Chapter 1. Introduction

A Heterogeneous Computing (HC) system is a geographicaly distributed
machines interconnected by a high-speed network topology. It offers high-speed
computation of parallel program (application) with diverse computing needs
[1,2,6,17-19,24-29,36,38]. It is envisioned that such a computing system will enable
users to execute their applications rapidly on the computing resources. Applications
like weather modeling, image processing, distributed database systems show a great
deal of paralelism [26,27]. Owing to the technical progressing of VLS, the
computation speed of processor increases fast and makes cost down of processor.
Therefore, users can use the server consisting of many processors or the computing
system constructed by many personal. compuiters (PCs) to execute their applications. It
will be used popularly in the future.

In the HC system, one of the mast important aims is how to use the processors
efficiently to achieve optimal task-paralelism. This problem is called task scheduling
problem [1,2,6,17-19,24-29,36,38]. Thus, an efficient task scheduling method
assigning the tasks of parallel program to the suitable processor is one of the key
factors for achieving high performance of a HC system [1,2,6,17-19,24-29,36,38].
The genera task scheduling problem includes the problem of assigning the tasks of a
parallel program to the suitable processor and the problem of ordering task executions
on each processor. When the characteristics of a parallel program which includes
computation cost of the tasks, the communication cost between the tasks, and the
precedence relation of the tasks are known a prior, it is called static model [2].

Resolving the task scheduling problem on the static model is called static task
scheduling method [2]. In the general form of a static task scheduling method, an
application is represented by a Directed Acyclic Graph (DAG) in which nodes
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represent the tasks and edges represent the data dependencies between tasks in the
parallel program. The objective function of task scheduling method is to assign tasks
onto processors and order their executions so that task-precedence requirements are
satisfied and a minimum completion time is obtained [2].

The task scheduling problem is a NP-complete problem [3]. There are many
scheduling categories on this problem, including list-based scheduling algorithm
[4-9,36], clustering algorithm [4, 10-12], duplication-based agorithm [8, 13-14,
26-35], and guided random search agorithm [15-21]...,etc. The main idea behind
duplication-based scheduling algorithms is to schedule a task graph by mapping some
of its tasks redundantly, which avoids the inter-processor communication overhead to
achieve the goal of reducing completion time of paralel program. The main
difference among duplication-based agorithms'is.the selection strategy of the tasks
for duplication. Although scheduling method of. this kind usually has higher time
complexity than the algorithms in the other-categories, it will be a very important
factor no more because we can use afast processor for scheduling tasks.

We find that most task scheduling algorithms on HC system assume the system
model connected by the fully-connected (clique) network. Moreover, contention for
network link is neglected. Very few algorithms model the target system as an arbitrary
network of processor and incorporate network link contention. However, Macey and
Zomaya showed that the consideration of link contention is significant to produce
accurate and efficient schedules [37]. Actually, there are some related works on the
task scheduling problem with the link contention constraints [24-25,36,38]. We will
construct a convincible and practical system model from previous work.

In this thesis, we propose a Duplication-based Earliest Finish Time (DEFT)

algorithm to solve the scheduling problem. This algorithm contains two phases. The



first phase is task prioritizing phase for computing the priorities of al tasks by an
efficient priority function. In the second phase, we select the processor which can
complete the task earliest for the task by a task duplication mechanism. The concept
of task duplication mechanism is that we utilize processor idling time for duplicating
some predecessors of scheduling task into a processor to avoid communication costs
between tasks. We design two similar algorithms. The one is called DEFT1that is for
target system without link contention constraints, another is called DEFT2that is for
target system with link contention constraints Meanwhile, we construct a simulation
environment. In our simulation, we find that in most cases of our simulation results,
the DEFT algorithm performs more effectively than the related agorithms.

The thesis is organized as follows. In chapter 2, we will survey some related
work and some basic fundamental background ‘briefly. Our proposed agorithm is
described in chapter 3. In chapter 4, we will describe our simulation environment and
evaluate our agorithm in some detail--Finally; we will make conclusion and some

future work in chapter 5.



Chapter 2. Fundamental Background

and Related Wor k

In this chapter, we will introduce the system architecture and some basic
terminologies in the section 2.1. Next, we will describe some related algorithms that
have different system assumptions to solve the same task scheduling problem in the
section 2.2. The main different system assumption among related algorithms is that

target system exists link contention or target system doesn’t exist link contention.

2.1 Fundamental Background

2.1.1 System Architecture [22423;.25]

We assume that our HC environment consists of‘m heterogeneous processors { P1,
P,, ..., Pm} connected in different kinds of network topologies, such as clique,
hypercube, mesh, ring,...,etc. In this HC system, the inter-processor link contention
may happen due to the scarcity of network link.

We use the message passing mechanism to transmit the data on the network link.
The data transmission needs to be handled in each network topology. Thus, we need
the routing table in each network topology. We choose the pre-determined routing
table which uses the shortest-routing-path al gorithm [39] (such as a hypercube uses the
E-cube routing method and a mesh uses the XY-routing method) for any kind of input
network topology in our system. For simplicity, we assume that the distance between
two processors doesn't affect the communication cost. Under considering the
condition of link contention, the system only allows one direction of data transmission

on each link between processors at the same time.
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2.1.2 Some Basic Terminologies|[2, 36]

In this thesis, our object is to solve the problem of task scheduling with link
contention constraints on different kinds of network topologies. Thus, we define the

network topology first in Definition 2.1.

Definition 2.1 The topology of the target system is modeled as an undirected graph

Gr=(P, L), where

m Pisafiniteset of |P| verticesand L isafinite set of |L| undirected edges,

m A vertex P; represents the processor i. And an undirected edge Lj; represents a
bi-directional communication link between the incident processors P; and P ;

In Figure 2.1, there are four processaers connected by 2-D mesh network.

We will define DAG which is often‘used to represent a parallel program in the
task scheduling problem. We assume that a parallel program is composed of n tasks
{T1, To,..., T} in which there is a partial order: T; < T;implies that T; cannot start
execution until T; finishes due to the data dependency between them. Formally, we

give the following definition.

