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Chapter 2 Time-Frequency Mapping Tools in MP3 

and MPEG 2/4  

Although the proposed patch method is focused on MP3 and AAC, it can apply 
to any other frequency-based audio decoders. There are many time-frequency 
mapping tools adopted in a variety of codec, however the concepts of them are similar.  
Hence, this chapter gives an overview of two main kinds of time-frequency mapping 
tool used widely in most perceptual audio coders, especially for MP3 and AAC. The 
first one is cosine modulated PQMF (Pseudo Quadrature Mirror Filter bank) with 
nearly PR (Perfect Reconstruction) property. Second is MDCT (Modified Discrete 
Cosine Transform) that is a TDAC (Time Domain Aliasing Concealing) transform 
with PR property.  

 

 
Figure 5: Block diagram of audio patch method incorporated into frequency-based 

audio decoder. 
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Roughly speaking, in MP3 encoder, an audio signal is first separated into 32 
subband signals by an analysis filter bank that is a cosine modulated PQMF, and 
subsequently a MDCT with 36 point is applied to every subband signal to raise the 
frequency resolution further. At the part of decoder, an IMDCT and an overlap-add 
operation inversely transform the frequency coefficients to 32 subband signals and 
then a synthesis filterbank regenerates the decoded audio signal by synthesizing the 
32 subband signals. The combinative filter bank of the two different mapping tools in 
MP3 encoder is commonly referred to as the hybrid filter bank that is illustrated in 
Figure 6. For AAC, only a MDCT is used to transform every 2048 time-domain 
samples of the input signal to 1024 frequency coefficients directly in encoder, and in 
decoder a IMDCT and an overlap-add operation inversely transform the 1024 
frequency coefficients to 2048 decoded time domain samples. 
 

 
Figure 6: Block diagram of the hybrid filter bank consisting of an analysis 

polyphase filter bank and MDCT in MP3 encoder. 

2.1 Polyphase Filter bank in MP3  

Figure 7 illustrates the uniform M-band maximally decimated analysis-synthesis 
filter bank. The analysis filter bank separates the input signal to M subband signals 
with uniform bandwidth π /M illustrated in Figure 8. Every subband signal, 
subsequently, is downsampled by a decimater of M factor for critical sampling. At the 
backward part, an upsampler with M factor is applied to the decimated subband 
signals firstly. To eliminate the imaging distortions introduced by the upsamling 
operation, the upsampled subband signals are processed by the parallel bank of the 
synthesis filters, and then the filter output are combined to form the overall output 
[22]. 



 6

 

 
Figure 7: Uniform M-band maximally decimated analysis-synthesis filter bank. 

 

 
Figure 8: Magnitude response of oddly stacked uniform M-band filter bank. 

 
The framework is also used in MP3 codec, where M is 32. Furthermore, the 

cosine modulation of lowpass prototype is used in MP3 to realize the parallel 
M-channel filter banks with nearly perfect reconstruction [22]. The impulse response 
of the analysis filter bank is given as (1), where p[n] is the impulse response of the 
lowpass prototype filter and L is 512. 
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On the other hand, the impulse response of the synthesis filter bank is as (2). 
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By polyphase decomposition, there are fast implementation methods introduced in 
standards of MP3 and AAC for the filtering processing of analysis and synthesis filter 
banks.    

2.1.1 Fast Filtering Algorithm of Analysis Filter Bank by Polyphase 
Decomposition 

Let X[k] be the input time-domain signal, and [ ]nSk  be the output subband 
signal from the kth filter of the analysis filter bank. By the convolution of the input 
signal X[k] and the impulse response [ ]nhk  , [ ]nSk  is given as (3).  

[ ] [ ] [ ] [ ] [ ]jhjnXnhkXnS k
j

kk ∑
∞

−∞=

⋅−=∗=
  

(3) 

Since each filter of the analysis filter bank is a FIR filter of 512 length, it reduces (3) 
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After the decimater of 32 factor applies, the samples required to recode are  

[ ] [ ] [ ]jhjnXnS k
j

k ∑
=

⋅−=
511

0
3232

 
(5) 

Using the polyphase decomposition of 64 factor on the impulse response [ ]nhk , it 
gives another method of computing [ ]nSk 32 . 
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On the other hand,  
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Hence, by substituting (7) to (6), it gives   
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Where [ ]jmC +64  represents [ ] ( )mjmp 164 −⋅+ , and [ ]jM k  represents 

( ) ( )⎥⎦
⎤

⎢⎣
⎡ −⋅+⋅ 1612
64

cos jkπ . The numbers of multiplications for computing the 32 

samples from the 32 filters by the formulation (4) is totally 16384 that is 32512× . 
However, by the method of polyphase decomposition, it only needs 2560 times of 
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multiplication, that is 512+ 3264× . This is because the summations 

( )[ ] [ ]jmCjmnX
m

+⋅+−∑
=

646432
7

0
 can be used repeatedly for every subband filtering 

processing to reduce the computing complexity. 
 

 
Figure 9: Polyphase implementation of the analysis filter bank. 

