
Chapter 1. Introduction 
 

A Heterogeneous Computing (HC) system is a geographically distributed 

machines interconnected by a high-speed network topology. It offers high-speed 

computation of parallel program (application) with diverse computing needs 

[1,2,6,17-19,24-29,36,38]. It is envisioned that such a computing system will enable 

users to execute their applications rapidly on the computing resources. Applications 

like weather modeling, image processing, distributed database systems show a great 

deal of parallelism [26,27]. Owing to the technical progressing of VLSI, the 

computation speed of processor increases fast and makes cost down of processor. 

Therefore, users can use the server consisting of many processors or the computing 

system constructed by many personal computers (PCs) to execute their applications. It 

will be used popularly in the future.  

In the HC system, one of the most important aims is how to use the processors 

efficiently to achieve optimal task parallelism. This problem is called task scheduling 

problem [1,2,6,17-19,24-29,36,38]. Thus, an efficient task scheduling method 

assigning the tasks of parallel program to the suitable processor is one of the key 

factors for achieving high performance of a HC system [1,2,6,17-19,24-29,36,38]. 

The general task scheduling problem includes the problem of assigning the tasks of a 

parallel program to the suitable processor and the problem of ordering task executions 

on each processor. When the characteristics of a parallel program which includes 

computation cost of the tasks, the communication cost between the tasks, and the 

precedence relation of the tasks are known a prior, it is called static model [2].  

Resolving the task scheduling problem on the static model is called static task 

scheduling method [2]. In the general form of a static task scheduling method, an 

application is represented by a Directed Acyclic Graph (DAG) in which nodes 
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represent the tasks and edges represent the data dependencies between tasks in the 

parallel program. The objective function of task scheduling method is to assign tasks 

onto processors and order their executions so that task-precedence requirements are 

satisfied and a minimum completion time is obtained [2]. 

The task scheduling problem is a NP-complete problem [3]. There are many 

scheduling categories on this problem, including list-based scheduling algorithm 

[4-9,36], clustering algorithm [4, 10-12], duplication-based algorithm [8, 13-14, 

26-35], and guided random search algorithm [15-21]…,etc. The main idea behind 

duplication-based scheduling algorithms is to schedule a task graph by mapping some 

of its tasks redundantly, which avoids the inter-processor communication overhead to 

achieve the goal of reducing completion time of parallel program. The main 

difference among duplication-based algorithms is the selection strategy of the tasks 

for duplication. Although scheduling method of this kind usually has higher time 

complexity than the algorithms in the other categories, it will be a very important 

factor no more because we can use a fast processor for scheduling tasks. 

We find that most task scheduling algorithms on HC system assume the system 

model connected by the fully-connected (clique) network. Moreover, contention for 

network link is neglected. Very few algorithms model the target system as an arbitrary 

network of processor and incorporate network link contention. However, Macey and 

Zomaya showed that the consideration of link contention is significant to produce 

accurate and efficient schedules [37]. Actually, there are some related works on the 

task scheduling problem with the link contention constraints [24-25,36,38]. We will 

construct a convincible and practical system model from previous work. 

In this thesis, we propose a Duplication-based Earliest Finish Time (DEFT) 

algorithm to solve the scheduling problem. This algorithm contains two phases. The 
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first phase is task prioritizing phase for computing the priorities of all tasks by an 

efficient priority function. In the second phase, we select the processor which can 

complete the task earliest for the task by a task duplication mechanism. The concept 

of task duplication mechanism is that we utilize processor idling time for duplicating 

some predecessors of scheduling task into a processor to avoid communication costs 

between tasks. We design two similar algorithms. The one is called DEFT1 that is for 

target system without link contention constraints, another is called DEFT2 that is for 

target system with link contention constraints. Meanwhile, we construct a simulation 

environment. In our simulation, we find that in most cases of our simulation results, 

the DEFT algorithm performs more effectively than the related algorithms.  

The thesis is organized as follows. In chapter 2, we will survey some related 

work and some basic fundamental background briefly. Our proposed algorithm is 

described in chapter 3. In chapter 4, we will describe our simulation environment and 

evaluate our algorithm in some detail. Finally, we will make conclusion and some 

future work in chapter 5. 
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Chapter 2. Fundamental Background  
 

and Related Work 
 
    In this chapter, we will introduce the system architecture and some basic 

terminologies in the section 2.1. Next, we will describe some related algorithms that 

have different system assumptions to solve the same task scheduling problem in the 

section 2.2. The main different system assumption among related algorithms is that 

target system exists link contention or target system doesn’t exist link contention. 

 

2.1 Fundamental Background 
 
2.1.1 System Architecture [22, 23, 25] 
 

We assume that our HC environment consists of m heterogeneous processors {P1, 

P2, ..., Pm} connected in different kinds of network topologies, such as clique, 

hypercube, mesh, ring,…,etc. In this HC system, the inter-processor link contention 

may happen due to the scarcity of network link.     

We use the message passing mechanism to transmit the data on the network link. 

The data transmission needs to be handled in each network topology. Thus, we need 

the routing table in each network topology. We choose the pre-determined routing 

table which uses the shortest-routing-path algorithm [39](such as a hypercube uses the 

E-cube routing method and a mesh uses the XY-routing method) for any kind of input 

network topology in our system. For simplicity, we assume that the distance between 

two processors doesn’t affect the communication cost. Under considering the 

condition of link contention, the system only allows one direction of data transmission 

on each link between processors at the same time.  
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2.1.2 Some Basic Terminologies [2, 36] 
 

In this thesis, our object is to solve the problem of task scheduling with link 

contention constraints on different kinds of network topologies. Thus, we define the 

network topology first in Definition 2.1. 

 

Definition 2.1 The topology of the target system is modeled as an undirected graph 

GT=(P, L), where 

■   P is a finite set of |P| vertices and L is a finite set of |L| undirected edges; 

■  A vertex Pi represents the processor i. And an undirected edge Lij represents a 

bi-directional communication link between the incident processors Pi and Pj ; 

In Figure 2.1, there are four processors connected by 2-D mesh network. 

 

We will define DAG which is often used to represent a parallel program in the 

task scheduling problem. We assume that a parallel program is composed of n tasks 

{T1, T2,..., Tn} in which there is a partial order: Ti < Tj implies that Tj cannot start 

execution until Ti finishes due to the data dependency between them. Formally, we 

give the following definition. 