Definition 2.2 A parallel program can be represented by a directed acyclic graph

(DAG) G, G= (T, E, C), where

B Tisafiniteset of |T| verticesand E isafinite set of |E| directed edges,

B A vertex T; represents the task i. And a directed edge g;<E represents a
directional data dependency between task T; and task Tj ;

B Cisthefunction from E to integer in which c;; represents the communication



Figure2.1 2-D mesh network topology Figure2.2 A DAG with 10 tasks
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Figure 2.3 Computation cost matrix

cost from task T; to task Tj;

Figure 2.2 shows an example of DAG

When both T; and T; are scheduled on the same processor, ¢; becomes zero since
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the intra-processor communication cost is negligible when it is compared with the
inter-processor communication cost. After introducing about the definition of DAG,
we explain some terminology in DAG asfollows.

In the DAG atask without any parent is called an entry task and a task without
any child is caled an exit task. If there exists the data dependency from task T; to task
T; in the DAG, we say that task T; is the immediate predecessor of task T; and task T;
is the immediate successor of task T;.

In HC system, atask on different processors has different computation costs. We
assume that computation can be overlapped with communication. Additionally,
computation and communication are both non-preemptive. We need a computation
cost matrix W to describe the computation cost. The definition of matrix W is shown

asfollows.

Definition 2.3 In a given task graph, acempuitation cost matrix Wisan x mmatrix in

which each w;; gives the computation cost to compl ete task T; on processor P;.
For example, Figure 2.3 shows the corresponding computation cost matrix

related to the DAG in Figure 2.2 when there are four processorsin our system.

Before scheduling, we often label the tasks with the average computation cost.

The definition is shown below.

Definition 2.4 In a given task graph, the average computation cost of task T; is

defined as

W, = >w, /m (D
=1



,.where wj; is the computation cost while task T; is alocated on processor P;.

For example, the average computation cost of task T, in Figure 2.2 is 10.25.

Next, we will define two attributes of EST (Earliest Sart Time) and EFT

(Earliest Finish Time) below.

Definition 2.5 In a given partial schedule, we define the Earliest Sart Time of task T;

on processor P;, denoted as EST(T;,P;), by the following equation:

EST (Ti, P;) =0, if task T; is the entry task;

EST(T,, P,) = Ma{avail[P], Max_ (AFT(T,)+c,,)}, otherwise. )

,\where pred(T; ) is the set of all immediate predecessor tasks of task T;, and avail[P] is
the earliest time at which processor P; is ready for- task execution. AFT(Ty) is the

actual finish time of atask Ty,

Definition 2.6 In a given partial schedule, we define the Earliest Finish Time of task
T; on processor P;, denoted as EFT(T; ,P;), by the following equation:

EFT(T,,P) =w; + EST(T,,P,), 3)

In EQ. (2), the inner Max block returns the data ready time, i.e., the time when all
data needed by task T; has arrived at processor. After task Tp, is scheduled on
processors P;, the EST and EFT of Ty, on processor P; is equal to the Actual Start Time,
AST(Ty), and the Actual Finish Time, AFT(Ty,), of task Tp, respectively.

We need one object function to quantify the final schedule after all tasks have

been scheduled.



Definition 2.7 In a given final schedule, the schedule length (which is aso caled
makespan) is defined as
makespan = Max{ AFT (T, )} (4)

\where AFT (T, ) istheactual finishtime of the exit task.

exit
Finally, we define a common task priority function. Tasks are ordered in our

algorithm by their scheduling priorities that are based on bottem level (b_level )value.

Theb_level of atask T; is defined as follows.

Definition 2.8 In agiven task graph, theb_level value of atask T; isrecursively
defined as

b_level (T,)=w,,if task T, isthe exit task;
b_level (T,)=w, + Max (¢, +b_levd (T))), otherwise (5)

jesucc (T;

,where succ(T;) is the set of all immediate successor tasks of task T;, and WI is the

average computation cost of task T;. ¢; is the communication cost from task T; to task

T;.

The goal of the task-scheduling problem is to determine the assignment of tasks

of agiven parallel program on processors such that its schedule length is minimized.

2.2 Related Work

We will survey four related algorithms, named HEFT (Heterogeneous
Earliest-Finish-Time), STDS (Scalable Task Duplication-based Scheduling), CLS

(Communication Look-ahead Scheduling), and BSA (Bubble Scheduling and



Allocation) in this section briefly. There are some different system assumptions
among them. The HEFT and STDS algorithm have the same system assumptions of
target system to be a HC with cligue network. Moreover, contention for network link
is neglected. We will describe the HEFT, STDS, CLS and BSA agorithm in section

2.2.1~ section 2.2.4, respectively.

2.2.1 HEFT Algorithm [2]

HEFT algorithm is a well-known and effective list-based algorithm. It is a
traditional task scheduling method without considering the task duplication. The main
concept of this algorithm is to choose the processor which can complete the task
earliest. This algorithm has two majoriphases:The first phase istask prioritizing phase
for computing the priorities of all tasks. In this phase, it sets the task priority by rank,
value (which is b_level value as we mentioned before). The rank, of a task is the
length of the longest path from itStask to exit task; including the computation cost of
the task. The higher rank, value of a task represents that it needs more computation
cost or communication cost from its task to exit task. If such kind of task can select
the processor early, it is useful to reduce the schedule length.

The second phase is processor selection phase for selecting the tasks in the order
of their priorities and scheduling each selected task on the processor, which minimizes
the task’s finish time. In this phase, the selected task according to the rank, value is
assigned to the processor which minimizesiits earliest finish time.

HEFT agorithm has an O(n*m) time complexity for n tasks and m processors.

