
Chapter 1. Introduction

A Heterogeneous Computing (HC) system is a geographically distributed

machines interconnected by a high-speed network topology. It offers high-speed

computation of parallel program (application) with diverse computing needs

[1,2,6,17-19,24-29,36,38]. It is envisioned that such a computing system will enable

users to execute their applications rapidly on the computing resources. Applications

like weather modeling, image processing, distributed database systems show a great

deal of parallelism [26,27]. Owing to the technical progressing of VLSI, the

computation speed of processor increases fast and makes cost down of processor.

Therefore, users can use the server consisting of many processors or the computing

system constructed by many personal computers (PCs) to execute their applications. It

will be used popularly in the future.

In the HC system, one of the most important aims is how to use the processors

efficiently to achieve optimal task parallelism. This problem is called task scheduling

problem [1,2,6,17-19,24-29,36,38]. Thus, an efficient task scheduling method

assigning the tasks of parallel program to the suitable processor is one of the key

factors for achieving high performance of a HC system [1,2,6,17-19,24-29,36,38].

The general task scheduling problem includes the problem of assigning the tasks of a

parallel program to the suitable processor and the problem of ordering task executions

on each processor. When the characteristics of a parallel program which includes

computation cost of the tasks, the communication cost between the tasks, and the

precedence relation of the tasks are known a prior, it is called static model [2].

Resolving the task scheduling problem on the static model is called static task

scheduling method [2]. In the general form of a static task scheduling method, an

application is represented by a Directed Acyclic Graph (DAG) in which nodes

 - 1 -

represent the tasks and edges represent the data dependencies between tasks in the

parallel program. The objective function of task scheduling method is to assign tasks

onto processors and order their executions so that task-precedence requirements are

satisfied and a minimum completion time is obtained [2].

The task scheduling problem is a NP-complete problem [3]. There are many

scheduling categories on this problem, including list-based scheduling algorithm

[4-9,36], clustering algorithm [4, 10-12], duplication-based algorithm [8, 13-14,

26-35], and guided random search algorithm [15-21]…,etc. The main idea behind

duplication-based scheduling algorithms is to schedule a task graph by mapping some

of its tasks redundantly, which avoids the inter-processor communication overhead to

achieve the goal of reducing completion time of parallel program. The main

difference among duplication-based algorithms is the selection strategy of the tasks

for duplication. Although scheduling method of this kind usually has higher time

complexity than the algorithms in the other categories, it will be a very important

factor no more because we can use a fast processor for scheduling tasks.

We find that most task scheduling algorithms on HC system assume the system

model connected by the fully-connected (clique) network. Moreover, contention for

network link is neglected. Very few algorithms model the target system as an arbitrary

network of processor and incorporate network link contention. However, Macey and

Zomaya showed that the consideration of link contention is significant to produce

accurate and efficient schedules [37]. Actually, there are some related works on the

task scheduling problem with the link contention constraints [24-25,36,38]. We will

construct a convincible and practical system model from previous work.

In this thesis, we propose a Duplication-based Earliest Finish Time (DEFT)

algorithm to solve the scheduling problem. This algorithm contains two phases. The

 - 2 -

first phase is task prioritizing phase for computing the priorities of all tasks by an

efficient priority function. In the second phase, we select the processor which can

complete the task earliest for the task by a task duplication mechanism. The concept

of task duplication mechanism is that we utilize processor idling time for duplicating

some predecessors of scheduling task into a processor to avoid communication costs

between tasks. We design two similar algorithms. The one is called DEFT1 that is for

target system without link contention constraints, another is called DEFT2 that is for

target system with link contention constraints. Meanwhile, we construct a simulation

environment. In our simulation, we find that in most cases of our simulation results,

the DEFT algorithm performs more effectively than the related algorithms.

The thesis is organized as follows. In chapter 2, we will survey some related

work and some basic fundamental background briefly. Our proposed algorithm is

described in chapter 3. In chapter 4, we will describe our simulation environment and

evaluate our algorithm in some detail. Finally, we will make conclusion and some

future work in chapter 5.

 - 3 -

Chapter 2. Fundamental Background

and Related Work

 In this chapter, we will introduce the system architecture and some basic

terminologies in the section 2.1. Next, we will describe some related algorithms that

have different system assumptions to solve the same task scheduling problem in the

section 2.2. The main different system assumption among related algorithms is that

target system exists link contention or target system doesn’t exist link contention.

2.1 Fundamental Background

2.1.1 System Architecture [22, 23, 25]

We assume that our HC environment consists of m heterogeneous processors {P1,

P2, ..., Pm} connected in different kinds of network topologies, such as clique,

hypercube, mesh, ring,…,etc. In this HC system, the inter-processor link contention

may happen due to the scarcity of network link.

We use the message passing mechanism to transmit the data on the network link.

The data transmission needs to be handled in each network topology. Thus, we need

the routing table in each network topology. We choose the pre-determined routing

table which uses the shortest-routing-path algorithm [39](such as a hypercube uses the

E-cube routing method and a mesh uses the XY-routing method) for any kind of input

network topology in our system. For simplicity, we assume that the distance between

two processors doesn’t affect the communication cost. Under considering the

condition of link contention, the system only allows one direction of data transmission

on each link between processors at the same time.

 - 4 -

2.1.2 Some Basic Terminologies [2, 36]

In this thesis, our object is to solve the problem of task scheduling with link

contention constraints on different kinds of network topologies. Thus, we define the

network topology first in Definition 2.1.

Definition 2.1 The topology of the target system is modeled as an undirected graph

GT=(P, L), where

■ P is a finite set of |P| vertices and L is a finite set of |L| undirected edges;

■ A vertex Pi represents the processor i. And an undirected edge Lij represents a

bi-directional communication link between the incident processors Pi and Pj ;

In Figure 2.1, there are four processors connected by 2-D mesh network.

We will define DAG which is often used to represent a parallel program in the

task scheduling problem. We assume that a parallel program is composed of n tasks

{T1, T2,..., Tn} in which there is a partial order: Ti < Tj implies that Tj cannot start

execution until Ti finishes due to the data dependency between them. Formally, we

give the following definition.

Definition 2.2 A parallel program can be represented by a directed acyclic graph

(DAG) G, G = (T, E, C), where

! T is a finite set of |T| vertices and E is a finite set of |E| directed edges;

! A vertex Ti represents the task i. And a directed edge eij∈E represents a

directional data dependency between task Ti and task Tj ;

! C is the function from E to integer in which cij represents the communication

 - 5 -

T1

T3 T4 T5 T6

14
12 9 11

18

27
16 13 15

T2

P1

L23

L12
P2

P3
L34

P4

L14

Figure 2.1 2-D mesh network topolo




















=

721
1218
115
157
1613
1312
813

1311
1913
1614

W

Figure 2.3 Comp

cost from task Ti to task Tj;

Figure 2.2 shows an example of DAG.

When both Ti and Tj are schedule

19
T7

13 17
11

T10

T8 T9

23
23

gy Figure 2.2 A DAG with 10 tasks




















816
1520
814
2811
39
4010
2417

2119
318
29

utation cost matrix

d on the same processor, cij becomes zero since

- 6 -

the intra-processor communication cost is negligible when it is compared with the

inter-processor communication cost. After introducing about the definition of DAG,

we explain some terminology in DAG as follows.

In the DAG, a task without any parent is called an entry task and a task without

any child is called an exit task. If there exists the data dependency from task Ti to task

Tj in the DAG, we say that task Ti is the immediate predecessor of task Tj and task Tj

is the immediate successor of task Ti.

In HC system, a task on different processors has different computation costs. We

assume that computation can be overlapped with communication. Additionally,

computation and communication are both non-preemptive. We need a computation

cost matrix W to describe the computation cost. The definition of matrix W is shown

as follows.

Definition 2.3 In a given task graph, a computation cost matrix W is a n × m matrix in

which each wij gives the computation cost to complete task Ti on processor Pj.

