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有效且適用於無線微型網路的廣播認證方法 

研究生：張升銘                指導教授：謝續平 博士 

 

國立交通大學資訊工程學系 

摘要 

在無線微型網路下要提供廣播認證機制並不容易，但卻很重要。困難主要來

自於無線微型網路是一個資源受制的環境，如有限的記憶體, 頻寛, 電力和計算

能力等。不論有多麼困難，廣播認證對於無線微型網路是一個重要的安全機制，

接受端必須能辨別出廣播封包是合法的基地台發出抑或是攻擊者假造。 

許多研究人員已提出各種廣播認證機制，但這些被提出的方法並不是針對資

源受限的環境來設計，所以效率不足是使得這些方法無法直接應用於無線微型網

路的主要原因。我們提出一個有效率且適於無線微型網路的廣播認證機制，比較

之前無線微型網路的廣播認證方法有許多優點，如整個網路不須時間同步的限

制，接受端能立即且獨立地認證封包。
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Abstract 

Providing authentication mechanism for broadcast messages is difficult but 

important in wireless sensor networks. The challenges come from the resource 

constraint environment of wireless sensor networks, such as limited storage, 

bandwidth, energy and processing. Despite facing the challenges, we must provide 

authenticated broadcast no matter how difficult to achieve. Broadcast messages from 

the base station to sensor nodes should be authenticated to avoid the forged messages 

from adversary. 

Many conventional schemes for broadcast authentication are not suitable for 

resource-limited environment. To cope with the problem, we propose an efficient 

broadcast authentication scheme for wireless sensor networks. The proposed scheme 

has the advantages that no time synchronization is required and receiver can 

authenticate packets instantly without buffering packets. 
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Chapter 1  Introduction 

Wireless sensor network (WSN) is an emerging sensing technique [25. 26]. The 

purpose of WSN is to detect the circumstance of interest. WSN can be used for many 

applications (e.g., health, military, home) [23, 24]. 

WSN is usually composed of several base stations and thousands of sensor nodes 

which are resource limited devices with low processing capability, energy, and storage. 

In WSN, distributing data through wireless communication is usually limited in 

Bandwidth. 

Broadcast authentication is a basic and important security mechanism in WSN, 

because broadcast is a nature communication method in wireless communication 

environment. When base stations want to commit commands to thousands of sensor 

nodes, broadcast is more efficient method than unicast to every node individually.  

A message authentication code (MAC) is an authentication tag derived by 

applying an authentication scheme, together with a secret key, to a message. MAC is 

an efficient symmetric cryptographic primitive for two-party authentication. However, 

MAC is not suitable for broadcast communication without additional elaborate design. 

If we use MAC in broadcast communication, the sender and the receivers share the 

same secret key. Anyone of the receivers knows the MAC key and could impersonate 

the sender and forge messages to other receivers. This problem comes from the 

symmetric property of MAC. That is, both sender and receivers can sign messages. 

Hence, we need an asymmetric mechanism that sender can sign messages and the 

receivers can only verify messages to achieve authenticated broadcast. 

We know that authenticated broadcast need an asymmetric mechanism like public 

key signature otherwise any compromised receiver could forge messages from the 
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sender. However, asymmetric cryptographic mechanisms like RSA digital signatures 

cost expensive thousand times than symmetric ones. It’s impractical to use them in 

resource-limited sensor network. A suggested method is use efficient symmetric 

primitives as a tool to design a scheme with asymmetric property. 

1.1 Requirements 

Besides the asymmetric property that is needed for broadcast authentication, 

designing an efficient broadcast authentication scheme for wireless sensor networks 

still faces many challenges: 

1. Robust to packet loss. The wireless communication environment is not reliable. 

Some packets may be loss during the transmission. The scheme must deal with 

packet loss problem and should be robust to it. 

2. Short authentication latency. Many applications of sensor network are real time 

applications such as real time collection information about current battlefield 

conditions. To authenticate real time data, the maximum number of additional 

packets that need to be received before a packet can be authenticated should be 

small. 

3. Individual authentication. The receiver should verify the received packets 

individually without depending on some other packets. Otherwise, the failure of 

verification causes the related packets cannot be verified too. 

4. Low computation cost. The computation of scheme should be small, since a large 

number of receivers need to verify the authentication information, and receivers 

are sensor nodes which have restricted computation power. 

5. Low communication overhead. The number of bytes per packets which describe 

the embed authentication information should be small, since the bandwidth of 

sensor network is restricted. 
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6. Low storage requirement. Since the storage space of sensor nodes is limited, 
some data for authentication like key material and signatures stored in memory 
cannot be too large. 