After analyzing the HEFT algorithm, we find that there are many idle time-sotsin the
processors when the paralel program is communication-intensive. It will cause the

schedule length increasing.
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2.2.2 STDSAlgorithm [27]

This agorithm uses task duplication to reduce the length of the schedule. First, it
generates initial clusters by traversing the DAG. If the number of processors in the
system is more than the number of initial clusters generated, task duplication is
carried out. The task duplication process is that it checks clusters to see whether the
preceding task of a given task is the task of critical path of its given task. If thisis not
the case, it duplicates tasks of the critical path of given task and then reassigns those
tasks on the origin processor of the cluster in order to improve the finish time of its
given task. The remainder tasks in the cluster are assigned to a new processor. This
process continues until the task duplication makes the final schedule length increasing
or there is no free processor in the system. On the contrary, if the number of initia
clusters is larger than the number of proecessors in the system, it will merge initial
clusters together until the number “of clusters is equa to the number of processors in
the system.

The STDS has an O(n?*) time complexity, where n is the number of tasks. After

analyzing the STDS agorithm, we find some shortcomings in the algorithm. First is
that each processor executes tasks of a critical path. It means that only one immediate
predecessor of given task in the critical path assigns to the same processor of given
task. The other immediate predecessor tasks of given task are assigned to different
processors. It causes that the communication overhead between immediate
predecessor tasks of given task and its given task is very heavy and makes a poor
schedule result when the parallel program is communication-intensive. The second is
that if the number of initia clusters is larger than the number of processors in the
system, the task duplication process will be limited. Thus, it also makes an inferior

schedul e result.
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2.2.3 CLSAIlgorithm [36]

The CLS algorithm is also a list-based algorithm. This algorithm has to consider
the link contention condition that occurs in a practical system. The CLS is an
extended algorithm from the HEFT. The main concept of the CLS algorithm is to
choose the processor which can complete the task early and has the sufficient network
link by communication look-ahead manner because it takes the link contention into
account. Thus, this algorithm also contains two phases doing task prioritizing and
processor selecting respectively.

In the first phase, different from rank,in the HEFT, it sums al communication
costs of atask into its weight value. Thus, a task with larger weight value indicates it
may contain more immediate successor tasks, higher communication cost between its
task and immediate successor task of its task; or. larger average computation cost of its
task. If such kind of task can-select the processor early, it is useful to reduce the
schedule length under considering the link‘contention constraints. In the second phase,
it selects the processor which can complete the task early and has the sufficient
network link by computing the earliest finish time of assigning the communication
cost that forwards to immediate successor on direct link of its processor. The
look-ahead mechanism can help that the immediate successor tasks of its task receive
the data early.

The CLS algorithm has an O(nme) time complexity for n tasks, m processors and
e edges. In this agorithm, there may have some conditions to make inferior
performance. First, it can produce inaccurate look-ahead for immediate successors
when the data doesn’t need transmission by network link to immediate successors.
The second isthat CLS algorithm still has many idle time-slots in the processors when

the parallel program is communication-intensive.
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2.2.4 BSA Algorithm [24]

This agorithm also has to consider the link contention constraints. The main
concept of the BSA algorithm is task migration. The tasks have to be considered for
possible migration to the neighbor processors in order to improve their finish time.
The BSA agorithm belongs to the list-based algorithm which always contains two
steps:. task prioritizing and processor selection. Before introducing the main body of
the BSA agorithm, we have to explain some terminology. First, the top level of task
T; represents the length of the longest path from the entry task to task T;. Next, the
bottom level of task T; represents the length of the longest path from the task T; to exit
task. Finally, the critical path is defined as a path on the given task graph with the
largest sum of computation costs and communication costs. After computing top level
and bottom level, the set of tasks'with thelargest sum of top level and bottom level is
the critical path in a given task graph. The first step-is serialization which gives the
tasks priority according to the value of bottom level and the topological order. The
second step is to select the pivot processor'which gives the minimum critical path
length and builds the processor list with the other processors. In this step, the BSA
algorithm chooses the processor by using the concept of task migration mentioned
above. After all tasks have been scheduled, it removes the current pivot processor
from processor list and reassigns the processor in processor list as the new pivot
processor. The agorithm repeats the step of processor selection until the processor list
IS empty.

The time complexity of task migration is O(e). Since there are O(n) tasks on
pivot processor and O(m) neighbor processors, each iteration of processor selection

tasks O(men) time. Thus, the BSA algorithm tasks O(nm*e) time for n tasks, m
processors and e edges.
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Algorithm HEFT STDS CLS BSA
Scheduling List-based |Duplication-based| List-based List-based
categories
Link contention No No Yes Yes
constraints
Network of  |Clique network | Clique network Arbitrary Arbitrary
system network network
Mainfeature | EFT concept | Duplication of Look-ahead | Task migration
task in apath mechanism
Time complexity O(n*m) o(n?) O(nme) O(nmZ*e)

Table2.1 Characteristics of related algorithms

Table 2.1 summarizes the characteristics of four related agorithms. After

introducing about four

related algorithms, we will

propose an effective

duplication-based algorithm in HC system with link contention constraints in the next

chapter.
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Chapter 3. Duplication-based Earliest
Finish TimeAlgorithm

As we discussed in section 2.2, the STDS algorithm isn’t effective enough. The
selection strategy of tasks for duplication is one of the most important factors to affect
the performance of a duplication method. We also consider that it is useful to use a
better task duplication mechanism to duplicate some predecessor tasks on the
processor to avoid the communication overhead between tasks and then reduce the
schedule length. Thus, we will propose the Duplication-based Earliest Finish Time
(DEFT) agorithm in this chapter. Our algorithm contains two phases that are task
prioritizing phase and processor selection phase. We will design two similar
algorithms. The one is called DEFT1that.is for target system without link contention
constraints, another is called DEFT2 that is for target system with link contention
constraints We will describe DEFTz agorithm and DEFT2 algorithm in section 3.1

and section 3.2, respectively.

3.1DEFT1Algorithm

In section 3.1.1, we will describe the task prioritizing phase that sets the priority
of each task by computing b_level value. Next, we will explain our processor

selection mechanism and task duplication method in section 3.1.2.

3.1.1 Task Prioritizing Phase

In some effective two phases list-based algorithms, the b_level priority function

is often used to set the priority of each task. Moreover, it is also compared with
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T, b_level(T))
T 106.5
T 715
Ts 84.2
T 80.7
Ts 74.0
To 58.7
T 452
Ts 335
To 422
Tio 13.0

Table3.1 Theb_level value of each task in Figure 2.2.

different priority functions in [38] and.shows abetter result, whether the target system
exists link contention constraints or not. -Thus, we also use the b_level priority
function in this phase.

