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Estimation of Equity Risk Premiums in Taiwan Security Market:
Comparison in Using GARCH-M, Rolling Window and MIDAS
Model

Student - Sii-Yuan Yang Advisor . Chih-Young Hung

Yau-De Wang

Institute of Management Science

National Chiao Tung University

Abstract

This paper investigates risk premiums of Taiwan Stock Exchange Capitalization
Weighted Stock Index (TATEX) by using Ghysel’s mixed data sampling (MIDAS)
model which is a new regression regarding volatility estimation. We study the
intertemporal relation between conditional mean and conditional variance of the
aggregate stock market return. Compared with various approaches such as
GARCH-in-mean, rolling window and MIDAS models, we find that: (i) We support
for a negative relation'between risk and equity risk premium in TSEC weighted index
during the period 2006 - 2010. (i1) MIDAS is more convinecing in predicting
regression for sampled time-series data. (iii) Empirical results show out-sample
forecasting ability of MIDAS model also performs well. Specifically, it has smaller
forecasting error. (iv) Under MIDAS model of different volatility predictors and
different sampling frequencies, a squared premium polynomial with daily frequency

data has better estimation.

Keywords : Equity Risk Premium, GARCH-M, ICAPM, MIDAS, Risk-Return

Tradeoff
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1. Introduction

Cornell (1999) suggests that the equity risk premium (ERP) plays an important role in a

host of financial decisions such as making asset allocation decisions, corporate investment

decisions and etc. As we both realize that the equity risk premium is not just a central

component of every risk and return model in finance but also a critical determinant for

estimating costs of equity in both corporate finance and valuation. In addition, we must have

heard a lot about cost of equity for the market,; which is also a synonym for expected return on

the market, that is determined by-a-forecast of the equity risk premium. Even so, there is no

one universally accepted methodology for estimating ERP. A wild variety of premiums are

used in practice and'recommended by academics and financial advisors.

In general, we are accustomed to apply the-GARCH family to estimate the equity risk

premium under considering the volatility. The models family of generalized autoregressive

hetetoskedasticity (GARCH) that encompasses all the popular existing GARCH models. The

nesting clearly shows the connection between the existing models, and permits new standard

nested test to determine the relative quality of each of the model’s fits. The nested models

include Bollerslev’s (1986) GARCH model, Nelson’s (1991) exponential GARCH (EGARCH)

model, Zakoian’s (1991) threshold GARCH (TGARCH) model, Glosten et al’s (1993) GJR

GARCH model, and others. The benefit of this method is that GARCH models family is the



most easily derived model from asymmetric absolute value GARCH model. There is one

thing important which describes a conditional standard deviation as a linear combination of

absolute value of shocks and lagged conditional standard deviation. To conclude, GARCH

family models indeed play a suitable and efficient role for estimating volatility of time series

data analysis.

However, there are still some restrictions for GARCH model in estimations, which is

whether sampling frequency need to.be high or low. Because if sampled at low rate,

information contained in high rate may be ignored. To solve this, Ghysels, Santa-Clara, and

Valkanov (2002), (2004) and (2005) proposed a regression approach that can directly

accommodate variables at different frequencies. This approach is called as Mixed Data

Sampling (MIDAS) regression, which contains a simple, parsimonious, and flexible class of

time series models that allows the left-hand side and right-hand side variables of time series

regressions to be sampled at different frequencies.

In this paper, we investigate risk premium of the Taiwan Stock Exchange Capitalization

Weighted Stock Index (TAIEX) compiled by Taiwan Stock Exchange Co., Ltd. (TWSE) by

using Ghysel’s MIDAS model. The weighted index data sampled daily from January 2006 to

December 2010 is used to examine the time-varying risk premium without considering

individual variable factors. We also test intertemporal capital asset pricing model (ICAPM,



see Merton, 1973) relation on the basis of our data. Besides, some studies discuss with the

issue about Taiwan forward exchange contracts or Taiwan futures market by applying MIDAS

regression, but it is hardly to find the study that focuses on the MIDAS regression to explore

the risk-return relation in Taiwan stock market. The reason therefore urges me to examine the

asymptotic properties of MIDAS regression estimation and apply it to explore the risk-return

relation. Furthermore, we also compare it with GARCH-M model and rolling window model.

All of the research procedures verify.atheoty which exactly points out that the MIDAS

regression indeed plays an important role in Taiwan stock market.

The rest of this paper is structured as follows. Literatures related to risk premiums,

risk-return relation, volatility and mixed data sampling are described in Section 2. In Section

3, we explain rolling window estimation, GARCH-in-mean estimation and MIDAS regression

including methodologies and details. Section 4 shows empirical results of various estimations

and measurement of forecasting errors and -we provide our conclusions in Section 5.



2. Literature Review

In this following section, we provide some related review about our thesis. Literature in
the first subsection is about the concept and definition of equity risk premiums. The second
subsection provides a tradeoff view point of risk-return relation including intertemporal
capital asset pricing model of Merton (1973). The third subsection focuses on volatility. When
comes to forecasting volatility, we must associate it with the benchmark ARCH/GARCH
models, furthermore, GARCH-in-mean modelis.also involving deeply. Although these
reviews are not directly. and deeply-related to our main study, it indeed provide a well and
sufficient knowledge to the study background. Last but not least, there is a brief review for

mixed data sampling in the last subsection.

2.1. Equity Risk Premium

ERP (often interpreted as the market risk premium) is defined as extra return (over
expected yield on risk-free securities) a investor expects to receive from an investment in a
diverse common stocks (see Grabowski, 2010). Cornell (1999) claims the difference between
the return on common stock and the return on government securities. The ERP is calculated as:
RP, = Ry — Ry, where RE, denotes equity risk premium, R,, denotes expected return

on fully diverse equity securities, and Ry denotes rate of return expected on risk-free



securities. In general, ERP is sometimes used as a proxy for the “market return” such as

Standard & Poor’s (S&P) 500 index and New York Stock Exchange (NYSE) composite stock

index. In the meantime, ERP is a forward-looking concept. By estimating the true expected

ERP for future, and in general, ERP could be modeled as a normal or unconditional ERP (i.e.,

the long-term average) and a conditional ERP based on current levels of the stock market and

economy relative to the long-term average.