For example, Figure 2.3 shows the corresponding computation cost matrix

related to the DAG in Figure 2.2 when there are four processors in our system.

Before scheduling, we often label the tasks with the average computation cost.

The definition is shown below.

Definition 2.4 In a given task graph, the average computation cost of task Ti is

defined as

./
1
∑
=

=
m

j
iji mww (1)

 - 7 -

,where wij is the computation cost while task Ti is allocated on processor Pj.

For example, the average computation cost of task T1 in Figure 2.2 is 10.25.

Next, we will define two attributes of EST (Earliest Start Time) and EFT

(Earliest Finish Time) below.

Definition 2.5 In a given partial schedule, we define the Earliest Start Time of task Ti

on processor Pj, denoted as EST(Ti,Pj), by the following equation:

 EST (Ti , Pj) = 0, if task Ti is the entry task;

)},)((],[{),(
)(mimTpredTjji cTAFTMaxPavailMaxPTEST

im

+=
∈

otherwise. (2)

,where pred(Ti) is the set of all immediate predecessor tasks of task Ti, and avail[Pj] is

the earliest time at which processor Pj is ready for task execution. AFT(Tm) is the

actual finish time of a task Tm.

Definition 2.6 In a given partial schedule, we define the Earliest Finish Time of task

Ti on processor Pj, denoted as EFT(Ti ,Pj), by the following equation:

),,(),(jiijji PTESTwPTEFT += (3)

In Eq. (2), the inner Max block returns the data ready time, i.e., the time when all

data needed by task Ti has arrived at processor. After task Tm is scheduled on

processors Pj, the EST and EFT of Tm on processor Pj is equal to the Actual Start Time,

AST(Tm), and the Actual Finish Time, AFT(Tm), of task Tm, respectively.

We need one object function to quantify the final schedule after all tasks have

been scheduled.

 - 8 -

Definition 2.7 In a given final schedule, the schedule length (which is also called

makespan) is defined as

)}({ exitTAFTMaxmakespan = (4)

,where is the actual finish time of the exit task.)(exitTAFT

Finally, we define a common task priority function. Tasks are ordered in our

algorithm by their scheduling priorities that are based on bottem_level（b_level）value.

The b_level of a task Ti is defined as follows.

Definition 2.8 In a given task graph, the b_level value of a task Ti is recursively

defined as







++=

=

∈
(5) otherwise. ,))(_()(_

exit task; theis task if ,)(_

)(jijTsuccTii

iii

TlevelbcMaxwTlevelb

TwTlevelb

ij

,where succ(Ti) is the set of all immediate successor tasks of task Ti, and iw is the

average computation cost of task Ti. cij is the communication cost from task Ti to task

Tj.

The goal of the task-scheduling problem is to determine the assignment of tasks

of a given parallel program on processors such that its schedule length is minimized.

2.2 Related Work

We will survey four related algorithms, named HEFT (Heterogeneous

Earliest-Finish-Time), STDS (Scalable Task Duplication-based Scheduling), CLS

(Communication Look-ahead Scheduling), and BSA (Bubble Scheduling and

 - 9 -

Allocation) in this section briefly. There are some different system assumptions

among them. The HEFT and STDS algorithm have the same system assumptions of

target system to be a HC with clique network. Moreover, contention for network link

is neglected. We will describe the HEFT, STDS, CLS and BSA algorithm in section

2.2.1~ section 2.2.4, respectively.

2.2.1 HEFT Algorithm [2]

HEFT algorithm is a well-known and effective list-based algorithm. It is a

traditional task scheduling method without considering the task duplication. The main

concept of this algorithm is to choose the processor which can complete the task

earliest. This algorithm has two major phases. The first phase is task prioritizing phase

for computing the priorities of all tasks. In this phase, it sets the task priority by ranku

value (which is b_level value as we mentioned before). The ranku of a task is the

length of the longest path from its task to exit task, including the computation cost of

the task. The higher ranku value of a task represents that it needs more computation

cost or communication cost from its task to exit task. If such kind of task can select

the processor early, it is useful to reduce the schedule length.

The second phase is processor selection phase for selecting the tasks in the order

of their priorities and scheduling each selected task on the processor, which minimizes

the task’s finish time. In this phase, the selected task according to the ranku value is

assigned to the processor which minimizes its earliest finish time.

HEFT algorithm has an O(n²m) time complexity for n tasks and m processors.

After analyzing the HEFT algorithm, we find that there are many idle time-slots in the

processors when the parallel program is communication-intensive. It will cause the

schedule length increasing.

 - 10 -

2.2.2 STDS Algorithm [27]

This algorithm uses task duplication to reduce the length of the schedule. First, it

generates initial clusters by traversing the DAG. If the number of processors in the

system is more than the number of initial clusters generated, task duplication is

carried out. The task duplication process is that it checks clusters to see whether the

preceding task of a given task is the task of critical path of its given task. If this is not

the case, it duplicates tasks of the critical path of given task and then reassigns those

tasks on the origin processor of the cluster in order to improve the finish time of its

given task. The remainder tasks in the cluster are assigned to a new processor. This

process continues until the task duplication makes the final schedule length increasing

or there is no free processor in the system. On the contrary, if the number of initial

clusters is larger than the number of processors in the system, it will merge initial

clusters together until the number of clusters is equal to the number of processors in

the system.

The STDS has an O(n²) time complexity, where n is the number of tasks. After

analyzing the STDS algorithm, we find some shortcomings in the algorithm. First is

that each processor executes tasks of a critical path. It means that only one immediate

predecessor of given task in the critical path assigns to the same processor of given

task. The other immediate predecessor tasks of given task are assigned to different

processors. It causes that the communication overhead between immediate

predecessor tasks of given task and its given task is very heavy and makes a poor

schedule result when the parallel program is communication-intensive. The second is

that if the number of initial clusters is larger than the number of processors in the

system, the task duplication process will be limited. Thus, it also makes an inferior

schedule result.

 - 11 -

2.2.3 CLS Algorithm [36]

The CLS algorithm is also a list-based algorithm. This algorithm has to consider

the link contention condition that occurs in a practical system. The CLS is an

extended algorithm from the HEFT. The main concept of the CLS algorithm is to

choose the processor which can complete the task early and has the sufficient network

link by communication look-ahead manner because it takes the link contention into

account. Thus, this algorithm also contains two phases doing task prioritizing and

processor selecting respectively.

In the first phase, different from ranku in the HEFT, it sums all communication

costs of a task into its weight value. Thus, a task with larger weight value indicates it

may contain more immediate successor tasks, higher communication cost between its

task and immediate successor task of its task, or larger average computation cost of its

task. If such kind of task can select the processor early, it is useful to reduce the

schedule length under considering the link contention constraints. In the second phase,

it selects the processor which can complete the task early and has the sufficient

network link by computing the earliest finish time of assigning the communication

cost that forwards to immediate successor on direct link of its processor. The

look-ahead mechanism can help that the immediate successor tasks of its task receive

the data early.

The CLS algorithm has an O(nme) time complexity for n tasks, m processors and

e edges. In this algorithm, there may have some conditions to make inferior

performance. First, it can produce inaccurate look-ahead for immediate successors

when the data doesn’t need transmission by network link to immediate successors.

The second is that CLS algorithm still has many idle time-slots in the processors when

the parallel program is communication-intensive.

 - 12 -

2.2.4 BSA Algorithm [24]

This algorithm also has to consider the link contention constraints. The main

concept of the BSA algorithm is task migration. The tasks have to be considered for

possible migration to the neighbor processors in order to improve their finish time.