Ideally we would like a scheme that has perfect robustness, has no latency, can be 

individual authenticated and has an overhead as well as a cost similar to what is found 

in symmetric cryptographic primitives. In practice however, such a perfect scheme is 

hard to achieve and a compromise needs to be found between these requirements. 

 

1.2 Related work 

There has been many proposed broadcast authentication scheme in the literature. 

They could be roughly divided into two categories by the cryptographic primitives 

they use. The first one is signature amortization scheme which use asymmetric 

primitives like RSA digital signature and distribute the cost of signature over the 

block of packets. The second one is MAC-based scheme which use symmetric 

primitives like MAC and design an elaborate way to achieve asymmetric property that 

needed in broadcast communication setting. 

The idea of signature amortization is to sign a whole block of packets for 

amortization purpose. EMSS [20], hash tree [22], hash chain [11], and expander graph 

[21] are some proposed schemes, whose main challenges come from packet loss 

problem. Recently, some researchers [1, 4, 5, 14] propose using erasure code [15, 16, 

17] to deal with packet loss. But, these schemes with erasure code will suffer 

pollution attack [5], a Denial-of-Service attack to erasure code; Distillation code [5] 

has solved this problem with more communication overhead in each packet. However, 

these schemes have one limitation that the sender or the receivers must buffer the 

packets before verifying signatures. So, receivers can not authenticated each packet 

individually and need larger storage requirement. Because the storage of a sensor 
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node is limited, the buffering problem causes signature amortization scheme not to fit 

in WSN. Therefore, we prefer using an efficient symmetric cryptographic primitive to 

achieve asymmetric property that needed in broadcast authentication scheme. 

Perrig et al. proposed a very efficient time based stream authentication scheme, 

called TESLA [19], and provided a tiny version for WSN, called μTESLA [18]. 

They use pure symmetric primitives to achieve asymmetric property by one way key 

chain and delay disclosure. However, it has some constraints including time 

synchronization of whole network, inefficiently unicast the initial trust, and delay 

authentication. 

BiBa [2], HORS [3] are one time signature schemes using one way function. 

They are more efficient signature schemes than public key signature schemes. The 

efficiency of one time signature can compare favorably with the symmetric 

primitives’, because the main computations are one way hash function evaluations. 

This advantage is desirable for designing efficient broadcast authentication schemes. 

However, they have some drawbacks, including the limited number of signature that 

one key pair can generate and the large size of public key which could not store in 

sensor node’s memory. 

We propose an efficient one time signature scheme for broadcast authentication 

and improve the large storage problem which is not fit in wireless sensor networks. 
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Chapter 2  Preliminaries 

In this chapter, we first propose the system architecture. Then, we review some 

cryptographic primitives for authentication and a one time signature called HORS, 

which is so far the fastest one time signature scheme for signing and verifying. Our 

scheme can be viewed as an improvement of HORS. 

2.1 System architecture 
There are several base stations and thousands of sensor nodes in a wireless 

sensor network. Base station is resourceful while sensor node is resource limited. For 

simplification, we assume each broadcast message is from the base station to the 

sensor nodes. Broadcast messages from the sensor nodes can first unicast to base 

station, which then broadcast the messages to the other sensor nodes. The messages 

transmitted in a sensor network may reach the destination directly or may have to be 

forwarded by some intermediate nodes; however, we do not distinguish between them 

in our scheme. 

We assume the base station share pairwise secret key with each sensor nodes, so 

the public key of base station can securely transmit to each sensor nodes by shared 

pairwise key. 
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Figure 2-1. Architecture of wireless sensor network 

 

Sensor nodes are resource limited devices. Figure 2-1 shows the characteristics 

of Berkeley proposed sensor prototype. Our sensor node capacities follow this 

prototype. 
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CPU 8-bit 4MHz 

storage 8KB instruction flash 

512 bytes RAM 

512 bytes EEPROM 

Communication 916 MHz radio 

Bandwidth 10Kbps 

Operating system TinyOS 

OS code space 3500 bytes 

Available code space 4500 bytes 

Table 2-1.SmartDust characteristics 

 
2.2 Cryptographic primitives 

We introduce some cryptographic primitives for authentication and some tools 

for our scheme in this section. 

 

Message Authentication Code (MAC) 

A message authentication code (MAC) takes as input a k-bit key and a message, 

and outputs an l-bit authentication tag. A receiver who wants to ensure that messages 

originate from the claimed sender, can verify message authenticity by 1) sharing a 

secret key with the sender; 2) the sender adds an authentication tag (or MAC) 

computed with the shared key to every message it sends; 3) the receiver computes the 

MAC function using the shared key to verify that the authentication tag is correct. 