 

Definition 2.2 A parallel program can be represented by a directed acyclic graph 

(DAG) G, G = (T, E, C), where  

! T is a finite set of |T| vertices and E is a finite set of |E| directed edges; 

! A vertex Ti represents the task i. And a directed edge eij∈E represents a 

directional data dependency between task Ti and task Tj ; 

! C is the function from E to integer in which cij represents the communication  
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Figure 2.2 shows an example of DAG.
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the intra-processor communication cost is negligible when it is compared with the 

inter-processor communication cost. After introducing about the definition of DAG, 

we explain some terminology in DAG as follows. 

In the DAG, a task without any parent is called an entry task and a task without 

any child is called an exit task. If there exists the data dependency from task Ti to task 

Tj in the DAG, we say that task Ti is the immediate predecessor of task Tj and task Tj 

is the immediate successor of task Ti. 

In HC system, a task on different processors has different computation costs. We 

assume that computation can be overlapped with communication. Additionally, 

computation and communication are both non-preemptive. We need a computation 

cost matrix W to describe the computation cost. The definition of matrix W is shown 

as follows. 

 

Definition 2.3 In a given task graph, a computation cost matrix W is a n × m matrix in 

which each wij gives the computation cost to complete task Ti on processor Pj.  

For example, Figure 2.3 shows the corresponding computation cost matrix 

related to the DAG in Figure 2.2 when there are four processors in our system. 

 

Before scheduling, we often label the tasks with the average computation cost. 

The definition is shown below. 

 

Definition 2.4 In a given task graph, the average computation cost of task Ti is 

defined as  

./
1
∑
=

=
m

j
iji mww                                                    (1) 
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,where wij is the computation cost while task Ti is allocated on processor Pj.  

For example, the average computation cost of task T1 in Figure 2.2 is 10.25. 

 

Next, we will define two attributes of EST (Earliest Start Time) and EFT 

(Earliest Finish Time) below. 

 

Definition 2.5 In a given partial schedule, we define the Earliest Start Time of task Ti 

on processor Pj, denoted as EST(Ti,Pj), by the following equation: 

 EST (Ti , Pj ) = 0, if task Ti is the entry task;                      

)},)((],[{),(
)( mimTpredTjji cTAFTMaxPavailMaxPTEST

im

+=
∈

otherwise.        (2) 
 

 

,where pred(Ti ) is the set of all immediate predecessor tasks of task Ti, and avail[Pj] is 

the earliest time at which processor Pj is ready for task execution. AFT(Tm) is the 

actual finish time of a task Tm.  

 

Definition 2.6 In a given partial schedule, we define the Earliest Finish Time of task 

Ti on processor Pj, denoted as EFT(Ti ,Pj), by the following equation: 

),,(),( jiijji PTESTwPTEFT +=                  (3) 

 

In Eq. (2), the inner Max block returns the data ready time, i.e., the time when all 

data needed by task Ti has arrived at processor. After task Tm is scheduled on 

processors Pj, the EST and EFT of Tm on processor Pj is equal to the Actual Start Time, 

AST(Tm), and the Actual Finish Time, AFT(Tm), of task Tm, respectively.  

We need one object function to quantify the final schedule after all tasks have 

been scheduled.  
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Definition 2.7 In a given final schedule, the schedule length (which is also called 

makespan) is defined as 

)}({ exitTAFTMaxmakespan =                                        (4) 

,where  is the actual finish time of the exit task. )( exitTAFT

 

Finally, we define a common task priority function. Tasks are ordered in our 

algorithm by their scheduling priorities that are based on bottem_level（b_level）value. 

The b_level of a task Ti is defined as follows. 

 

Definition 2.8 In a given task graph, the b_level value of a task Ti is recursively  

defined as 







++=

=

∈
(5)                     otherwise. ,))(_()(_
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ij

,where succ(Ti) is the set of all immediate successor tasks of task Ti, and iw  is the 

average computation cost of task Ti. cij is the communication cost from task Ti to task 

Tj. 

 

The goal of the task-scheduling problem is to determine the assignment of tasks 

of a given parallel program on processors such that its schedule length is minimized. 

 

2.2 Related Work 
 

We will survey four related algorithms, named HEFT (Heterogeneous 

Earliest-Finish-Time), STDS (Scalable Task Duplication-based Scheduling), CLS 

(Communication Look-ahead Scheduling), and BSA (Bubble Scheduling and 
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Allocation) in this section briefly. There are some different system assumptions 

among them. The HEFT and STDS algorithm have the same system assumptions of 

target system to be a HC with clique network. Moreover, contention for network link 

is neglected. We will describe the HEFT, STDS, CLS and BSA algorithm in section 

2.2.1~ section 2.2.4, respectively.  

 

2.2.1 HEFT Algorithm [2] 
 

HEFT algorithm is a well-known and effective list-based algorithm. It is a 

traditional task scheduling method without considering the task duplication. The main 

concept of this algorithm is to choose the processor which can complete the task 

earliest. This algorithm has two major phases. The first phase is task prioritizing phase 

for computing the priorities of all tasks. In this phase, it sets the task priority by ranku 

value (which is b_level value as we mentioned before). The ranku of a task is the 

length of the longest path from its task to exit task, including the computation cost of 

the task. The higher ranku value of a task represents that it needs more computation 

cost or communication cost from its task to exit task. If such kind of task can select 

the processor early, it is useful to reduce the schedule length. 

The second phase is processor selection phase for selecting the tasks in the order 

of their priorities and scheduling each selected task on the processor, which minimizes 

the task’s finish time. In this phase, the selected task according to the ranku value is 

assigned to the processor which minimizes its earliest finish time.  

HEFT algorithm has an O(n²m) time complexity for n tasks and m processors. 

After analyzing the HEFT algorithm, we find that there are many idle time-slots in the 

processors when the parallel program is communication-intensive. It will cause the 

schedule length increasing.  
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2.2.2 STDS Algorithm [27] 

This algorithm uses task duplication to reduce the length of the schedule. First, it 

generates initial clusters by traversing the DAG. If the number of processors in the 

system is more than the number of initial clusters generated, task duplication is 

carried out. The task duplication process is that it checks clusters to see whether the 

preceding task of a given task is the task of critical path of its given task. If this is not 

the case, it duplicates tasks of the critical path of given task and then reassigns those 

tasks on the origin processor of the cluster in order to improve the finish time of its 

given task. The remainder tasks in the cluster are assigned to a new processor. This 

process continues until the task duplication makes the final schedule length increasing 

or there is no free processor in the system. On the contrary, if the number of initial 

clusters is larger than the number of processors in the system, it will merge initial 

clusters together until the number of clusters is equal to the number of processors in 

the system. 