Plenty of studies on the risk premium in securities market have been also demonstrated.

Aswath Damodaran (2010) suggests a standard approach for estimating equity risk premiums

called — the “History Returns”. In fact, the most widely used approach to estimating equity

risk premiums is the historical premium approach, where the actual returns earned on stocks

over a long time period is estimated; and compared to the actual returns earned on a

default-free (usually government security). There are still two other approaches for estimating

equity risk premium — “Survey Approach” and “Implied Approach”. If the equity risk

premium is what investors demand for investing in risky assets today, the most logical way to

estimate it is to ask these investors what they require as expected returns. This approach is

called as Survey Approach, and it is also likely that these survey premiums will be more

reflections of the recent past rather than good forecasts of the future. On the other hand,

Implied Approach is a forward-looking estimation of the premiums.



There are, however, three reasons for the divergence in risk premiums: different time

periods for estimation, differences in risk-free rates and market indices and differences in the

way in which returns are averaged over time. As above, risk premiums even can vary

dramatically. This paper discusses the risk-return tradeoff relations by extending the field of

equity risk premium. Numerous studies have investigated the risk-return tradeoft relations

between the market’s risk premium and conditional volatility.

2.2. Risk-Return Tradeoff

According to some scholars’researching findings, Christian Lundblad (2007) finds a

statistically significant positive relation between risk and returns by using American stock

market index about lasting 200 years. Before that, Engle (1987) also finds a typically positive

relation about American T-bonds. Similarly, French, Schwert, and Stambaugh (1987); Baillie

and DeGennaro (1990); Campbell and Hentschel (1992); Bansal and Lundblad (2002);

Ludvigson and Ng (2005) also have the similar conclusions pointing out there is a positive

albeit mostly insignificant relation between the conditional variance and the conditional

expected return. It means that a tradeoff relation does exist, and the more the conditional

variance the greater the expected return.

In contrast, Abel (1988), Nelson (1991), Backus and Gregory (1993) have the opposite

conclusions. They find a significantly negative relation between the conditional variance and



the conditional expected return. Among them, Campbell (1987) test in monthly U.S. data for

1959-1979 and 1979-1983. He has a finding that there is a perverse negative relationship

between stock returns and their conditional variance. Glosten, Jagannathan, and Runkle (1993)

provided a classical study showing there actually is a slightly negative relation by using the

weighted monthly stock index price of CRSP(Center for Research in Security Prices). Besides,

Scruggs (1998) has a study using the CRSP value-weighted return index of NYSE-AMEX

stock. He also finds the partial relation:between the market risk premium and conditional

market covariance is negative and significant. Campbell (1987) and Scruggs (1998) provide a

view point that future studies of the intertemporal risk-return relation may wish to consider a

more broadly defined proxy for the market portfolio. In addition, Glosten et al. (1993) and

Harvey (2001) respectively suggest the third situation. No matter the relation is, the

conclusion actually depends on the methods which are applied as the researching frameworks.

These studies as above are based ona fundamental theory which is called as

CAPM(Capital Asset Pricing Model). CAPM was independently introduced by Treynor

(1961,1962), Sharpe (1964), Lintner (1965) and Mossin (1966), building on the earlier work

of Harry Markowitz on diversification and modern portfolio theory. In finance, CAPM is used

to determine a theoretically appropriate required rate of return of an asset as the asset is added

to an already well-diversified portfolio, given the asset's non-diversifiable risk.



Non-diversifiable risk is also known as “systematic risk” or “market risk”, and it is often
represented by the quantitative beta (p) in the financial industry as well as the expected return
of the market and the expected return of a theoretical risk-free asset. In addition to find the
excess return of the stock, it also examines whether the liner relationship exists between the
stock expected return and the market risk (). After the passing forty years, this model is
widely used to assess the performance of the investing portfolio. However, in 1980s some
scholars pointed out in succession that the market risk (p) is not the only reason to explain the
stock expected return, butithere are also other factors such as the firm size (Banz, 1981), the
company net book-to-market ratio (Rosenberg, Reid and Lanstein, 1985), the price-to-earning
ratio (Basu, 1983), the leverage effect (Bhandari, 1988) and etc. It is fundamental for
Fama-French (1992) to propose the three-factor model for expected returns.

Extending the CAPM, Robert Merton (1973) provides the ICAPM (Intertemporal Capital
Asset Pricing Model). ICAPM suggests that the conditional expected excess return on the
stock market should vary positively with the market’s conditional variance:

E¢(Reyq) = u+ yVar,(Reyy) (1)
where y is the coefficient of relative risk aversion of the representative agent and, according
to the model, u should be equal to zero (see French, Schwert and Stambaugh, 1987). The

expectation and the variance of the market excess return are conditional on the information



available at the beginning of the return period, time t. As we said before, the risk-return

tradeoff 1s so fundamental in financial economics that it could be described as the “first

fundamental law of finance”.

Besides, there are some related literatures about discussing the trade-off relation with

various risk proxy variables of Taiwanese scholars’ studies. Lee (2007) apply ICAPM model

with TSEC weighted index monthly data of returns from Jan 1998 to Dec 2006, and then find

the significant negative relation between expected return and risk. Cho (2008) examines U.S.

S&P500 and NASDAQ-100 stock’s mean-variance relationship. His study provides strong

evidence of a positive relation between risk and return for.the S&P 500 futures. However,

there is no such a significant relation between risk-and return for the NASDAQ-100 futures.

Hsu (2008) investigates the risk premiums of Taiwan’s U.S. dollar forward rates and the

results also show that there is a positive relationship between premium and risk.

However, the tradeoff is not usually easyto be found in the data. And there is one point

we still can’t neglect: the main difficulty in testing the ICAPM relation is that the conditional

variance of the market is not observable and must be filtered from past returns. On the other

hand, the risk-return relation of ICAPM is also used to test the variations for

GARCH-in-mean model. It is sometimes leading the empirical evidence and the related

literature to a mutual contradiction.