The BSA algorithm belongs to the list-based algorithm which always contains two

steps: task prioritizing and processor selection. Before introducing the main body of

the BSA algorithm, we have to explain some terminology. First, the top level of task

Ti represents the length of the longest path from the entry task to task Ti. Next, the

bottom level of task Ti represents the length of the longest path from the task Ti to exit

task. Finally, the critical path is defined as a path on the given task graph with the

largest sum of computation costs and communication costs. After computing top level

and bottom level, the set of tasks with the largest sum of top level and bottom level is

the critical path in a given task graph. The first step is serialization which gives the

tasks priority according to the value of bottom level and the topological order. The

second step is to select the pivot processor which gives the minimum critical path

length and builds the processor list with the other processors. In this step, the BSA

algorithm chooses the processor by using the concept of task migration mentioned

above. After all tasks have been scheduled, it removes the current pivot processor

from processor list and reassigns the processor in processor list as the new pivot

processor. The algorithm repeats the step of processor selection until the processor list

is empty.

The time complexity of task migration is O(e). Since there are O(n) tasks on

pivot processor and O(m) neighbor processors, each iteration of processor selection

tasks O(men) time. Thus, the BSA algorithm tasks O(nm²e) time for n tasks, m

processors and e edges.

 - 13 -

Algorithm

HEFT STDS CLS BSA

Scheduling
categories

List-based Duplication-based List-based List-based

Link contention
constraints

No No Yes Yes

Network of
system

Clique network Clique network Arbitrary
network

Arbitrary
network

Main feature EFT concept Duplication of
task in a path

Look-ahead
mechanism

Task migration

Time complexity

O(n²m) O(n²) O(nme) O(nm²e)

Table 2.1 Characteristics of related algorithms

Table 2.1 summarizes the characteristics of four related algorithms. After

introducing about four related algorithms, we will propose an effective

duplication-based algorithm in HC system with link contention constraints in the next

chapter.

 - 14 -

Chapter 3. Duplication-based Earliest

 Finish Time Algorithm

As we discussed in section 2.2, the STDS algorithm isn’t effective enough. The

selection strategy of tasks for duplication is one of the most important factors to affect

the performance of a duplication method. We also consider that it is useful to use a

better task duplication mechanism to duplicate some predecessor tasks on the

processor to avoid the communication overhead between tasks and then reduce the

schedule length. Thus, we will propose the Duplication-based Earliest Finish Time

(DEFT) algorithm in this chapter. Our algorithm contains two phases that are task

prioritizing phase and processor selection phase. We will design two similar

algorithms. The one is called DEFT1 that is for target system without link contention

constraints, another is called DEFT2 that is for target system with link contention

constraints. We will describe DEFT1 algorithm and DEFT2 algorithm in section 3.1

and section 3.2, respectively.

3.1 DEFT1 Algorithm

In section 3.1.1, we will describe the task prioritizing phase that sets the priority

of each task by computing b_level value. Next, we will explain our processor

selection mechanism and task duplication method in section 3.1.2.

3.1.1 Task Prioritizing Phase

In some effective two phases list-based algorithms, the b_level priority function

is often used to set the priority of each task. Moreover, it is also compared with

 - 15 -

 Table 3.1 The

different priority functions in [38

exists link contention constrain

function in this phase.

The b_level value was defin

recursively from the exit task. T

from task Ti to the exit task. Ob

that it needs more computatio

completion of the parallel progra

early, it is useful to reduce the s

the b_level value of each task i

tasks, we sort tasks in the s

nonincreasing order, that is { T1,

3.1.2 Processor Selectio

Ti b_level(Ti)

T1 106.5

T2 71.5

T3 84.2

T4 80.7

T5 74.0

T6 58.7

T7 45.2

T8 33.5

T9 42.2

T10 13.0

 b_level value of each task in Figure 2.2.

] and shows a better result, whether the target system

ts or not. Thus, we also use the b_level priority

ed in definition 2.8, and this value can be computed

he b_level(Ti) value is the length of the critical path

viously, the higher b_level value of a task represents

n cost or communication cost from its task to

m. If such kind of task can be assigned to processor

chedule length. As an example, Table 3.1 represents

n Figure 2.2. After computing b_level values of all

cheduling list according to the b_level value in

T3, T4, T5, T2, T6, T7, T9, T8, T10 }.

n Phase

- 16 -

In this phase, the concept of our task duplication process is to utilize processor

idling time for duplicating some predecessors of scheduling task into a processor. It

can avoid communication costs between tasks. We also use the concept of EFT that is

broadly used in scheduling problem in this phase. First, we define a terminology

cluster in our algorithm.

Definition 3.1 For each task Ti in a DAG, a cluster C(Ti) represents Ti itself and some

predecessors of task Ti that are duplicated to the processor which has minimum EFT

of Ti.

A simple example is shown in Figure 3.1. There exists the data dependency

between task Tj and task Ti , and task Tk and task Ti as shown in DAG. Task Tj and task

Tk are allocated on different processors P1 and P3, respectively. We can find that the

task Tj and task Tk haven’t any predecessor. Thus, cluster C(Tj) contains only task Tj

and cluster C(Tk) contains only task Tk. Next, we will try to assign task Ti on each

processor in order to select an appropriate processor that has minimum EFT of task Ti

for task Ti execution. For example, when we try to assign task Ti on the P2, the partial

schedule is shown in Figure 3.1(a). In the P2, we also consider to duplicate the tasks in

the C(Tj) and C(Tk) sequentially into this processor in order to reduce the EFT of task

Ti. We can see Figure 3.1(b) that shows a shorter EFT value of task Ti than the result

in Figure 3.1(a) when we duplicate task Tj in the cluster C(Tj) and task Tk in the

cluster C(Tk) into P2. If task Ti finally is scheduled on processor P2 that has minimum

EFT of task Ti (it likes the partial schedule in Figure 3.1(b).) comparing with

assigning Ti to other processors, the cluster C(Ti) is{ Tj , Tk ,Ti }.

After computing b_level value of each task in the first phase, the task scheduling

 - 17 -

P1 P2 P3 P4

Tj Tk

Ti

Tj

cki cji

Ti

Tk

EST

EFT

(a)

P1 P2 P3 P4

Tj Tj

Ti

Tk
Tk

EST

EFT

(b)

Figure 3.1 The detailed partial schedule of DAG (a) if task Ti is scheduled on P2 (b)

if task Ti is scheduled on P2 after duplicating tasks in C(Tj) and tasks in

C(Tk) into P2.

 - 18 -

list is produced. According to the order of task in the task scheduling list, we select

the task to assign on processor that minimizes earliest finish time of its selected task.

We first utilize the task duplication process repeatedly on each processor in

order to find the minimum EFT of selected task on each processor. Finally, we assign

the selected task to processor that has minimum EFT of its selected task. In our

duplication process, we try to duplicate the tasks in the clusters of immediate

predecessor of selected task into a processor sequentially. As an illustration, we

assume the target system to be a HC with clique network. We use the DAG in Figure

2.2 as an example. After scheduling task T1, T3, T4, T5, T2, T6, and T7 in the task

scheduling list, we attempt to schedule task T9. We try to assign task T9 in each

processor. The Figure 3.2 (a) shows the detail partial schedule of trying to assign task

T9 on the P2. Next, we will execute task duplication process in P2. The immediate

predecessors of task T9 are task T2, task T4 and task T5, but the task T4 was assigned on

P2. Thus, we try to duplicate the tasks in the cluster C(T2) and C(T5) into processor P2

sequentially.

The selection order of these clusters for task duplication is decided by the values

of data arrival time of all immediate predecessors of selected task on a processor,

because it can reduce the EFT of selected task instantly. Let’s discuss the example.

Before duplicating the tasks in a cluster into processor P2, we need to decide the

selection order in C(T2) and C(T5). We compute the data arrival time of T2 and T5

respectively. We find the task T2 which has largest data arrival time. It also represents

to select C(T2) first. The next selection is C(T5).