Because the same key is shared between the sender and the receiver, this is also a type 

of symmetric cryptography. A secure MAC function prevents an attacker (without 

knowledge of the secret key) from computing the correct MAC for a new message. A 
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MAC achieves authenticity for point-to-point communication, because a receiver 

knows that a message with the correct MAC must have been generated either by itself 

or by the sender. So when the receiver gets a fresh message with a correct MAC that it 

has not generated itself, the message must originate from the sender. 

 

Collision resilient hash functions 

A function H that maps an arbitrary length message M to a fixed length message 

digest MD is a collision-resilient hash function [10] if (1) The description of H is 

publicly known and does not require any secret information for its operation. (2) 

Given x, it is easy to compute H(x). (3) Given y, in the range of H, it is hard to find an 

x such that H(x) = y. (4) It is hard to find two distinct messages (M, M’)that hash to 

the same result H(M) = H(M’). More precisely, any efficient algorithm (solving a 

P-problem) succeeds in finding such a collision with negligible probability.  

The collision-resilient hash function is very efficient. It only costs a few 

micro-second to compute for a Pentium Ш 800 Hz PC. It costs 1000 times cheaper 

than asymmetric primitives do. 

We propose using collision-resilient hash function, for example SHA-1 and 

RIPEMD-160, to construct our signature scheme.  

 

Merkle hash tree 

Merkle hash tree [7, 8, 9] is a mechanism for calculating a message digest over a 

group of data items. We construct a binary tree using the hashes of the data items as 

tree leaves. Then, we compute each internal node value by taking the hash of the 

concatenation of its two children as figure 2-2 shows. 

)|( rightleft childchildHashparent =  
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Let  be a collision resilient hash function. )(⋅Hash

 

 
Figure 2-2.Merkle hash tree 

One can use Merkle tree as a tool to reduce the authentication overhead needed 

for a large group of data items. For example, we can sign the root of tree only instead 

of sign each data item. And then, the verifier can verify the authenticity of every data 

item by reconstructing the tree and comparing the computed hash value of tree, we 

called treehash here, with the authenticated root value. 

However, the verifier cannot reconstruct the tree without all of the data items. If 

the verifier wants to verify each data item individually, he may compute the treehash 

with the data item and its authentication path. The authentication path of the leaf is 

the values of all nodes that are siblings of nodes on the path between the leaf and the 

root. This is illustrated in Figure 2-3. 
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Figure 2-3.Authentication path of Merkle tree 

 

 

Efficiency of cryptographic primitives 

Table 1 shows the efficiency of cryptographic primitives. We can know that 

symmetric cryptographic primitives like DES and MD5 are more efficient than 

asymmetric primitives like RSA. The one way hash function is almost as efficient as 

symmetric cipher. 

 

All experiments are performed on an 8-byte input size, using the OpenSSL libraries 
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on a 800 MHz Pentium III Linux station 

Table 2-2.The efficiency of widely used cryptographic primitives 

2.3 One time signature 

One-time signature scheme first proposed by Lamport [6] and Rabin [13] were 

efficient signature schemes based on one way function. One difference between one 

time signature scheme and public key signature scheme is the number of messages 

they can sign. One time signature schemes can be used to sign only several messages 

with a key pairs. While public key cryptography like RSA signatures can be used to 

sign unlimited number of messages. This is due to the disclosure of private key. The 

private key of one time signature will be disclosed after signing messages while the 

private key of RSA digital signature will never be disclosed. 

Despite the limit imposed on the number of messages signed, one advantage of 

such a scheme is that it is generally quite fast. Because one time signature scheme is 

construct based on one way function and the computation cost of one way function is 

quite low when comparing with the computation of public key cryptography. 

All the previous multiple-time signature schemes follow the general idea that the 

secret key is used as the input to a sequence of one-way functions which generate a 

sequence of intermediate results and finally the public key. Onewayness of the 

function implies that it is infeasible to compute the secret key, or any intermediate 

result of the computation, from the public key. The private key is self- authenticating 

value. Motivated by the applications of signatures to stream authentication and 

broadcast authentication, Perrig in [2] proposes a one-time signature called BiBa, 

which has the advantages of fast verification and being short signature (perhaps, BiBa 

has the fastest verification of all previously known one-time signature schemes). The 

disadvantage of BiBa is, however, the signing time that is longer than in other 
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previous schemes and the public key size is quite larger.  