2.3 Volatility

In conventional econometric models, variance of the disturbance term is assumed to be a
constant, just like:

var (Yelye-1) = o? )
however, many empirical economic time series data exhibit periodicity of unusually large
volatility, not always followed by periods of relative tranquility. Autoregressive Conditional
Heteroscedasticity (ARCH) by Engle (1982) measures time-varying conditional variance as a
motivation of development for the- ARCH model:

Ve = axe+ & €|y~ N(0,0¢) (3)

of = W+ a18fy + el + o FagEt, (4)
where y; denotes dependent variable of interest, x; 1s independent variable observed at
period t, & isa white-noise disturbance term with-variance o2, and ¢ denotes the orders of
lagged terms. Besides on this, Engle’s student Bollerslev (1986) develops a generalized
Autoregressive Conditional Heteroscedasticity (GARCH) model which exploit U.S. deflator
index data from Q2 in 1948 to Q4 in 1983 as samples and consider variance under ARCH
models as an Autoregressive moving average (ARMA) which comprises AR (Average

Regressive) components and MA (Moving Average) components for estimating conditional

variance. Simply speaking, GARCH model could be regarded as an improvement of ARCH

10



model.

Look at Eq. (3) which is mean equation of GARCH model, and then variance equation is
defined:

of =w+ Z?zl a; el +X5_ B ot (5)
if p =0 and q = 1, it is clearly shown that the first-order ARCH model is simply a
GARCH(0,1) model. Hence, if all f; equal to zero, the GARCH ( p, g )model is equivalent
to an ARCH(q) model. For example; ARCH or GARCH model is not trivial but meaningful
estimation. There are several interpretations for this formula: (1) Take o2 for an example, in
spite of being a non-observable variable, still can be estimated over time via GARCH model.
(2) Furthermore, estimated o has more flexibility in setting parameter, which is also
regarded as volatility. As we know, French, Schwert and Stambaugh (1987) use the statistical
approaches including ARIMA model and GARCH model to estimate volatility and find that
the expected market risk premium is positively related to the predictable volatility
of stock returns. Chou (1988) studied the issue of volatility persistence using GARCH-M
model and estimates the risk aversion. He shows conclusions that the decline in stock prices is
directly related to the increase in volatility. They conclude that mean-variance tradeoff
relation is positive but insignificant. To sum up, these empirical results indicate the need of

research about the measures of risk.

11



In recent years, several studies related ERP estimations are presented by using MIDAS

regression. Based on ICAPM, Ghysels, Snata-Clara and Valkanov(2005) initially apply

monthly returns as proxies of expected returns and daily squared returns over the last years

from 1928 to 2000 for estimating the conditional variance by using CRSP value-weighted

return data. They find a significantly positive relation between market volatility and return in

the U.S. stock market. This is a beginning of all the studies of MIDAS. Furthermore, Ghysels,

Sinko and Valkanov (2007) extensively study different lag polynomial specifications and

various predictors at one-; two-, three-, four-week frequencies to parameterize the regressions.

They find that there is a robustly positive and statistically significant risk-return trade-off

across horizons and across predictors.

In addition to U.S. empirical results, Leon, Nave and Rubio (2006) find that the relation

between risk and returnin most European stock indices is-a significant and positive

relationship by using MIDAS. On the otherhand, L.i and Wu (2007) show no significantly

positive relation between risk and expected return in Asia Pacific region.

2.4 Mixed Data Sampling

Mixed Data Sampling (MIDAS) regressions are introduced by Ghysels et al. (2005) and

it allows us to run parsimoniously parameterized regressions of data observed at different

frequencies. There are several advantages of using MIDAS regressions which involve: (1)

12



data sampled at different frequencies; (2) various past data window lengths; and (3) different

regressors. The specification of the regressions combines recent developments regarding

estimation of volatility and distributed lag models. MIDAS regressions are used to examine

whether future volatility is well predicted by past daily squared returns, absolute daily returns,

realized daily volatility, realized daily power, and daily range. Since all of the regressors are

used within a framework with the same number of parameters and the same maximum

number of lags, the results from MIDAS regressions are directly comparable.

Hence, the MIDAS setup allows us to determine if'one of the regressors dominates

others. Ghysels, Santa-Clara, Valkanov(2006) found that, for the Dow Jones Index and six

individual stock return series, the realized power clearly dominates all other daily predictors

of volatility at all horizons. Importantly, the predictive content of the realized power is evident

not only from in-sample‘'goodness of fitting measures, but‘also from out-of-sample forecasts.

The daily range is also a good predictor in the sense that it dominates squared and absolute

daily returns. The method is a significant departure from the usual autoregressive model

building approach embedded in the ARCH literature and its recent extensions such as

high-frequency data-based approaches. A comparison of the MIDAS regressions with purely

autoregressive volatility models reveals that the MIDAS forecasts are better at forecasting

future realized volatility in-sample and out-sample sample.

13



3. Methodology

Beginning with the explanations of MIDAS estimation, GARCH-in-mean estimation and

rolling window estimation as follows, and then followed by the basic assumptions and

algorithms. In this paper, we take a new look at risk-return relation and try to estimate

conditional variance with various approaches.

3.1. MIDAS Estimation

In this subsection, we introduce the specification of MIDAS regression including various

lag polynomials and volatility predictors (will be both mentioned latter). MIDAS regressions

have wide applications in macroeconomics and finance. A typical time series regression

model involves data sampled with the same frequency, however, MIDAS regression involves

regressors with different sampling frequencies. Actually, this situation also matches the real

macroeconomic financial time series data, which might be sampled with almost relatively

higher frequencies such as daily frequency, even 5-minute frequency data. From empirical

perspectives, this approach does not have to specify the functional form of the high frequency

process and is not confined to a window of lags defined over a specific temporal aggregation

horizon. Instead, we consider regression models where the variables have different sampling

frequencies such that the high frequency process is projected into the low frequency process

14



with a parsimonious weighting scheme.