We use a Duplication function to duplicate the tasks in a cluster into a processor,

and then return a minimum EFT of selected task and corresponding schedule. If the

returned EFT value is increasing after duplicating the tasks in a cluster into a

 - 19 -

 (a)

(b)

 Figure 3.2 The detailed partial schedule of DAG in Figure 2.2 (a) if task T9 is

scheduled on P2 and EFT is 54 (b) if task T9 is scheduled on P2 after

duplicating task T2 in C(T2) into P2 and EFT is 51.

 - 20 -

processor, we stop to duplicate the tasks in the next cluster into this processor. It may

don’t reduce the EFT of the selected task anymore if we continue to duplicate the

tasks in the next cluster into a processor. Otherwise, there may exist enough big idle

time-slot in the processor for assigning tasks in next cluster into this idle time-slot and

thus reduce the EFT of its selected task again. Let’s discuss the example. After

allocating task T2 and T5 to appropriate processor, we know that the contents of C(T2)

and C(T5) are {T2}and {T1, T5},respectively. The idle time-slot between T4 and T9 in

P2 is enough to execute the task T2. Thus, we first duplicate the task T2 in the C(T2)

into P2 and the detailed partial schedule is shown in Figure 3.2(b). We find that the

returned minimum EFT of task T9 is decreasing after duplicating task T2 in the C(T2)

into P2. We will continue to duplicate the tasks in the C(T5) into P2.

Notice that tasks in the cluster exist an order for duplicating a task into a

processor. The order of the tasks is starting from the immediate predecessor of

selected task (the last task in the cluster) to other ancestor tasks. We compute and

record the EFT value of selected task when we duplicate a task in the cluster into a

processor. Finally, the returned EFT value is minimum value among all recorded EFT

values. Such duplicate order of tasks can reduce the EFT of selected task immediately.

Let’s discuss the example. Now, we try to duplicate the tasks in the C(T5) into P2. We

find that the idle time-slot between T2 and T9 in P2 isn’t enough to execute the first

task T5 in the C(T5). If we continue to duplicate the tasks in the C(T5), the returned

EFT value must increase. Thus, we stop the task duplication process on the processor

P2. Finally, The partial schedule in Figure 3.2(b) represents the schedule status and the

minimum EFT value of task T9 on processor P2.

After utilizing the task duplication process repeatedly on each processor, the

selected task is assigned to the processor with minimum EFT of selected task and

 - 21 -

 (a) (b)

 (c) (d)

Task T9’s P1 P2 P3 P4
EST 45 39 42 42
EFT 63 51 62 57

 (e)

Figure 3.3 The partial schedule of DAG in Figure 2.2 (a) if task T9 is scheduled on

P1 (b) if task T9 is scheduled on P2 (c) if task T9 is scheduled on P3 (d) if

task T9 is scheduled on P4 (e) related variables of partial schedule.

 - 22 -

P1 P2 P3 P4

T1

T3 T4 T5

T1

T6

T1

T3

T7

T2

T9

T10

T8

T2

69

Figure 3.4 The final schedule generated by the DEFT1

algorithm and the schedule length is 69.

cluster of selected task is obtained. Let’s discuss the example. In the same way, we

assign T9 to P1, P3 and P4. The partial schedules are shown in Figure 3.3, that is result

of the minimum EFT value of task T9 on each processor after executing task

duplication process on each processor. The Figure 3.3(e) shows the related variables

according to the partial schedule. Finally, task T9 is scheduled to processor P2 which

has the minimum EFT value and the cluster C(T9) is {T2,T9}.

The tasks in the cluster of selected task are the tasks that are duplicated to

processor with minimum EFT of selected task. This cluster includes some

predecessors of selected task. It means that those tasks in the cluster are beneficial for

reducing the EFT of selected task by duplicating those tasks into a processor.

When all tasks in the scheduling list are scheduled to appropriate processor, the

 - 23 -

Figure 3.5 The algorithm of DEFT1.

Input: DAG ,matrix W and network topology GT

Output: Schedule result and schedule length

1. Sort all tasks in a scheduling list by nonincreasing order of b_level values;

2. while (there are unscheduled tasks in the list) do

3. Select the first task, Ti , from the list for scheduling;

4. for each processor Pk in the processor_set (Pk ∈P)do

5. Compute EFT(Ti, Pk);

6. Ftime= EFT(Ti, Pk);

7. Sort all immediate predecessor tasks Tj that haven’t assigned on Pk in

a queue by nonincreasing order of AFT(Tj)+ cji values;

8. while (there are unvisited tasks in the queue)

9. Select the first task, Tj , from the queue;

10. Duplication（C(Tj)）;

11. if (EFT(Ti, Pk)>Ftime)

12. EFT(Ti, Pk)=Ftime ;

13. break; //Stop the while loop

14. endif

15. Ftime= EFT(Ti, Pk);

16. endwhile

17. endfor

18. Assign Ti and duplicate tasks to the Pl that minimizes EFT of task Ti;

19. Put the final duplicated tasks on the Pl into C(Ti);

20. C(Ti)= C(Ti)∪Ti;

21. endwhile

 - 24 -

Input: C(Tj)

Output: EFT(Ti, Pk) and corresponding duplicate status

1. Duplication(C(Tj))

2. while (there are unvisited tasks in the C(Tj)) do

3. Select the last task, Tk, from the C(Tj);

4. if (idle time-slot between tasks < wkk)

5. if (Tk = = Tj)

6. return EFT(Ti, Pk) = ∞ ;

7. endif

8. break; //Stop the while loop

9. endif

10. Duplicate task Tk into Pk ;

11. Compute EFT(Ti, Pk) and record the duplicate status ;

12. endwhile

13. return minimum EFT(Ti, Pk) and corresponding duplicate status ;

14.end

final schedule result and schedule length are obtained. Let’s discuss the example. The

Figure 3.6 The algorithm of Duplication function.

final schedule is shown in Figure 3.4. The schedule length, which is equal to 69, is

shorter than that of the HEFT and STDS algorithm. The schedule lengths of HEFT

and STDS algorithms are 77 and 86, respectively. Figure 3.5 shows the detail DEFT1

algorithm and the Duplication function is shown in Figure 3.6.

 - 25 -

3.2 DEFT2 Algorithm

In this section, we will focus on the behavior of data transmission with link

contention constraints. We also describe the difference of processor selection phase

between in DEFT1 and DEFT2 algorithm in this section.

3.2.1 Task Prioritizing Phase

This phase is the same as DEFT1 algorithm. As we mentioned before, the b_level

function also is an appropriate priority function in the link contention environment.

Thus, in this phase, we also use the b_level value as the priority value of each task.

3.2.2 Processor Selection Phase

Under the condition of link contention occurrence, we need to treat the

communication edges in the same way as the tasks of the DAG. It means that the

edges are scheduled to the network links in the same way the tasks are scheduled to

the processors [38]. Corresponding to the EST and EFT of task, we will define MST

(Message Start Time) and MFT (Message Finish Time) two attributes below. Before

we define the attributes, it notices that Lk represents the link (path) in a routing

path for data transmission.

thk

Definition 3.2 In a given partial schedule, let R ={L1, L2,…, Ln} be a routing path

with n links and task Ti transmits the message Mij to task Tj by the routing path. We

define the Message Start Time of message Mij on link Lk in the routing path, denoted

as MST(Mij ,Lk), by the following equation:

 - 26 -

 L12 L23 L34 L14 P1 P2 P3 P4

Tj

Ti

Ti

Mij Mij

Tj

Mij (cij)

MST

MFT

Figure 3.7 The MST and MFT of a message Mij.

MST (Mij , Lk) = Max{avail[Lk], AFT(Ti)}, if Lk is the first link L1 ;

otherwise. (6))},,(],[{),(1−= kijkkij LMMSTLavailMaxLMMST

,where avail[Lk] is the earliest time at which link Lk is ready for message transmission.

AFT(Ti) is the actual finish time of a task Ti.