HORS- Hash to Obtain Random Subset 

Reyzin and Reyzin in [3] proposed a new one-time (r-time) signature, called 

HORS (for Hash to Obtain Random Subset), which algorithm is shown as figure 2-4 

and figure 2-5. HORS improves the BiBa scheme with respect to the time overhead 

necessary for verifying and signing, and reduces the key and signature sizes. This 

makes HORS the fastest one-time signature scheme available so far. Besides, we note 

that the security of BiBa can be proved in the random-oracle model while the security 

of HORS relies on the assumption of the existence of one-way functions and the 

subset-resilience as defined in Appendix A. 

The efficiency of HORS is great. It only needs one way hash function evaluation 

to generate signature. And several one way hash function to verify signature. However, 

because of the large public key size of HORS (generally 10Kbytes), it is not suitable 

when we use HORS in sensor network.  
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Key generation 

 Input: Parameters l, k, t 

  Generate t random l-bit strings  tsss ,...,, 21

  Let vi=f(si) for  ti ≤≤1

 Output: ),...,,,( 21 tvvvkPK =  and ),...,,,( 21 tssskSK =  

Signing 

 Input: Message m and secret key ),...,,,( 21 tssskSK =  

  Let h=Hash(m) 

  Split h into k substrings , of length  bits each khhh ,...,, 21 t2log

  Interpret each hj as an integer ij for kj ≤≤1  

 Output: ),...,,( 21 ikii sss=σ  

Verifying 

 Input: Message m, signature ),...,,( 21 ikii sss=σ   

            and public key ),...,,,( 21 tvvvkPK =  

  Let h=Hash(m) 

  Split h into k substrings , of length  bits each khhh ,...,, 21 t2log

  Interpret each hj as an integer ij for kj ≤≤1  

Output:  “accept” if for each j, kj ≤≤1 , ;  ijj vsf =)( '

         “reject” otherwise 

Figure 2-4.HORS algorithm 
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Figure 2-5.HORS algorithm illustration 

 

In a typical example of HORS, we take parameters l=80, t=1024, and flt=160. 

The private key is equal to 10Kbytes, which is computed from 1024*80bits and the 

public key size is equal to 20Kbytes, which is computed from 1024*160bits. Because 

we assume the sender is base station and it is resourceful, the private key size is not 

large for sender. But the public key stored in sensor node is too large for sensor nodes’ 

memory. 
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Chapter 3  Proposed scheme 

We design a one-time signature scheme so that receivers (sensor nodes) can 

authenticate the source of broadcast messages from sender (base station) in wireless 

sensor networks. The computation cost of our scheme is very lightweight for sensor 

nodes and its asymmetric property is what we need to achieve broadcast 

authentication (discussed in chapter 1). Moreover, we mitigate the general drawback 

of one time signature, which is very large key size than other signature schemes. 

Large key size requires large storage space, which the sensor nodes can not afford. 

The proposed scheme reduces the storage requirement efficiently Another drawback 

of one time signature is that sender can only sign several message with one key pair. 

We proposed a rekeying mechanism for this. 

 

3.1 Signature scheme 

The idea of our scheme is using more computation cost to trade for less storage 

requirement and less communication overhead than HORS. This trade-off is worth 

because the storage resource is more precious than computation power for sensor 

node. Especially, the additional computation cost of our scheme is several hash 

function computation, which is very lightweight computation overhead. So, the 

proposed scheme is desirable for WSN. 

In the following, we first explain the basic idea of our scheme. Then, we propose 

the generalized scheme. Finally we propose a rekeying mechanism for our scheme. 
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3.1.1 The basic idea 

 For signing and verifying the messages, the signer must first generate the key 

pair. The key pair includes the private key which consists of t random numbers, and 

the public key which consists of t hash values of these t random numbers. For 

convenience, we call these t random numbers private balls and call their hash values 

public balls. 

These private balls have a good property that the verifier can efficiently 

authenticate them based on the public balls, and that it is computationally infeasible 

for an adversary to find a valid private ball given a public key. The generation of 

public balls in HORS is to use the one way hash function F as a commitment scheme. 

Given a set of private balls, the public ball is pi = F(ri). If the verifier learns function F 

in an authentic fashion, it can easily authenticate ri by verifying pi = F(ri).  

We know that the public key is composed of t public balls. To reduce the public 

key size, we can reduce the ball size or the number of balls. Because the length of 

public ball is related to the security strength of hash function, we cannot reduce public 

ball size. We reduce the number of public balls we needed. Our solution to reduce the 

public key size (that is reduction of public ball number) is to use a Merkle hash tree 

for authenticating private balls instead of one way hash function. We place the 

original public balls at the leaves of a binary tree and compute each internal node as 

the hash of the concatenation of the two child values. The root node of the hash tree is 

used as the new public key, and hence the public key is small.  