The b_level value was defined in"definition 2.8, and this value can be computed
recursively from the exit task. The b_level(T;) value is the length of the critical path
from task T; to the exit task. Obvioudly, the higher b_level value of a task represents
that it needs more computation cost or communication cost from its task to
completion of the parallel program. If such kind of task can be assigned to processor
early, it is useful to reduce the schedule length. As an example, Table 3.1 represents
the b_level value of each task in Figure 2.2. After computing b_level values of al
tasks, we sort tasks in the scheduling list according to the b level vaue in

nonincreasing order, that is{ Ty, Tz T4 Ts, T2, Te, T7, To Tg, T10 }-

3.1.2 Processor Selection Phase
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In this phase, the concept of our task duplication process is to utilize processor
idling time for duplicating some predecessors of scheduling task into a processor. It
can avoid communication costs between tasks. We also use the concept of EFT that is
broadly used in scheduling problem in this phase. First, we define a terminology

cluster in our algorithm.

Definition 3.1 For each task T; in a DAG acluster C(T;) represents T; itself and some
predecessors of task T that are duplicated to the processor which has minimum EFT
of T..

A simple example is shown in Figure 3.1. There exists the data dependency
between task T; and task T;, and task Ty and task T; as shown in DAG. Task T; and task
Ty are alocated on different processors P; and Ps, respectively. We can find that the
task T; and task Ty haven't any-predecessor. Thus; cluster C(T;) contains only task T;
and cluster C(Ty) contains only task: Ti-Next;-we will try to assign task T; on each
processor in order to select an appropriate processor that has minimum EFT of task T;
for task T; execution. For example, when we try to assign task T; on the P, the partia
schedule is shown in Figure 3.1(a). In the P, we also consider to duplicate the tasksin
the C(T;) and C(T\) sequentially into this processor in order to reduce the EFT of task
T;. We can see Figure 3.1(b) that shows a shorter EFT value of task T; than the result
in Figure 3.1(a) when we duplicate task T; in the cluster C(T;) and task Ty in the
cluster C(Ty) into P, If task T; finally is scheduled on processor P, that has minimum
EFT of task T; (it likes the partial schedule in Figure 3.1(b).) comparing with

assigning T; to other processors, the cluster C(T;) is{ T;, T« ,Ti }.

After computing b_level value of each task in the first phase, the task scheduling
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Figure 3.1 The detailed partia schedule of DAG (@) if task T; is scheduled on P, (b)
if task T; is scheduled on P, after duplicating tasks in C(T;) and tasks in

C(Ty) into Py,
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list is produced. According to the order of task in the task scheduling list, we select
the task to assign on processor that minimizes earliest finish time of its selected task.

We first utilize the task duplication process repeatedly on each processor in
order to find the minimum EFT of selected task on each processor. Finally, we assign
the selected task to processor that has minimum EFT of its selected task. In our
duplication process, we try to duplicate the tasks in the clusters of immediate
predecessor of selected task into a processor sequentialy. As an illustration, we
assume the target system to be a HC with clique network. We use the DAG in Figure
2.2 as an example. After scheduling task Ty, T3 T4 Ts, To T, and T; in the task
scheduling list, we attempt to schedule task To. We try to assign task Tg in each
processor. The Figure 3.2 (a) shows the detail partial schedule of trying to assign task
Ty on the P,. Next, we will execute task duplication process in P, The immediate
predecessors of task Ty are task I, task T4 and task Ts, but the task T, was assigned on
P,. Thus, we try to duplicate the tasks in-the-cluster C(T,) and C(Ts) into processor P,
sequentially.

The selection order of these clusters for task duplication is decided by the values
of data arrival time of all immediate predecessors of selected task on a processor,
because it can reduce the EFT of selected task instantly. Let’s discuss the example.
Before duplicating the tasks in a cluster into processor P,, we need to decide the
selection order in C(T2) and C(Ts). We compute the data arrival time of T, and Ts
respectively. We find the task T, which has largest data arrival time. It also represents
to select C(T>) first. The next selection is C(Ts).

We use a Duplication function to duplicate the tasks in a cluster into a processor,
and then return a minimum EFT of selected task and corresponding schedule. If the

returned EFT value isincreasing after duplicating the tasks in acluster into a

-19-



34

“IFITTY

Ju

5!

(b)
Figure 3.2 The detailed partial schedule of DAG in Figure 2.2 (a) if task Ty is

scheduled on P, and EFT is 54 (b) if task Tg is scheduled on P, after

duplicating task T, in C(T>) into P, and EFT is51.
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processor, we stop to duplicate the tasks in the next cluster into this processor. It may
don't reduce the EFT of the selected task anymore if we continue to duplicate the
tasks in the next cluster into a processor. Otherwise, there may exist enough big idle
time-slot in the processor for assigning tasks in next cluster into thisidle time-slot and
thus reduce the EFT of its selected task again. Let's discuss the example. After
alocating task T, and Ts to appropriate processor, we know that the contents of C(Ty)
and C(Ts) are {To}and {T,, Ts},respectively. The idle time-slot between T, and Tg in
P, is enough to execute the task T, Thus, we first duplicate the task T, in the C(T>)
into P, and the detailed partial schedule is shown in Figure 3.2(b). We find that the
returned minimum EFT of task Tg is decreasing after duplicating task Tzin the C(Ty)
into P,, We will continue to duplicate the tasks in the C(Ts) into P-.