The STDS has an O(n²) time complexity, where n is the number of tasks. After 

analyzing the STDS algorithm, we find some shortcomings in the algorithm. First is 

that each processor executes tasks of a critical path. It means that only one immediate 

predecessor of given task in the critical path assigns to the same processor of given 

task. The other immediate predecessor tasks of given task are assigned to different 

processors. It causes that the communication overhead between immediate 

predecessor tasks of given task and its given task is very heavy and makes a poor 

schedule result when the parallel program is communication-intensive. The second is 

that if the number of initial clusters is larger than the number of processors in the 

system, the task duplication process will be limited. Thus, it also makes an inferior 

schedule result.  
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2.2.3 CLS Algorithm [36] 

The CLS algorithm is also a list-based algorithm. This algorithm has to consider 

the link contention condition that occurs in a practical system. The CLS is an 

extended algorithm from the HEFT. The main concept of the CLS algorithm is to 

choose the processor which can complete the task early and has the sufficient network 

link by communication look-ahead manner because it takes the link contention into 

account. Thus, this algorithm also contains two phases doing task prioritizing and 

processor selecting respectively. 

In the first phase, different from ranku in the HEFT, it sums all communication 

costs of a task into its weight value. Thus, a task with larger weight value indicates it 

may contain more immediate successor tasks, higher communication cost between its 

task and immediate successor task of its task, or larger average computation cost of its 

task. If such kind of task can select the processor early, it is useful to reduce the 

schedule length under considering the link contention constraints. In the second phase, 

it selects the processor which can complete the task early and has the sufficient 

network link by computing the earliest finish time of assigning the communication 

cost that forwards to immediate successor on direct link of its processor. The 

look-ahead mechanism can help that the immediate successor tasks of its task receive 

the data early.   

The CLS algorithm has an O(nme) time complexity for n tasks, m processors and 

e edges. In this algorithm, there may have some conditions to make inferior 

performance. First, it can produce inaccurate look-ahead for immediate successors 

when the data doesn’t need transmission by network link to immediate successors. 

The second is that CLS algorithm still has many idle time-slots in the processors when 

the parallel program is communication-intensive. 
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2.2.4 BSA Algorithm [24] 

This algorithm also has to consider the link contention constraints. The main 

concept of the BSA algorithm is task migration. The tasks have to be considered for 

possible migration to the neighbor processors in order to improve their finish time. 

The BSA algorithm belongs to the list-based algorithm which always contains two 

steps: task prioritizing and processor selection. Before introducing the main body of 

the BSA algorithm, we have to explain some terminology. First, the top level of task 

Ti represents the length of the longest path from the entry task to task Ti. Next, the 

bottom level of task Ti represents the length of the longest path from the task Ti to exit 

task. Finally, the critical path is defined as a path on the given task graph with the 

largest sum of computation costs and communication costs. After computing top level 

and bottom level, the set of tasks with the largest sum of top level and bottom level is 

the critical path in a given task graph. The first step is serialization which gives the 

tasks priority according to the value of bottom level and the topological order. The 

second step is to select the pivot processor which gives the minimum critical path 

length and builds the processor list with the other processors. In this step, the BSA 

algorithm chooses the processor by using the concept of task migration mentioned 

above. After all tasks have been scheduled, it removes the current pivot processor 

from processor list and reassigns the processor in processor list as the new pivot 

processor. The algorithm repeats the step of processor selection until the processor list 

is empty.  

The time complexity of task migration is O(e). Since there are O(n) tasks on 

pivot processor and O(m) neighbor processors, each iteration of processor selection 

tasks O(men) time. Thus, the BSA algorithm tasks O(nm²e) time for n tasks, m 

processors and e edges.  
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Algorithm
 

HEFT STDS CLS BSA 

Scheduling 
categories 

List-based Duplication-based List-based List-based 

Link contention 
constraints 

No No Yes Yes 

Network of 
system 

Clique network Clique network Arbitrary 
network 

Arbitrary 
network 

Main feature EFT concept Duplication of 
task in a path 

Look-ahead 
mechanism 

Task migration

Time complexity 
 

O(n²m) O(n²) O(nme) O(nm²e) 

 

Table 2.1  Characteristics of related algorithms 

 

Table 2.1 summarizes the characteristics of four related algorithms. After 

introducing about four related algorithms, we will propose an effective 

duplication-based algorithm in HC system with link contention constraints in the next 

chapter. 
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Chapter 3. Duplication-based Earliest 
 

 Finish Time Algorithm 
 

As we discussed in section 2.2, the STDS algorithm isn’t effective enough. The 

selection strategy of tasks for duplication is one of the most important factors to affect 

the performance of a duplication method. We also consider that it is useful to use a 

better task duplication mechanism to duplicate some predecessor tasks on the 

processor to avoid the communication overhead between tasks and then reduce the 

schedule length. Thus, we will propose the Duplication-based Earliest Finish Time 

(DEFT) algorithm in this chapter. Our algorithm contains two phases that are task 

prioritizing phase and processor selection phase. We will design two similar 

algorithms. The one is called DEFT1 that is for target system without link contention 

constraints, another is called DEFT2 that is for target system with link contention 

constraints. We will describe DEFT1 algorithm and DEFT2 algorithm in section 3.1 

and section 3.2, respectively.  

 

3.1 DEFT1 Algorithm 

In section 3.1.1, we will describe the task prioritizing phase that sets the priority 

of each task by computing b_level value. Next, we will explain our processor 

selection mechanism and task duplication method in section 3.1.2. 

 

3.1.1 Task Prioritizing Phase 

In some effective two phases list-based algorithms, the b_level priority function 

is often used to set the priority of each task. Moreover, it is also compared with  
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3.1.2 Processor Selectio

 

Ti b_level(Ti)

T1 106.5 

T2 71.5 

T3 84.2 

T4 80.7 

T5 74.0 

T6 58.7 

T7 45.2 

T8 33.5 

T9 42.2 

T10 13.0 

 

 b_level value of each task in Figure 2.2. 