Because we change the way of generating public key, this also change the way of 

signature generation and verification. The signer generate signature as before, which 

is k picked private balls out of t private balls, but the signer needs to add some 

additional public balls to the signature. The additional public balls are authentication 
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path of each picked balls. With authentication path, the verifier can verify each picked 

balls by reconstructing the path from picked private ball to the root of the hash tree. 

The figure 3-1 shows this method. 

 
Figure 3-1.Key generation procedure 

 

One security flaw occurs when attackers take disclosed private ball i to pretend 

to be private ball j. We can not distinguish two private balls in the same tree. We use 

the uniqueness of each leaves’ authentication path to solve this problem. When 

receiver gets the message and its signature, he takes the following actions for 

distinguish different private balls. For each private ball, concatenate the public balls 

of authentication path. Then, apply hash function to this concatenate value to get a 

hash value and take this hash value as the identity of the private ball. The disclosed 

private ball’s identity will store in receiver’s memory. When verifying the coming 

signature, we first check the identity of each private ball. 
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3.1.2 The generalized scheme 

We generalize our scheme as following. We construct many small hash trees of 

height h that contain 2h private balls. The public key would then contain all the root 

nodes of all small hash trees, and hence we reduce the size by a factor of 2h. But, for 

authenticating each private ball, the signer adds the authentication path of each private 

ball, which has h verification nodes. Hence the signature size is expanded by a factor 

of h. 

Instead of constructing one Merkle tree only, we construct many Merkle trees 

owing to the lowest storage requirement. This generalized scheme comes from a fact 

that the public key size decreases, the signature size increases. If we only construct 

one Merkle tree, the size of public key plus the size of signature could not be the 

smallest sum. We should find an optimal balance between them due to the lowest 

storage requirement which are the sum of public key size and signature size. 

The proposed scheme has three phases, which are initial phase, sign phase, and 

verify phase. The three phases will illustrate as below: 

First, the sender (base station) generate key pairs (shows as figure 3-2) include 

private key and public key. Private keys are t l-bit random number generated by 

pseudorandom generator. Public key are d hash value which generated by 

PUBLIC_KEY_GENERATION as figure 3-3 shows. Sender use private key to sign a 

message as figure 3-4 shows. Receivers use public key of sender to verify the 

signature of message as figure 3-6 shows. We show system parameters below: 

System parameters 
t: private ball number 
k: signature ball number 
d: public ball number 
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l: ball size (bits) 
r: r-subset resilient 

 

Key generation 

In this phase, we generate a key pair, including a private key and a public key. 

The private key is composed of t l-bit random numbers generated by pseudorandom 

generator and the public key is generated from these t random numbers. First, we take 

t random numbers as the input to one way hash function to generate t hash values. 

Then, we separate t hash values into d group. So there are t/d values in each group. 

Finally, we use these t/d values as the leaves of binary tree and compute each 

intermediate node as the hash of the concatenation of the two child values. Thus, we 

can get d Merkle trees, whose roots compose our public key. We note that the original 

public key of HORS is t hash values generated from t random numbers while our 

public key is d Merkle tree’s root. In a typical case, t = 1024 and d = 32. 
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KEY GENERATION 
Input:  ldktparameters ,,,:

Output: key pair ,),...,,,( 21 tpri ssskK = ),...,,,( ln21 dpub vvvkK =  

1.  Random generate -bits random number lt
),...,,( 21 tsss  as private key 

2.   ),,(__ pripub KdkGENERATEKEYPUBLICK =

3.  Public key distribution 
Figure 3-2.Algorithm of key generation 

 
PUBLIC_KEY_GENERATE 

Input:  priKanddkparameter ,

Output:  ),...,,,( ln21 dpub vvvkK =

1.  Use t balls as preimage of leaves to build c Merkle trees with height ( )
  

tln

2.   tree root as public key dln ),...,,,( ln21 dpub vvvkK = , and 

   each public key corresponding to a sequence period. 
Figure 3-3.Algorithm of public key generation 

 

Broadcasting authenticated messages 

When base station broadcast messages to sensor nodes, base station must sign 

the messages. To sign the message m, we first compute h = H(m). Then, we separate 

the hash value h into k pieces and regard these pieces as integers, so we get 

 between zero and t-1. Third, we combine these integers to form the 

subset of  of size at most k. Each integer is an index of private balls 

( ) . Therefore, we can pick k private balls due to this message m. These k 

picked private balls plus their authentication path are used as the 

signature of this message m. Here, the authentication path is the additional 

),...,,( 21 kiii

}1,...,2,1,0{ −t

,...,, 21 trrr

),...,,( 21 ikii rrr
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communication overhead compared to original HORS. The duplicate path was send 

only once for better performance. We will discuss the duplicate authentication path 

below. 