Back to Eq. (1), returns on the left-hand side are measured monthly because high
frequency returns could be too noisy to estimate conditional means. On the right-hand side of
Eq. (1), we use daily (or weekly) data in second moments to exploit the advantages of
high-frequency returns in variance estimators explained by well-known continuous-record
argument of Merton(1980). MIDAS regression is written as:

ERP,.1 = p+ yVarMP4S(ERPg () + &4 (6)

The MIDAS estimator of conditional variance of monthly risk premium,

VarM'PAS(ERP,,,) ,is also based on the function of priot risk premium data:
VarMPAS(ERP,.y) = SB_o W(d; k1, k2) F(ERP, ;) %

where F(ERP;_;) isthe function of historical lagged risk premiums. It plays a role similar
to ¢ in the GARCH-M'model. The corresponding subscript ¢~ d stands for the date

t minus d days, F(ERP;_;) denotes specification function including the daily return d
days before date ¢. D is the length of lag, in the meanwhile, D =22 (corresponding to one
month because a month typically has 22 days) is chosen as our lagged terms. The weight
polynomials W(d; k1,k2) ofthe MIDAS estimator implicitly capture the dynamics of
conditional variance. As follows, there are introductions related the basic properties of weight

(lag) polynomials and volatility predictors.

15



3.1.1. Weight Polynomials

The parameterization of lagged coefficient W(d; k1,k2) is one of the key MIDAS

features. Here we introduce two specifications of MIDAS regression polynomials. The first is:

exp (k1d+k2d?)
YD _oexp (kld+k2d?)

W(d; k1,k2) = ®)

We call it as “Exponential Almon Lag”, since it is related to “Almon Lags” that is popular
in the distributed lag literature (see Almon, 1965). The function W(d; ky, k,) is known to be
quite flexible and can take various shapes with-only a few parameters. In order to analyze
potential shapes, we introduce a quadratic function f(d) =/k,;d + k,d? with derivatives
given by f' = ky +2k,d and " =2k,. If k,; >0, there will be'a maximum value and the
weight has a ascending form. From an economic point of view, this case doesn’t make much
sense.

Therefore, a descending weight. with k, < 0 isreasonable and guaranteed. A slowly
declining weight is obtained as we move far away from the beginning of forecasting date.
Leon, Nave, and Rubio (2007) provide further analysis and we all know that the
parameter k, plays a key role in weighting scheme. Besides, k; has two possibilities as
follows: the first case is k; > 0 and k, < 0, which implies that the exponential weight

function has a hump-shaped pattern, this case seems to be plausible from an economic point

of view in Figure 1. The second case is k; < 0 and k, < 0, and we conclude that this form
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is the most likely reasonable. In addition, it is easy to realize under assumption of k; = k, =

0, we have equal weight which corresponds to a rolling estimator of volatility. As follows,

Figure 1 illustrates the various shapes of Exponential.
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Figure 1: MIDAS Weight with Exponential Polynomial
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The figure plots weight shapes of the mixed data sampling estimator. The weights are
calculated by substituting the estimated values of k; and k, into the weight equation (8). In
the top panel, slowly declining weights are displayed. The middle panel shows rapidly

declining weights, where the bottom panel contains a weight that has a hump-shape.
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We clearly notice that the declining rate determines how many lags are included in
MIDAS regression Eq. (7). Once the weight form of W(d; k4, k,) is specified, the lag length
selection is totally data driven. When the function decays slowly, a large number of
observations need to be taken into consideration for the forecast of variances with small
measurement error. Conversely, a fast decay corresponds to using a small number of
observations with potentially large measurement error.

The second parameterization is also shown as follows:

F(&sk1k2)

YDy F( 55 K1 k2)

w(d; k1,k2) = ©)

x K171 (1—x)k2=1F (k14 k2)
(k1) T(k2)

where (x,k1,k2) = ,and T(k1) = fooo e *x*1=1dx . Eq. (9) is
based on Beta function so that we called it as “Beta Lag”. For example, we know that under
an assumption of k; = k, = 1/ we have equal weights. As “Exponential Lag” case, the
weight declining rate determines how many lags are included in the MIDAS regression. The
two specifications both have two important.characteristics. First, they provide positive
coefficients, which is necessary for positive definiteness of estimated volatility. Second, they
sum up to one. In this paper, we use Exponential Lag as the specification, which is
theoretically more parsimonious. We choose the lagged period D as 22 days which is

corresponding to one month while comparing various predictors of conditional variance in

MIDAS regression.
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3.1.2. Volatility Predictors

Volatility predictors with various specifications also affect the risk premiums (see
Ghysels, Sinko, and Valkanov, 2007). In particular, some different ways are considered such
as: squared returns, absolute returns, return ranges, realized volatility, and realized power (the
sum of high frequency absolute returns). In general, we apply daily lagged squared risk
premiums and absolute range risk premiums as our volatility predictors. Here are MIDAS
general formulations:

ERP,,; = u+ v 2oooW(d; k1,k2) ERPZ_,; + &4 (10)

ERP 4y = p+ ¥ Xg=oW{(dik1,k2) | ERP— g | + €41 (11)
where ERPZ_, is the lagged squared risk premium and | ERP._; |"is the absolute risk
premium in the MIDAS polynomial volatility predictor.

To estimate the parameters in MIDAS estimation, we use the variance estimator Eq. (7)
with the weight function Eq. (8) into the I[CAPM relation Eq. (1) and estimate the parameters
p and y by maximizing the likelihood function. Assuming that the conditional distribution
of return is normal:

ERP,,; ~ N(u + y VarMPAS 'y qrMIDAS (12)

Because the true conditional distribution of returns could depart from normality, our

estimator applies only quasi-maximum likelihood (see Bollerslev and Wooldridge, 1992).
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Using higher frequency returns at daily or weekly interval could improve the estimate of y

because of the availability of additional data points. On the other hand, quarterly returns could

increase the efficiency of the estimator of y because they are less volatile.