] and shows a better result, whether the target system 
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m. If such kind of task can be assigned to processor 
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In this phase, the concept of our task duplication process is to utilize processor 

idling time for duplicating some predecessors of scheduling task into a processor. It 

can avoid communication costs between tasks. We also use the concept of EFT that is 

broadly used in scheduling problem in this phase. First, we define a terminology 

cluster in our algorithm.  

 

Definition 3.1 For each task Ti in a DAG, a cluster C(Ti) represents Ti itself and some 

predecessors of task Ti that are duplicated to the processor which has minimum EFT 

of Ti.  

A simple example is shown in Figure 3.1. There exists the data dependency 

between task Tj and task Ti , and task Tk and task Ti as shown in DAG. Task Tj and task 

Tk are allocated on different processors P1 and P3, respectively. We can find that the 

task Tj and task Tk haven’t any predecessor. Thus, cluster C(Tj) contains only task Tj 

and cluster C(Tk) contains only task Tk. Next, we will try to assign task Ti on each 

processor in order to select an appropriate processor that has minimum EFT of task Ti 

for task Ti execution. For example, when we try to assign task Ti on the P2, the partial 

schedule is shown in Figure 3.1(a). In the P2, we also consider to duplicate the tasks in 

the C(Tj) and C(Tk) sequentially into this processor in order to reduce the EFT of task 

Ti. We can see Figure 3.1(b) that shows a shorter EFT value of task Ti than the result 

in Figure 3.1(a) when we duplicate task Tj in the cluster C(Tj) and task Tk in the 

cluster C(Tk) into P2. If task Ti finally is scheduled on processor P2 that has minimum 

EFT of task Ti (it likes the partial schedule in Figure 3.1(b).) comparing with 

assigning Ti to other processors, the cluster C(Ti) is{ Tj , Tk ,Ti }. 

 

After computing b_level value of each task in the first phase, the task scheduling  
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Figure 3.1  The detailed partial schedule of DAG (a) if task Ti is scheduled on P2 (b) 

if task Ti is scheduled on P2 after duplicating tasks in C(Tj) and tasks in 

C(Tk) into P2. 
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list is produced. According to the order of task in the task scheduling list, we select 

the task to assign on processor that minimizes earliest finish time of its selected task.  

We first utilize the task duplication process repeatedly on each processor in 

order to find the minimum EFT of selected task on each processor. Finally, we assign 

the selected task to processor that has minimum EFT of its selected task. In our 

duplication process, we try to duplicate the tasks in the clusters of immediate 

predecessor of selected task into a processor sequentially. As an illustration, we 

assume the target system to be a HC with clique network. We use the DAG in Figure 

2.2 as an example. After scheduling task T1, T3, T4, T5, T2, T6, and T7 in the task 

scheduling list, we attempt to schedule task T9. We try to assign task T9 in each 

processor. The Figure 3.2 (a) shows the detail partial schedule of trying to assign task 

T9 on the P2. Next, we will execute task duplication process in P2. The immediate 

predecessors of task T9 are task T2, task T4 and task T5, but the task T4 was assigned on 

P2. Thus, we try to duplicate the tasks in the cluster C(T2) and C(T5) into processor P2 

sequentially.  

The selection order of these clusters for task duplication is decided by the values 

of data arrival time of all immediate predecessors of selected task on a processor, 

because it can reduce the EFT of selected task instantly. Let’s discuss the example. 

Before duplicating the tasks in a cluster into processor P2, we need to decide the 

selection order in C(T2) and C(T5). We compute the data arrival time of T2 and T5 

respectively. We find the task T2 which has largest data arrival time. It also represents 

to select C(T2) first. The next selection is C(T5).  

We use a Duplication function to duplicate the tasks in a cluster into a processor, 

and then return a minimum EFT of selected task and corresponding schedule. If the 

returned EFT value is increasing after duplicating the tasks in a cluster into a  
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                     (a)        

    

(b) 

 Figure 3.2  The detailed partial schedule of DAG in Figure 2.2 (a) if task T9 is 

scheduled on P2 and EFT is 54 (b) if task T9 is scheduled on P2 after 

duplicating task T2 in C(T2) into P2 and EFT is 51.  
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processor, we stop to duplicate the tasks in the next cluster into this processor. It may  

don’t reduce the EFT of the selected task anymore if we continue to duplicate the 

tasks in the next cluster into a processor. Otherwise, there may exist enough big idle 

time-slot in the processor for assigning tasks in next cluster into this idle time-slot and 

thus reduce the EFT of its selected task again. Let’s discuss the example. After 

allocating task T2 and T5 to appropriate processor, we know that the contents of C(T2) 

and C(T5) are {T2}and {T1, T5},respectively. The idle time-slot between T4 and T9 in 

P2 is enough to execute the task T2. Thus, we first duplicate the task T2 in the C(T2) 

into P2 and the detailed partial schedule is shown in Figure 3.2(b). We find that the 

returned minimum EFT of task T9 is decreasing after duplicating task T2 in the C(T2) 

into P2. We will continue to duplicate the tasks in the C(T5) into P2.  

Notice that tasks in the cluster exist an order for duplicating a task into a 

processor. The order of the tasks is starting from the immediate predecessor of 

selected task (the last task in the cluster) to other ancestor tasks. We compute and 

record the EFT value of selected task when we duplicate a task in the cluster into a 

processor. Finally, the returned EFT value is minimum value among all recorded EFT 

values. Such duplicate order of tasks can reduce the EFT of selected task immediately. 

Let’s discuss the example. Now, we try to duplicate the tasks in the C(T5) into P2. We 

find that the idle time-slot between T2 and T9 in P2 isn’t enough to execute the first 

task T5 in the C(T5). If we continue to duplicate the tasks in the C(T5), the returned 

EFT value must increase. Thus, we stop the task duplication process on the processor 

P2. Finally, The partial schedule in Figure 3.2(b) represents the schedule status and the 

minimum EFT value of task T9 on processor P2. 

After utilizing the task duplication process repeatedly on each processor, the 

selected task is assigned to the processor with minimum EFT of selected task and  
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                (a)                                (b) 

 

                (c)                                (d) 

Task T9’s P1 P2 P3 P4 
EST 45 39 42 42 
EFT 63 51 62 57 

                                (e) 

Figure 3.3  The partial schedule of DAG in Figure 2.2 (a) if task T9 is scheduled on 

P1 (b) if task T9 is scheduled on P2 (c) if task T9 is scheduled on P3 (d) if 

task T9 is scheduled on P4 (e) related variables of partial schedule. 
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Figure 3.4  The final schedule generated by the DEFT1  

algorithm and the schedule length is 69. 