 
SIGNATURE_GENERATION 

Input: Message and private key m ),...,,,( 21 tpri ssskK =  

Output: signature  },,...,,{ 21 bsaaa ikii=σ , where ),( iii apsa =  
(ap: authentication path of the ball) 

1. compute  )(mHashh =
2. split h into k pieces  of length  bits each ),...,,( 21 khhh tln

3. interpret each  as an integer  , jh ji kj ≤≤1  

Figure 3-4.Algorithm of signature generation 

 

3.1.2.1 The duplicated authentication path 

For verifying each private ball, the sender must send additional nodes called 

authentication path. These additional nodes of private balls could be sent repeatedly. 

Here is an example. We first send the ball s0, and its authentication path , 

and then send s

},,{ 47231 mmv

1, and its authentication path . Two balls  are 

duplicated and should send only once. Moreover,  can be computed by 

. This shows that when we send a direct neighbor node of disclosed 

private ball, we send no additional node for this private ball. The generalized idea is 

as follow. If the nodes belong to the first common parent is at height e, the additional 

nodes at height higher than e send only once. The closer the private balls are, the more 

duplicated additional nodes we save. (ps: The upper bound of the sum of 

authentication path is min{r*k*h, the whole tree}) 

},,{ 47230 mmv 4723, mm

0v

)( 00 sHashv =
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Figure 3-5.Duplicated path illustration 

 

Authenticating broadcast messages 

When the sensor nodes receive the broadcast messages, it needs to ensure that 

the broadcast messages come from the authenticated sender. Sensor nodes verify the 

signature of message by the following procedure. First, because the sender will 

rekey periodically, the verifier must decide which public key of sender should be used 

to verify received signatures. The verifier checks which sequence period of public key 

the sequence number falls into. Second, it computes 

'm

)'(' mHh = . Then, we separate 

the hash value h into k pieces and regard these pieces as integers between 

zero and t-1. Each integer is an index of private balls ( . Third, we check 

the identities of balls by uniqueness of authentication path as discuss in section 3.2.1. 

Forth, receivers verify each ball with its authentication path and the public key. They 

compute the treehash with the private ball and its authentication path, then check 

whether this treehash equals to the public key. If it is true, we can assure that the 

private ball belongs to the authenticated sender. The verification algorithm is shown 

as figure 3-6. 

),...,,( 21 kiii

),...,, 21 trrr
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SIGNATURE_VERIFICATION 

Input: message , signature m σ , and public key ),...,,,( ln21 dpub vvvkK =  

Output: {true, false} 
 1. check if bs in current sequence period 
 2.  )(mHh =
   Split h into k piece, of length  bits each ),...,,( 21 khhh tln

   Interpret each  as an integer  , 1<j< k  jh ji

     )//( dtiTN jj =  

     Check  with pairs  ji ))(,,( APHashTNi

     If index already exists, check if ji )()( APHashAPHash j = ; 

     else check each ≠)( jAPHash jTNAPHash ∈)(

 3. Use Merkle tree to verify balls 

  if ( TNjjj pAPrTreeHash =),(  ) 

   then output true; 
  else output false;                           
 

Figure 3-6.Algorithm of signature verification 

 

3.2 Rekeying mechanism 

Because proposed scheme can only sign r messages with one key pair, when we 

sign more than r messages, we should sign with another key pair instead. Therefore, 

we propose a rekeying scheme for this situation. 

If one key pair can sign r messages, we set the duration is r. the sequence period 

of the first public key is 0 ~ r-1, the sequence period of the second public key is r ~ 

2r-2, and so on (shows as figure 3-7). Every key pair can be used in the duration of 

sequence numbers.  
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Figure 3-7.Sequence period of a public key 

 

When sensor nodes receive the broadcast messages, they first check which 

sequence period the sequence number of message belongs to. 

 We discuss a more efficient public key distribution method here. Because each 

sensor node shares pair-wise key with base station, base station (sender) can unicast 

the public key to each sensor node using authenticated channel first time. Afterward, 

sender distributes the public key by authenticated broadcast where the new public key 

material was signed with the old private key.  
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Chapter 4  Discussion  

4.1 Security analysis 

The security strength of the proposed scheme is based on some security 

parameters, including the private ball size l, the private ball number t, the signature 

ball number k, and the number of messages that one key pair can be used to sign, r (as 

defined in Appendix A). We discuss these security parameters below. 

