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Summary

A study of the energy loss spectra of electrons
transmitted through aluminum foil was carried out. In-
elastic interactions of electrons with the conduction
band as well as inner shells of aluminum have been con-
sidered. Energy loss spectra were ccwputed for several
monoenergetic electron sources and film thicknesses.
Theoretical results have been compared with available
experimental data.

Introduction

Electron mean free paths, stopping powers, and
ranges are important parameters for experimental and
theoretical studies in a wide variety of applied areas.
Information generated on these quantities are available
for electron energies less than 10 keV for many ma-

terials.1 Such information together with the Bethe

theory2 for electron energies >10 keV should provide
useful guides for order of magnitude estimates in elec-
tron penetration studies. To completely describe the
penetration phenomena one must also consider stragg-
lings of the above mean quantities. These stragglings
are due to the statisitical fluctuations of the fre-
quency and energy loss of collisions along the electron
track.

In this paper we calculate the energy loss stragg-
ling of electrons transmitted through aluminum foils.
This quantity represents the energy loss distribution
of electrons that have traveled a given pathlength under
identical initial conditions. Our emphasis will be on
the energy loss region where plasmon excitations are
most important. The theory and models used in this work
will be described in the next few sections. Theoretical
results of our calculations will be compared with avail-
able experimental data.

Straggling theory

The energy loss straggling may be described by a
distribution function f(E,x,w)dw; it represents the pro-
bability that an electron of energy E will have lost an
energy w on penetrating a thickness x of the medium.

This function obeys the transport equation35

Df(E,,x,w) d(Ex-f(EX(,)=S f (E,x, wz - w')j, (E - w + w', w' )dw'
-J f(E,d,), (E-p, ')do'-f~ f(E,x ,w0)dP (E -w, WI)dw&
0 u

+ 6(E-Ed6(x), (1)

where dp(E,w)/dw is the differential inverse mean free
path (DIMFP) for an electron of energy E to lose the
energy w. Dirac delta functions in Eq. (1) indicate that
a monoenergetic electron source of energy Eo constitutes
the point of zero pathlength. Here we allow the dis-
tribution function to vary with the energy of the de-
graded electrons, an effect which is important for low
energy electrons.
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Equation (1) can be solved using the convolution
method. Setting

f(E,xl +x2, W)=Jf f(E x" W- ')f(E - w+ w'x ')dw',(2)

we can compute the distribution of electrons which lost
energy w in thickness xi + x2 by the convolution of the
distribution which lost energy w-w' in xl with the dis-
tribution which lost energy w' in x2. If we start with
a thickness x for which the probability of a collision
is very small, the left-hand side of Eq.(l) may be ap-
proximated by

Df(E,x,W) - f(E,x,w) - 6 (w)
xi rX

Substituting this relation into Eq. (1), we obtain by
iteration an approximate solution

f(n) (E X =(w)+ xrf(n l)(E,x,w-w)(E-w+w I WI)

do,' - xf (nl1) (E,x,,),i(E - w)),

(3)

(4)

where p(E)=fi dll(E,w)dw is the inverse mean free path
for electrons of energy E. A few lower-order approxi-
mate solutions are

f(°) (E,x,w)=6 (w),
f ()(E ,x ,w)=6 (w) (1-x-p (E)') + x d(E ,o),I
f (2) (E ,x,w) =6 (w) _(1 -xu (E) + x2pi-(E) ) + x dP (E, w) (1-x,u (E)

-x,u (E - w)) + x2fd&(E,w - w )dP (E-w+@' ,u')

dw)' (5)

In general, the nth-order solution may be written as

f (n) (E,x,w)=6(w)p (n) (E ,x) +q (n) (E,x,w),

where

p(n) (E ,x)=l - xp (E)p (n 1) (E,x),

(6)

(7)

q( )(E,x,w)=xdw(E,e n l(E,x)-xp(E-w)q(n (E,xw)

+X r dp (E -wz+we', wt')q(n-1) (E ,x,w - w t)dwt, (8)

and

p (°) (E,x)=l,

q(°) (E,x,w)=0.

