corrector (BFC)

[22] to realize them separately.

Brain extraction is to remove non-brain tissues, which will affect brain tissues registra-

tion. Besides, brain extraction benefits to increase the accuracy of intensity inhomogeneity

correction. Magnetic field inhomogeneity in MRI causes intensity non-uniformity. As-

sume that a received image can be separate to two parts, which are an original image and

a bias field. Bias field correction predicts a bias field and removes it to obtain the original

image. The tool called BET has the additional value on intensity inhomogeneity correc-

tion. Figure 2.5 indicates the non-uniform intensity was corrected after brain extraction.

The non-uniform intensity will induce the error at image registration. For this reason, we

applied BFC again for a further correction.

DWIs preprocessing includes DTI estimation and brain extraction as shown in Figure

2.6.

Fillard et al., [8] proposed a maximum likelihood strategy with Rician noise model

to estimate diffusion tensor. In order to further reduce the influence of the noise, they
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Figure 2.5: This figure demonstrates each step of MRI preprocessing from left to right.
One slice of two distinct MRI images were presented in top row and bottom row. Left :
Original MRI image. Middle : The result of brain extraction. Right : The result of inten-
sity inhomogeneity correction. The red circle was used to show the non-uniform intensity
within the same tissue.

Figure 2.6: This figure demonstrates each step of DTI preprocessing from left to right. One
slice of the first volume of DWIs and DTI images were presented. Left : Original DWIs
image. Middle : Estimated DTI image. Right : The result of brain extraction.
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combined estimation and regularization that results in a maximum a posteriori estimation.

Moreover, the log-Euclidean metrics [2] (Section 2.2.6) was used to cancel the swelling

effect in regularization. They developed a tool, called Medical Image Navigation and Re-

search Tool by INRIA (MedINRIA), was used in our study to estimate the diffusion tensor.

It can overcome the low SNR in clinical DWIs and ensure the positive definiteness of all

tensors which are estimated from noise-sensitive DWIs.

Most brain extraction methods, such as BET, are designed for MRI. Little or no studies

have ever tried to extract brain based on DWIs/DTI. For an accuracy result, we extracted

the brain mask from the MR image and applied the mask on DTI instead of extracting brain

region directly from DWIs or DTI.

2.2.3 Feature extraction

The features extracted from both MR and DT images. The first feature is the intensity of

T1-weighted image. The second one is the fractional anisotropy (FA). They are commonly

used in the non-rigid registration of MRI and DTI, respectively. Figure 2.7 shows that

these two features have significantly distinct information at most regions. Hence, we hope

the T1+FA feature can provide complementary information for each other at non-rigid

registration.

Figure 2.7: This figure displays three different views of MRI (top row) and FA (bottom
row) brain image. From left to right are coronal view, sagittal view and horizontal view.
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2.2.4 Image registration

Affine transformation

Affine transformation is a preliminary registration. It aligns the global shape from

source image to target image. Here, FMRIB’s Linear Image Registration Tool (FLIRT)

[11, 14] was used.

Non-rigid registration

Lin [16] proposed a non-rigid registration algorithm for MRI images. This algorithm

supports two important properties for a custom template construction: diffeomorphic and

symmetric (or inverse-consistency). To put it differently, the algorithm guarantees the map-

ping function with smooth, invertible, and one-to-one relationship. In addition, if a trans-

formation is generated by registering a source image to a target image, the unique inverse

of the transformation will exactly register the target image to the source image.

Averaging the inverse deformation fields is an essential step in our iteratively non-rigid

registration. In the previous construction proposed by Lee [15], the inverse of a transfor-

mation is a critical issue because the non-rigid registration without the inverse-consistency

property. The invertible can decrease the error may induce by estimating location and

interpolation. Hence, the algorithm proposed by Lin [16] was employed in this work. Fur-

thermore, we modified the similarity criterion to efficiently utilize the features extracted

from DTI and MRI as mentioned. The new similarity evaluation function between target

image It and source image Is can be expressed as:

S(It, Is,Φ) = SCR(aintensityt , aintensitys ,Φ) + SCR(aFA
t , aFA

s ,Φ) (2.2)

The similarity between target image and source image of the two features is assessed

by correlation ratio SCR [21]. More detail about correlation ratio describe in Section 2.2.4.