 

cluster of selected task is obtained. Let’s discuss the example. In the same way, we 

assign T9 to P1, P3 and P4. The partial schedules are shown in Figure 3.3, that is result 

of the minimum EFT value of task T9 on each processor after executing task 

duplication process on each processor. The Figure 3.3(e) shows the related variables 

according to the partial schedule. Finally, task T9 is scheduled to processor P2 which 

has the minimum EFT value and the cluster C(T9) is {T2,T9}. 

The tasks in the cluster of selected task are the tasks that are duplicated to 

processor with minimum EFT of selected task. This cluster includes some 

predecessors of selected task. It means that those tasks in the cluster are beneficial for 

reducing the EFT of selected task by duplicating those tasks into a processor.  

When all tasks in the scheduling list are scheduled to appropriate processor, the   
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Figure 3.5  The algorithm of DEFT1. 

Input: DAG ,matrix W and network topology GT 

Output: Schedule result and schedule length 

1. Sort all tasks in a scheduling list by nonincreasing order of b_level values; 

2. while (there are unscheduled tasks in the list) do 

3.     Select the first task, Ti , from the list for scheduling; 

4.     for each processor Pk in the processor_set (Pk ∈P)do 

5.        Compute EFT(Ti, Pk); 

6.        Ftime= EFT(Ti, Pk); 

7.        Sort all immediate predecessor tasks Tj that haven’t assigned on Pk in 

a queue by nonincreasing order of  AFT(Tj)+ cji  values; 

8. while (there are unvisited tasks in the queue) 

9.      Select the first task, Tj , from the queue; 

10.            Duplication（C(Tj)）; 

11.            if (EFT(Ti, Pk)>Ftime ) 

12.              EFT(Ti, Pk)=Ftime ; 

13.              break; //Stop the while loop 

14.            endif 

15.            Ftime= EFT(Ti, Pk); 

16.       endwhile 

17.    endfor 

18.    Assign Ti and duplicate tasks to the Pl that minimizes EFT of task Ti; 

19.    Put the final duplicated tasks on the Pl into C(Ti); 

20.    C(Ti)= C(Ti)∪Ti; 

21. endwhile 
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Input: C(Tj) 

Output: EFT(Ti, Pk) and corresponding duplicate status 

1. Duplication(C(Tj)) 

2.  while (there are unvisited tasks in the C(Tj)) do 

3. Select the last task, Tk, from the C(Tj); 

4. if (idle time-slot between tasks < wkk) 

5.   if (Tk = = Tj) 

6.     return EFT(Ti, Pk) = ∞ ; 

7.         endif 

8.         break; //Stop the while loop 

9.       endif 

10.      Duplicate task Tk into Pk ; 

11.      Compute EFT(Ti, Pk) and record the duplicate status ; 

12.  endwhile 

13.  return minimum EFT(Ti, Pk) and corresponding duplicate status ; 

14.end 

 

 

final schedule result and schedule length are obtained. Let’s discuss the example. The 

Figure 3.6  The algorithm of Duplication function. 

 

final schedule is shown in Figure 3.4. The schedule length, which is equal to 69, is 

shorter than that of the HEFT and STDS algorithm. The schedule lengths of HEFT 

and STDS algorithms are 77 and 86, respectively. Figure 3.5 shows the detail DEFT1 

algorithm and the Duplication function is shown in Figure 3.6. 
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3.2 DEFT2 Algorithm 

In this section, we will focus on the behavior of data transmission with link 

contention constraints. We also describe the difference of processor selection phase 

between in DEFT1 and DEFT2 algorithm in this section. 

 

3.2.1 Task Prioritizing Phase 

This phase is the same as DEFT1 algorithm. As we mentioned before, the b_level 

function also is an appropriate priority function in the link contention environment. 

Thus, in this phase, we also use the b_level value as the priority value of each task.  

 

3.2.2 Processor Selection Phase 

Under the condition of link contention occurrence, we need to treat the 

communication edges in the same way as the tasks of the DAG. It means that the 

edges are scheduled to the network links in the same way the tasks are scheduled to 

the processors [38]. Corresponding to the EST and EFT of task, we will define MST 

(Message Start Time) and MFT (Message Finish Time) two attributes below. Before 

we define the attributes, it notices that Lk represents the  link (path) in a routing 

path for data transmission. 

thk

 

Definition 3.2 In a given partial schedule, let R ={L1, L2,…, Ln} be a routing path 

with n links and task Ti transmits the message Mij to task Tj by the routing path. We 

define the Message Start Time of message Mij on link Lk in the routing path, denoted  

as MST( Mij ,Lk), by the following equation: 
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Figure 3.7  The MST and MFT of a message Mij. 

 
MST (Mij , Lk ) = Max{avail[Lk], AFT(Ti)}, if Lk is the first link L1 ;               

otherwise.             (6) )},,(],[{),( 1−= kijkkij LMMSTLavailMaxLMMST
 

 

,where avail[Lk] is the earliest time at which link Lk is ready for message transmission. 

AFT(Ti) is the actual finish time of a task Ti.  

 

Definition 3.3 In a given partial schedule, let R ={L1, L2,…, Ln} be a routing path 

with n links and task Ti transmits the message Mij to task Tj by the routing path. We 

define the Message Finish Time of message Mij on link Lk in the routing path, denoted 

as MFT( Mij ,Lk), by the following equation: 

),(),( kijijkij LMMSTwLMMFT +=                 (7) 

A simple example is shown in Figure 3.7. There exists the data dependency 

between task Ti and task Tj as shown in DAG. We assume that the communication cost 

between two tasks is cij. The network of processor is according to Figure 2.1. Task Ti 
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and task Tj are allocated on the different processor P1 and P3, respectively. Thus, the 

message is arranged on the network link L12 and L23 according to the routing path. The 

final schedule is on the left side of Figure 3.7. 

 

While the start time of a task is constrained by the data ready time of its 

incoming communication, the start time of a message is restricted by the finish time 

of its origin task. The scheduling of a message differs from a task, in that a message 

might be scheduled on more than one link. A communication between two tasks, 

which are scheduled on two different but not adjacent processors, utilizes all links of 

the routing path between the two processors. The message, representing this 

communication, must be scheduled on each of the involved links. 