Definition 3.3 In a given partial schedule, let R ={L1, L2,…, Ln} be a routing path

with n links and task Ti transmits the message Mij to task Tj by the routing path. We

define the Message Finish Time of message Mij on link Lk in the routing path, denoted

as MFT(Mij ,Lk), by the following equation:

),(),(kijijkij LMMSTwLMMFT += (7)

A simple example is shown in Figure 3.7. There exists the data dependency

between task Ti and task Tj as shown in DAG. We assume that the communication cost

between two tasks is cij. The network of processor is according to Figure 2.1. Task Ti

 - 27 -

and task Tj are allocated on the different processor P1 and P3, respectively. Thus, the

message is arranged on the network link L12 and L23 according to the routing path. The

final schedule is on the left side of Figure 3.7.

While the start time of a task is constrained by the data ready time of its

incoming communication, the start time of a message is restricted by the finish time

of its origin task. The scheduling of a message differs from a task, in that a message

might be scheduled on more than one link. A communication between two tasks,

which are scheduled on two different but not adjacent processors, utilizes all links of

the routing path between the two processors. The message, representing this

communication, must be scheduled on each of the involved links.

After understanding the process of data transmission with link contention

constraints, we need to redefine the EST for the DEFT2 algorithm in the definition 3.4.

Definition 3.4 In a given partial schedule, let R ={L1, L2,…, Ln} be a routing path

with n links. We define the Earliest Start Time of task Ti on processor Pj, denoted as

EST(Ti,Pj), by the following equation:

 EST (Ti , Pj) = 0, if task Ti is the entry task;

otherwise. (8)))},,((],[{),(
)(njiTpredTjji LMMFTMaxPavailMaxPTEST

ij∈
=

,where pred(Ti) is the set of all immediate predecessors of task Ti, and avail[Pj] is the

earliest time at which processor Pj is ready for task execution. Ln is the last link in a

routing path.

The definition of EFT in the Eq. (3) also is used in the DEFT2 algorithm. In the

 - 28 -

Figure 3.8 The algorithm of DEFT2.

Input: DAG ,matrix W and network topology GT

Output: Schedule result and schedule length

1. Sort all tasks in a scheduling list by nonincreasing order of b_level values;

2. while (there are unscheduled tasks in the list) do

3. Select the first task, Ti , from the list for scheduling;

4. for each processor Pk in the processor_set (Pk ∈P)do

5. Compute EFT(Ti, Pk);

6. Ftime= EFT(Ti, Pk);

7. Sort all immediate predecessor tasks Tj that haven’t assigned on Pk in

a queue by nonincreasing order of MFT(Mji , Ln) value;

8. while (there are unvisited tasks in the queue)

9. Select the first task, Tj , from the queue;

10. Duplication（C(Tj)）;

11. if (EFT(Ti, Pk)>Ftime)

12. EFT(Ti, Pk)=Ftime ;

13. break; //Stop the while loop

14. endif

15. Ftime= EFT(Ti, Pk);

16. endwhile

17. endfor

18. Assign Ti and duplicate tasks to the Pl that minimizes EFT of task Ti;

19. Put the final duplicated tasks on the Pl into C(Ti);

20. C(Ti)= C(Ti)∪Ti;

21. endwhile

 - 29 -

P1 L12 P2 L23 P3 L34 P4 L14

M810

T10

T1
T1

T3 T4 T5

M14

M15

M14
M15

T6

T3

T7

M48 M29

M710 T8

T9

T5

M28M29

T2

T1

81

Figure 3.9 The final schedule generated by DEFT2

algorithm and the schedule length is 81.

following, we want to explain the difference of this processor selection phase. Figure

3.8 shows the DEFT2 algorithm. There is a main difference in the step 7. We sort

the value in a nonincreasing order to decide the selection order of

clusters for task duplication because of link contention constraints. In this algorithm,

the task duplication process or concepts are the same as DEFT1 algorithm.

),(nji LMMFT

As an illustration, Figure 3.9 shows the final schedule of DAG in Figure 2.2

according to the network topology in the Figure 2.1. We can see that each message

can only start the transmission on the link after the link is ready. Further, the start time

of the message on a link can’t be earlier than the start time of the message on previous

link in the routing path.

In conclusion, we propose the DEFT (it includes DEFT1 and DEFT2) algorithm

 - 30 -

which both contains the concept of EFT, which is broadly used in many effective task

scheduling algorithms of heterogeneous system and the advantage of the task

duplication method.

In the following, we will give the analysis on the time complexity of our propose

algorithm. The time complexity is derived as follows. The given task graph contains n

tasks and e edges, and we have m processors in our system. In the task prioritizing

phase, we compute the b_level value of each task by traversing the given task graph.

The time complexity of this phase is O(n+e). In the processor selection phase, the

time complexity of Duplication function is O(n²). Thus, the time complexity of whole

duplication process is O(dn²), where d is the maximum number of immediate

predecessor of tasks in a DAG. Each task takes the O(dn²m) time to select a processor.

That is, the time complexity of this phase is O(dn³m). Therefore, the time complexity

of the DEFT algorithm would be O(dn³m). Although it is higher than other related

algorithms, it only slight difference in running time comparing with related algorithms

by our simulation result.

In order to verify the effectiveness of our algorithm, we construct the simulation

environment and implement the related algorithms. In the next chapter, we will

explain our simulator and analyze the simulation results.

 - 31 -

Chapter 4. Simulation and Performance

Evaluations

After describing the Duplication-based Earliest Finish Time (DEFT) algorithm,

we will verify the effectiveness of this algorithm by implementation and simulation.

At first, we will describe the architecture of the simulator in section 4.1. Next, we will

give the performance evaluations in section 4.2.

4.1 Simulation Setup

The flow chart of the simulation is shown in Figure 4.1. We use the C++

language to construct our simulator. There are three parts in our simulator. The first

part is Random Graph Generator, the second part is Network Topology Generator that

generates Clique, Hypercube, Mesh and Ring for our target system, and the third part

is algorithm. We will give the detailed description about each part in the following.

(a) Random Graph Generator (RGG) [2]

As we defined in definition 2.2, the parallel program with n tasks can be

represented as a DAG. A RGG is implemented to generate the DAGs with various

characteristics that depend on several input parameters given below.

● Number of tasks in the graph, (n).

● Maximum number of out degree of a task, (out_degree). The out degree value

of each task will be randomly generated from a uniform distribution with the

interval [0, out_degree].

● Shape parameter of the graph, (α). A dense graph (a shorter graph with high

 - 32 -

 Algorithm1 Algorithm2

Network Topology Generator
 Clique Hypercube

 Mesh Ring

Random Graph Generator

HEFT CLSSTDS DEFT1 DEFT2

With link contention
constraints

Without link contention
constraints

BSA

Final Schedule1 Final Schedule2

Figure 4.1 The flow chart of the simulation.

parallelism) can be generated by selectingα>1.0. On the contrary, ifα<1.0, it

will generate a longer graph with low parallelism degree. If α=1.0, then it will

be a balanced DAG.

● Communication to computation ratio of a graph, (CCR). It is the ratio of the

average communication cost to the average computation cost. If the CCR value

of a DAG is very low, it can be considered as a computation-intensive

application. On the contrary, it can be considered as a communication-intensive

application.

● Maximum range of computation costs of a task on processors, (β). The

 - 33 -

maximum multiple of difference among computation costs of a task on

processors will be randomly generated from a uniform distribution with the

interval [1, β]. It is basically the heterogeneity factor for processor speeds. A

high β value causes a significant difference in computation cost of a task

among the processors. A low β value indicates that the expected computation

cost of a task is almost equal on each of the given processors in the system.

In each simulation, the values of these parameters are assigned from the

corresponding sets given below.

● SETn ={ 50,100,200,300,400,500 },

● SETout_degree ={ 8,15,20 },

● SETα ={ 0.5,1.0,2.0 },

● SETCCR ={ 0.1,1.0,10.0 },

● SETβ ={ 1.2, 3.0,7.0 }.