Because we want to improve the accuracy for non-rigid registration of both MRI and DTI,

the influence of MRI and DTI is set as the same. For inverse-consistency, the equation can

be rewritten as shown below.
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S(It, Is,Φ) = S(Is, It,Φ
−1)

= SCR(aintensityt , aintensitys ,Φ) + SCR(aFA
t , aFA

s ,Φ)

+ SCR(aintensitys , aintensityt ,Φ−1) + SCR(aFA
s , aFA

t ,Φ−1)

(2.3)

The correlation ratio SCR in Equation 2.3 had been normalized to the range of zero to

one. Large value indicates high image similarity. Hence, we maximized Equation 2.3 to

obtain a better alignment.

Correlation ratio

Figure 2.8: Two subjects with different intensity contrast

The correlation ratio is an efficiency and accuracy measurement for image registration.

It is robust to different intensity contrast (See Figure 2.8), intensity inhomogeneity and

noise [14, 21]. The correlation ratio on image similarity can be calculated by [17] (Figure

2.9):

SCR(ait, a
i
s,Φ) = 1− 1

V ar(ais(Ω))

NB∑
j=1

Nj

N
V ar(ais(Xj)) (2.4)

The range of features (intensity or FA) in target image was divided intoNB bins. Voxels

in the same bin was gathered into a set Xj , which contains Nj voxels. We collected their

corresponding voxels in source image at set Xj , and calculated the variance from features

of these voxels. Let N be the number of voxels in the overlapping region Ω between source

image and target image. If the variance ratio of each set Xj to total volume Ω is small, the

source image and target image are well aligned.
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Figure 2.9: Correlation ratio

Stopping criterion

We used an iterative strategy to create a stable template in both affine and non-rigid

registration. A stopping criterion proposed by Lee [15] is used. Since the registration will

not steady, if the difference between a new temporary template Ri+1 and last temporary

template Ri is small enough, it is called a stable state. For this reason, the slope IDP

(Equation 2.6) of intensity differences was compared to a threshold, α (Equation 2.7), for

stopping iterative registration. The intensity difference IDi between Ri and Ri+1 at each

voxel in brain volume Ω can be written as Equation 2.5.

IDi =
∑
v∈Ω

(Ri(v)−Ri+1(v))/Ω (2.5)

IDP i+1 = (IDi − IDi+1)/IDi (2.6)

If (IDP j < α) stop (2.7)

Outlier removing

Since the aim of our study is to create a stereotactic template for a subject group, the

template should not be biased to any subject. Thus, if a subject image is registered to the
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template with a larger deformation than other subjects, it would be considered as an outlier

and would be removed from the template construction. We applied the strategy of outlier

removing proposed by Lee [15] and replenished the outlier removing for DT image. First,

the magnitude of shearing and scaling were examined when iteratively affine transforma-

tion. Second, the magnitude of deform-only (not includes the deformation derived from

affine transformation) along x, y, and z axes were inspected when iteratively non-rigid

registration. Third, If a non-positive eigenvalue decomposed from a tensor of a subject,

the subject would be set as an outlier. As a consequence, only the subjects passed these

examinations can be constructed the average template.

2.2.5 DTI reorientation

Diffusion tensor contains direction of water diffusion in tissues. After affine transfor-

mation, we only change position of voxels in DTI, but not direction. Likewise, non-rigid

registering affects the orientation of the tissue structure. Therefore, we intend to maintain

consistency of the anatomical structure by rotating each diffusion tensor according to the

image transformation. Alexander et al., [1] developed a preservation of principal direction

(PPD) method to estimate local rotation matrices from affine transformation or higher order

transformations. The aim of PPD method is to preserve the principal direction and a plane

spanned by principal direction and the second direction of a tensor after transformation.