After understanding the process of data transmission with link contention 

constraints, we need to redefine the EST for the DEFT2 algorithm in the definition 3.4. 

 

Definition 3.4 In a given partial schedule, let R ={L1, L2,…, Ln} be a routing path 

with n links. We define the Earliest Start Time of task Ti on processor Pj, denoted as 

EST(Ti,Pj), by the following equation: 

 EST (Ti , Pj ) = 0, if task Ti is the entry task;                      

otherwise.        (8) ))},,((],[{),(
)( njiTpredTjji LMMFTMaxPavailMaxPTEST

ij∈
=

 

 

,where pred(Ti ) is the set of all immediate predecessors of task Ti, and avail[Pj] is the 

earliest time at which processor Pj is ready for task execution. Ln is the last link in a 

routing path. 

 

The definition of EFT in the Eq. (3) also is used in the DEFT2 algorithm. In the  
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Figure 3.8  The algorithm of DEFT2. 

Input: DAG ,matrix W and network topology GT 

Output: Schedule result and schedule length 

1. Sort all tasks in a scheduling list by nonincreasing order of b_level values; 

2. while (there are unscheduled tasks in the list) do 

3.     Select the first task, Ti , from the list for scheduling; 

4.     for each processor Pk in the processor_set (Pk ∈P)do 

5.        Compute EFT(Ti, Pk); 

6.        Ftime= EFT(Ti, Pk); 

7.        Sort all immediate predecessor tasks Tj that haven’t assigned on Pk in 

a queue by nonincreasing order of  MFT(Mji , Ln) value; 

8.        while (there are unvisited tasks in the queue) 

9.             Select the first task, Tj , from the queue; 

10.            Duplication（C(Tj)）; 

11.            if (EFT(Ti, Pk)>Ftime ) 

12.              EFT(Ti, Pk)=Ftime ; 

13.              break; //Stop the while loop 

14.            endif 

15.            Ftime= EFT(Ti, Pk); 

16.       endwhile 

17.    endfor 

18.    Assign Ti and duplicate tasks to the Pl that minimizes EFT of task Ti; 

19.    Put the final duplicated tasks on the Pl into C(Ti); 

20.    C(Ti)= C(Ti)∪Ti; 

21. endwhile 
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Figure 3.9  The final schedule generated by DEFT2  

algorithm and the schedule length is 81. 

 

following, we want to explain the difference of this processor selection phase. Figure 

3.8 shows the DEFT2 algorithm. There is a main difference in the step 7. We sort 

the value in a nonincreasing order to decide the selection order of 

clusters for task duplication because of link contention constraints. In this algorithm, 

the task duplication process or concepts are the same as DEFT1 algorithm.  

),( nji LMMFT

As an illustration, Figure 3.9 shows the final schedule of DAG in Figure 2.2 

according to the network topology in the Figure 2.1. We can see that each message 

can only start the transmission on the link after the link is ready. Further, the start time 

of the message on a link can’t be earlier than the start time of the message on previous 

link in the routing path.  

In conclusion, we propose the DEFT (it includes DEFT1 and DEFT2) algorithm 
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which both contains the concept of EFT, which is broadly used in many effective task 

scheduling algorithms of heterogeneous system and the advantage of the task 

duplication method.  

In the following, we will give the analysis on the time complexity of our propose 

algorithm. The time complexity is derived as follows. The given task graph contains n 

tasks and e edges, and we have m processors in our system. In the task prioritizing 

phase, we compute the b_level value of each task by traversing the given task graph. 

The time complexity of this phase is O(n+e). In the processor selection phase, the 

time complexity of Duplication function is O(n²). Thus, the time complexity of whole 

duplication process is O(dn²), where d is the maximum number of immediate 

predecessor of tasks in a DAG. Each task takes the O(dn²m) time to select a processor. 

That is, the time complexity of this phase is O(dn³m). Therefore, the time complexity 

of the DEFT algorithm would be O(dn³m). Although it is higher than other related 

algorithms, it only slight difference in running time comparing with related algorithms 

by our simulation result.  

In order to verify the effectiveness of our algorithm, we construct the simulation 

environment and implement the related algorithms. In the next chapter, we will 

explain our simulator and analyze the simulation results.  
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Chapter 4. Simulation and Performance  
 

Evaluations 
 

After describing the Duplication-based Earliest Finish Time (DEFT) algorithm, 

we will verify the effectiveness of this algorithm by implementation and simulation. 

At first, we will describe the architecture of the simulator in section 4.1. Next, we will 

give the performance evaluations in section 4.2. 

 

4.1 Simulation Setup 

The flow chart of the simulation is shown in Figure 4.1. We use the C++ 

language to construct our simulator. There are three parts in our simulator. The first 

part is Random Graph Generator, the second part is Network Topology Generator that 

generates Clique, Hypercube, Mesh and Ring for our target system, and the third part 

is algorithm. We will give the detailed description about each part in the following. 

 

(a)  Random Graph Generator (RGG) [2] 

As we defined in definition 2.2, the parallel program with n tasks can be 

represented as a DAG. A RGG is implemented to generate the DAGs with various 

characteristics that depend on several input parameters given below. 

● Number of tasks in the graph, ( n ). 

● Maximum number of out degree of a task, ( out_degree ). The out degree value 

of each task will be randomly generated from a uniform distribution with the 

interval [0, out_degree]. 

● Shape parameter of the graph, (α). A dense graph (a shorter graph with high  
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Figure 4.1  The flow chart of the simulation. 

 

parallelism) can be generated by selectingα>1.0. On the contrary, ifα<1.0, it 

will generate a longer graph with low parallelism degree. If α=1.0, then it will 

be a balanced DAG. 

● Communication to computation ratio of a graph, ( CCR ). It is the ratio of the 

average communication cost to the average computation cost. If the CCR value 

of a DAG is very low, it can be considered as a computation-intensive 

application. On the contrary, it can be considered as a communication-intensive 

application. 

● Maximum range of computation costs of a task on processors, (β). The 
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maximum multiple of difference among computation costs of a task on 

processors will be randomly generated from a uniform distribution with the 

interval [1, β]. It is basically the heterogeneity factor for processor speeds. A 

high β value causes a significant difference in computation cost of a task 

among the processors. A low β value indicates that the expected computation 

cost of a task is almost equal on each of the given processors in the system. 