Notice that tasks in the cluster exist an order for duplicating a task into a
processor. The order of the tasks.is starting from the immediate predecessor of
selected task (the last task in the cluster)-to-ether ancestor tasks. We compute and
record the EFT value of selected task-when.we duplicate a task in the cluster into a
processor. Finally, the returned EFT value is minimum value among all recorded EFT
values. Such duplicate order of tasks can reduce the EFT of selected task immediately.
Let’s discuss the example. Now, we try to duplicate the tasks in the C(Ts) into P,. We
find that the idle time-slot between T, and Tg in Poisn’t enough to execute the first
task Tsin the C(Ts). If we continue to duplicate the tasks in the C(Ts), the returned
EFT vaue must increase. Thus, we stop the task duplication process on the processor
P, Findlly, The partial schedule in Figure 3.2(b) represents the schedule status and the
minimum EFT value of task Ty on processor P,

After utilizing the task duplication process repeatedly on each processor, the

selected task is assigned to the processor with minimum EFT of selected task and

-21-



LY

.-h II

:

Y v
(©) (d)

Task To's P, P, Ps P4
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EFT 63 51 62 57

e

Figure3.3 The partial schedule of DAG in Figure 2.2 (@) if task Ty is scheduled on

P, (b) if task To is scheduled on P, (c) if task T is scheduled on P; (d) if

task Tg is scheduled on P, (e) related variables of partial schedule.
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P1 P> P3 P4

69

v
Figure3.4 Thefina schedule generated by the DEFT1

algorithm and the schedule Iéngth‘ IS 69.

cluster of selected task is obtained: Let's discuss the example. In the same way, we
assign To to Py, Pzand P4, The partial schedules are shown in Figure 3.3, that is result
of the minimum EFT value of task Tg on each processor after executing task
duplication process on each processor. The Figure 3.3(e) shows the related variables
according to the partial schedule. Finally, task Ty is scheduled to processor P, which
has the minimum EFT value and the cluster C(Tg) iS{T2,To}.

The tasks in the cluster of selected task are the tasks that are duplicated to
processor with minimum EFT of selected task. This cluster includes some
predecessors of selected task. It means that those tasks in the cluster are beneficia for
reducing the EFT of selected task by duplicating those tasks into a processor.

When all tasksin the scheduling list are scheduled to appropriate processor, the
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Input: DAG ,matrix W and network topology Gr

Output: Schedule result and schedule length

1. Sort al tasksin a scheduling list by nonincreasing order of b_level values,

2. while (there are unscheduled tasks in the list) do

3. Select thefirst task, T; , from the list for scheduling;

4. for each processor Py in the processor_set (P« eP)do

5. Compute EFT(T;, Py);

6. Ftime= EFT(T;, Py);

7. Sort all immediate predecessor tasks T; that haven't assigned on Pxin
aqueue by nonincreasing order of AFT(Tj)+ ¢ values,

8. while (there are unvisited tasks in the queue)

9. Select thefirst task, T; , from the queue;

10. Duplication (C(T))) ;

11. if (EFT(T;, P)>Ftime)

12. EFT(T;, P)=Ftime;

13. break; //Stop the while loop

14. endif

15. Ftime= EFT(T;, Py);

16. endwhile

17. endfor

18. Assign T; and duplicate tasks to the P, that minimizes EFT of task T;;

19. Put the final duplicated tasks on the P, into C(T));

20. C(M)=C(MUT;

21. endwhile

Figure3.5 Thealgorithm of DEFT1.
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Input: C(T))

Output: EFT(T;, Py) and corresponding duplicate status

1. Duplication(C(T;))

2. while (there are unvisited tasks in the C(Tj)) do

3. Select the last task, Ty, from the C(Tj);

4. if (idletime-slot between tasks < W)

5. if (M==T))

6. return EFT(T;, Py) = oo ;

7. endif

8. break; //Stop the while loop

0. endif

10. Duplicate task Ty into Py ;

11. Compute EFT(T;, Px) and record the duplicate status ;
12. endwhile

13. return minimum EFT(T;, Px) and corresponding duplicate status ;
14.end

Figure 3.6 The algorithm of Duplication function.

final schedule result and schedule length are obtained. Let’s discuss the example. The

final schedule is shown in Figure 3.4. The schedule length, which is equal to 69, is
shorter than that of the HEFT and STDS algorithm. The schedule lengths of HEFT
and STDS algorithms are 77 and 86, respectively. Figure 3.5 shows the detail DEFT1

algorithm and the Duplication function is shown in Figure 3.6.
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3.2DEFT2Algorithm

In this section, we will focus on the behavior of data transmission with link
contention constraints. We also describe the difference of processor selection phase

between in DEFT1 and DEFT2 agorithm in this section.

3.2.1 Task Prioritizing Phase

This phase is the same as DEFT1 algorithm. As we mentioned before, the b_level
function aso is an appropriate priority function in the link contention environment.

Thus, in this phase, we also use the b_level value as the priority value of each task.

3.2.2 Processor Selection:Phase

Under the condition of -dink contention occurrence, we need to treat the
communication edges in the same way as the tasks of the DAG It means that the
edges are scheduled to the network linksin the same way the tasks are scheduled to
the processors [38]. Corresponding to the EST and EFT of task, we will define MST

(Message Sart Time) and MFT (Message Finish Time) two attributes below. Before

we define the attributes, it notices that Ly represents the k™ link (path) in a routing

path for data transmission.

Definition 3.2 In a given partial schedule, let R ={L,, L,..., Ly} be arouting path
with n links and task T; transmits the message M;; to task T; by the routing path. We
define the Message Sart Time of message M;; on link L in the routing path, denoted

as MST( M;; L), by the following equation:
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Lz p, Lz p, La p, Lua

Mi; (cij)

MST

MFT

Figure3.7 The MST and MFT of a message M;;.

MST (M;;, L) = Max{ availfLi] | AET(T)Y if Licis thefirst link Ly ;

MST(M ., L,) = Max{avail[L, ], MST(M. , L, )}, otherwise. (6)

ij? ij.

,\where avail[Ly] isthe earliest time at which link Ly is ready for message transmission.

AFT(T)) isthe actua finish time of atask T;.

Definition 3.3 In a given partial schedule, let R ={L3, L,,..., Ly} be arouting path
with n links and task T; transmits the message Mjto task T; by the routing path. We
define the Message Finish Time of message M;; on link Ly in the routing path, denoted
as MFT( M;; ,Ly), by the following equation:

MFT(M,,L,) =w, +MST(M,,L,) ©)

ij 7
A simple example is shown in Figure 3.7. There exists the data dependency
between task T; and task T as shown in DAG. We assume that the communication cost

between two tasks is ¢jj. The network of processor is according to Figure 2.1. Task T;
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and task T; are allocated on the different processor P; and Ps3, respectively. Thus, the
message is arranged on the network link L, and L3 according to the routing path. The

final scheduleison the left side of Figure 3.7.