The PPD algorithm is:

• Step 1: Find the first eigenvector e1 and the second eigenvector e2 of a diffusion

tensor.

• Step 2: Compute the unit vectors n1 and n2 from transformed e1 and e2, which were

applied by transformation matrix, F , respectively.

• Step 3: Rotate e1 to n1 with rotation matrix, R1, and rotate e2 with R1 as well.

• Step 4: Find a projection, P (n2), of n2 onto a plane. The plane is spanned by n1 and

n2, and it is perpendicular to n1. Besides, R1e2 (rotate e2 with R1) already lies in this

plane.
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• Step 5: Calculate the rotation matrix, R2, which maps R1e2 to P (n2).

• Step 6: Set the local rotation matrix R = R2R1 and reorient a tensor D by: D′ =

RDRT .

The transformation matrix F of higher order transformations, for instance a non-rigid

transformation, is consists of an identity matrix I and the Jacobian matrix of displacement

field Φ by: F = I + JΦ.

2.2.6 Log-Euclidean metrics

Constructing average template of DTI is calculated in Log-Euclidean space [2]. Log-

Euclidean space can avoid the defects of Euclidean calculus, such as tensor swelling effect

and non-positive eigenvalues. Moreover, in this space, tensors can be looked upon as vec-

tors. In other words, operations of vector can be used directly on tensors in Log-Euclidean

space. Changing a tensor into Log-Euclidean space is as same as to calculate a matrix log-

arithm of a tensor. Additionally, we can efficiently obtain the matrix logarithm of a tensor

by only three steps [2]:

• Step 1: D = RTMR

• Step 2: M =


λ1 0 0

0 λ2 0

0 0 λ3

 −→ M̂ =


loge λ1 0 0

0 loge λ2 0

0 0 loge λ3


• Step 3: log(D) = RTM̂R

Where M is a diagonal matrix with eigenvalues and R is a rotation matrix with eigen-

vectors. They were factored from spectral decomposition of a tensor D. In contrast, chang-

ing a tensor back into Euclidean space, that is, calculating the matrix exponential of a

tensor also can be obtained efficiently by using exponential substituted for logarithm at

step 2. Moreover, to reduce the computations, the 3× 3 symmetric matrix, log(D), can be

represented by a 6D vectors as follows:

log(D) '
−→
D = (log(D)1,1, log(D)2,2, log(D)3,3,

√
2 log(D)1,2,

√
2 log(D)1,3,

√
2 log(D)2,3)T

(2.8)
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Let N be the number of registered subject images and x be a voxel of tensor D, we

obtained

D(x) = exp

[∑N
i=1 log(Di(x))

N

]
(2.9)

to construct our Average Template of DTI.

Besides, interpolation of tensors is also calculated in Log-Euclidean space. The prop-

erties of tensors can be adequately maintained in Log-Euclidean space compared to in

Euclidean space [2]. The interpolation with Log-Euclidean framework can be expressed as

D(x) = exp (
N∑
i=1

wi log(Di(x))) (2.10)

, where wi is the trilinear weights.

2.2.7 Evaluation methods

Overlap index (OVL)

Basser and Pajevic [4] developed a measurement of tensor overlap based on eigenvalue-

eigenvector pairs. If two different tensors are perfect match, the value of OVL is close to

one. Conversely, the value is close to zero. The average overlap of a volume R, such as the

region of white matter or brain region, was usually employed to evaluate the accuracy of

DTI registration [10, 18]. The OVL and averaged OVL are given by:

OV L =

∑3
i=1 λi(x)λ

′
i(x)(ei(x) · e′i(x))2∑3

i=1 λi(x)λ
′
i(x)

(2.11)

Average OV L =
1

|R|
∑
x∈R

∑3
i=1 λi(x)λ

′
i(x)(ei(x) · e′i(x))2∑3

i=1 λi(x)λ
′
i(x)

(2.12)

Error

Sanchez Castro et al., [5] utilized diffusion tensor images to evaluate MRI registration.