These combinations give 486 different DAG types. Since 10 random DAGs are

generated for each DAG type, the total number of DAGs used in our simulations is

4860. Assigning several input parameters and selecting each parameter from a set

cause the generation of diverse DAGs with various characteristics. Simulations based

on diverse DAGs prevent biasing toward a particular scheduling algorithm.

(b) Network Topology Generator [36]

In our simulation, we adopt four kinds of interconnection network topology

including clique, hypercube, mesh and ring. Any one of these four kinds of network

topology is used widely [39]. We assume that there are 16 processors in our target

system. We can observe that the communication resource (network link) varies

 - 34 -

according to different kinds of network topology. For example, the ring network has

the minimum communication resource and the clique network has the maximum

communication resource. We want to show that our proposed algorithm can work well

on each kind of network topologies.

(c) Algorithm

The input of the algorithm is a task graph generated from the RGG and one kind

of network topology. The output of the algorithm is the final schedule. We implement

the DEFT algorithm with some related algorithms in our simulation. As we mentioned

in chapter 2, the HEFT algorithm and STDS algorithm assume the target system

without the link contention constraints. We plan to simulate those algorithms and

DEFT1 algorithm with the same system assumptions. We also compare the simulation

results of three algorithms under different conditions. On the other hand, we simulate

the CLS and BSA algorithm that have the link contention constraints and DEFT2

algorithm, and compare the simulation results among them.

4.2 Performance Evaluations

The comparison metric of a scheduling algorithm on a graph is the schedule

length (makespan) of its output schedule. We define the Schedule Length Ratio (SLR)

as the schedule length of the DEFT algorithm divided by the schedule length of the

related algorithm. The related algorithm is one of following algorithms, such as HEFT,

STDS, CLS and BSA. If the SLR is larger than 1.0 means the related algorithm has

the smaller schedule length, that is, the related algorithm has the better scheduling

result. On the contrary, if the SLR is smaller than 1.0 means the DEFT algorithm has

the better scheduling result.

 - 35 -

We evaluate the performances of the DEFT1 algorithm comparing with the HEFT

and STDS algorithm on common clique network topology in section 4.2.1, and the

section 4.2.2 is to evaluate the performance of the DEFT2 algorithm comparing with

the CLS and BSA algorithm on four kinds of network topology: clique, hypercube,

mesh and ring.

4.2.1 DEFT1 vs. HEFT and STDS

 The simulation result of DEFT1 and HEFT is illustrated in Figure 4.2. We can find

that the average SLR is smaller than 1.0 or nearly equal to 1.0 in all of three cases. It

indicates that the DEFT1 algorithm is more effective than HEFT, especially when

CCR equals to 10.0. In such communication-intensive task graph, the average

communication cost is ten times of the average computation cost. Thus, we can find

many idle time-slots in processors in the schedule result of HEFT algorithm. We

utilize these idle time-slots in the processors efficiently by duplicating the tasks in

cluster into the processors in our DEFT1 algorithm. It can get shorter EFT values of

each task than that of HEFT algorithm. On the contrary, under computation-intensive

applications, the returned minimum EFT of scheduling task is increasing after

duplicating the tasks in first selected cluster on a processor. It stops the duplication

process on processor in DEFT1 algorithm, because it may don’t reduce the EFT of the

scheduling task anymore when we continue to duplicate the tasks in next cluster. Thus,

we can observe that the performance of the DEFT1 algorithm is nearly equal to that of

the HEFT in the graph with low CCR value.

The simulation result of DEFT1 and STDS is illustrated in Figure 4.3. We can

observe that the average SLR is smaller than 1.0 in all of three cases, and DEFT1

obviously outperforms the STDS in higher CCR value. As we mentioned in chapter 2,

 - 36 -

Clique(Compare with HEFT)

0.5

0.6

0.7

0.8

0.9

1

1.1

50 100 200 300 400 500

Number of Tasks

A
ve

ra
ge

 S
L

R

CCR=0.1 CCR=1 CCR=10

Clique(Compare with STDS)

0.5

0.6

0.7

0.8

0.9

1

1.1

50 100 200 300 400 500

Number of Tasks

A
ve

ra
ge

 S
L

R
CCR=0.1 CCR=1 CCR=10

Figure 4.2 The simulation result Figure 4.3 The simulation result
of DEFT1 and HEFT. of DEFT1 and STDS.

in the STDS, only one immediate predecessor of given task in a critical path assigns

to the same processor of given task. The other immediate predecessors of given task

are assigned to different processors. It causes that the communication overhead

between immediate predecessor tasks of given task in a critical path and its given task

is very heavy. Thus, when the parallel program is communication-intensive, it makes

a poor schedule result. In our duplication method, each cluster of immediate

predecessor of scheduling task includes some predecessors of scheduling task as the

selection of task duplication. Thus, we have considering to duplicate other immediate

predecessors of a task into a processor. It can avoid the communication cost between

immediate predecessor of a task and its task in our algorithm. It notices that the

average SLR is slightly diminution when number of task is more than 200 in that the

number of initial clusters is larger than the number of processors in the STDS

algorithm. Thus, the duplication process of STDS isn’t carried out and makes an

 - 37 -

inferior schedule result.

The performance ranking of the algorithms will be {DEFT1, HEFT, STDS}. The

avera

.2.2 DEFT2 vs. CLS and BSA

 CLS on the clique network, hypercube

netw

 on the clique network, hypercube

netw

ge SLR value of DEFT1 on all generated graphs are 15 and 38 percent smaller

than that of HEFT and STDS, respectively.

4

The simulation results of DEFT2 and

ork, mesh network and ring network are shown in Figure 4.4~Figure 4.7,

respectively. The average SLR is also smaller than 1.0 in all three cases on four

different networks. Thus, we can say that the DEFT2 algorithm certainly has more

effective performance than that of the CLS algorithm. As we described in chapter 2,

the CLS algorithm is extended from the HEFT algorithm. Thus, the CLS algorithm

inherits the phenomena in the HEFT algorithm, that is, there still have many idle

time-slots in the processors. Similarly, we utilize these idle time-slots for task

duplication to achieve the goal of reducing schedule length in the DEFT2 algorithm.

The average SLR value of DEFT2 on all generated graphs are 18, 16, 16 and 14

percent smaller than that of CLS on the clique network, on hypercube network, on

mesh network and on ring network, respectively.

The simulation results of DEFT2 and BSA

ork, mesh network and ring network are shown in Figure 4.8~Figure 4.11,

respectively. The average SLR is smaller than 1.0 in all three cases on four different

networks. In the Figure 4.8, the clique network offers the sufficient communication

resource. Each processor has a direct network link with the other processors. In the

BSA algorithm, each task tries to migrate to each processor and to find the minimum

finish time of the task. It is similar to the process of HEFT algorithm. Thus, the

 - 38 -

0.5

0.6

0.7

0.8

0.9

1

1.1

50 100 200 300

Number of Tasks

A
ve

ra
ge

 S
L

R

CCR=0.1 CCR=1 CCR=10

Clique(Compare with CLS) Hypercube(Compare with
CLS)

0.5

0.6

0.7

0.8

0.9

1

1.1

50 100 200 300

Number of Tasks
A

ve
ra

ge
 S

L
R

CCR=0.1 CCR=1
CCR=10

Figure 4.4 The simulation result of Figure 4.5 The simulation result of
EFT2 and CLS on the Hypercube
etwork.

Figure 4.6 The simulation result of
DEFT2 and CLS on the Mesh network.

etwork.

Figure 4.6 The simulation result of
DEFT2 and CLS on the Mesh network.

DEFT2 and CLS on the Clique D
etwork. n

k. n

n

 Figure 4.7 The simulation result of
 DEFT2 and CLS on the Ring network.

 Figure 4.7 The simulation result of
 DEFT2 and CLS on the Ring network.