While the start time of a task is constrained by the data ready time of its
incoming communication, the start time of a message is restricted by the finish time
of its origin task. The scheduling of a message differs from atask, in that a message
might be scheduled on more than one link. A communication between two tasks,
which are scheduled on two different but not adjacent processors, utilizes all links of
the routing path between the two processors. The message, representing this
communication, must be scheduled on each of the involved links.

After understanding the process of data transmission with link contention

constraints, we need to redefinethe EST for the DEFT2 algorithm in the definition 3.4.

Definition 3.4 In a given partia schedule, let R ={Li, L,,..., Ly} be arouting path
with n links. We define the Earliest Sart Time of task T; on processor P;, denoted as
EST(T;,P;), by the following equation:

EST (T, P;) =0, if task T; is the entry task;

EST(T,,P;) = Max{avaiI[Pj],Tvel\glrgd%T‘)(MFT(M inLn))}, otherwise, 8)

,.where pred(T;) is the set of all immediate predecessors of task T;, and avail[P] is the
earliest time at which processor P; is ready for task execution. L, isthelast link in a

routing path.

The definition of EFT in the Eq. (3) also isused in the DEFT2 algorithm. In the
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Input: DAG ,matrix W and network topology Gr

Output: Schedule result and schedule length

1. Sort al tasksin a scheduling list by nonincreasing order of b_level values,

2. while (there are unscheduled tasks in the list) do

3. Select thefirst task, T; , from the list for scheduling;

4. for each processor Py in the processor_set (P« eP)do

5. Compute EFT(T;, Py);

6. Ftime= EFT(T;, Py);

7. Sort all immediate predecessor tasks T; that haven't assigned on Pxin
aqueue by nonincreasing order of MFT(M;;, L) value;

8. while (there are unvisited tasks in the queue)

0. Select thefirst task, T; , from the queue;

10. Duplication (C(T))) ;

11. if (EFT(T;, P)>Ftime)

12. EFT(T;, P)=Ftime;

13. break; //Stop the while loop

14. endif

15. Ftime= EFT(T;, Py);

16. endwhile

17. endfor

18. Assign T; and duplicate tasks to the P, that minimizes EFT of task T;;

19. Put the final duplicated tasks on the P, into C(T));

20. C(M)=C(MUT;

21. endwhile

Figure 3.8 Theagorithm of DEFT2.
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81

v
Figure3.9 Thefinal schedule generated by DEFT2

algorithm and-the schedule length is 81.

following, we want to explain the difference of this processor selection phase. Figure
3.8 shows the DEFT2 agorithm. There is a main difference in the step 7. We sort

theMFT(M ;,L,) value in a nonincreasing order to decide the selection order of

clusters for task duplication because of link contention constraints. In this algorithm,
the task duplication process or concepts are the same as DEFT1 agorithm.

As an illustration, Figure 3.9 shows the final schedule of DAG in Figure 2.2
according to the network topology in the Figure 2.1. We can see that each message
can only start the transmission on the link after the link is ready. Further, the start time
of the message on alink can’t be earlier than the start time of the message on previous
link in the routing path.

In conclusion, we propose the DEFT (it includes DEFT1 and DEFT2) algorithm
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which both contains the concept of EFT, which is broadly used in many effective task
scheduling algorithms of heterogeneous system and the advantage of the task
duplication method.

In the following, we will give the analysis on the time complexity of our propose
algorithm. The time complexity is derived as follows. The given task graph containsn
tasks and e edges, and we have m processors in our system. In the task prioritizing
phase, we compute the b_level value of each task by traversing the given task graph.
The time complexity of this phase is O(n+e). In the processor selection phase, the

time complexity of Duplication function is O(n?). Thus, the time complexity of whole
duplication process is O(dn*), where d is the maximum number of immediate
predecessor of tasks in a DAG. Each task takes the O(dn*m) time to select a processor.
That is, the time complexity of this phaseis O(dn’m). Therefore, the time complexity
of the DEFT algorithm would*be O(dn’m). Although it is higher than other related

algorithms, it only slight differencein. running time comparing with related algorithms
by our simulation resullt.

In order to verify the effectiveness of our algorithm, we construct the simulation
environment and implement the related algorithms. In the next chapter, we will

explain our simulator and analyze the simulation results.
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Chapter 4. Simulation and Performance

Evaluations

After describing the Duplication-based Earliest Finish Time (DEFT) algorithm,
we will verify the effectiveness of this algorithm by implementation and simulation.
At first, we will describe the architecture of the simulator in section 4.1. Next, we will

give the performance evaluations in section 4.2.

4.1 Simulation Setup

The flow chart of the simulation is shown in Figure 4.1. We use the C++
language to construct our simulator. There.are three parts in our simulator. The first
part is Random Graph Generator, the second part is Networ k Topology Generator that
generates Clique, Hypercube, Mesh and Ring for our target system, and the third part

isalgorithm. We will give the detailed'description about each part in the following.

(@ Random Graph Generator (RGG) [2]

As we defined in definition 2.2, the parallel program with n tasks can be
represented as a DAG. A RGG is implemented to generate the DAGs with various
characteristics that depend on severa input parameters given below.

e Number of tasksin the graph, (n).

e Maximum number of out degree of atask, ( out_degree ). The out degree value
of each task will be randomly generated from a uniform distribution with the
interval [0, out_degree].

e Shape parameter of the graph, (« ). A dense graph (a shorter graph with high
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Network Topology Generator | Random Graph Generator
Clique Hypercube
Mesh RIng

Without link contention With link contention
constraints constraints
Algorithm1 Algorithmz2
HEFT STDS DEFT1 CLS BSA DEFT2
Final Schedulez Final Schedule2

Figure 4.1 - The flow chart of the simulation.

parallelism) can be generated by selectinga >1.0. On the contrary, if a <1.0, it
will generate alonger graph with low parallelism degree. If « =1.0, then it will
be a balanced DAG.