 

Theorem 1. Security level is based on security parameters l, k, t, r. The parameter l 

decides the security strength against brute-force attack. The parameters k, t, r decide 

the security strength against chosen message attack. For defending chosen message 

attack, we provide )loglog(log rktk −−  bits of security. 

Proof: 

Let f be a one-way function operating on l-bit strings, for a security parameter l. 

And fl is the length of the one-way function output on input of length l. Attackers can 

do brute force attack against one way function by deriving private ball ri from the 

Merkle tree’s leaves leafi. The private ball ri and Merkle tree’s leaves leafi has one 

way relationship as . The suggested security parameter l is 80bits in 

HORS. 

)( ii rfleaf =

Because the sender will disclose the private balls with signatures, attackers may 

do a chosen message attack by collecting the private balls for forging the signature. 

We assume that the attacker of obtains signatures on r messages of its choice (but the 

choice is independent of Hash), and then tries to forge a signature on an any new 

message m of its choice. We are interested in the probability that the adversary is able 

to do so without inverting the one-way function f. it is quite easy to see that this 
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probability is at most (rk/t)k for each invocation of Hash, i.e., the probability that after 

rk elements of T are fixed, k elements chosen at random are a subset of them. In other 

words, we get  bits of security.                        ◊ )loglog(log rktk −−

 

4.2 Selection of parameters 

We discuss the system parameters in this section. These parameters influence 

security strength and performance of our scheme. In general, higher security strength 

brings lower performance and vice versa. Our strategy is to provide enough security 

strength as we need and we assume 64 bits security is enough. We take security 

parameters l=80 against brute-force attack and t =1024, k=16, r=4 to provide 64 bits 

security against chosen message attack. 

First, we explain the meaning of parameters in the following; k: the number of 

balls in a signature; h: the cost of computing a hash function; d: the number of public 

balls as the public key; fl: the public ball size (bits); r: the number of signatures that 

one key pair can generate; l: the private ball size (bits); h1: the size of private ball’s 

identity. We discuss how the parameters influence the performance below. 

 

Lemma 1.  Given the parameters k, h, d, fl, r, l h1, the storage requirement, 

computation cost and communication overhead of system are related to tree height h. 

Computation cost (of receiver):  hk *

Communication overhead: )(** khfklrfd ll ++  

Storage requirement (of receiver): 1** hrkkhfklfd ll +++  

Proof:  

The communication overhead for the whole life of a keypair includes the public 

key size, which consists of d b-bit root, and r signature size, which each consists of k 
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private balls and k authentication path. The storage requirement equals the public key 

size, one signature size and rk private ball’s identity. Receiver need to compute the 

root using leaf and its authentication path. Verifying one private ball needs h hash 

computation. Receiver need to verify k private balls for one signature. So, the number 

of hash computation is equal to .                                     ◊ hk *

 

Lemma 2.  Given t private balls and d public balls as public key, the tree height is 

related to public key size 

dtTreeHeight lnln −=  

Proof:  

The height of tree is decided by the number of private balls and the number of 

public tree root. The number of leaves of a tree is t/d. The height of the binary tree 

with t/d  leaves is , equal to dt /ln dt lnln − .                             ◊ 

 

With the same amount of leaves, we construct several trees instead of one tree in 

order to amortize the height of tree over several trees. We do so due to a fact that the 

higher tree is, the lower public key size is but the more additional public balls should 

be sent. We want to find an optimal balance between public key size and signature 

size. The public key and signature will store in sensor node’s memory at the same 

time, so the sum of their size should be as small as possible. In that case, how many 

trees we should construct for the smallest storage requirement for sensor node? We 

discuss in Theorem 2.  

 

Theorem 2.  Given the parameters l, fl, k, t for enough security strength, we 

construct d trees in our scheme and the parameter d is decided by 

.  )}ln(ln*min{ dtkfklfd ll −++

27



Proof:  

The number of trees we construct is decided by the lowest storage requirement. 

We know that the storage requirement for sensor node is 1** hrkkhfklfd ll +++  

from lemma 1 and lemma 2. Therefore, given l, fl, k, t , we decide the parameter d by 

.                                        ◊ )}ln(ln*min{ dtkfklfd ll −++

 

We know that the higher tree is, the more additional nodes sent. Then, what if we 

increase the degree of Merkle tree for constructing a tree with low height? This is not 

a good idea due to theorem 3. 

Theorem 3. Given t leaves, the 2-degree Merkle tree has the lowest upper bound of 

additional nodes needed to be sent. 

Proof:  

The upper bound of additional nodes we transmit in a signature is , 

which is equal to . Given t leaves, we desire . 