0.5

0.6

0.7

0.8

0.9

1

1.1

50 100 200 300

Number of Tasks

A
ve

ra
ge

 S
L

R

CCR=0.1 CCR=1 CCR=10

Mesh(Compare with CLS) Ring(Compare with CLS)

0.5

0.6

0.7

0.8

0.9

1

1.1

50 100 200 300

Number of Tasks

A
ve

ra
ge

 S
L

R

CCR=0.1 CCR=1 CCR=10

 - 39 -

Clique(Compare with BSA)

0.5

0.6

0.7

0.8

0.9

1

1.1

50 100 200 300

Number of Tasks

A
ve

ra
ge

 S
L

R

CCR=0.1 CCR=1 CCR=10

0.5

0.6

0.7

0.8

0.9

50 100 200 300

Number of Tasks
A

ve
ra

ge
 S

L
R

CCR=0.1 CCR=1 CCR=10

Hypercube(Compare with
BSA)

1

1.1

Figure 4.8 The simulation result of Figure 4.9 The simulation result of
DEFT2 and BSA on the Clique D
network. n

Mesh(Compare with BSA)

0.5

0.6

0.7

0.8

0.9

1

1.1

50 100 200 300

Number of Tasks

A
ve

ra
ge

 S
L

R

EFT2 and BSA on the Hypercube
etwork.

Ring(Compare with BSA)

0.5

0.6

0.7

0.8

0.9

1

1.1

50 100 200 300

Number of Tasks

A
ve

ra
ge

 S
L

R

CCR=0.1 CCR=1 CCR=10CCR=0.1 CCR=1 CCR=10

Figure 4.10 The simulation result of Figure 4.11 The simulation result of
DEFT2 and BSA on the Mesh network. DEFT2 and BSA on the Ring network.

 - 40 -

simulation result is also similar to that of HEFT algorithm. The deficient

ommunication resource in the network will limit the task to migrate to each

processor. It may affect the task to select a suitable processor in the BSA algorithm

and make an inferior schedule result. There still have many idle time-slots in the

processors in the schedule results of BSA algorithm on four kinds of network,

especially when CCR equals to 10.0. Similarly, we can utilize idle time-slots for task

duplication to reduce schedule length in the DEFT2 algorithm. The average SLR value

of DEFT2 on all generated graphs are 20, 18, 17 and 17 percent smaller than that of

BSA on the clique network, on hypercube network, on mesh network and on ring

network, respectively.

The performance ranking of the algorithms will be {DEFT2, CLS, BSA }. The

average SLR value of DEFT2 on all generated graphs are 14~18 and 17~20 percent

aller than that of CLS and BSA on four kinds of network, respectively.

gh

the simulation. The simulation results show that the DEFT algorithms outperform the

other algorithms for any graph size in terms of SLR, whether it exists the link

contention constraints in the target system or not.

c

sm

In conclusion, we have verified the effectiveness of the DEFT algorithm throu

 - 41 -

Chapter 5. Conclusions and Future

hapters. We design two similar

algor hms. DEFT1 is for target system without link contention constraints, and

DEF 2 is for target system with link contention constraints. Finally, in order to

evaluate our algorithm, we construct a simulation environment and compare with the

relat lgorithms. In this chapter, we will make some conclusions and also describe

some future work on this research topic.

5.1 Conclusions

 fective

ough in the STDS algorithm. Thus, we have proposed the Duplication-based

Earliest Finish Time (DE . This algorithm contains two phases. The first

phase is task prioritizing hase for computing the priorities of all tasks by a efficient

priority function. In the second phase, we select the processor which can complete the

task earliest by a task duplication mechanism. The concept of task duplication

mechanism is that we utilize processor idling time for duplicating some predecessors

of scheduling task into a processor to avoid communication costs between tasks.

In summary, it has some characteristics compared with other related methods,

such as the HEFT, STDS, CLS and BSA algorithm:

(1)For effectiveness, we design a duplication process to effectively reduce the EFT

and choose the appropriate processor for each task. We also verify the effectiveness

structing simulation environment. The simulation result

Work
We have introduced our system architecture and proposed effective algorithm to

solve the task scheduling problem in the previous c

it

T

ed a

We found that the selection strategy of tasks for duplication isn’t ef

en

FT) algorithm

 p

of this method by con

 - 42 -

sh

d is

th

ugh it is higher than other related

5

In addition to the features we discussed before, there are still several promising

issues in future researches.

(1) We try to design another priority function when dealing with different task graphs.

Different task graphs may have the different characteristics. In a

computation-intensive (i.e., CCR =0.1) parallel program, the average computation

cost is about ten times the average task communication cost. We can design an

appropriate priority function for such parallel program. It can help us rank the tasks

more properly.

(2)By using the concept of look-ahead mechanism like CLS algorithm may improve

our method further. The concept of look-ahead mechanism in the CLS algorithm is

to select the processor which can complete the scheduling task early and has the

ows that the DEFT algorithm effectively shortens the schedule length comparing

with the related algorithms, especially when CCR equals to 10.0 (a

communication-intensive parallel program). In general, the average schedule length

of DEFT1 are 15 and 38 percent smaller than that of HEFT and STDS, respectively.

The average schedule length of DEFT2 are about 14 ~ 18 and 17~20 percent

smaller than that of CLS and BSA algorithm on four kinds of network topology,

respectively.

(2) For efficiency, the time complexity of the DEFT algorithm is O(dn³m), where

e maximum number of immediate predecessor of tasks in a DAG, n is the number

of tasks and m is the number of processors. Altho

algorithms, it will be a very important factor no more because we can use a fast

processor for scheduling tasks.

.2 Future Work

 - 43 -

sufficient network link by a look-ahead manner. The manner is to compute the

gning the communication cost that forwards to immediate

successor of scheduling task on direct link of the processor. The look-ahead

mechanism can help that the immediate successor tasks of scheduling task receive

the data early. However, some inaccurate look-ahead may bring degradation in

performance as we mentioned in chapter 2. We will design a look-ahead

mechanism for our algorithm by modifying that of CLS algorithm.

(3)We may add some other realistic constraints in our system model and modify the

DEFT2 algorithm more practical. We don’t take the consideration of system latency,

message size, network bandwidth…,etc. into our system model. As the system

model incorporates the realistic constraints, it is more difficult to design a good

algorithm. There are many well-known system model, such as LogP [22],

Bulk-Synchronous Parallel (BSP) [23], offering the realistic model of parallel

computation. We try to modify our system model from previous work.

earliest finish time of assi

 - 44 -

B

[1] I. Ekmecic, I. Tartalja, and V. Milutinovic, “A survey of heterogeneous

computing: concepts and systems”, Proc. IEEE , vol. 84, pp. 1127 -1144, Aug.

1996.

[2] H. Topcuoglu, S. Hariri, and Min-You Wu, ”Performance-effective and

low-complexity task scheduling for heterogeneous computing”, IEEE Trans. on

Parallel and Distributed Systems, vol.13, pp. 260 -274, Mar. 2002.

[3] M.R. Gary and D.S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman and Co., 1979.

[4] M. Wu and D. Gajski, “Hypertool: A Programming Aid for Message Passing

Systems, “ IEEE Trans. on Parallel and Distributed Systems, vol. 1, pp. 330-342,

July 1990.

namic Critical-Path Scheduling: An Effective

sk Graphs to Multiprocessors,” IEEE Trans. on

[6]

ection-Constrained Heterogeneous Processor Architectures,” IEEE

[7]

p. 138-153,

[8] Parallel

[9]

ystems with Interprocessor Communication Costs,” SIAM J.

ibliographies

[5] Y. Kwok and I. Ahmad, “Dy

Technique for Allocating Ta

Parallel and Distributed Systems, vol. 7, no. 5, pp. 506-521, May 1996.