Communication to computation ratio of a graph, ( CCR). It is the ratio of the
average communication cost to the average computation cost. If the CCR value
of a DAG is very low, it can be considered as a computation-intensive
application. On the contrary, it can be considered as a communication-intensive
application.

Maximum range of computation costs of a task on processors, (5). The
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maximum multiple of difference among computation costs of a task on
processors will be randomly generated from a uniform distribution with the

interva [1, A]. Itisbasically the heterogeneity factor for processor speeds. A
high 5 value causes a significant difference in computation cost of a task
among the processors. A low S value indicates that the expected computation

cost of atask isalmost equal on each of the given processors in the system.

In each simulation, the values of these parameters are assigned from the
corresponding sets given below.
e SET, ={ 50,100,200,300,400,500 },
o SETout degree ={ 8,15,20},

e SET. ={05,1.020},

() SETCCR :{ 01,10,100 } .

o SETs ={12,307.0}.

These combinations give 486 different DAG types. Since 10 random DAGs are
generated for each DAG type, the total number of DAGs used in our simulations is
4860. Assigning severa input parameters and selecting each parameter from a set
cause the generation of diverse DAGs with various characteristics. Simulations based

on diverse DAGs prevent biasing toward a particular scheduling algorithm.

(b) Network Topology Generator [36]

In our smulation, we adopt four kinds of interconnection network topology
including clique, hypercube, mesh and ring. Any one of these four kinds of network
topology is used widely [39]. We assume that there are 16 processors in our target
system. We can observe that the communication resource (network link) varies
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according to different kinds of network topology. For example, the ring network has
the minimum communication resource and the clique network has the maximum
communication resource. We want to show that our proposed algorithm can work well

on each kind of network topologies.

(c) Algorithm

The input of the algorithm is atask graph generated from the RGG and one kind
of network topology. The output of the algorithm is the final schedule. We implement
the DEFT a gorithm with some related algorithms in our simulation. As we mentioned
in chapter 2, the HEFT agorithm and STDS agorithm assume the target system
without the link contention constraints. We plan to simulate those algorithms and
DEFT1 agorithm with the same system assumptions. We aso compare the simulation
results of three algorithms under different conditions; On the other hand, we simulate
the CLS and BSA agorithm that have the-Jlink contention constraints and DEFT2

algorithm, and compare the simulationresults among them.

4.2 Perfor mance Evaluations

The comparison metric of a scheduling algorithm on a graph is the schedule
length (makespan) of its output schedule. We define the Schedule Length Ratio (SLR)
as the schedule length of the DEFT agorithm divided by the schedule length of the
related algorithm. The related algorithm is one of following agorithms, such as HEFT,
STDS, CLS and BSA. If the SLR is larger than 1.0 means the related algorithm has
the smaller schedule length, that is, the related algorithm has the better scheduling
result. On the contrary, if the SLR is smaller than 1.0 means the DEFT agorithm has

the better scheduling resuilt.
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We evaluate the performances of the DEFT1 a gorithm comparing with the HEFT
and STDS agorithm on common clique network topology in section 4.2.1, and the
section 4.2.2 is to evaluate the performance of the DEFT2 algorithm comparing with
the CLS and BSA agorithm on four kinds of network topology: clique, hypercube,

mesh and ring.

4.2.1 DEFT1vs. HEFT and STDS

The simulation result of DEFT1 and HEFT isillustrated in Figure 4.2. We can find
that the average SLR is smaller than 1.0 or nearly equal to 1.0 in all of three cases. It
indicates that the DEFT1 agorithm is more effective than HEFT, especially when
CCR equals to 10.0. In such communication-intensive task graph, the average
communication cost is ten times:of the average computation cost. Thus, we can find
many idle time-slots in processors in the schedule-result of HEFT agorithm. We
utilize these idle time-slots in the processors-efficiently by duplicating the tasks in
cluster into the processors in our DEFT1 algorithm. It can get shorter EFT values of
each task than that of HEFT algorithm. On the contrary, under computation-intensive
applications, the returned minimum EFT of scheduling task is increasing after
duplicating the tasks in first selected cluster on a processor. It stops the duplication
process on processor in DEFT1 algorithm, because it may don’t reduce the EFT of the
scheduling task anymore when we continue to duplicate the tasks in next cluster. Thus,
we can observe that the performance of the DEFT1 algorithm is nearly equal to that of
the HEFT in the graph with low CCR value.

The ssimulation result of DEFT1 and STDS is illustrated in Figure 4.3. We can
observe that the average SLR is smaller than 1.0 in all of three cases, and DEFT1

obviously outperforms the STDS in higher CCR value. As we mentioned in chapter 2,
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Figure4.2 The simulation result Figure 4.3 The simulation result

of DEFT1 and HEFT; of DEFT1 and STDS.
in the STDS, only one immediate predecessor-of given task in a critical path assigns
to the same processor of given task. The other immediate predecessors of given task
are assigned to different processors. It causes that the communication overhead
between immediate predecessor tasks of given task in acritical path and its given task
is very heavy. Thus, when the parallel program is communication-intensive, it makes
a poor schedule result. In our duplication method, each cluster of immediate
predecessor of scheduling task includes some predecessors of scheduling task as the
selection of task duplication. Thus, we have considering to duplicate other immediate
predecessors of atask into a processor. It can avoid the communication cost between
immediate predecessor of a task and its task in our algorithm. It notices that the
average SLR is dightly diminution when number of task is more than 200 in that the
number of initial clusters is larger than the number of processors in the STDS

algorithm. Thus, the duplication process of STDS isn't carried out and makes an
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inferior schedule result.
The performance ranking of the algorithms will be { DEFT1, HEFT, STDS}. The
average SLR value of DEFT1 on all generated graphs are 15 and 38 percent smaller

than that of HEFT and STDS, respectively.