(9)
(10)

For simplicity, the convolution technique is ap-
plied for segments of equal thickness. On choosing xl=
x =x, we can calculate f(E,t,w) for any desired value
of thickness t. Substituting Eq.(6) into Eq.(2), we

obtain after n convolutions
n 2n

f(E,2 x,u)=C (E,x)6(w)+Fn(E,x,w),

where

C(E,x)=p(n) (E,x),

F (E,x,w)=q(n) (E,x,w),0

(11)

(12)

(13)
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and
n-i 2n-1

Fn(E,x,W)=(C2 (E-w,x)+C (E,x)) Fn1 (E,x,w)

+fo F,, _(E,x,w-w' )Fn (E-1+wE,x,o')do* (14)

These equations can be solved numerically.

The distribution function described above contains
two variables, i.e., distance and energy. In many ap-
plications it is necessary to know the single variable
distribution of simple energy degradation. This is done
by averaging out the distribution function in Eq. (1)
over the distance. On defining

(w)= .ff(E,x,E-w)dx, (15)

it is easy to show that

f (E)" (E)= f f (E+w) (E+w,w)dw+6 (E-Eo). (16)

The function P(E) is usually referred to as the el-
ectron slowing-down spectrum. It represents the average
pathlength traveled by the electron whLle its energy
lies between E+dE and E in the course of its slowing-
down.6 Note that Eq.(16) does not include the contribu-
tion due to the generation of secondary electrons. Nu-
merical methods used to solve this equation were given

elsewhere in detail. 6

Differential Inverse M-ean Free Path

The basic component in the straggling theory is the
DIMFP for inelastic interactions of an electron with the
medium. For the contribution from the conduction band,
this quantity may be given in the Born approximation as

d k ~~dk Im -

-(E,wA))= 1TE + T Im(- ) (17)

where 1k+=vZ(E4F-), k and w are, respectively, the

momentumtransfer and the energy transfer, and c (k,w) is
the scalar dielectric function of the electron gas
formed by the conduction band electrons. Here we ex-
press all physical quantities in atomic units (a.u.).

Generally, there are two types of excitation for a
given momentum transfer k. These are shown in Fig.l.

k

Fig.l. Spectrun of excitation energies vs. mamentum
transfer k for an electron gas. The shaded region is
that in which single electron-hole excitation is pos-

sible. The solid curve labeled P is the plasmon ex-

citation line. The broken curve shows an energy mo-

inentum conservation curve and kF is the Fermi momentum.

Plasmon excitations are most important for small k,
whereas single electron-hole excitations dominate ex-
clusively for large k. For the present applications, we
use the Drude dielectric function to describe plasmon
excitations and the Lindhard dielectric function for
single electron-hole excitations. Thus we let

{-D (k,w) ,

c(kw =) t£ (k,wl) .

k2for w'>- + kkF

for< + kk (18)

where kF is the Ferni momentum. Actually, there occurs

a maximun momentun transfer in £ (k,w), above which the
plasmons damp into single electrBn-hole pairs. This can
be seen from studies of tlhe sum rule

Imc(k,)w o = 21Tfleff, (19)

where n is the effective nunber of conduction elec-
trons pgf unit volume. The departure of neff from the
theoretically predicted valence electron density is due
to the shielding of valence electrons by the polariza-
tion of core electrons and the coupling of oscillator
strength between core and valence electrons. Using
generalized oscillator strengths for inner shells cal-
culated from the Hartree-Slater model, Smith aid Shiles7
have determined that 3.1 valence electrons contributed
to the oscillator strength for excitations of the con-
duction band of aluminum. However, if we substitute the
Lindhard dielectric function to the left-hand side of
Eq.(19), we find that the contribution to the oscil-
lator strength due to single electron-hole excitations
varies with the momentum transfer. Figure 2 shows the
single electron-hole contribution to the effective num-
ber of conduction electrons per Al atom, Ns, as a func-
tion of momentum transfer. It indicates a complete con-
sunption of oscillator strength due to the excitation
of single electron-holes at momentum transfers greater
than %0.7 a.u.