They co-registered DTI with the transformation of MRI, and used the standard deviation,
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called error, to check the consistency of tensor after registration. They also performed

operations on tensor in Log-Euclidean framework. The error can be computed as followed:

DLOG = exp(
1

N

N∑
i=1

log(Di)) (2.13)

A = log(Di)− log(DLOG) (2.14)

ErrorDTI =

√√√√Trace(
1

N − 1

N∑
i=1

AAT ) (2.15)

The error also can be applied to a specific volume by average each voxel in these vol-

ume. In our study, the error is computed for both MRI and DTI. In fact, DLOG is exactly

our Average Template of DTI. Similarly, registered subject images of MRI are averaged on

Euclidean framework is the Average Template of MRI. In consequence, the error can rep-

resent the discrepancy between our Average Template and registered subject images, and

assists in evaluating the registration method we proposed. The MRI error can be expressed

as follows:

ErrorMRI =

√√√√ 1

N − 1

N∑
i=1

(T1i − T1)2 (2.16)



Chapter 3

Results and Discussion
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Table 3.1: Mean OVL with average template in whole brain

Methods(features) OVL in whole brain ± Standard Deviation

Affine transformation 0.606547± 0.038115

Non-rigid registration(T1) 0.589328± 0.038770

Non-rigid registration(FA) 0.617925± 0.026571

Non-rigid registration(T1+FA) 0.618822± 0.028180

The OVL measures the overlap of diffusion tensors in whole brain between DTI average template and registered DTI subjects.

Table 3.2: Mean OVL with average template in white matter

Methods(features) OVL in white matter ± Standard Deviation

Affine transformation 0.779223± 0.077998

Non-rigid registration(T1) 0.775375± 0.078978

Non-rigid registration(FA) 0.815477± 0.042821

Non-rigid registration(T1+FA) 0.813633± 0.044007

The OVL measures the overlap of diffusion tensors in white matter between DTI average template and registered DTI subjects.

3.1 Feature comparison

In order to confirm the performance for the extracted features, MRI feature (T1 feature),

DTI feature (FA feature) and the combination of them (T1+FA feature) were be considered.

We compared the OVL in two cases: One is the tensor overlap between registered

subjects and average template. The other is between registered subjects and representative

template. In the average template case, Table 3.1 shows that T1+FA feature provides the

highest OVL than other features in whole brain region. The second one is FA feature and the

worst case is T1 feature. The effect upon distinct features in WM is more conspicuous than

in whole brain (Table 3.2). Although the best one is FA feature in WM, the gap between

FA feature and T1+FA feature is very small. In Table 3.1 and Table 3.2, the worst case is

T1 feature. It is even worse than affine transformation in both whole brain and WM. In

the representative template case, Table 3.3 and Table 3.4 display that affine transformation

gives the highest OVL in both whole brain and WM. The OVL of T1+FA feature and T1

feature are comparable, and the lowest OVL is given by FA feature. However, we can found
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Table 3.3: Mean OVL with representative template in whole brain

Methods(features) OVL in whole brain ± Standard Deviation

Affine transformation 0.505459± 0.059662

Non-rigid registration(T1) 0.502208± 0.065645

Non-rigid registration(FA) 0.472313± 0.018574

Non-rigid registration(T1+FA) 0.502299± 0.025356

The OVL measures the overlap of diffusion tensors in whole brain between DTI representative template and registered DTI subjects.