3.2 GARCH-in-Mean Estimation

In finance, the returns of a security may depend on its volatility. Engle et al. (1987) have

s study for three-month U.S. Treasury bills and six-month U.S. Treasury bills from 1960Q1 to

1984Q2. They claim that the expected return varies while the risk changes, therefore they take

varying conditional variance into-GARCH consideration. That approach is known as

GARCH-in-mean model, where conditional mean is linearly related to the conditional

variance. (see Engle, Lilien and Robins, 1987). General GARCH-M models can be written as:

Yt p+ yol + & (13)

oF= w+ N @iy + pve, Bi o7 (14)
where p and y are constants. The parameter u is called risk aversion parameter. The
formulation implies that there are serial correlations in the return series {y;}, the mean model.
These serial correlations are introduced by those in the volatility process {o ?}. As we can see,
the GARCH-M model incorporates heteroskedasticity into the estimation procedure and

allows for direct estimate of time-varying risk premiums. Related to Merton’s ICAPM, some

scholars claim that if the changes in the investment opportunity set are captured by some
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steady variables except for the conditional variance, then these variables must be included in
the expected return equation (mean equation). The general formulation is as:

VarfARH = o + a el + B Var,G4RCH (15)
where & = ERP, — u —y VarfARCH  The squared error €/ (regression error term) in the
variance estimator plays a role similar to the squared risk premium functions in MIDAS

approach.
3.3 Rolling Window Estimation

A moving window:is commonly-used with time series data to smooth out short-term
fluctuations and highlight longer-term trends or cycles. As an example of rolling window
approach, French, Schwert and Stambaugh (1987) use within-month daily squared returns to
forecast next month’s variance:

Varf¥ = ¥5_,-ERPZ (16)
where D is the number of days used in the variance estimator. They apply the autoregressive
moving average (ARMA) process for one-month rolling window estimator to model the
conditional variance. In the meanwhile, daily squared returns are multiplied by 22 to measure
the variance in monthly unit. Here we still choose the window size to be one month, or D = 22.
Besides its simplicity, the use of daily data has a number of advantages. First, as with MIDAS

approach, the application of using daily data increase the precision of the variance estimator.
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Second, the stock market variance is very persistent (see Officer, 1973; Schwert, 1989), so the

realized variance on a given month ought to be a good forecast of next month’s variance.

Then we estimate the parameters p and y of risk-return tradeoff in Eq. (1) with maximum

likelithood using the rolling window estimator Eq. (16) for the conditional variance.

Based on the literature of Ghysels, Santa-Clara and Valkanov (2005), they suggest the

window size should not be limited. A larger window size corresponding to a more than one

month, even up to six months, is used because the choice of lagged period has a greater

impact on the estimate of «y. In this paper, we choose fixed window size D = 22 to estimate

the risk premium in Taiwan stock market.
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4 Empirical Results

4.1 Data

Here we use the daily risk premium of Taiwan Stock Exchange Capitalization Weighted

Stock Index (TAIEX) compiled by Taiwan Stock Exchange Co., Ltd. (TWSE) in our

empirical test. The period is from January 2006 to December 2010, including 1246 daily

observations. Entire samples are all collected from TEJ (Taiwan Economic Journal). TEJ was

founded in April 1990 to provide quality, in-depth and extensive historical financial data and

information in the major financial markets in Asia. There is a definition about equity risk

premium in this paper: we use the difference, return rates of TSEC weighted index minus

two-year Taiwan treasury-bill rates,as a proxy to be explored, including various frequencies

such as daily, weekly and monthly data form. In the meantime, statistical software E-Views is

applied to analyze and compute some relevant data.

Table 1 shows the descriptive statistics about the sampled equity risk premium. We find

the mean for ERP is negative. That means on average there is no premium investors acquire in

the stock market during this period. Conversely, they even get some losses. Variances are used

in this table because of the relation between risk and return. Specifically, we focus on

connections of average return and conditional variance, not standard deviations
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Table 1: Descriptive Statistics

Descriptive statistics of ERP with different sampling frequencies from 2006 to 2010, included
are mean, variance, skewness, kurtosis. The number of samples for each frequencies is also

reported in the table.

Mean (%) Variance Skewness Kurtosis
Monthly -0.49 0.0056 -0.3167 3.2388
Weekly -1.09 0.0011 -0.5692 4.0098
daily -1.22 0.0003 -0.3370 4.2252

4.2 MIDAS Estimation

This subsection is integrated fromtwo parts. As we mentioned before, we decide to use

Exponential weight specification and apply the 30 days lags length. For first part, we apply

the suggestion under setting k1 = —0.01 and k2 = 0 (see Ghysels, Snata-Clara, and

Valkanov, 2006b) as a benchmark. Then we compare it with other two cases: k1 = 0 and

k2 = 0 (shown as equal weight) ;. k1.= —1 and k2 =0 (considered as reasonable pattern).

We plot the weights that the MIDAS estimator places of the first 22 lagged daily squared risk

premiums corresponding to one month in Figure 2. The top panel is casel, the middle panel is

case2 and the bottom panel displays case3.
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Figure 2: MIDAS Weight on Variables Predictors
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The figure plots the estimated weights of conditional variance on the lagged daily squared risk
premiums corresponding to one month. Three panels are representative of three different
declining weight shapes respectively. We then use the weights to estimate related parameters
by MIDAS approach.
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Now we jointly estimate the parameters y and y by nonlinear least squares (NLS). In

Table 2, we show three different weight polynomials and two various types of the volatility

predictors. We also explore the estimation results between MIDAS approach and rolling

window approach.

Table 2: MIDAS Estimation of Equity Risk Premiums

The table shows estimates of ERP with MIDAS estimation using TAIEX form Jan 2006 to
Dec 2010. Exponential lag is used and lagged daily (weekly) squared (absolute) risk
premiums are respectively used in the construction of conditional variance estimator. The
estimated equations are as follows:

ERP. ., = pu+y X2 W(d; k1,k2)ERP2_; + &.,1 / ERP .y =+ y X0 W(d; k1,k2)|ERP,_4| + €441 »

exp (k1d+k2d?)
YD _,exp (kld+k2d?)

where W(d; k1,k2) =

The coefficients andcorresponding p-value are shown in the middle columns and the right

column is shown as corresponding R-squared value.