The imaginary part of the negative reciprocal of
the complex Drude dielectric function is given by

2
-1 A(k)wp w y

Im(£D(k,) (2 2(k))2 z2 2 (20)

where w is the plasma frequency, y is a damping con-

stant, (oj(k) represents the plasma dispersion relation,
and A(k) is the momentum dependent oscillator strength
which is determined from Eq. (19) and the data presented
in Fig.2. Results calculated for A(k) are also plotted
in Fig.2. It is seen that the oscillator strength for
plasmon excitations decreases from unity at k=0 to zero

at k%0.7 a.u. Here we have used y=l eV8 and the rela-

tion9

wp (k) =wp+0. 4k2+0. 2k4 (21)

from the experimental measurements.

Results and Discussion

Figure 3 shows some representative results of the
DIMFP for plasmon excitations as a function of energy
transfer for several values of incident electron ener-
gies. Calculations of the DIMFP for single electron-
hole excitations have been made previously using the
Lindhard dielectric function.6 Results corresponding
to the conduction band of aluminum taking 3.1 conduc-
tion electrons per Al atom are shown in Fig.4. Other
contribution to the DIMFP from the ionization of inner
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shells are available elsewhere.6
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Fig.2. A plot of the single electron-hole contribution
to the effective number of conduction electrons per
Al atom (right ordinate) as a function of momentum
transfer. The oscillator strength factor, A(k), in
Eq. (20) is plottedlwith the left ordinate scale.

DIMFP calculated above were used to compute the
energy loss straggling function for electron transmitted
through aluminum foils. In Fig.5 wp plot the result of
the straggling function for a 2580 A foil and a 20 keV
incident electron. This distribution is compared with

10experimental data measured by Marton et aZ. The peaks
in the spectrum correspond to energy losses due to the
generation of one, two, three, etc., plasmons in suc-
cessions. After several fluctuations as energy loss
increases, the spectrum becomes fairly smooth. The
broad continuum underlying the discrete loss spectrum
may be composed of overlapping tails from the discrete
loss peaks. Figure 6 is a plot of the straggling func-
tion computed for electrons of 1.8 keV transmitted
through aluminum foil of 220 i thickness. One sees
again that the spectrum consists of the typical plasmon
peaks at low energy losses. The overall asymmetric
straggling distribution about a most probable value is
due to the fact that smaller energy losses are more pro-
bable than the large losses. Because of the asymmetric
behavior, the average energy loss for transmitted elec-
trons may be quite differeiit from the most probable
energy loss. In the present case, u= 2.5 m3w . A

11 MPsketch of the experimental data of Fitting is also in-
cluded in the same figure for comparisons. Here the
resolution of energy in the experiment seems not good
enough to show detailed structure in the spectrum at
small energy losses. Figure 7 shows a similar plot for
electrons of 1 keV transmitted through aluminum of 220
R thickness. The plasmon peaks at low energy losses
are not so manifest here. The asymmetric straggling
distribution has the characteristics of becoming broad
and shifted to higher energy losses. This is confinned
by the result that the energy loss per unit pathlength
st 1 keV is greater than that at 1.8 keV.1
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Fig.3. Representation of Ed- (E,w) as a function of w
for several values of ele on energy E. Here

-e is the DIMFP for plasmon excitations in aluminum.
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Fig.4. A plot of Ed(E,w) vs. w for an electron gas
corresponding to tVe conduction band of Al. Here

v is the DIMFP for single electron-hole excitations.
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Finally, we plot in Fig.8 the electron slowing-down
spectrum as a function of electron energy loss due to
the source of monoenergetic electrons with the energy
EO= 1000 eV. This spectrun corresponds to a source
density normalized to one electron emitted per unit
volume per unit time. It may be used to calculate the
yield of reactions produced by an electron during its
slowing-down.

7 | I W | - ~ ~~~~I_ _
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Fig.5. A plot of the straggling function vs. energy
loss for a 20 keV electron and 2580 i Al foil. The
broken curve is the results of the experimental data
of Marton et aZ.10
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Fig.6. A plot of the straggling function vs. energy
loss for a 1.8 keV electron and 220 A Al foil. A
sketch of the experimental data of Fitting is in-
cluded for comparisons.
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Fig.7. A plot of the straggling funr-tion vs. energy
loss for a 1 keV electron and 220 X Al foil. A
sketch of the experimental data of Fitting11 is in-
cluded for comparisons.
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Fig.8. A plot of the electron slowing-down spectrum in
aluminum against electron energy loss, Eo - E, for a
monoenergetic electron source with energy Eo= 1 keV.
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