Table 3.4: Mean OVL with representative template in white matter

Methods(features) OVL in white matter ± Standard Deviation

Affine transformation 0.588627± 0.068417

Non-rigid registration(T1) 0.587309± 0.072202

Non-rigid registration(FA) 0.545680± 0.023410

Non-rigid registration(T1+FA) 0.588053± 0.030262

The OVL measures the overlap of diffusion tensors in white matter between DTI representative template and registered DTI subjects.

that affine transformation and T1 feature supply high standard deviation (SD) of OVL in

all regions and templates.

To summarize, T1+FA feature provides high OVL and low SD on both average template

and representative template. FA feature provides high OVL and low SD only on average

template. T1 feature provides high OVL but high SD on representative template. Although

affine transformation provides high OVL on representative template and acceptable OVL

on average template, it provides high SD on both cases. A good template should provide

low SD to represent the subject group. Hence, the T1+FA feature is better than other

methods.

Table 3.5 and Table 3.6 demonstrate the best reductions of DTI error are given by FA

feature compared to affine transformation. T1+FA feature is the second in whole brain

and WM, and it only has a slight gap between FA feature. A point is worth making about

Table 3.6. The point is that T1 feature is worse than affine transformation in WM. It may

because it is difficult to accurately register the voxels within the same tissue solely relying
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Table 3.5: Mean ErrorDTI in whole brain

Methods(features) Average Error ± Standard Devi-

ation

The reduction of error (%) com-

pared to affine transformation

Affine transformation 1.286436± 1.277231

Non-rigid registration(T1) 1.243496± 1.338124 3.34%±-0.05%

Non-rigid registration(FA) 1.108207± 1.272015 13.85%±0.004%

Non-rigid registration(T1+FA) 1.142485± 1.294859 11.19%±-0.01%

The DTI error checks the consistency of diffusion tensors in whole brain.

Table 3.6: Mean ErrorDTI in white matter

Methods(features) Average Error ± Standard Devi-

ation

The reduction of error (%) com-

pared to affine transformation

Affine transformation 0.727660± 0.265835

Non-rigid registration (T1) 0.740338± 0.229792 -0.02%±13.56%

Non-rigid registration (FA) 0.633133± 0.188424 12.99%±29.12%

Non-rigid registration (T1+FA) 0.637518± 0.196857 12.39%±25.95%

The DTI error checks the consistency of diffusion tensors in white matter.

Table 3.7: Mean ErrorMRI in whole brain

Methods(features) Average Error ± Standard Devi-

ation

The reduction of error (%) com-

pared to affine transformation

Affine transformation 109.891709± 47.428052

Non-rigid registration (T1) 76.489615± 30.807001 30.40%±35.04%

Non-rigid registration (FA) 96.205667± 38.006380 12.45%±19.87%

Non-rigid registration (T1+FA) 87.866330± 36.887101 20.04%±22.23%

The MRI error shows the difference of T1 images in whole brain.



3.1 Feature comparison 27

Table 3.8: Mean ErrorMRI in white matter

Methods(features) Average Error ± Standard Devi-

ation

The reduction of error (%) com-

pared to affine transformation

Affine transformation 86.905587± 32.754628

Non-rigid registration (T1) 62.531859± 11.482740 28.05%±64.94%

Non-rigid registration (FA) 77.624157± 22.972671 10.68%±29.86%

Non-rigid registration (T1+FA) 69.362197± 23.376631 20.19%±28.63%

The MRI error shows the difference of T1 images in white matter.

on smoothness constraint.

Table 3.7 and Table 3.8 display that T1 feature obtains the best reduction of MRI error

compared to affine transformation. The second is still T1+FA feature and the third is FA

feature. To summarize, T1+FA feature and FA feature are comparable in DTI error and

OVL. Besides, T1+FA feature gives an acceptable result in MRI error. Hence, we can find

that T1 and DTI can provide the complementary effect.