The value  is the minimum when degree is equal to 2.            ◊ 

hd *)1( −

td dlog*)1( − }log*)1min{( td d−

ld dlog*)1( −

 

 

4.3 Case study 

Real time distribution of traffic data 

A municipality wishes to collect traffic information from sensors distributed over 

the streets. The sensors need to authenticate the command from the base station (the 

municipality) and transmit sensed data through secure channel (with pair-wise keys 

shared between sensor nodes and base station) back to base station. The system 

requirements are as follows: 

The data rate of the stream is about 10 Kbps, about 20 packets of 64 bytes each 
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are sent every second. The packet drop rate is at most 5% for some recipients, where 

the average length of burst drops is 5 packets. The verification latency should be less 

than 10 seconds. 

Our proposed scheme helps the sensor nodes to authentication the command 

from the base station. We set the system parameters l=80, t=1024, k=16,r=4, flt=160 

for 64 bits security which can be computed from theorem 1. This means the attackers 

need to perform 264 hash computations during a key-pair life to forge a signature. In 

BiBa [2], they provide 58 bits security for real time stock quotes application. So we 

consider 64 bits security is enough. In this case, the optimal public key size is 640 

bytes which are 32 tree roots comes from theorem 2. The figure 4-1 shows the optimal 

public key size we choose due to the minimum storage requirement. 
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Figure 4-1.The optimal public key size 

 

When we decide the optimal number of trees we should construct, we generate 

the key pair using key generation algorithm (figure 3-2). In this case, the key 
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generation is illustrated by figure 4-2. 

 

Private key: 1024 80-bit random numbers 

Public key: 32 160-bit hash values 

32 trees, each has t /d=32 leaves and height = dt lnln − = 5 

 

Figure 4-2. The key pair of our scheme 

 

4.4 Comparison  

μTESLA [18] is so far an efficient broadcast authentication protocol in wireless 

sensor networks. Therefore, we compare our scheme with it. When comparison with 

μTESLA, we have four advantages overμTESLA, which are listed below: 

1. No time synchronization needed 

In μTESLA, sender and receivers must synchronize time first and use 

disclosure delay to achieve asymmetric property needed in broadcast authentication. 

Our scheme use key pair including private key for signing messages and public key 

for verifying messages to achieve asymmetric property. We have no requirement for 

time synchronization, which is not always practical in large sensor network. 

2. No receiver buffer needed 
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InμTESLA, the receivers have to buffer the packets until the corresponding 

MAC key disclose. Instead, the receivers need no buffer in our scheme. 

3. Individual authenticate 

Receivers can individual authenticate the received packets without waiting for 

another packets. In μTESLA, the receivers must wait the packet with disclosed 

MAC key. 

4. Instant authenticate 

Receivers can instant authenticate the received packets instantly in our scheme 

while receivers must wait for the packets with disclosed MAC key in InμTESLA. 

We compare our scheme with other two efficient one time signature schemes, 

BiBa [2] and HORS [3], here. For a general case, we take the system parameters as 

following for the same security level, t=1024, k=16, r=10, h=5. The proposed scheme 

performed better than BiBa and HORS in three criterions, which are computation 

overhead, communication overhead and storage requirement.  

 BiBa HORS Proposed 

scheme 

Generation overhead 

(hash computation) 

2048 1 h=5 

Verification overhead 

(hash computation) 

100 1+k=17 h=5 

Communication (bytes) 5250 5250 288 

Storage (bytes) 5152 5152 192 

Energy cost Large Large Little 

Time synchronization Yes No No 

 

Table 4-1.Comparison with other one time signature schemes 
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Chapter 5  Conclusion 

In this paper, we proposed an efficient broadcast authentication scheme for 

wireless sensor networks. The proposed broadcast authentication scheme includes a 

signature scheme and a rekeying mechanism. The signature scheme which can be 

viewed as an improvement of one time signature scheme HORS. We reduce the large 

key storage requirement of HORS by using Merkle hash tree construction to generate 

the key pair. The idea of reducing key size is to take more computation cost to trade 

for less storage requirement, and the signature size is a little longer than that in HORS. 

We also propose a simple but efficient rekeying mechanism for our scheme. 

Our scheme has many nice properties, including individual authentication, 

instant authentication, robust to packet loss and low overhead in computation, 

communication and storage. 
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Appendix A 

Definition 1. We say that H is r-subset-resilient if, for every probabilistic 

polynomial-time adversary A, 
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Fix a distribution D on the space of all inputs to H (i.e., on the space of messages). 

 

Definition 2. We say that H is r-target-subset-resilient if, for every probabilistic 

polynomial-time adversary A, 
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