MIDAS Estimation

Panel A : Daily ERP?

[l Y R?
weight 1 )
5.47 1.47 0.4615
(K1=-0.01, K2=0) (<0.0001)* (<0.0001)*
weight 2 )
5.41 1.46 0.4608
(K1=0, K2=0) (<0.0001)* (<0.0001)*
ight 3
weig 0.58 -0.29 0.0338
(K1=-1, K2=0) (0.6350) (0.1595)




Panel B : Weekly ERP?

Iz Y R?
weight 1 )
3.43 0.31 0.3437
(K1=-0.01, K2=0) (0.0020)* (<0.0001)*
weight 2 )
3.35 0.30 0.3379
(K1=0, K2=0) (0.0025)* (<0.0001)*
ight 3
welg 2.50 -0.03 0.2795
(K1=-1, K2=0) (0.0194)* (<0.0001)*
Panel C : Daily |ERP|
n ¥ R?
weight 1 \
9.50 6.73 0.4141
(K1=-0.01, K2=0) (<0.0001)* (<0.0001)*
weight 2 )
9.38 6.70 0.4117
(K1=0, K2=0) (<0.0001)* (<0.0001)*
ight 3
weig 2.62 -2.09 0.0662
(K1=-1, K2=0) (0.1509) (0.0472)*
Panel D : Weekly |ERP|
Iz Y R?
weight 1 )
7.12 3.04 0.3636
(K1=-0.01, K2=0) (<0.0001)* (<0.0001)*
weight 2 )
6.96 3.00 0.3598
(K1=0, K2=0) (<0.0001)* (<0.0001)*
weight 3 431 22.00 02266
(K1=-1, K2=0) (0.0042)* (0.0001)*

*indicates the statistics reach 0.05 of the significant level
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This subsection presents the result of MIDAS approach based on the Merton’s ICAPM

model. We find the coefficients p and y are almost statistically significant. First, we start

from MIDAS estimation. In daily data, the estimated risk aversion coefficient y is ranging

between -0.29 and -6.73. There is not a very small gap between the both sides. The risk

aversion absolute seems greater in daily data than in weekly data, and that means the degree

of risk aversion which can be tolerated by investors. In addition, we see that there are just

little differences between the weight.1 and weight 2 polynomials and R-square values

respectively. We also findsuch t-statistics of the corresponding estimated coefficient are

significant by judging from the p-values. We can conclude that volatility predictors of weight

1 and weight 2 are obviously better than weight 3. Actually, these results with polynomial

weight 3 are not explainable enough.

In weekly data, the estimated risk aversion coefficient is 0f-0.03 to -3.04 and the

difference is much closer. However, the result of weight 3 case becomes better because its

R-squares value is getting obviously higher, even over 20% extra. While mentioning to

R-square value, it is reports to quantify the explanatory power of the variance estimators in

predictive regressions for sampled premiums. To sum up, the estimation of daily risk premium

performs better than weekly risk premium because the significance of coefficients and

variance explanations level performs more outstanding, up to 46%. Moreover, the result of
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squared daily return volatility is also comparable to the result of absolute daily return

volatility. The risk aversion coefficients of weight 1 and 2 are -1.47and -1.46, and the model

explained variation levels are around 46.15% and 46.08% respectively. Basically both are

almost equivalent, but we still prefer to choose the estimation model under k1 = —0.01 and

k2 = 0 with daily frequency. These results point to the importance of having a flexible

functional form for the weights on past daily squared returns. Then we use out-sample to

measure forecasting errors in following subsection to make certain whether the estimation is

appropriate.

However, one thing important needs to be noticed. We all have negative magnitude of

risk aversion coefficients in above cases, no matter whether the squared risk premium or the

absolute risk premiumis. It clearly points out that the tradeoff relation in our empirical study

is negative. These “negative’ results are obviously corresponding to some previous classical

studies. Actually we think the results may depend on what the estimated method for the

conditional variance of returns is used. Campbell (1987) use generalized method moments

(GMM) to verify the relationship between expected stock returns and the conditional variance

of stock returns. The coefficient estimates of GMM for stock suggest that stocks have a higher

expected return when their conditional variance is low. Correspondingly, Nelson (1991) uses

the GARCH method to estimate a model of the risk premium on the CRSP value-weighted
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market index form 1962 to 1987. The outcome is shown as a statistically significantly

negative relation between both. In recent studies, Glosten et al. (1993) use the CRSP data and

find support of a negative relation between conditional expected monthly return and

conditional variance of monthly return, using the modified GARCH-M model. More related

interpretation we leave in Section 5.

4.3 GARCH-in-Mean Estimation

Before applying GARCH-M estimation, time series data should be processed by a kind of

unit tests and we find out the result-shows significant rejections of null hypothesis which

mean the risk premium data.is not autocorrelated. Then we directlyuse the data under

GARCH-M estimation.
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Table 3: GARCH-M Estimation of Equity Risk Premiums

The table shows estimates of ERP with GARCH-M estimation using TAIEX form Jan 2006 to

Dec 2010. The estimated equations are as follows:
ERPipq1 = p+yVant4RCH 4 ¢, | where Varf4RH = ¢ + ae? + B Var4RCH,

The coefficients and corresponding p-value are shown in the middle columns and the right

column is shown as corresponding R-squared value.

GARCH-M Estimation

u 14 © a B R?