Let us examine OVL and errors in more detail. As showed in Figure 3.1 and Figure

3.2, these evaluation methods were partitioned into ten part by using FA image, which was

derived from DTI Average Template. Figure 3.2(a) shows that FA feature provides the

best error reduction of DTI in major divisions. However, T1+FA feature is better than FA

feature when FA being the range between 0.7 and 0.9. T1 feature gives the terrible errors

especially when FA=0.3∼0.5. Furthermore, Figure 3.1(a) displays that T1+FA feature, T1

feature and affine transformation are comparable. Also, T1+FA feature supplied higher

OVL than others when FA=0.7∼0.9. Figure 3.1(b) shows that the OVL of FA feature and

T1+FA feature are higher than others. Although T1+FA feature was not perfect in each

detail segment, it also provided a competent performance.

There are sufficient evidence to prove that T1 feature performs well at MRI error and

provides poor performance in DTI error. FA feature is contrary to T1 feature. It may be-

cause T1 feature leads accuracy alignment in tissue boundaries but not inside the same

tissues, and FA feature characters the anisotropy of tissues but not the tissue boundaries.

Moreover, the range of FA is from zero to one, and the value of FA in white matter is gener-



28 Results and Discussion

ally larger than 0.3. That is, the information for gray matter and other tissues which tend to

isotropy are fewer than white matter region. These findings lead us to believe that T1 fea-

ture and FA feature should be simultaneously used in non-rigid registration. Excitingly, the

results demonstrate that T1 and FA can provide complementary information for each other

when they are simultaneously employed in non-rigid registration. Accordingly, T1+FA

feature supplies the competent alignment for both MRI and DTI non-rigid registration.

(a) (b)

Figure 3.1: Mean OVL with different features (a) The OVL between registered subjects
and representative template (b) The OVL between registered subjects and average template

3.2 Curve analysis

Whether which feature was used in non-rigid registration, the results of DTI error, MRI

error, and OVL were displayed specific trends.

In DTI error case (See Figure 3.2(a)), we can found that the error was very high when

FA value tends to zero. A possible reason is that when FA value tends to zero, the water

diffusion tends to isotropy. That is to say, the diffusive direction is not along a particular

direction in a tissue with isotropy. Namely, the eigenvectors of these tissues are very differ-

ent, and the DTI is generated by eigenvalue-eigenvector pairs. As a consequence, the DTI
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(a) (b)

Figure 3.2: (a) Mean DTI error (b) Mean MRI error
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error should be high when FA value tends to zero. Another phenomenon we can observe in

Figure 3.2(a) is that the error increased with FA value when FA value was bigger than 0.3.

A possible reason is that the water diffusion tend to anisotropy when FA value is more and

more large. Hence, a little misalign and individual differences may induce large DTI error.

Figure 3.2(b) demonstrates that the MRI error increases with decreases in FA value. A

probable reason is that the boundaries of different tissues usually have lower FA value. In

addition, the MRI Average Template is more fuzzier than other subjects. For these reason,

the boundaries of tissues may lead to larger MRI error than other regions.

It is reasonable to see that the OVL increases with FA value increases in Figure 3.1.

However, the OVL of affine transformation is higher than non-rigid registration when

FA=0.8∼0.9 (Figure 3.1(b)). It may be caused that the number of voxels increased with

the increase of FA value after non-rigid registration (See Figure 3.3). Since the FA bin

was divided by Average Template of DTI, the phenomenon represents that more registered

subject images have high FA value in the same voxel. Namely, the non-rigid registration is

more accurate than the affine transformation particularly in FA feature and T1+FA feature

cases. The number of voxel of FA/T1+FA feature is much higher than affine transforma-

tion/T1 feature when FA value is high. Furthermore, FA/T1+FA feature lead to a high OVL

in high FA bin. It indicates that the non-rigid registration of FA/T1+FA feature is accurate.

3.3 Framework comparision

The interpolation of DTI in Euclidean framework caused non-positive eigenvalues. The

non-positive eigenvalues was illogical in physical and it led to large DTI error and its stan-

dard deviation (See Table 3.9). For this reason, Log-Euclidean framework is a better choice

for calculating tensors than Euclidean framework.