4.2.2 DEFT2vs. CLSand BSA

The simulation results of DEFT2 and CLS on the clique network, hypercube
network, mesh network and ring network are shown in Figure 4.4~Figure 4.7,
respectively. The average SLR is aso smaller than 1.0 in all three cases on four
different networks. Thus, we can say that the DEFT2 agorithm certainly has more
effective performance than that of the CLS algorithm. As we described in chapter 2,
the CLS algorithm is extended from the'HEFT agorithm. Thus, the CLS algorithm
inherits the phenomena in the"HERFT algorithm; that is, there till have many idle
time-slots in the processors. Similarly, “we-ttilize these idle time-slots for task
duplication to achieve the goa of reducing schedule length in the DEFT2 algorithm.
The average SLR value of DEFT2 on all generated graphs are 18, 16, 16 and 14
percent smaller than that of CLS on the clique network, on hypercube network, on
mesh network and on ring network, respectively.

The simulation results of DEFT2 and BSA on the clique network, hypercube
network, mesh network and ring network are shown in Figure 4.8~Figure 4.11,
respectively. The average SLR is smaller than 1.0 in al three cases on four different
networks. In the Figure 4.8, the clique network offers the sufficient communication
resource. Each processor has a direct network link with the other processors. In the
BSA algorithm, each task tries to migrate to each processor and to find the minimum

finish time of thetask. It is similar to the process of HEFT algorithm. Thus, the
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Figure4.4 The simulation result of
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Figure4.6 The simulation result of
DEFT2 and CLS on the Mesh network.

Figure4.7 The simulation result of
DEFT2 and CLS on the Ring network.
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Figure4.11 The simulation result of
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simulation result is also similar to that of HEFT agorithm. The deficient
communication resource in the network will limit the task to migrate to each
processor. It may affect the task to select a suitable processor in the BSA algorithm
and make an inferior schedule result. There still have many idle time-slots in the
processors in the schedule results of BSA agorithm on four kinds of network,
especialy when CCR equals to 10.0. Similarly, we can utilize idle time-slots for task
duplication to reduce schedule length in the DEFT2 algorithm. The average SLR value
of DEFT2 on all generated graphs are 20, 18, 17 and 17 percent smaller than that of
BSA on the clique network, on hypercube network, on mesh network and on ring
network, respectively.

The performance ranking of the algorithms will be {DEFT2, CLS, BSA }. The
average SLR vaue of DEFT2 on.all generated graphs are 14~18 and 17~20 percent
smaller than that of CLS and BSA on four Kinds of. network, respectively.

In conclusion, we have verifiedithe effectiveness of the DEFT a gorithm through
the ssimulation. The simulation results show:that the DEFT algorithms outperform the
other agorithms for any graph size in terms of SLR, whether it exists the link

contention constraints in the target system or not.

-41 -



Chapter 5. Conclusions and Future

Work

We have introduced our system architecture and proposed effective algorithm to
solve the task scheduling problem in the previous chapters. We design two similar
algorithms. DEFT1 is for target system without link contention constraints, and
DEFT: is for target system with link contention constraints Finally, in order to
evaluate our algorithm, we construct a ssmulation environment and compare with the
related algorithms. In this chapter, we will make some conclusions and also describe

some future work on this research topic.

5.1 Conclusions

We found that the selection strategy of tasks for duplication isn't effective
enough in the STDS algorithm.< Thus, we have proposed the Duplication-based
Earliest Finish Time (DEFT) algorithm. This algorithm contains two phases. The first
phase is task prioritizing phase for computing the priorities of all tasks by a efficient
priority function. In the second phase, we select the processor which can complete the
task earliest by a task duplication mechanism. The concept of task duplication
mechanism is that we utilize processor idling time for duplicating some predecessors
of scheduling task into a processor to avoid communication costs between tasks.

In summary, it has some characteristics compared with other related methods,
such asthe HEFT, STDS, CLS and BSA algorithm:

(1)For effectiveness, we design a duplication process to effectively reduce the EFT
and choose the appropriate processor for each task. We also verify the effectiveness

of this method by constructing simulation environment. The simulation result
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shows that the DEFT algorithm effectively shortens the schedule length comparing
with the related agorithms, especidly when CCR equas to 100 (a
communication-intensive parallel program). In general, the average schedule length
of DEFT1 are 15 and 38 percent smaller than that of HEFT and STDS, respectively.
The average schedule length of DEFT2 are about 14 ~ 18 and 17~20 percent
smaller than that of CLS and BSA algorithm on four kinds of network topology,
respectively.

(2) For efficiency, the time complexity of the DEFT agorithm is O(dn’m), where d is
the maximum number of immediate predecessor of tasksin a DAG n is the number
of tasks and mis the number of processors. Although it is higher than other related
algorithms, it will be a very important factor no more because we can use a fast

processor for scheduling tasks.

5.2 FutureWork

In addition to the features we discussed before, there are still several promising
issues in future researches.

(1) We try to design another priority function when dealing with different task graphs.
Different task graphs may have the different characteristics. In a
computation-intensive (i.e.,, CCR =0.1) parallel program, the average computation
cost is about ten times the average task communication cost. We can design an
appropriate priority function for such parallel program. It can help us rank the tasks
more properly.

(2)By using the concept of look-ahead mechanism like CLS algorithm may improve
our method further. The concept of look-ahead mechanism in the CLS algorithm is
to select the processor which can complete the scheduling task early and has the
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sufficient network link by a look-ahead manner. The manner is to compute the
earliest finish time of assigning the communication cost that forwards to immediate
successor of scheduling task on direct link of the processor. The look-ahead
mechanism can help that the immediate successor tasks of scheduling task receive
the data early. However, some inaccurate look-ahead may bring degradation in
performance as we mentioned in chapter 2. We will design a look-ahead
mechanism for our algorithm by modifying that of CLS algorithm.

(3We may add some other redlistic constraints in our system model and modify the
DEFT2 agorithm more practical. We don’t take the consideration of system latency,
message size, network bandwidth...,etc. into our system model. As the system
model incorporates the realistic constraints, it is more difficult to design a good
algorithm. There are many well-known system model, such as LogP [22],
Bulk-Synchronous Parallel (BSP) [23], offering-the redistic model of parallel

computation. We try to modify our:system-medel from previous work.
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