G..C Sih and E.A. Lee, “A Compile-Time Scheduling Heuristic for

Interconn

Trans. on Parallel and Distributed Systems, vol. 4, no.2, pp. 175-186, Feb. 1993.

 H. El-Rewini and T.G. Lewis, “Scheduling Parallel Program Tasks on Arbitrary

Target Machines,” J. Parallel and Distributed Computing, vol. 9, p

1990.

B. Kruatrachue and T.G. Lewis, “Grain Size Determination for

Processing,” IEEE Software, pp. 23-32, Jan. 1988.

J.J. Hwang, Y.C. Chow, F.D. Anger, and C.Y.Lee, “Scheduling Precedence

Graphs in S

 - 45 -

Computing, vol.18, no. 2, pp. 244257, 1989.

T. Yang and A. Gerasoulis, “DSC: Scheduling Parallel Tasks on an Unbound

Number Processors,” IEEE Trans. on Parallel and Distributed Systems

[10] ed

, vol. 5,

[11]

[12]

ltiprocessors,” Proc. Symp. Parallel and Distributed Processing, 1996.

ms

essing, vol.2, pp.

[14]

st Scheduling Algorithms on

.

[15] n, “A Genetic Algorithm for Multiprocessor

. 2, pp.

[16] g and Scheduling Heterogeneous Task Graphs

,” Proc. Heterogeneous Computing Workshop, 1996.

no. 9, pp.951-967, Sept. 1994.

S.J. Kim and J.C. Browne, “A General Approach to Mapping of Parallel

Computation upon Multiprocessor Architectures,” Proc. Int’l Conf. Parallel

Processing, vol. 2, pp. 1-8, 1988.

J. Liou and M.A Palis, “An Efficient Clustering Heuristic for Scheduling DAGs

on Mu

[13] I. Ahmad and Y.Kwok, “A New Approach to Scheduling Parallel Progra

Using Task Duplication,” Proc. Int’l Conf. Parallel Proc

47-51, 1994.

Y. Chung and S. Ranka, “Application and Performance Analysis of a

Compile-Time Optimization Approach for Li

Distributed Memory Multiprocessors,” Proc. Supercomputing, pp. 512-521, Nov

1992.

E.S.H. Hu, N. Ansari, and H. Re

Scheduling,” IEEE Trans. on Parallel and Distributed Systems, vol.5, no

113-120, Feb. 1994.

H. Singh and A. Youssef, “Mappin

Using Genetic Algorithm,” Proc. Heterogeneous Computing Workshop, pp.

86-97, 1996.

[17] L. Wang, H.J. Siegel, and V.P. Roychowdhury, “A Genetic Algorithm-Based

Approach for Task Matching and Scheduling in Heterogeneous Computing

Environments

 - 46 -

[18] P. Shroff, D.W. Watson, N.S, Flann, and R.Freund, “Genetic Simulate

Annealing for Scheduling Data-Dependent Tasks in Heterogeneous

Environments,” Proc. Heterogeneous Computing Workshop, pp. 98-104, 1996.

L. Tao,

d

[19] B. Narahari, and Y.C. Zhan, “Heuristics for Mapping Parallel

[20] J. Gu, “Efficient Local Search for DAG Scheduling,” IEEE

[21] hmad, and J. Gu, “FAST: A Low-Complexity Algorithm for

lel

[22] ,

[23]

[24]

es to a network of heterogeneous processors,”

[25]

etwork of Processors”, IEEE Trans. Computers, vol. 49, no. 12,

[26]

, Proc. of 14th International Parallel

Computations to Heterogeneous Parallel Architectures,” Proc. Heterogeneous

Computing Workshop, 1993.

M. Wu, W. Shu, and

Trans. on Parallel and Distributed System, vol. 12, no. 6, pp. 617-627, June

2001.

Y. Kwok, I. A

Efficient Scheduling of DAGs on Parallel Processors,” Proc. Int’l Conf. Paral

Processing, vol. 2, pp. 150-157, 1996.

D. Culler, R. Karp, D. Patterson, A. Shahy, K.E. Schauser, E. Santos

R.Subramonian, and T. von Eicken, “LogP-A Pratice Model of Parallel

Computation,” Comm. ACM, vol. 39, no.11, pp. 78-85, 1996.

L.G. Valiant, “A Bridging Model for Parallel Computation,” Comm. ACM, pp.

103-111, 1990.

Yu-Kwong Kwok and Ishfaq Ahmad , ”Link contention-constrained scheduling

and mapping of tasks and messag

Proc. Int’l Conf. Parallel Processing, pp. 551-558, 1999.

T.S. Hsu, Joseph C.Lee, Dian Rae Lpoez and William A.Royce, “Task Allocation

on a N

pp.1339-1353, Dec. 2000.

Samantha Ranaweera and Dharma P. Agrawal, “A Task Duplication Based

Scheduling for Heterogeneous Systems”

 - 47 -

and Distributed Processing Symposium, pp. 445-450, May 2000.

Samantha Ranaweera and Dharma P. Agrawal, “A Scalable Task Duplica

Based Scheduling Algorithm for Heterogeneous Systems”, Pro

[27] tion

c. of International

[28] and Chan-Ik Park, “A Task Duplication Based Scheduling

al

cessing, pp. 352-359, Aug. 2002

. 1,

ask

[33] Chan-Ik Park; Tae-Young Choe; “An optimal scheduling algorithm based on task

[34]

ystems”.; IEEE

544

Conference on Parallel Processing, pp. 383-390, Aug. 2000.

Tae-Young Choe

Algorithm with Optimality Condition in Heterogeneous Systems”, Proc. of

International Conference on Parallel Processing Workshop, pp. 531-536, Aug.

2002.

[29]Atakan Dogan and Fusun Ozguner, “LDBS: A Duplication Based Scheduling

Algorithm for Heterogeneous Computing Systems”, Proc. of Internation

Conference on Parallel Pro

[30] S. Darbha and D.P. Agrawal, “Optimal Scheduling algorithm for distributed

memory machines”, IEEE Trans on parallel and distributed systems, vol. 9, no

pp. 87-95, January 1998.

[31] Yu-Kwong Kwok “Parallel program execution on a heterogeneous PC cluster

using task duplication” ; Proceedings. 9th Heterogeneous Computing Workshop,

2000. (HCW 2000), pp. 364 –374 1 May 2000

[32] Chan-Ik Park; Tae-Young Choe ”An optimal scheduling algorithm based on t

duplication” Proceedings. Eighth International Conference on Parallel and

Distributed Systems, 2001. ICPADS 2001., 26-29 June 2001

duplication “IEEE Trans on Computers, vol 51 Issue: 4 , April 2002

Bansal, S.; Kumar, P.; Singh, K “An improved duplication strategy for

scheduling precedence constrained graphs in multiprocessor s

Transactions on Parallel and Distributed Systems,, Vol 14 Issue 6 , pp. 533 –

 - 48 -

June 2003

Li Guodong; Chen Daoxu[35] ; Wang Darning; Zhang Defu; “Task clustering and

[36] ask Scheduling Method with

[37] ist scheduling

tion

[39] ami. Introduction to Parallel Processing. Plenum Book

scheduling to multiprocessors with duplication” Proceedings. International

Parallel and Distributed Processing Symposium, 2003., pp. 6 –13 April 2003

Shuo-Zhan Ho and Cheng Chen, ”An Effective T

Link Contention Constraints for Heterogeneous System” , MS thesis, National

Chiao Tung University, Taiwan, R.O.C 2003

 B.S. Macey, A.Y. Zomaya, “A performance evaluation of CP l

heuristics for communication intensive task graphs” ,Parallel Processing

Symposium,1998, pp. 538-541 1998

[38] Oliver Sinnen and Leonel Sousa, ”List scheduling: extension for conten

awareness and evaluation of node priorities for heterogeneous cluster

architectures”, Parallel Computing Symposium,2004, pp. 81-101 2004

Behrooz Parh

Company,1999.

 - 49 -