3.4 Average template and representative template

Figure 3.4 and 3.5 are the representative template and average template constructed by

the present procedure in this study. The DTI template is a six volumes image. For visual-
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Figure 3.3: Number of voxels with average template in different FA value bins

Table 3.9: Mean ErrorDTI in whole brain

Methods (Framework) Average Error ± Standard Deviation

Affine (Log) and Average (Log) 1.286436± 1.277231

Affine (Euclidean) and Average (Log) 1.957571± 2.349731

Affine (Euclidean) and Average (Euclidean) 2.548714± 3.623380

Non-rigid (Log) and Average (Log) 1.142485± 1.294859

Non-rigid (Euclidean) and Average (Log) 1.652078± 2.449258

Non-rigid (Euclidean) and Average (Euclidean) 2.053583± 3.736114

The DTI error checks the consistency of diffusion tensors in whole brain.
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Table 3.10: Cross-correlation between template and subjects

Template Mean correlation ± Standard Deviation

Average template 0.974866± 0.004335

Representative template 0.9543609± 0.003394317

ization, we used FSLView [12]. In Figure 3.4(b) and Figure 3.5(c)(d), the first eigenvector

(V1) is modulated by FA to represent the principal diffusion direction and its magnitude

(where the colors red, green, and blue represent diffusion in the x, y, and z axes respec-

tively). We can find that the average templates are sharper than the averages of affine

subjects from both MRI and DTI. Additionally, the detailed structure of average templates

consists with the representative templates of both MRI and DTI.

As show in Table 3.10, the correlations present a strong relationship between templates

(of MRI) and registered subjects, especially with average template. Table 3.11 illustrates

the OVL between average template (of DTI) and registered subject image is higher than the

case of representative template (of DTI). Particularly in WM region, the OVL is significant

high. Because the representative template should bias to the initial subject, the correlation

and OVL are lesser than average template. Even so, representative template still provides

acceptable correlation and OVL.

To summarize, we constructed four template in the same stereotactic space for a specific

subject group. The average templates of both MRI and DTI can provide the information

of all subjects, and the representative template of both MRI and DTI can characterize the

detail structure for the subject group. In order to provide the relationship between our tem-

plates and the standard stereotactic space (ICBM-152 space). We normalized our templates

to ICBM-152 space by registering the templates to ICBM452 atlas. Figure 3.6 displays the

corresponding templates in the standard stereotactic space and the reference template (Fig-

ure 3.6(a)).
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Table 3.11: Mean OVL between average template and subjects

Template Mean OVL ± Standard Deviation

Average template 0.618822± 0.028180

Average template (WM) 0.813633± 0.044007

Representative template 0.502299± 0.025356

Representative template (WM) 0.588053± 0.030262

(a)

(b)

Figure 3.4: (a) Representative template of MRI (b) Representative template of DTI
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(a)

(b)

(c)

(d)

Figure 3.5: (a) Average template of MRI (b) Average template of affine MRI(c) Average
template of affine DTI (d) Average template of DTI
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(a) ICBM452 atlas

(b) Representative template of MRI (c) Average template of MRI

(d) Representative template of DTI (FA image) (e) Average template of DTI (FA image)

(f) Representative template of DTI (V1 weighted by FA

image)

(g) Average template of DTI (V1 weighted by FA im-

age)

Figure 3.6: All templates we constructed were normalized to ICBM-152 space.
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3.5 Comparison with different DTI template construction

Table 3.12 lists the comparison between our procedure and other DTI template con-

structions [27] [19] [26] [9]. Although the concept of Log-Euclidean metrics has been

published in 2006 [2], it did not commonly used in DTI template construction. One expla-

nation for this is that the theory of most estimation methods are based on high SNR and

large number of gradient directions. However, in clinical, the number of gradient directions

is limited and noise-sensitive DWIs is low SNR. These properties of DWIs may cause zero

eigenvalues or negative eigenvalues when estimate tensors by most estimation methods.