 
Figure 9 illustrates the procedures of the method of polyphase decomposition, where 
[ ]jmZ +64  recodes the value of  ( )[ ] [ ]jmCjmnX +⋅+− 646432  for m is from 0 to 

7 and j is from 0 to 63 and [ ]jY  recodes the summation [ ]∑
=

+
7

0

64
m

jmZ  for j is from 

0 to 63. For every time to compute the new 32 subband samples, 32 new signal 
samples are putted into the FIFO buffer and the oldest 32 signal samples are scarified  
for data updating.    
 

2.1.2  Fast Filtering Algorithm of Synthesis Filter Bank by Polyphase 
Decomposition 

Let [ ]nSk
ˆ  be the interpolated subband signal after the processing of interpolator 

with 32 factor. That is,  
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The filteing output from the kth synthesis filter is given as (10). 
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That is 

[ ] [ ] [ ]jngjSnX k
j

kk 32~
−⋅= ∑

∞

−∞=  
(11) 

The reconstructed signal [ ]nX~  is obtained by the combination of the 32 filteing 

output subband signals. 
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That is 
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Let sln += 32  for polyphase decomposition, 
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Let q denote l-j, (14) is reduced to (15). 
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Since the lowpass prototype filter is a FIR filter of 512 length, it gives 
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for s is from 0 to 31. On the other hand, we define [ ]sqlU +32,  as follow 
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Hence, 

[ ] [ ] [ ].32,3232~ 15

0
∑
=

+⋅+=+
q

sqlUsqpslX
 

(18) 

Furthermore, if q is an even integer and denoted as 2t, it implies 
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For q is an even integer and denoted as 2t+1, it implies 
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For convenience, define a vector V as follow 
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That is 
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for q is from 0 to 15, and s is from 0 to 31. From (21), it gives 

( )[ ] [ ].64,164,1 jilVjilV +=++⋅+  
(24) 

In the other word, the data in the vector V can be updated by inputting a new vector of 
64 length and shitting the old data rightly 64 elements to scarify the oldest 64 
elements. This gives an efficient method to compute the vector U, and decrease the 
complexity of reconstruct the synthesis output signal from 544 multiplications 
required (i.e. 512+32) to 80 multiplications (i.e. ( 5126432 +⋅ )/32 ) for every one 
reconstructed signal sample. Figure 10 illustrates the procedures of the method of 
polyphase decomposition for the synthesis filter bank.       
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Figure 10: Polyphase implementation of the synthesis filter bank. 

2.2 Modified Discrete Cosine Transform  

The human hearing is very sensitive to the block effect of quantization noise 
between the consecutive frames in time. Hence, the concealing or smoothing of the 
block effect is an important issue of perceptual audio coding. On the other hand, the 
frequency coefficients encoded must be real number for coding efficiency. Therefore, 
a transform that can map nR to mR , not mC , is required. The MDCT is exactly a best 
tool to satisfy the two issues on audio coding. Given a time frame consisting of 2N 
samples ka , formally, MDCT is given as (25) , where kh is a window function.  
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And IMDCT is given as (26). 
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Furthermore, by the overlap-add operation with the last frame, the original samples in 
the front half of the current frame can be reconstructed perfectly if there is no 
quantization noise to harm. That is 

1~0 ,ˆˆ −=′+= + Nkforaaa kNkk , 
(27) 

where ka′ˆ  represents the output of IMDCT of the last frame. The behind half of the 
current frame will be reconstructed perfectly by the overlap-add operation between 
the next frame and the current frame. 
 

 
Figure 11: MDCT: (a) Lapped forward transform (analysis). (b) Inverse transform 

(synthesis). 
 

The property of perfect reconstruction by time domain aliasing concealing makes 
MDCT able to ease the block effect. This is because the time domain aliasing 
concealing is achieved by an overlap-add operation over the two consecutive time 
frames and then smooth the quantization noise shape across the two frames 
simultaneously. Figure 11 (b) illustrates the overlap-add operation after IMDCT. For 
the following, the design conception of MDCT is explained in detail. 
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Figure 12: The artificial aliasing of MDCT. 

 
Simply to speaking, without considering of the action of the window function, 

the processing conception of the transform system consisting of MDCT and IMDCT 
is equivalent to firstly alias the time-domain signal in a frame artificially as illustrated 
in Figure 12 and transform the aliased signal to a frequency signal by some invertible 
special mapping in the forward part, and in backward part, inversely transform the 
frequency signal and conceal the aliasing artifact by the overlap-add operation. The 
action of aliasing is to apply “subtraction by crossing” at the first half of the time 
frame and “addition by crossing” at the behind half. Specifically speaking, for a frame 
consisting of 2N samples ka , the aliased signal samples is kâ   

⎩
⎨
⎧

−=+
−=−

=
−−

−−

12~  
1~0  

ˆ
13

1

NNkforaa
Nkforaa

a
kNk

kNk
k

. 
(28) 

Hence, the “difference” information of the artificial aliasing can be recoded by the 
front half part of the current frame and the “summation” information can be recoded 
by the tail half part of the last frame. By the overlap-add operation between the 
current frame and the last frame, the front half part of the current frame will be 
reconstruction perfectly and the aliasing is concealed if the composed transform of the 
transform and the inverse transform adapted in middle is an identity transform.  