Monthly 228 -0.22 1.59 0.74 0.25 0.0264

2006-2010 (<0.0001)* (<0.0001)* (<0.0001)* (<0:0001)* (<0.0001)*

Weekly 0.06 -0.03 0.93 0.60 0.39 ~0.000

2006-2010  (0.3686) | (<0.000D)*  (0.0727) (<0.0001)* (<0.0001)*

Daily 0. 86 -0.77 0.001 0.0041 1.00 0.2247

2006-2010 (<0.0001Y* (<0.0001)* ~(0:0545)=(<0.0001)* (<0.0001)*

*indicates the statistics reach 0.05.0f the significant level

Table 3 shows the empirical results of GARCH(1,1)-M estimation of risk premium data

with different frequencies. The estimated coefficients are obtained by a sort of maximum

likelihood estimations, and we assuming error term &; is normally distributed. Compared

with other three different frequencies in GARCH-M estimation, the R-squared statistics with

daily frequency data is much better. In addition, the GARCH-M model with daily frequency

shows the statistical significance of mean equation and variance equation, excluding intercept
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term. The risk aversion coefficient y is around of -0.77 for the mean equation and the p-value

of the corresponding estimated coefficient looks very significantly. Here we notice that the

risk aversion is still negative, consistent with the MIDAS estimation as we mentioned above.

Besides, under the GARCH-M approach the R-squared statistic is around of 22.47%,

lower than in the MIDAS approach which is shown as 46.15%. Take this for example, it is

because the MIDAS approach estimates two parameters rather than three as GARCH-M

model does and employs more observations to forecast market volatility under variance

equation. In generally speaking, traditional GARCH-M estimation outcome in explainable

range is not superior fo the MIDAS approach.

4.4 Rolling Window Estimation

We discuss about the rolling window estimation with daily and weekly frequency data.

The results of rolling window approach are shown in‘Table 4. The estimate of y is still

negative (around of -1.4), and the coefficient is very significant because the p-value is far

lower than the significant level. It is shown consistently under this situation with the MIDAS

estimation. Besides, R-square value is 46.08% of rolling window estimation, and almost as

same as the MIDAS estimation, 46.15%. They are so close but obviously we still recognize

that the daily frequency specification is better as a result of the higher R-squared value. The

rolling window approach can be thought as a robust check of the MIDAS estimation because
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it is a simple estimator of conditional variance with no parameters to be estimated. Besides its
simplicity, the use of daily data has some advantages: first, as with MIDAS approach, it can
increase the precision of the variance estimator. Second, the stock market variance is quite
persistent (see Officer, 1973; Schwert, 1989), so the realized variance on a given month ought

to be a good forecast of next month’s variance.

Table 4: Rolling Window Estimation of Equity Risk Premiums

The table shows estimates of ERP with rolling window estimation using TAIEX form Jan

2006 to Dec 2010. The estimated equations are as follows:
ERPiyy = u+yVar®W + ¢, , where VarfW = fi’:O%ERPtz_d

The coefficients and'corresponding p-value are shown in the middle columns and

corresponding R-squared values are shown in the right column.

Rolling Window Estimation

u 14 R®
341 N 0.4608
Daily ERP? (<0:0001)* (<0.0001)* .
3.35 -0.29 0.3379
Weekly ERP? (0.0025)* (<0.0001)* '

*indicates the statistics reach 0.05 of the significant level

4.5 Forecasting

Analysts are often interested in comparing the accuracy of competing forecasts, for a

variety of reasons. For example, accuracy comparisons can be used to help discriminate
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competing models. Accordingly, a number for equal forecast accuracy have been developed.

After estimating as above, here we use out-sample data to compare the risk premium

forecasting errors. The purpose of forecasting is to understand whether these approaches

maintain consistent performances under out-sample by observing how much close is between

risk premium estimators and the realized data. The smaller the estimator error is, the better the

estimation performs. At first, we use in-sample data between Jan 2006 and Dec 2010 to

estimate the original parameters ( i, ) as shown in Table 2, 3, 4. In general, percentage of

in-sample observations tout-sample observations ratio is about 10% or 15% (see Ashley,

2003). Therefore, we decide to choose 12 months as our forecasting period.

Some literatures discuss the various approaches to forecast estimation errors, such as

mean error (ME), mean square error (MSE), root mean square error (RMSE), mean absolute

error (MAE) and mean absolute percent error (MAPE). In this paper, we apply RMSE and

MAE approaches to measure prediction levelin various volatility estimation models.

4.5.1 Root Mean Square Error

The root mean square error (RMSE) (see Christiano, 1989) is a frequently used measure

of differences between an estimator and the values actually observed. The concept of RMSE

is close to MSE, and RMSE is the squared root of MSE, is as follows:
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t=1(ERP, — ERP,)?
N

RMSE =

where ERP; is the realized volatility on day ¢, ERP; is the foracasted volatility on day ¢, N

denotes sampling days.

4.5.2 Mean Absolute Error

In practice, the mean absolute error (MAE) is to measure how close forecasts are to

YN . |ERP.—ERP|

eventual outcomes. The mean absolutererror is given by: MAE = ”

4.5.3 Forecasting Results

For the reason we pay.attention to the importance of out-sample forecasting is that it can
avoid the situations 'of over-fitting models orof abusing data-mining. Forecasting accuracy
comparison can help discriminate among competing models. Several recent studies have
examined the small-sampleproperties of some commonly used tests, too. In fact, we focus not
only on comparing with different models, but also on understanding the forecasting accuracy

within in-sample and out-sample data under various estimations.
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Table S: Results of Forecasting Error

The table shows the forecasting error results by using RMSE / MAE for out-sample.

Comparing Forecasts

In-sample (60) Out-sample (12)

MIDAS

RMSE 5.4498 8.1490

MAE 4.3284 5.9583
GARCH-M

RMSE 7:3795 5.5631

MAE 5.6129 5.5631
Rolling Window

RMSE 5.4536 8.4781

MAE 4.3435 6.5689

All forecasting error unit is of percentage (%)

From Table 5, no matter whether RMSE or MAE estimation is used, obviously we find

that out-sample performance of GARCH-M-estimation is quite good, which means the

smaller errors. However, errors of in-sample under GARCH-M estimation are the largest,

even up to 7.3795%, almost 1.7 times to the smallest one. On the other hand, we realize that

MIDAS and rolling window estimations are basically developed form similar concepts and

the forecasting results vary consistently and stably. Overall, forecasting errors in using

MIDAS is close to GARCH-M, which is almost of 0.4% in difference under MAE approach.