 

In each simulation, the values of these parameters are assigned from the 

corresponding sets given below. 

● SETn ={ 50,100,200,300,400,500 }, 

● SETout_degree ={ 8,15,20 }, 

● SETα ={ 0.5,1.0,2.0 }, 

● SETCCR ={ 0.1,1.0,10.0 }, 

● SETβ ={ 1.2, 3.0,7.0 }. 

These combinations give 486 different DAG types. Since 10 random DAGs are 

generated for each DAG type, the total number of DAGs used in our simulations is 

4860. Assigning several input parameters and selecting each parameter from a set 

cause the generation of diverse DAGs with various characteristics. Simulations based 

on diverse DAGs prevent biasing toward a particular scheduling algorithm. 

 

(b)  Network Topology Generator [36] 

In our simulation, we adopt four kinds of interconnection network topology 

including clique, hypercube, mesh and ring. Any one of these four kinds of network 

topology is used widely [39]. We assume that there are 16 processors in our target 

system. We can observe that the communication resource (network link) varies 
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according to different kinds of network topology. For example, the ring network has 

the minimum communication resource and the clique network has the maximum 

communication resource. We want to show that our proposed algorithm can work well 

on each kind of network topologies. 

 

(c) Algorithm 

The input of the algorithm is a task graph generated from the RGG and one kind 

of network topology. The output of the algorithm is the final schedule. We implement 

the DEFT algorithm with some related algorithms in our simulation. As we mentioned 

in chapter 2, the HEFT algorithm and STDS algorithm assume the target system 

without the link contention constraints. We plan to simulate those algorithms and 

DEFT1 algorithm with the same system assumptions. We also compare the simulation 

results of three algorithms under different conditions. On the other hand, we simulate 

the CLS and BSA algorithm that have the link contention constraints and DEFT2 

algorithm, and compare the simulation results among them.  

 

4.2 Performance Evaluations 

The comparison metric of a scheduling algorithm on a graph is the schedule 

length (makespan) of its output schedule. We define the Schedule Length Ratio (SLR) 

as the schedule length of the DEFT algorithm divided by the schedule length of the 

related algorithm. The related algorithm is one of following algorithms, such as HEFT, 

STDS, CLS and BSA. If the SLR is larger than 1.0 means the related algorithm has 

the smaller schedule length, that is, the related algorithm has the better scheduling 

result. On the contrary, if the SLR is smaller than 1.0 means the DEFT algorithm has 

the better scheduling result. 
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We evaluate the performances of the DEFT1 algorithm comparing with the HEFT 

and STDS algorithm on common clique network topology in section 4.2.1, and the 

section 4.2.2 is to evaluate the performance of the DEFT2 algorithm comparing with 

the CLS and BSA algorithm on four kinds of network topology: clique, hypercube, 

mesh and ring.  

 

4.2.1 DEFT1 vs. HEFT and STDS  

   The simulation result of DEFT1 and HEFT is illustrated in Figure 4.2. We can find 

that the average SLR is smaller than 1.0 or nearly equal to 1.0 in all of three cases. It 

indicates that the DEFT1 algorithm is more effective than HEFT, especially when 

CCR equals to 10.0. In such communication-intensive task graph, the average 

communication cost is ten times of the average computation cost. Thus, we can find 

many idle time-slots in processors in the schedule result of HEFT algorithm. We 

utilize these idle time-slots in the processors efficiently by duplicating the tasks in 

cluster into the processors in our DEFT1 algorithm. It can get shorter EFT values of 

each task than that of HEFT algorithm. On the contrary, under computation-intensive 

applications, the returned minimum EFT of scheduling task is increasing after 

duplicating the tasks in first selected cluster on a processor. It stops the duplication 

process on processor in DEFT1 algorithm, because it may don’t reduce the EFT of the 

scheduling task anymore when we continue to duplicate the tasks in next cluster. Thus, 

we can observe that the performance of the DEFT1 algorithm is nearly equal to that of 

the HEFT in the graph with low CCR value. 

The simulation result of DEFT1 and STDS is illustrated in Figure 4.3. We can 

observe that the average SLR is smaller than 1.0 in all of three cases, and DEFT1 

obviously outperforms the STDS in higher CCR value. As we mentioned in chapter 2,  
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Figure 4.2  The simulation result        Figure 4.3  The simulation result 
of DEFT1 and HEFT.                   of DEFT1 and STDS. 

 

in the STDS, only one immediate predecessor of given task in a critical path assigns 

to the same processor of given task. The other immediate predecessors of given task 

are assigned to different processors. It causes that the communication overhead 

between immediate predecessor tasks of given task in a critical path and its given task 

is very heavy. Thus, when the parallel program is communication-intensive, it makes 

a poor schedule result. In our duplication method, each cluster of immediate 

predecessor of scheduling task includes some predecessors of scheduling task as the 

selection of task duplication. Thus, we have considering to duplicate other immediate 

predecessors of a task into a processor. It can avoid the communication cost between 

immediate predecessor of a task and its task in our algorithm. It notices that the 

average SLR is slightly diminution when number of task is more than 200 in that the 

number of initial clusters is larger than the number of processors in the STDS 

algorithm. Thus, the duplication process of STDS isn’t carried out and makes an 
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inferior schedule result.  

The performance ranking of the algorithms will be {DEFT1, HEFT, STDS}. The 

avera

.2.2 DEFT2 vs. CLS and BSA 

 CLS on the clique network, hypercube 

netw

 on the clique network, hypercube 

netw

ge SLR value of DEFT1 on all generated graphs are 15 and 38 percent smaller 

than that of HEFT and STDS, respectively. 

 

4

The simulation results of DEFT2 and

ork, mesh network and ring network are shown in Figure 4.4~Figure 4.7, 

respectively. The average SLR is also smaller than 1.0 in all three cases on four 

different networks. Thus, we can say that the DEFT2 algorithm certainly has more 

effective performance than that of the CLS algorithm. As we described in chapter 2, 

the CLS algorithm is extended from the HEFT algorithm. Thus, the CLS algorithm 

inherits the phenomena in the HEFT algorithm, that is, there still have many idle 

time-slots in the processors. Similarly, we utilize these idle time-slots for task 

duplication to achieve the goal of reducing schedule length in the DEFT2 algorithm. 