Nevertheless, non-positive eigenvalues cannot be explained in biological tissues. Besides,

non-positive eigenvalues cannot be accepted by logarithmic transformation, which is an es-

sential step in changing a tensor into Log-Euclidean space. Hence, we used MedINRIA [8]

to confirm the positive definiteness of all tensors, in other words, zero eigenvalues and

negative eigenvalues would not be derived from the spectral decomposition of estimated

tensors.

However, the good property of tensors cannot always maintain in tensor calculus. Es-

pecially when we calculate tensors in Euclidean space, it may occur non-positive eigenval-

ues and tensor swelling effect, which is mean that the determinant of a calculated tensor

in Euclidean space will larger than its original determinant. Hence, in this study, we used

Log-Euclidean framework to calculate tensors, such as interpolation and average of tensors.

Nonetheless, we applied the the tensor reorientation in Euclidean framework. Because PPD

method applied the rotation matrix to a tensor (D′ = RDRT ) in the final step, and it only

affect on direction but not magnitude of a tensor.

An advantage of our study is the outlier removing scheme. If the number of subjects is

not few, the outlier removing scheme is necessary for a customized template construction.

It because the custom template should not bias to outliers, which are very different from

other subjects. In our study, the number of subjects is 64 before template construction. Fi-

nally, three outliers were removed in the removing scheme. Figure 3.7 shows a comparison

between Average Template of MRI and outliers. The first outlier was removed by the large

scale of shearing along z-axis at iterative affine transformation. The second one and the

last one were removed by the large deformation along y-axis at iterative non-rigid registra-
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tion. We can found that no subject was removed by the non-positive eigenvalue detection.

Accordingly, we can affirm that all DTI processes were suitable to maintain the property of

diffusion tensors.

(a) (b)

(c) (d)

Figure 3.7: (a) Average Template of MRI. (b) removed at iterative affine transformation.
(c) and (d) removed at iterative non-rigid registration.



Chapter 4

Conclusions
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4.1 Conclusions

In this study, we present a procedure to construct MRI and DTI templates in the same

stereotactic space. Since the diffusion tensor is unsuitable to calculate in commonly Eu-

clidean framework, all details of DTI processing procedure were carefully considered.

First, a satisfactory tool of tensor estimation was chosen to ensure the positive definite-

ness of all tensors and tolerate the low SNR in clinical DWIs. Second, interpolation and

average of tensors were computed with Log-Euclidean metrics to avoid the problem of

tensor swelling effect and non-positive eigenvalues. Finally, the DTI reorientation method

was applied in Euclidean framework to maintain the consistency of the anatomical structure

after transformation.

Additionally, we improved the accuracy of registration procedure to reduce the distor-

tion during the template construction procedure. A symmetric and diffeomorphic non-rigid

registration algorithm was used to solve the issue of estimating inverse transformation.

Moreover, we proposed an objective function which can simultaneously utilize the both

MRI and DTI features to improve the accuracy of registration. Furthermore, the results

displayed a high correlation between the proposed template and registered subject images.

To summarize, the brain template construction could provide a stereotactic space for a

specific subject group by using MRI and DTI data. Also, we provided the relationship be-

tween our templates and the standard stereotactic space to facilitate subsequently statistical

analysis.

4.2 Future works

In this study, the number of subjects is 64 including 44 females and 20 males. In the

future, we will collect more subjects to balance the distribution of gender. Moreover, we

will apply the template construction for different specific subject groups to provide the

stereotactic spaces.

In this study, we only applied FA feature to assist the non-rigid registration due to

preserve the efficiency. Moreover, using diffusive direction or other features which can be

derived from DTI might increase the accuracy in non-rigid registration. Hence, an area of
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future research that should be considered is how to use the features of DTI efficiently.
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