DFT (Discrete Fourier transform) is a standard time-frequency mapping. 
However, in general, DFT maps a real vector to a complex vector, and hence is 
unsuitable to be applied as the mapping tool we desire. However, due to the skew 
symmetric property of the front half of the aliased signal and the symmetric property 
of the tail half, it is easy to solve the inconsistent problem of real domain and complex 
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domain by modifying the basis function of DFT by time-domain shift and 
frequency-domain shift to conceal the image part of the transform coefficients. The 
new transform with the modified basis function is called SDFT (Shifted DFT) that is a 
generalization of DFT [23].  The following Theorems explain how the system of 
MDCT and IMDCT is constructed. 
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From Theorem 1, it tells that no matter which (u, v) is chosen, the modified 

vectors from the basis functions of DFT is still a basis of the vector space NC 2  over 
field C and construct a new invertible transform SDFT . Hence, if we can adapt a 
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N~2N-1 are conjugate, respectively, the image parts of the products in the inner 
product of the aliased time frame vector and the rth basis vector modified are 
concealed mutually to get a real value transform coefficient. Because the symmetric 
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and skew symmetric properties of the aliased signal, the problem mentioned above is 
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If let N-1+2u be 2N to be substituted into (32), then 
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 (34) 

Hence, if the special tuple ( 2
1+N , 2

1 ) is adapted to shift the original basis function of 
DFT, the resulting SDFT is exactly the transform we desire. The following theorem 
gives an equivalent method on real domain to get the transform coefficients of SDFT 
of the aliased signal without any complex value calculation. This conducts 
simultaneously that the action of SDFT on the aliased signal is equivalent to the 
action of MDCT on the original signal without window function.  
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Theorem 2 For r = 0 ~ 2N-1, 
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<Proof> Since the special tuple (
2

1+N ,
2
1 ) is adapted, we have 
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(36) 

By the conjugate and skew conjugate property of the exponential vectors from (33) 
and (34), the proof can be completed.   
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(37) 

 
On the other hand, for the backward part, a relative ISDFT can be used to 

inversely transform the frequency coefficients to the aliased signal. However, in 
according to the fact that the aliased signal is real values, it suggests there should be 
also symmetric properties on the frequency coefficients.  
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Theorem 3 For r= 0 ~ 2N-1, 
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<Proof> Consider the relations of the elements of the rth basis vector and the 
(2N−1−r)th basis vector, 
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From (39), we have 
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Since rα  is real value, it implies that ( ) r
N

rN αα ⋅−= +
−−

1
12 1 . 

                                      
The next theorem gives an equivalent method on real domain to get the aliased signal 
by ISDFT without any complex value calculation. That is exactly IMDCT. 
 
Theorem 4 For k=0~2N-1, 
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<Proof> Apply ISDFT, we have  



 18
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Furthermore, since the fact that kâ  and rα  are both real value, it shows the image 
part of the summation in (42) can be vanished and then (42) can be simplified to (43).  
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By the theorem3 and (39), 
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(44) 

 
To summary the discussion above, (45) and (46) give a transform system 

consisting of MDCT and IMDCT to map the frame vector processed and inversely 
reconstruct an aliased frame vector. 
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(46) 

Furthermore, the behind half of the 2N transform coefficients rα  can be discarded 
without any information lost.  
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However, a window function kh  always applies to the frames processed in 
audio coding [22]. This will cause the fault of reconstruction by overlap-add operation 
in general. To conceal the affect of the window function kh , the window function kg  
is also required at the backward part. The conditions on the window functions for PR 
are discussed as follow. Once the window function applies, the aliased signal 
reconstructed is  
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⎨
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At the backward part, after the window function kg  applies, the windowed aliased 
signal is 
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Furthermore, after the overlap-add operation between the front half of the current 
frame and the tail half of the last frame, the reconstructed signal sample of the front 
half of the current frame is 
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for k = 0 ~ N-1, where ka′  represent the samples of the last frame. Since kNk aa +′= , 
(49)  is simplified as (50).  
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Assume the window function kg  is the same as the window function kh , that is 
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Hence, the sufficient conditions on the window functions for PR are, for k = 0~2N-1,  

 kk hg = . 
(52) 

  
122 =+ +kNk hh

. 

(53) 

0121 =⋅−⋅ −−+−− kNkNkNk hhhh . (54) 
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The assumption of the symmetry of the window function that   12 kNk hh −−= can 
guarantee (54) holds. On the assumptions, the sin function is used widely in audio 
coding. 
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In AAC, the Kaiser window is another example of the window function satisfying the 
assumptions [23]. Especially, there are also several other window types offered in 
MP3 and AAC to adapt to different signal situations to avoid the annoying pre-echo 
effect [22]. 

 
Figure 13: The MDCT-based transform system and the relative equivalent 

SDFT-based transform system. 