The average SLR value of DEFT2 on all generated graphs are 18, 16, 16 and 14 

percent smaller than that of CLS on the clique network, on hypercube network, on 

mesh network and on ring network, respectively. 

The simulation results of DEFT2 and BSA

ork, mesh network and ring network are shown in Figure 4.8~Figure 4.11, 

respectively. The average SLR is smaller than 1.0 in all three cases on four different 

networks. In the Figure 4.8, the clique network offers the sufficient communication 

resource. Each processor has a direct network link with the other processors. In the 

BSA algorithm, each task tries to migrate to each processor and to find the minimum 

finish time of the task. It is similar to the process of HEFT algorithm. Thus, the 
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Figure 4.4  The simulation result of      Figure 4.5  The simulation result of 
EFT2 and CLS on the Hypercube 
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Figure 4.6  The simulation result of    
DEFT2 and CLS on the Mesh network.   

etwork. 

 
Figure 4.6  The simulation result of    
DEFT2 and CLS on the Mesh network.   
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  Figure 4.7  The simulation result of 
 DEFT2 and CLS on the Ring network. 

  Figure 4.7  The simulation result of 
 DEFT2 and CLS on the Ring network. 
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Figure 4.8  The simulation result of      Figure 4.9  The simulation result of 
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Figure 4.10  The simulation result of     Figure 4.11  The simulation result of 
DEFT2 and BSA on the Mesh network.    DEFT2 and BSA on the Ring network. 
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simulation result is also similar to that of HEFT algorithm. The deficient 

ommunication resource in the network will limit the task to migrate to each 

processor. It may affect the task to select a suitable processor in the BSA algorithm 

and make an inferior schedule result. There still have many idle time-slots in the 

processors in the schedule results of BSA algorithm on four kinds of network, 

especially when CCR equals to 10.0. Similarly, we can utilize idle time-slots for task 

duplication to reduce schedule length in the DEFT2 algorithm. The average SLR value 

of DEFT2 on all generated graphs are 20, 18, 17 and 17 percent smaller than that of 

BSA on the clique network, on hypercube network, on mesh network and on ring 

network, respectively. 

The performance ranking of the algorithms will be {DEFT2, CLS, BSA }. The 

average SLR value of DEFT2 on all generated graphs are 14~18 and 17~20 percent 

aller than that of CLS and BSA on four kinds of network, respectively. 

gh 

the simulation. The simulation results show that the DEFT algorithms outperform the 

other algorithms for any graph size in terms of SLR, whether it exists the link 

contention constraints in the target system or not. 

 

 

 

 

 

 

 

 

c

sm

In conclusion, we have verified the effectiveness of the DEFT algorithm throu
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Chapter 5. Conclusions and Future  
 

 

hapters. We design two similar 

algor hms. DEFT1 is for target system without link contention constraints, and 

DEF 2 is for target system with link contention constraints. Finally, in order to 

evaluate our algorithm, we construct a simulation environment and compare with the 

relat lgorithms. In this chapter, we will make some conclusions and also describe 

some future work on this research topic. 

 

5.1 Conclusions 

 fective 

ough in the STDS algorithm. Thus, we have proposed the Duplication-based 

Earliest Finish Time (DE . This algorithm contains two phases. The first 

phase is task prioritizing hase for computing the priorities of all tasks by a efficient 

priority function. In the second phase, we select the processor which can complete the 

task earliest by a task duplication mechanism. The concept of task duplication 

mechanism is that we utilize processor idling time for duplicating some predecessors 

of scheduling task into a processor to avoid communication costs between tasks.  

In summary, it has some characteristics compared with other related methods, 

such as the HEFT, STDS, CLS and BSA algorithm: 

(1)For effectiveness, we design a duplication process to effectively reduce the EFT 

and choose the appropriate processor for each task. We also verify the effectiveness 

structing simulation environment. The simulation result 

Work 
We have introduced our system architecture and proposed effective algorithm to 

solve the task scheduling problem in the previous c

it

T

ed a

We found that the selection strategy of tasks for duplication isn’t ef

en

FT) algorithm

 p

of this method by con

 - 42 -



sh

d is 

th
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5

In addition to the features we discussed before, there are still several promising 

issues in future researches. 

(1) We try to design another priority function when dealing with different task graphs.  

Different task graphs may have the different characteristics. In a 

computation-intensive (i.e., CCR =0.1) parallel program, the average computation 

cost is about ten times the average task communication cost. We can design an 

appropriate priority function for such parallel program. It can help us rank the tasks 

more properly. 

(2)By using the concept of look-ahead mechanism like CLS algorithm may improve 

our method further. The concept of look-ahead mechanism in the CLS algorithm is 

to select the processor which can complete the scheduling task early and has the 

ows that the DEFT algorithm effectively shortens the schedule length comparing 

with the related algorithms, especially when CCR equals to 10.0 (a 

communication-intensive parallel program). In general, the average schedule length 

of DEFT1 are 15 and 38 percent smaller than that of HEFT and STDS, respectively. 

The average schedule length of DEFT2 are about 14 ~ 18 and 17~20 percent 

smaller than that of CLS and BSA algorithm on four kinds of network topology, 

respectively. 

(2) For efficiency, the time complexity of the DEFT algorithm is O(dn³m), where 

e maximum number of immediate predecessor of tasks in a DAG, n is the number 

of tasks and m is the number of processors. Altho

algorithms, it will be a very important factor no more because we can use a fast 

processor for scheduling tasks. 

.2 Future Work 
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sufficient network link by a look-ahead manner. The manner is to compute the 

gning the communication cost that forwards to immediate 

successor of scheduling task on direct link of the processor. The look-ahead 

mechanism can help that the immediate successor tasks of scheduling task receive 

the data early. However, some inaccurate look-ahead may bring degradation in 

performance as we mentioned in chapter 2. We will design a look-ahead 

mechanism for our algorithm by modifying that of CLS algorithm. 

(3)We may add some other realistic constraints in our system model and modify the 

DEFT2 algorithm more practical. We don’t take the consideration of system latency, 

message size, network bandwidth…,etc. into our system model. As the system 

model incorporates the realistic constraints, it is more difficult to design a good 

algorithm. There are many well-known system model, such as LogP [22], 

Bulk-Synchronous Parallel (BSP) [23], offering the realistic model of parallel 

computation. We try to modify our system model from previous work. 
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