Basically we still can regard forecasting errors of MIDAS as the same as forecasting errors
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GARCH-M under MAE approach in out-sample. These approaches of forecasting error

sequentially ranked as GARCH-M, MIDAS and RW estimation from the smallest error to the

largest error. Figure 3 shows forecasting graph under MIDAS and Table 6 shows error

differences under MIDAS as follows.

Figure 3: Forecasting Graph with MIDAS Estimation
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Table 6: Out-Sample Errors (2011.1 —2011.12)

Period (year/month) Real ERP Forecasted ERP Error (%)
2011.1 1.3564 4.4178 3.0614
2011.2 -6.657 2.8815 9.5385
2011.3 0.1501 2.9229 2.7728
2011.4 2.9379 4.051 1.1131
2011.5 -1.0121 4.004 5.0161
2011.6 -4.5668 2.9358 7.5026
2011.7 -0.9472 3.4425 4.3897
2011.8 -11.2543 -3.1977 8.0566
2011.9 -7.4062 -1.4198 5.9864
2011.10 4.2511 2.7699 1.4812
2011.11 -9.7889 -31.7794 21.9905
2011.12 1.6078 1.0167 0.5911

All forecasting error unit is of percentage (%)
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5 Conclusion

This paper take a new look at Merton’s ICAPM, focus on the trade-off between

conditional variance and conditional mean of the stock market return. We show the existence

of a time-varying risk premium in Taiwan stock market by introducing mixed data sampling

model estimation. Our results are more conclusive because MIDAS estimation confirms the

weighted polynomial with different sampling frequencies performs pretty good. Not the same

as with previous studies, added power obtained from the new MIDAS estimator actually

makes risk premium estimation.more-flexible.

According to the previous. empirical results, conclusions of this'study are as follows:

1) The tradeoff between risk and return has long been an important topic in asset valuation

research. Most of this research examine the tradeoff among different securities within a

given time period. We find the common evidence of a negative relation between risk and

return in Taiwan stock market within these years. In fact, we think that what types of

model are used to assume conditional variance of returns as a research framework is

highly relevant to the issue of risk-return relation regardless of positive relation or

negative relation. However, sometimes the models we used cannot completely capture

volatility persistence or reflect positive and negative shocks.
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2)

Black (1976) and Christic (1982) propose financial leverage effect for an

examination of the risk-return tradeoff with asymmetric variance effect. After that,

Campbell and Hentschel (1992) propose volatility feedback effect to explain the same

situations. Most empirical studies show that negative relation between risk and return

might be attributed to asymmetric effects in the conditional variance. Moreover, the type

of relevance is mostly confined by model assumptions which indeed affect these empirical

results.

In addition to asymmetric effect, many different approaches for setting risk as a

proxy variable could also affect the empirical results, especially for risk-return tradeoft.

Moreover, the financial tsunami brings about some potential phenomenon such as

increasing difficulty in predicting expected returns and conditional variances. Meanwhile,

it also indeed related to the sampling period we selected. Although we acquire negative

relation about risk-return tradeoff, which-1s opposed to some previous research, we still

show some advantages in MIDAS estimation as follows.

Comparing with the rolling window and GARCH-M estimation, we conclude that MIDAS

estimation is better and more suitable. As the model explained variation power, 46.15% of

MIDAS is larger than 46.07% of rolling window, also greater than 22.47% of GARCH-M.

The rolling window approach can be thought as a robust check of the MIDAS estimation
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3)

because it is a simple estimator of conditional variance with no parameters to be estimated.

Except for explained variation power, these estimation coefficients are very statistically

significant because of p-values are below significance level. That means the MIDAS

estimation is indeed a well-performed model.

By using MIDAS approach, this estimator is behalf of a weight average of past daily

squared returns with flexible functions. MIDAS estimator is not only the superior

estimator because it can be appropriately explained by past risk premiums, but also a

better forecaster in the stock market-than rolling window estimators. Last but not the least,

after experiencing investigations of the MIDAS specifications for various volatility

predictors, we obtain that higher frequency predictor such as daily squared return provides

greater results.

The empirical results are statistically significant, at the same time, the forecasting

performance of MIDAS is also reasonable. We still have interests to use MIDAS to process

how these different and jointly estimated weights of volatility predictor work. Next, we

explore the parameters k1 and k2 more deeply. Our purpose is to directly and jointly

estimate the parameters k1, k2, pu, y of Eq. (6) and (7) by nonlinear least error approach.

Owing to the smaller the conditional variance is, the smaller the estimated forecasting error is.
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Therefore we apply MAE and RMSE forecasting error approaches, and then make certain that
the values of MAE and RMSE are both minimum. Our estimated algorithm is as follows,

which is based on rules of minimum error. Take MAE for example, our main purpose is to

£ 2821 |[ERP —ERP|

0 , which is under restrains of ERP;,; = i +

minimize the value o

yVar,(ERPy,1) ,

22 exp (k1d+k2d?)
a=0 ¥22 ‘oxp (k1d+k2d?)

and Var, = ERP%_,.

After jointly nonlinear least error calculation with the same period, our results are shown

in Table 7.

Table 7: Errors of Jointly Nonlinear Least Calculation

Forecasting Estimation

Minimum Error (%) u y K, K, R?
0.0096
-0.3163 -0.0503 1.2346 -18.3336 0.0020
(RMSE)
0.0564
0.0105 -0.0002 1.2346 -18.3336 ~0.000
(MAE)

*indicates the statistics reach 0.05 of the significant level

All forecasting error unit is of percentage (%)

We find that the outcome is not good enough while comparing with previous results

under setting the specific parameter K. The both coefficients p and y are not statistically
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significant because the p-values are not below the significance level 0.05. Moreover, the

explanatory power is also abnormally low so that we cannot verify this case to be well. Here

is a trivial implication that the suggestion of setting K, and K; as some specific values (see

Ghysels et al., 2006) improves the outcomes of MIDAS estimation better. As for the reasons

why the effects of estimated weight polynomial parameter such as K are not relatively

outstanding, we leave these issues for future research.
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